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Abstract

The algebraic notion of a “congruence” seems to be foreign to contemporary graph theory. We propound
that it need not be so by developing a theory of congruences of graphs: a congruence on a graph
G = (V,E) being a pair (∼, Ê) of which ∼ is an equivalence relation on V and Ê is a set of unordered
pairs of vertices of G with a special relationship to ∼ and E. Kernels and quotient structures are used
in this theory to develop homomorphism and isomorphism theorems which remind one of similar results
in an algebraic context. We show that this theory can be applied to deliver structural decompositions
of graphs into “factor” graphs having very special properties, such as the result that each graph, except
one, is a subdirect product of graphs with universal vertices. In a final section, we discuss corresponding
concepts and briefly describe a corresponding theory for graphs which have a loop at every vertex
and which we call loopy graphs. They are in a sense more “algebraic” than simple graphs, with their
meet-semilattices of all congruences becoming complete algebraic lattices.
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1 Preliminaries

For those notions on graphs in general not defined here, we refer the reader to [2]. Except when explicitly
stated otherwise (as in Section 5), all graphs considered are simple, undirected and unlabelled, and have
non-empty vertex sets, with no upper bound on their cardinalities.

A graph G with vertex set V and edge set E will typically be denoted by G = (V,E); when we are
dealing with different graphs, we may use the notation V (G) or VG for V and, similarly, E(G) or EG for
E. An independent set (of vertices) in a graph induces an edgeless subgraph of the graph. A (graph)
homomorphism is an edge preserving mapping from the vertex set of a graph into the vertex set of a graph.
When two graphs are isomorphic, one will be called a clone of the other.

If x and y are elements of some set, we shall denote an ordered pair formed by them by (x, y) and the
unordered pair {x, y} formed by them by xy.

Congruences: Consider any graph G = (V,E). A congruence on G is a pair θ = (∼, Ê) such that
(i) ∼ is an equivalence relation on V (hence idV ⊆ ∼);
(ii) Ê is a set of unordered pairs of different elements from V with E ⊆ Ê;
(iii) when x ∼ y then xy 6∈ Ê (i.e., ∼-equivalence classes are independent sets of vertices with respect to
Ê); and
(iv) when x, y, x′, y′ ∈ V , x ∼ x′, y ∼ y′, and xy ∈ Ê, then x′y′ ∈ Ê.

∗Corresponding author. Supported in part by the National Research Foundation of South Africa (Grant Number 90841).
†Johannes Heidema passed away unexpectedly on 11 February 2017.
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We shall refer to condition (iv) above as the substitution property of Ê with respect to ∼. After Corollary
2 in Section 3 there are some comments on the role and necessity of Ê in congruences.

When x ∈ V we define (as is usual) [x]∼ := {y ∈ V | x ∼ y} and if ∼ is understood from the context,
we write simply [x] for [x]∼. The congruence ιG := (idV , E) on G is obviously the smallest congruence on
G, i.e., the ⊆-smallest in both components, and is called the identity congruence on G.

Examples: A congruence can easily be constructed on any given graph G = (V,E) by taking, for any
two vertices x and y of G, x ∼ y to mean x = y and xy ∈ Ê to mean that there is a (finite) path from x to
y in G. Should one think of (V, Ê) as a graph, then it is the graph obtained from G = (V,E) by replacing
each connected component of G by a complete graph on the vertex set of that component. More generally:
the construction on a graph G = (V,E) of leaving V intact while extending E to some edge set Ê, yielding
the new graph (V, Ê), corresponds to the congruence (=, Ê) on G. Just such constructions are employed
in the proof of Theorem 6 in Section 4.

For another example, again given G = (V,E), one could choose a non-empty independent set of vertices,
W ⊆ V , and define a congruence θ = (∼, Ê) on G by stipulating

∼ := idV \W ∪ (W ×W ) and

Ê := {xy | [x, y ∈ V \W and xy ∈ E] or [x ∈ V \W, y ∈ W and (∃y′)(y′ ∈ W and xy′ ∈ E)]}.

Then one should think of constructing a new graph, to be denoted next by G/θ, with the vertex set and
edge set

V (G/θ) := (V \W ) ∪ {W} = V/ ∼ and

E(G/θ) := {xy | xy ∈ E; x, y ∈ V \W} ∪ {xW | x ∈ V \W and (∃y)(y ∈ W and xy ∈ E)}

respectively. (Please allow here a small innocuous ambiguity, namely identifying {x} = [x]∼ and x for
x ∈ V \ W .) We note that the graph G/θ in this example is obtained by identifying the vertices of the
pre-given independent set W .

The latter example serves as a precursor for the next definition.
Quotients: Given any congruence θ = (∼, Ê) on a graph G = (V,E), we define a new graph, denoted

by G/θ and called (the quotient of) G modulo θ, as follows:

G/θ := (V (G/θ), E(G/θ))

:= (V/ ∼, {[x][y] | xy ∈ Ê}).

We note that the surjective mapping x 7→ [x] from V (G) onto V (G/θ) establishes the natural or canonical
homomorphism G −→ G/θ. Note also that G/ιG ∼= G.

Direct products and subdirect products: The direct product Πi∈IGi of a set {Gi | i ∈ I} of
graphs is obtained by taking as vertex set V (Πi∈IGi) = Πi∈IV (Gi), the Cartesian product of the vertex
sets of the graphs Gi, while two vertices f and g, which are both functions from I to

⋃
i∈I V (Gi) and which

satisfy f(i) ∈ V (Gi) and g(i) ∈ V (Gi) for all i ∈ I, are adjacent in Πi∈IGi if and only if f(i)g(i) ∈ E(Gi)
for all i ∈ I. For such a direct product Πi∈IGi, the ith projection from Πi∈IGi to Gi is the mapping
πi : f 7→ f(i); note that these projections are all (graph) homomorphisms. A subdirect product of a set
of graphs {Gi | i ∈ I} is an induced subgraph of the direct product Πi∈IGi of these graphs for which the
restriction (to that subgraph) of every ith projection is surjective onto Gi.

Preview: Using these concepts, we develop an “algebraic” theory of graphs which reminds one of
the theories in modern algebra and universal algebra, explicated for example in [3] and [5]. By defining
some of the most fundamental concepts for an algebraic approach to graph theory and proving some of the
basic concomitant theorems, we hope to evoke further work in this vein.

In Section 2 we investigate the posets of all congruences on a graph and of all those congruences larger
than a fixed congruence on the graph.

In Section 3 we formulate and prove the First Isomorphism Theorem for Graphs. This is followed
by an explanation of why the notion of a congruence on a graph, a relational structure, needs to be
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more involved than the corresponding notion on an algebraic structure, with operations. The Second
Isomorphism Theorem for Graphs and the Third Isomorphism Theorem for Graphs are then derived as
applications of the First Isomorphism Theorem for Graphs.

In Section 4 we employ congruences and quotient graphs to show a general relationship between the
infimum of a set of congruences on a graph and a subdirect product of the quotient graphs modulo those
congruences. Here it can be demonstrated that every graph, except the two-vertex graph with no edge,
is a special subdirect product of graphs by showing that one can ask that each of the graphs used has a
universal vertex.

In a final section we briefly consider a corresponding theory by deriving similar results for graphs
which have a loop at every vertex, here called loopy graphs. It is an easy exercise to develop analogously
a theory for directed graphs. Taking some care, multiple edges and labels on edges and on vertices could
be accommodated.

We note that the proper generalization of the notion of a “congruence” from algebra to structures with
operations, partial operations, and relations – of which we employ a special case – originates in [4].

2 The poset of congruences on a graph

We now consider the natural partial ordering on the set of all congruences on G. Let us denote the set of
all congruences on a graph G = (V,E) by C(G). We note that the relation ⊑, defined on C(G) by

(∼, Ê) ⊑ (∼′, Ê′) if and only if ∼ ⊆ ∼′ and Ê ⊆ Ê′

for all pairs of congruences from C(G), is a partial order relation on C(G). More than that: If θi = (∼i, Êi),
i ∈ I, are given congruences on G, one can easily see that the pair (∼, Ê) defined by ∼ :=

⋂
{∼i| i ∈ I}

and Ê :=
⋂
{Êi | i ∈ I} is a congruence on G.

Hence we can define ∧
{θi | i ∈ I} := (

⋂
{∼i | i ∈ I},

⋂
{Êi | i ∈ I})

and note that this is the greatest lower bound of the given congruences in (C(G);⊑). This ensures that
(C(G);⊑) is a (complete) meet-semilattice, since arbitrary meets exist in it. With respect to joins, one can
only remark that every set of congruences in C(G) which is bounded above in (C(G);⊑) has a least upper
bound in (C(G);⊑) – the meet of all such upper bounds.

Should C′ ⊆ C(G), C′ = {θi | i ∈ I} with θi = (∼i, Êi), be a ⊑-chain in C(G) – i.e., for all i, j ∈ I,

θi ⊑ θj or θj ⊑ θi – then (
⋃

i∈I ∼i,
⋃

i∈I Êi) is an upper bound for C′ in (C(G);⊑). We verify explicitly that
the purported upper bound satisfies condition (iii) on congruences. Suppose that (x, y) ∈

⋃
i∈I ∼i and in

particular that x ∼j y. Then (by (iii) for θj) xy /∈ Êj. Consider any i ∈ I, i 6= j. If θi ⊑ θj, then Êi ⊆ Êj ,

with xy /∈ Êi. If θj ⊑ θi, then ∼j ⊆∼i; hence x ∼i y and xy /∈ Êi. So xy /∈
⋃

i∈I Êi and (iii) holds; and
so do (i), (ii), and (iv). Since this upper bound is made up of unions, every chain in C(G) clearly has an
upper bound, in fact, a least upper bound in C(G). Therefore, by the grace of Zorn’s Lemma, C(G) has at
least one maximal element – but most likely many.

Theorem 1. Let θ be any congruence on a graph G. Then there is a 1-1 correspondence between the
congruences α on G satisfying θ ⊑ α and the congruences on G/θ. Furthermore, the poset of all such
congruences α is isomorphic to the poset of all the congruences on G/θ.

Proof. Consider any graph G = (V,E) with θ = (∼θ, Êθ) a (fixed) congruence on G and let α be a

congruence on G with α = (∼α, Êα) and θ ⊑ α, i.e., ∼θ ⊆ ∼α and Êθ ⊆ Êα – we shall abuse terminology
by saying that α “contains” θ.

Define a congruence α/θ := (∼α/θ, Êα/θ) on G/θ as follows: For all v1, v2 ∈ V we have

([v1]∼θ
, [v2]∼θ

) ∈ ∼α/θ if and only if (v1, v2) ∈ ∼α and

[v1]∼θ
[v2]∼θ

∈ Êα/θ if and only if v1v2 ∈ Êα.
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First we show that ∼α/θ and Êα/θ are both well defined :
Assume v1 ∼θ v′1 and v2 ∼θ v

′
2. Since ∼θ ⊆ ∼α it follows that v1 ∼α v′1 and v2 ∼α v′2. By the transitivity

and symmetry of ∼α it follows that (v1, v2) ∈ ∼α if and only if (v′1, v
′
2) ∈ ∼α.

Starting again with v1 ∼θ v′1 and v2 ∼θ v′2 we have that v1v2 ∈ Êα if and only if v′1v
′
2 ∈ Êα by the

substitution property of Êα.
It is easy to see that ∼α is an equivalence relation on V (G/θ).

In order to see that E(G/θ) ⊆ Êα/θ, we note that [v1]∼θ
[v2]∼θ

∈ E(G/θ) if and only if v1v2 ∈ Êθ,

which implies that v1v2 ∈ Êα and therefore [v1]∼θ
[v2]∼θ

∈ Êα/θ.

The requirement that ([v1]∼θ
, [v2]∼θ

) ∈ ∼α/θ implies [v1]∼θ
[v2]∼θ

6∈ Êα/θ follows immediately from the

fact that α is a congruence, which means i.a. that (v1, v2) ∈ ∼α implies that v1v2 6∈ Êα.

To show that Êα/θ satisfies the substitution property with respect to ∼α/θ, let [v1]∼θ
[v2]∼θ

∈ Êα/θ

and [v1]∼θ
∼α/θ [v′1]∼θ

and [v2]∼θ
∼α/θ [v′2]∼θ

. Then the required conclusion follows from the substitution

property of Êα with respect to ∼α, since by what is given we have that v1 ∼α v′1 and v2 ∼α v′2 so that

v1v2 ∈ Êα implies v′1v
′
2 ∈ Êα.

We conclude that α/θ = (∼α/θ, Êα/θ) is indeed a congruence on G/θ.
Next we consider the mapping π that maps every congruence α on G that contains θ to the congruence

α/θ on G/θ described above. Let α and β be any two congruences on G which both contain θ. First we
show that this mapping satisfies ∼α ⊆ ∼β if and only if ∼α/θ ⊆ ∼β/θ:
The fact that {(v1, v2) ∈ ∼α=⇒ (v1, v2) ∈ ∼β} if and only if {([v1]∼θ

, [v2]∼θ
) ∈ ∼α/θ=⇒ ([v1]∼θ

, [v2]∼θ
) ∈

∼β/θ} follows immediately from the definitions.

The fact that the mapping π also satisfies Êα ⊆ Êβ if and only if Êα/θ ⊆ Êβ/θ follows in a similar
fashion immediately from the definitions.

By the above, π may be thought of as an order-embedding which is automatically (see p. 24 of [1]) an
injection. To complete the proof, we need to show that π is a surjective mapping onto C(G/θ). In order to

do so, let γ := (∼γ , Êγ) be any congruence on G/θ. In order to find a congruence α for which π(α) = γ,
we first define a relation ∼α on G by

v1 ∼α v2 if and only if [v1]θ ∼γ [v2]θ.

Note that, if v1 ∼θ v2, then [v1]θ = [v2]θ and hence, by the reflexivity of ∼γ , we have that [v1]θ ∼γ [v2]θ so
that v1 ∼α v2, i.e., ∼θ ⊆ ∼α. It also follows easily that ∼α is an equivalence relation since ∼γ is one.

Next we define a set Êα (of unordered pairs of different elements of V ) by

v1v2 ∈ Êα if and only if [v1]θ[v2]θ ∈ Êγ .

Firstly, E ⊆ Êα:
Suppose v1v2 ∈ E. Then [v1]θ[v2]θ ∈ E(G/θ) ⊆ Êγ , i.e., v1v2 ∈ Êα.

Secondly, if v1 ∼α v2, then v1v2 6∈ Êα:
Suppose v1 ∼α v2. This means that [v1]θ ∼γ [v2]θ so that [v1]θ[v2]θ 6∈ Êγ (since γ is a congruence on G/θ).

But then v1v2 6∈ Êα.
Thirdly, Êα satisfies the substitution property with respect to ∼α:

If v1v2 ∈ Êα, v1 ∼α v′1 and v2 ∼α v′2, then [v1]θ[v2]θ ∈ Êγ , [v1]θ ∼γ [v′1]θ and [v2]θ ∼γ [v′2]θ. But then

[v′1]θ[v
′
2]θ ∈ Êγ (by the substitution property of Êγ), and hence v′1v

′
2 ∈ Êα.

From the above three claims we may conclude that α := (∼α, Êα) is a congruence on G.
Let C(G, θ) := {α | α ∈ C(G), θ ⊑ α}. Using the above congruence α on G, defined from a given

congruence γ on G/θ, we now can show that π : C(G, θ) → C(G/θ) is surjective since π(α) = γ: This is
seen by merely remarking that, for a given congruence γ on G/θ the conditions linking γ to α and α to
α/θ are identical.

The isomorphism between the posets mentioned in the above theorem can be rephrased in terms of filters
(also called dual ideals) in meet-semilattices (see [1]) as is now done in
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Corollary 1. Let θ be any congruence on a graph G. The filter C(G, θ) of C(G) consisting of all the
congruences α on G satisfying θ ⊑ α and the meet-semilattice C(G/θ) of all congruences on G/θ are
isomorphic as complete meet-semilattices.

In the context of loopy graphs (Section 5) we shall return to these posets, which there become complete
algebraic lattices.

3 The isomorphism theorems

We start with a theorem which might also be called (similar to the corresponding result for (universal) alge-
bras in [3]) the Homomorphism Theorem for Graphs or (cf. [5]) the First Isomorphism Theorem

for Graphs.
The kernel of a homomorphism: Given any graph homomorphism f : G −→ H, we define a

congruence on G, denoted by θf and called the congruence induced by f or the kernel of f , by

θf := (∼f , Êf )

:= ({(x, y) ∈ V (G)2 | f(x) = f(y)}, {uv | u, v ∈ V (G) and f(u)f(v) ∈ E(H)})

= (f−1[idf(V (G))], f
−1[E(H[f(V (G))])]).

We note that the equivalence classes of ∼f are the colour classes of theH-colouring f ofG. It is immediately
clear that θf is a congruence on G.

Theorem 2. For any graph homomorphism f : G −→ H we have that G/θf is isomorphic to H[f(V (G))]
under [x] 7→ f(x). When f is surjective (i.e., f(V (G)) = V (H)), then G/θf is isomorphic to H under
[x] 7→ f(x).

Proof. Note first that the mapping [x] 7→ f(x) is well defined since, if [x] = [y], then x ∼f y and hence
f(x) = f(y) by the definition of θf .

Furthermore we have that

[x][y] ∈ E(G/θf ) if and only if xy ∈ Êf

if and only if f(x)f(y) ∈ E(H).

Hence G/θf is isomorphic to H[f(V (G))] under [x] 7→ f(x).

Theorem 2 demonstrates how the f -image H[f(V (G))] outside G in H can be internalized within G
by the congruence θf .

Corollary 2. Given f : G −→ H, we always have the commutative diagram

G G/θf
natural

[x] 7→ f(x)

H

f

For purely algebraic structures (where every relation in the signature is a function, i.e., an operation
on the underlying set of the structure) a congruence is simply an equivalence relation ∼ on the underlying
set for which every relevant relation satisfies the substitution property with respect to ∼ (see [5] and [3]).
For example, let G be a group on the underlying set U(G) and I the binary relation which is the operation
“inverse”: I = {(x, y) ∈ U(G)2 | xy = yx = e}, and for (x, y) ∈ I we write y = x−1. The point is that for
every x there is exactly one y such that (x, y) ∈ I. When then later defining I in the naturally induced
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way on the elements (of the underlying set) of the quotient group G/∼, there is exactly one element that
[x]−1 should be, namely [x−1] (= [y] for (x, y) ∈ I).

Now, for a graph G = (V,E) the issue of defining “congruence on G” aptly, is in a sense more
complicated than for groups or algebraic structures in general. The simple reason is that when x ∈ V there
may be no y, or exactly one y, or more than one y such that xy ∈ E. And similarly, given a homomorphism
f : G → H, f(x) may have any number of neighbours in H, some of them within f(V ). This freedom has
to be reflected in a freedom of choices for Ê (⊇ E) – which is not completely determined by ∼ and E – in
congruences θ = (∼, Ê) on G. Theorem 2 becomes impossible with only ∼f but without the freedom to

stipulate Êf as the “pullback” f−1[E(H[f(V )])] along f of all and only those edges induced in the f -image
inside H. As said, this insight originates in [4].

We now consider any graph G = (V,E) and any congruence θ = (∼, Ê) on G, together with an induced
subgraph H ≤+ G, the latter notation (read as “H is an internal induced subgraph of G”) implying that
H = (VH , EH) is an induced subgraph of G with VH ⊆ V . To define and explore interesting relationships
between θ and H, we need some new concepts and their notations.

The congruence θ on G induces the congruence θH = (∼H , ÊH) on H, where

∼H := ∼ ∩ (VH × VH) and

ÊH := {xy ∈ Ê | x, y ∈ VH}.

That θH is indeed a proper congruence on H is easy to verify. The congruence θ and H induce a new
internal induced subgraph of G, called the ∼-expansion of H and denoted by ∼(H) ≤+ G, where

∼(H) := (V∼(H), E∼(H)),

V∼(H) := {x ∈ V | (∃y)(y ∈ VH , x ∼ y)}, and

E∼(H) := {xy ∈ E | x, y ∈ V∼(H)}.

Finally, just as θ induces the congruence θH on H, it induces a congruence θ∼(H) on ∼(H) as follows:

θ∼(H) := (∼∼(H), Ê∼(H)), where

∼∼(H) := ∼ ∩ (V∼(H) × V∼(H)) and

Ê∼(H) := {xy ∈ Ê | x, y ∈ V∼(H)}.

We are now ready to formulate and prove a theorem which is related to the Second Isomorphism
Theorem for algebraic structures (see [5], and [3], where it is called the First) and hence may be called the
Second Isomorphism Theorem for Graphs.

Theorem 3. For any graph G, any congruence θ = (∼, Ê) on G and any induced subgraph H ≤+ G, the
following three graphs are pairwise isomorphic:
∼(H)/θ∼(H), H/θH , and (G/θ)[{[x]∼ | x ∈ VH}], called F in the figure below. .

Proof. We shall define three different surjective homomorphisms from the internal induced subgraph ∼(H)
of G onto the three graphs of interest and call them p : ∼(H) → ∼(H)/θ∼(H), q : ∼(H) → H/θH , and
r : ∼ (H) → (G/θ)[{[x]∼ | x ∈ VH}]. The kernels of these three homomorphisms will turn out to be
the same: θp = θq = θr = θ∼(H). By Theorem 2 each of the three graphs of interest is isomorphic to
∼(H)/θ∼(H), making them pairwise isomorphic.

Considering any x ∈ V∼(H) we need to define p(x) ∈ V (∼(H)/θ∼(H)). By the definition of V∼(H) there
exists some x′ ∈ VH with x ∼ x′. Define p(x) := [x′]∼ = [x]∼. Then p is a homomorphism: if x, y ∈ V∼(H)

and xy ∈ E∼(H), then xy ∈ E, and hence xy ∈ Ê, ensuring that [x]∼[y]∼ ∈ E(∼(H)/θ∼(H)). Picking any
[x]∼ ∈ V (∼(H)/θ∼(H)), we have [x]∼ = [x′]∼ for some x′ ∈ VH and x′ ∈ V∼(H) with p(x′) = [x]∼, so p is
surjective. Obviously its kernel is θ∼(H) and p is just the natural epimorphism.

Consider any x ∈ V∼(H) with x′ ∈ VH and x ∼ x′. Define q : V∼(H) → VH/θH ) by q(x) = [x′]∼H
. Then

q is a homomorphism: Consider y ∈ V∼(H) with xy ∈ E∼(H), hence xy ∈ E and thus xy ∈ Ê. Therefore
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G G/θ

•

•

•

•

•

x •[x]∼H
{ } [x]∼ [x]∼

H





∼(H)





F

• •

• •

• •

• •

[x]∼H
[x]∼∼(H)

H/θH ∼(H)/θ∼(H)

there are now x′, y′ ∈ VH with x ∼ x′, y ∼ y′. By the substitution property of Ê with respect to ∼H we
have x′y′ ∈ Ê, and hence q(x)q(y) = [x′]∼H

[y′]∼H
∈ E(H/θH). Picking any [x]∼H

∈ V (H/θH), x ∈ VH , so
x ∈ V∼(H) and q(x) = [x]∼H

, so q is surjective. Its kernel is θ∼(H).
Finally, that r : ∼(H) → (G/θ)[{[x]∼ | x ∈ VH}]; x 7→ [x]∼ is a surjective homomorphism with kernel

θ∼(H) needs no convoluted argument.

Next we develop an isomorphism theorem, called the Third Isomorphism Theorem for Graphs –
see [5] for a corresponding theorem in algebra, while in [3] it is called the Second – again as an application
of the Homomorphism Theorem for Graphs.

Consider a graph G = (V,E) and two of its congruences θ1 = (∼1, Ê1) and θ2 = (∼2, Ê2) with

∼1 ⊆ ∼2 and Ê1 ⊆ Ê2 – we have agreed to denote this by θ1 ⊑ θ2 in Section 2. We define a congruence
θ2/1 := (∼2/1, Ê2/1), which we also denote by θ2/θ1, of G/θ1 as follows: For all x, y ∈ V we have

([x]∼1 , [y]∼1) ∈ ∼2/1 if and only if (x, y) ∈ ∼2 and

[x]∼1 [y]∼1 ∈ Ê2/1 if and only if xy ∈ Ê2.

In the above, Ê2/1 can be considered as a set of unordered pairs (as it should) since Ê2 is given as such.
Note that the definition of θ2/1 above, where θ1 and θ2 are given congruences on G with θ1 ⊑ θ2, imitates
the definition in the proof of Theorem 1 of α/θ, where θ and α are given with θ ⊑ α. The difference
between this situation and that of Theorem 1 is that in the next result we shall compare two quotient
graphs whereas in Theorem 1 we compare two posets. Because of this similarity (between α/θ and θ2/1),
we are already assured that each θ2/1 is a congruence on G/θ1.

Now we are ready to prove the Third Isomorphism Theorem for Graphs.

Theorem 4. For any graph G = (V,E) and two congruences θ1 = (∼1, Ê1) and θ2 = (∼2, Ê2) of G with
θ1 ⊑ θ2 the quotient graph (G/θ1)/θ2/1 is isomorphic to G/θ2.

Proof. The proof is again an application of Theorem 2.
Consider the mapping f : [x]∼1 7→ [x]∼2 from G/θ1 to G/θ2. This mapping is a homomorphism since,

whenever [x]∼1 [y]∼1 ∈ E(G/θ1), then xy ∈ Ê1 and hence xy ∈ Ê2 (since Ê1 ⊆ Ê2), i.e., [x]∼2 [y]∼2 ∈
E(G/θ2). It is easy to see that f is surjective.
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For the kernel (∼f , Êf ) of this homomorphism f we see, from the definitions, that the pair ([x]∼1 , [y]∼1) ∈
∼f if and only if f([x]∼1) = f([y]∼1), i.e., [x]∼2 = [y]∼2 , which is equivalent to (x, y) ∈ ∼2, while

[x]∼1 [y]∼1 ∈ Êf if and only if f([x]∼1)f([y]∼1) ∈ E(G/θ2), i.e., xy ∈ Ê2. These conditions, however,
are exactly those in the definition of θ2/1 and therefore ensure that this kernel is θ2/1.

As remarked above, θ2/1 is a congruence of G/θ1 and by the above argument we have more than that:
θ2/1 is indeed the kernel of the homomorphism f . The result now follows from Theorem 2.

4 Quotient graphs and subdirect products

In this section we now link the above concepts in another way and prove a result which shows that the
quotient of a graph with respect to the infimum of a given set of congruences on the graph is indeed a
subdirect product of the quotient graphs of these congruences.

Theorem 5. Let θi, i ∈ I, be congruences on a fixed graph G = (V,E), while θ :=
∧
{θi | i ∈ I}. Then

G/θ is isomorphic to a subdirect product of the quotient graphs G/θi.

Proof. Using the notation as in the definitions in Section 1, we describe the required isomorphism, to
be called α, between G/θ and a suitable subdirect product of the Gi := G/θi to prove the result: Let

θi = (∼i, Êi) for each i ∈ I and θ =
∧
{θi | i ∈ I} = (∼, Ê). Note first that a typical vertex of G/θ is

an equivalence class of
⋂
{∼i| i ∈ I}. Hence it is of the form [x] with y ∈ [x] iff y ∼i x for every i ∈ I.

Furthermore, we should define α([x]) to be an element of the vertex set of Πi∈IGi, i.e., a member of the
Cartesian product Πi∈IV (Gi). Hence α([x]) should be a function from I to the disjoint union

⋃
i∈I V (Gi)

(with prescribed properties).
This is achieved as follows: For any x ∈ V , we define α([x]) := fx, the function from I to

⋃
i∈I V (Gi)

which satisfies fx(i) = [x]∼i
. We first note that α is well-defined, i.e., α([x]) is not dependent on the choice

of x representing [x]: If [x] = [y], then x ∼ y so that y ∼i x for every i ∈ I by the above, i.e., [y]∼i
= [x]∼i

for every i ∈ I. Since these are the function values of α([y]) and α([x]), we can conclude that α is indeed
well-defined. Note also that [x]∼i

is a vertex of G/θi for every i ∈ I; thus it is immediately clear that this
function satisfies the requirement to be a vertex of the Cartesian product Πi∈IG/θi.

Furthermore, the function α : [x] 7→ fx is an isomorphism since
1) α is an injection: If [x] 6= [y], then x 6∼ y and hence x 6∼i y for some i ∈ I; for this i we then have that
[x]∼i

6= [y]∼i
so that fx(i) 6= fy(i), i.e., fx 6= fy, and

2) α and α−1 are both edge preserving: for all x, y ∈ V (G) we have

[x][y] ∈ E(G/θ)

if and only if xy ∈ Ê

if and only if xy ∈ Êi for all i ∈ I

if and only if [x]∼i
[y]∼i

∈ E(G/θi) for all i ∈ I

if and only if fxfy ∈ E(Πi∈IG/θi).

We have now established that α(G/θ) is an induced subgraph of Πi∈IG/θi and we need to prove that
it is a subdirect product. Hence consider the ith projection from Πi∈IG/θi to G/θi, i.e., the mapping
α([x]) 7→ α([x])i. By the above, α([x]) = fx so that α([x])(i) = fx(i) = [x]∼i

for all i ∈ I. In these
equations, x varies over all vertices from G; hence [x]∼i

assumes all values from V (G/θi). So this projection
is surjective.

If, in the above theorem, θ is the identity congruence on G, i.e., θ = (idV (G), E(G)), then G/θ ∼= G.
Hence we have

Corollary 3. If {θi | i ∈ I} is a set of congruences on a graph G with
∧
{θi | i ∈ I} = ιG, then G is

isomorphic to a subdirect product of the quotient graphs G/θi.
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To illustrate the use of Corollary 3, we need the notion of a “universal vertex”: A vertex in a graph is
universal when it is adjacent to every other vertex of the graph. Note that every graph is the subdirect
product of (some) graphs, in fact of one or more clones of itself: this can be seen by remarking that (e.g.)
the mapping v 7→ (v, v) from V (G) to V (G×G) for any graph G maps the given graph onto the diagonal
of the direct product in such a way that the projections are indeed surjective. In the next result we show
that the “factor” graphs involved can almost always be restricted to graphs having universal vertices – this
is certainly trivially the case if the graph G itself has a universal vertex.

Theorem 6. Every graph except 2K1, the graph with two vertices and no edge, is a subdirect product of
graphs each of which has a universal vertex.

Proof. Let G = (V,E) be any graph except 2K1. If G has only 1 or only 2 vertices, then G has a universal
vertex and the remark just before the theorem covers G. Hence we may assume that |V | ≥ 3. Choose

any vertex v ∈ V and define the congruence θv := (idV , Êv) on G, where Êv := E ∪ {vx | x ∈ V \ {v}},

ensuring that v becomes adjacent in (V, Êv), viewed as a graph, also to all vertices not previously in its

neighbourhood. To show that
∧
{θv | v ∈ V } = ιG, we need only prove that E =

⋂
{Êv | v ∈ V }. Clearly

E is contained in the intersection. Suppose edge xy ∈ Êv for every v ∈ V , but xy 6∈ E. Since |V | ≥ 3, there

exists a z ∈ V different from both x and y. By the definition of Êz we have xy 6∈ Êz – a contradiction. So∧
{θv | v ∈ V } = ιG.
By Corollary 3, we now have that G is isomorphic to a subdirect product of the (quotient) graphs

G/θv . It is easy to see that every G/θv has the universal vertex {v}.

It is also easy to see that 2K1 is not a subdirect product of graphs each of which has a universal vertex
since, if it were such a subdirect product, then each graph involved in the full direct product must have 2
vertices and hence be K2. But then the direct product is Πi∈IK2, within which every subdirect product
contains at least one induced K2 – and hence cannot be 2K1.

5 Congruences on loopy graphs

Lurking in the subconscious of graph theory there is a shoal involving ambiguity concerning the intuitive
connotations of the existence (or not) of an edge or a path between two vertices. On the one hand one
may perceive an edge as similar to a rigid bar of steel distancing the two vertices, forever keeping them
apart. Then loops are proscribed: no vertex is distanced from itself, and no homomorphism can merge
two adjacent vertices to a single one, as separation must be preserved. Simple graphs are loopless and
instantiate this intuition.

Another intuition perceives edges and paths as links, realizing closeness and accessibility, keeping
vertices together. Then loops at all vertices are prescribed: each vertex is already at itself, and homo-
morphisms can contract two adjacent vertices to a single one, preserving linkage. In this section only, the
intuition of adjacency as togetherness prevails. All graphs here are loopy, meaning that there is an edge
from every vertex to itself (while still eschewing multiple edges, directed edges, and labels). The graph ©•
with nothing but one looped vertex is a homomorphic image of any graph. Congruences on loopy graphs
are somewhat simpler than previously. Some new results can be reached under these alternate stipulations.
No adjustment to the notion of homomorphism is needed for loopy graphs; it simply preserves adjacency.

An independent set (of vertices) of a loopy graph G = (V,E) is a non-empty W ⊆ V such that for all
x, y ∈ W if x 6= y, then xy 6∈ E.

A congruence on a loopy graph G = (V,E) is a pair θ = (∼, Ê) such that
(i) ∼ is an equivalence relation on V (hence idV ⊆ ∼);
(iil) Ê is a set of unordered pairs of elements from V with E ⊆ Ê (hence {xx | x ∈ V } ⊆ Ê);
(iiil) when x ∼ y then xy ∈ Ê (i.e., ∼-equivalence classes induce complete subgraphs with respect to Ê);
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and
(iv) when x, y, x′, y′ ∈ V , x ∼ x′, y ∼ y′, and xy ∈ Ê, then x′y′ ∈ Ê.

Although we state (iiil) explicitly to ease the comparison between the conditions for a congruence on
a loopy graph to those in Section 1 for the case of simple graphs, (iiil) – in the case of prescribed loops
at every vertex – follows from (iv) : x ∼ y together with x ∼ x and the compulsory xx ∈ Ê, entail that
xy ∈ Ê. That, in this section, every vertex is looped, requires no formal changes to the definition of the
quotient of a graph modulo a congruence (in Section 1), nor to that of the kernel of a homomorphism (in
Section 3) – though the semantics entailed by the implied congruence has shifted slightly.

The different intuitive connotations of the existence of an edge between two vertices (apartness in
the case of simple graphs; togetherness in the case of loopy graphs) are expressed very explicitly in these
different third conditions on a congruence: (iii) for simple graphs in Section 1 stipulates that vertices in
the same ∼-equivalence class – homomorphically mappable to a single image – should not be kept apart
by any Ê-edge, while (iiil) above for loopy graphs stipulates that the potential homomorphic collapse of
an ∼-equivalence class to a singleton entails that every two vertices in such a class are already Ê-linked.

Using the same notation as in Section 2, we remark that for loopy graphs G the congruence ιG =
(idV (G), E(G)) is the ⊑-minimum element of the partially ordered set (C(G);⊑) of all congruences on G.
It should be clear that now, i.e., for a loopy graph G, τG := (V (G) × V (G), {xy | x, y ∈ V (G)}) is the
⊑-largest element of (C(G);⊑) and that G/τG ∼= ©.•

The fact that (C(G);⊑) now has a largest element also enables us to describe, using the infima described
in Section 2, the supremum of any number of congruences: For any set D ⊆ C(G) we have

∨
D =

∧
{θ | δ ⊑ θ for every δ ∈ D}.

Following [1], we say that an element k of a complete lattice (L;≤) is compact if for every subset S of L, if
we have that k ≤

∨
S, then k ≤

∨
F for some finite subset F of S; the set of compact elements of (L;≤)

is denoted by K(L). Furthermore, a complete lattice (L;≤) is called algebraic if for every a in L we have
that a =

∨
{k ∈ K(L) | k ≤ a}.

Theorem 7. The poset (C(G);⊑) is a complete algebraic lattice for any loopy graph G.

Proof. (C(G);⊑) is a complete lattice with respect to the meet operation described in Section 2 and the
join operation described above. To show that it is indeed algebraic too, we remark that for every loopy
graph G = (V,E) and all vertices a, b of G with a 6= b, the pairs ιG, (idV , Êab) and (∼ab, Êab) with

∼ab := idV ∪ {(a, b), (b, a)} and Êab := E ∪ {ab} are congruences on G. Moreover, these congruences are
easily seen to be compact elements of the lattice (C(G);⊑) and, finally, every congruence on the loopy
graph G is the join of all the compact elements of these three forms below it.

From Theorem 7 and (the analogue for loopy graphs of) Corollary 1 we now have

Corollary 4. Let θ be any congruence on a loopy graph G. The filter C(G, θ) of C(G) and C(G/θ) are
isomorphic as complete algebraic lattices.

The atoms of the lattice (C(G);⊑): An atom (see for example [1]) in a lattice (or poset) (L;≤)
with least element 0 is an element a which covers 0, denoted by 0 < a and meaning that 0 < a (⊏ in our
notation) and there is no element of L between 0 and a. The atoms of the lattice (C(G);⊑) are clearly the

congruences of G of the form (idV , Êab) with Êab := E ∪ {ab} (as in the proof) for any pair of vertices a, b

of G with a 6= b – since each such congruence is covered by the congruence (∼ab, Êab), we might refer to
the latter congruences as near-atoms of the lattice. This lattice is therefore not only atomic (meaning, as
in [1], that for every element x 6= 0 there is an atom a with a < x); it is indeed near-atomistic, meaning
that every non-zero element of the lattice is the join of the atoms and near-atoms below it.

We remark that, mutatis mutandis, Theorems 1 to 6 and Corollaries 1 to 3, reformulated for loopy
graphs, still hold. A companion result of Theorem 6 in this context is
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Theorem 8. Any loopy graph with at least three vertices is a subdirect product of a set of graphs each of
which is a clone of one of the four 3-vertex loopy graphs.

Proof. The four 3-vertex loopy graphs are G0, G1, G2, and G3.

G0 G1 G2 G3

•© •©

•©

•© •©

•©

•© •©

•©

•© •©

•©

Let G = (V,E) be a loopy graph with |V | ≥ 3. A trichotomy of V is a triplet T = {V1, V2, V3} of pairwise
disjoint non-empty subsets of V with V1 ∪ V2 ∪ V3 = V . We define T := {T | T is a trichotomy of V }.

For every T ∈ T , T = {V1, V2, V3}, we define a congruence θT := (∼T , ÊT ) on G as follows:

∼T := (V1 × V1) ∪ (V2 × V2) ∪ (V3 × V3) and

ÊT := {xy | (x, y) ∈ ∼T or (∃i, j ∈ {1, 2, 3})(∃x′ , y′ ∈ V )
[i 6= j; x ∼T x′ ∈ Vi; y ∼T y′ ∈ Vj; and x′y′ ∈ E]}.

That θT is a congruence on G is easy to verify. We claim that then
∧
{θT | T ∈ T } = ιG and use, as can

be expected, separate arguments to show that idV =
⋂
{∼T | T ∈ T } and that E =

⋂
{ÊT | T ∈ T }:

Clearly, idV ⊆
⋂
{∼T | T ∈ T }, so we need only verify the reverse inclusion: If x, y are distinct vertices

of G, then we can create the trichotomy Tx,y := {{x}, {y}, V \ {x, y}} of V , forcing (x, y) 6∈ ∼Tx,y , so that
(x, y) 6∈

⋂
{∼T | T ∈ T }. Hence idV =

⋂
{∼T | T ∈ T }.

For the second equality, it is clear that E ⊆
⋂
{ÊT | T ∈ T } since, by the definition of ÊT , E ⊆ ÊT for

every T . (Note that when xy ∈ E, then either (a) x and y are in the same Vi, resulting in (x, y) ∈ ∼T and

hence xy ∈ ÊT ; or else (b) x ∈ Vi and y ∈ Vj , i 6= j, and hence again xy ∈ ÊT .) We verify the reverse
inclusion by showing that when xy 6∈ E, then xy is not in the intersection. Suppose xy 6∈ E (hence x 6= y)

and consider the trichotomy Tx,y = {{x}, {y}, V \ {x, y}}. Perusal of the definition of ÊTx,y reveals that it
does not have element xy.

Finally, it is easy to see that for each trichotomy T the graph G/θT is a clone of one of the graphs
G0, G1, G2, or G3. From Corollary 3 (now for loopy graphs) the theorem follows.

Corollary 5. Any complete loopy graph with at least three vertices is a subdirect product of clones of loopy
K3 (i.e., G3 above). If the original graph has n vertices (n ≥ 3), then the number of clones needed is the
number of distinct trichotomies of an n-element set. (Note that the kth direct power Gk

3 has 3k vertices.)
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