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Abstract—Over the past few decades, a plethora of compu-
tational intelligence algorithms designed to solve multi-objective
problems have been proposed in the literature. Unfortunately,
it has been shown that a large majority of these optimizers
experience performance degradation when tasked with solving
problems possessing more than three objectives, referred to as
many-objective problems. The downfall of these optimizers is
that simultaneously maintaining a well-spread set of solutions
along with appropriate selection pressure to converge towards the
Pareto-optimal front becomes significantly difficult as the number
of objectives increases. This difficulty is further compounded
for large-scale many-objective problems, i.e., many-objective
problems with a large number of decision variables. In this
work, insight is given into the current state of many-objective
research by investigating scalability of state-of-the-art algorithms
using three to 15 objectives and 30 to 1000 decision variables.
Results indicate that evolutionary optimizers are generally the
best performers when the number of decision variables is low,
but are outperformed by the swarm intelligence optimizers in
several large-scale many-objective problem instances. However,
a recently proposed subregion-based mating restriction scheme
is shown to be very promising for handling the immense search
spaces encountered in large-scale many-objective problems.

Index Terms—many-objective optimization, large-scale opti-
mization, computational intelligence, scalability, Pareto optimal-
ity.

I. INTRODUCTION

Many practical optimization problems contain multiple (of-
ten conflicting) goals to be optimized concurrently, commonly
referred to as multi-objective problems (MOPs). A MOP can
be formally defined as

minimize F(~x)

subject to ~x ∈ Ω

where ~x = (x1,x2, ...,xnx) is a candidate solution, Ω is the
decision variable space, F(~x) = (f1(~x), f2(~x), ..., fnc(~x)),
and nc is the number of objective functions. Due to the
prevalence of conflicting objectives it is rare for a single
solution to optimize all objectives simultaneously, thus one
must accept a set of trade-offs when solving MOPs. The goal
of a multi-objective optimizer (MOO) is to find the Pareto
optimal front, formally given as

PF ∗ = {~y∗ ∈ Rnc |@~y ∈ Rm : ~y∗ ≺ ~y} (1)
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where Rnc represents the objective space and ≺ is a strict
dominance relation such that ~y∗ ≺ ~y iff ~y∗i ≤ ~yi for all i and
~yi < ~y∗i for some i, where i ∈ {1, ...,nc}.

MOPs are commonly encountered in fields such as engineer-
ing [1], business [2] , mathematics [3] and physics [4]. The
abundance of practical MOPs presents a real need for effective
MOOs, thus unsurprisingly a large amount of effort has been
devoted to proposing novel computational intelligence MOOs
(CIMOOs). A small sample of evolutionary multi-objective
optimization (EMO) can be viewed in [5], [6], [7], [8] and
[9]. Several examples of swarm intelligence MOOs can be
seen in [10], [11], [12], [13] and [14].

A large majority of previously proposed CIMOOs evaluate
their performance on MOPs possessing two or three objectives,
often producing a set of well converged and spread solutions.
Unfortunately, a large majority of the classic CIMOOs have
been shown to degrade when the number of objectives are
increased, especially those which perform optimization using
the Pareto-dominance relation [15], [16]. Problems possess-
ing more than three objectives, commonly referred to as
many-objective problems (MaOPs), present a serious challenge
for CIMOOs. Possessing the ability to efficiently solve MaOPs
is highly desirable for CIMOOs, since many real-world appli-
cations such as industrial scheduling [17], [18], automotive
engine calibration problems [19] and hybrid car controller
optimization [20] have more than three objectives.

The poor scalability of CIMOOs is due to a variety of
challenges unique to MaOPs. The first and arguably most
significant issue experienced when attempting to solve MaOPs
is the difficulty in balancing convergence and diversity [16].
Since the end goal of any MOO is to obtain an approximation
of the Pareto-optimal front, selection pressure to converge,
along with a focus on solution spread, must be concurrently
maintained throughout optimization. Unfortunately, prioritiz-
ing both convergence and diversity becomes increasingly more
difficult as the number of objectives grows, primarily as a
result of the large search space sizes encountered in MaOPs.
Consequently, most CIMOOs end up sacrificing convergence
for solution spread, or vice-versa.

The end result of many-objective optimization is thus either
a well-spread set of solutions which are undesirably far from
Pareto-optimal, or a solution set which has converged to a
small subregion near or on the Pareto-optimal front. In the case
of traditional Pareto-based optimizers, the former is often the
case. The main reason for this phenomenon is a loss of selec-
tion pressure towards the Pareto-optimal front. As the number
of objectives grows, the Pareto-dominance relation essentially
loses the ability to distinguish desirable solutions, since nearly
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all population members are non-dominated at an early stage of 
the search [21]. In fact, over 90% of a randomly generated initial 
solution set is non-dominated when the number of objectives 
are eight or more [22]. Therefore, utilizing only the Pareto-
dominance relation as selection criterion is nearly a random 
search, likely guiding a CIMOO into sub-optimal areas of the 
search space.

Maintenance of a uniformly spread solution set becomes 
increasingly difficult for MaOPs due to several reasons. 
Traditionally, Pareto-based algorithms employ the fast, computa-
tionally efficient crowding distance [5] operator, which yields 
satisfactory performance on two and three objective MOPs. 
Unfortunately, the effectiveness of the crowding distance oper-ator 
degrades considerably for MaOPs [23], largely due to the 
overprioritization of dominance-resistant solutions [15], i.e., 
solutions with exceptional performance in one objective and 
extremely poor performance in many others.

Since dominance-resistant solutions have a high chance of 
remaining non-dominated by definition, CIMOOs are 
essentially mislead by them. One should note that while 
dominance-resistant solutions worsen convergence, they 
should not be entirely eliminated as preserving a reasonable 
number of them may benefit population diversity [15]. 
Therefore, utilizing a diversity-preservation mechanism that 
maintains some dominance-resistant solutions, but does not 
overprioritize them, is key in maintaining a well-spread set of 
solutions for MaOPs. Another non-trivial issue regarding 
solution spread maintenance for MaOPs is the high computa-
tional complexity cost of accurately gauging the crowdedness of 
solutions. While this can be made faster by estimation 
methods, spread of the final approximated front may be 
impacted considerably.

The second major difficulty encountered in MaOPs is the 
extremely large objective space resulting from an increase in 
objectives. Consequently, it is highly probable that many 
solutions found throughout the search are likely to be distant from 
each other [24]. This has consequences for evolutionary multi-
objective optimization (EMO), since when two distant parents 
are mated the offspring is likely to be far from both parents. 
Therefore, it is necessary to employ some form of modification 
to recombination operators which ensures that offspring are 
reasonably close to parents. Without any modification, 
evolutionary algorithms (EAs) may experience reduced 
effectiveness of recombination operators, leading to difficulties 
during the search process.

Another issue for MaOPs is the high level of computational 
complexity required to measure algorithm performance. For 
many performance metrics, evaluating an approximation front 
produced by a CIMOO often requires a large number of high-
dimensional points. Consequently, some metrics become 
practically infeasible to calculate over a certain number of ob-
jectives, such as the hypervolume metric [7]. Since calculating 
exact hypervolume is exponential with respect to the number of 
objectives [25], hypervolume values are often estimated using a 
Monte Carlo sampling technique [26] for MaOPs possessing 
more than 10 objectives. This is problematic since estimated 
values produce some degree of inaccuracy when comparing 
CIMOOs.

The final difficulty encountered for MaOPs relates to selec-
tion of a final solution from an approximated front produced
by a CIMOO. Visualization of the high-dimensional trade-off
surfaces is challenging. This issue is also compounded with
the fact that an exponentially increasing number of points are
required to accurately represent higher-dimensional trade-off
surfaces. CIMOOs thus require larger numbers of candidate
solutions for MaOPs, increasing the level of difficulty for
a decision maker regarding the assessment and selection of
a final solution from an approximated front. Although this
difficulty is not related to optimization directly, it presents
significant obstacles for practical many-objective optimization.

The aforementioned difficulties of MaOPs have presented
a need for CIMOOs specifically designed to scale well when
tasked with an increasing number of objectives. Unsurpris-
ingly, recent years have seen a dramatic rise in the number
of proposed many-objective CI algorithms. A comprehensive
survey on evolutionary many-objective optimization is pre-
sented in [27]. The large majority of proposed many-objective
optimizers focus exclusively on objective scalability, ignoring
decision variable scalability almost entirely by benchmarking
on MaOPs possessing a relatively low number of decision
variables, often less than 40. However, since employing more
decision variables will further increase the already large search
space of MaOPs, it is plausible that some many-objective
algorithms will scale poorly to large-scale MaOPs, i.e., MaOPs
possessing large numbers of decision variables. Previous work
by Durillo et. al [28] has investigated the performance of
CIMOOs on large-scale MOPs. However, comparisons were
limited to two and three objective problems.

In this work, the scalability of many-objective optimiz-
ers is explored by analyzing performance of state-of-the-art
CIMOOs using an increasing number of decision variables
and objectives. To the best of the authors’ knowledge, no
existing literature compares many-objective algorithms on
large-scale problems, especially using algorithms from both CI
subfields of swarm intelligence and evolutionary computation.
Our intent is to help fill this literature gap, providing insight
into the performance of CIMOOs when tasked with large-scale
many-objective optimization.

The remainder of this paper is organized as follows: Section
II provides a review of previous literature on many-objective
optimization. Section III gives implementation-level details of
each selected CIMOO used for testing in this work. Section IV
describes the experimental setup used in this work is described.
Section V presents the results of all experiments performed,
including an analysis and a discussion of the observations.
Finally, Section VI concludes the paper and suggests avenues
for future research.

II. PREVIOUS LITERATURE

This section provides a review of previous literature regard-
ing many-objective optimization. Five distinct categories of
techniques used to solve MaOPs are given, along with previ-
ously proposed algorithms which fall under each category.

For MaOPs containing redundant objectives, dimensionality
reduction techniques can be employed to shrink the number
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of objectives. Problems for which the number of objectives
are reducible to three or less can be solved using classic
CIMOOs such as [5], [6], whose efficiency has already been
proven on two and three objective MOPs [29]. An example of
this approach can be seen in [30], where principal component
analysis is employed to remove redundant objectives.

MaOPs without a sufficient number of redundant objectives
present a considerably more difficult challenge. A number of
many-objective techniques have been proposed in previous
literature, which can largely be separated into five unique
categories. The first category of methods is to simply modify
the dominance relation in a way that alleviates the lost
selection pressure to converge to the Pareto-optimal front.
Concepts which fall under this category are ε-dominance [31],
controlling dominance area of solutions [32], [33], fuzzy-based
Pareto optimality [22], k-optimality [34] and preference order-
ing [35].

Another possible approach is to employ an additional
convergence-related metric as secondary selection criteria
alongside the traditional Pareto dominance relation. In this
category, the original dominance relation is typically left
intact and some form of convergence criterion is used to
provide selection pressure on the non-dominated solutions,
determining which of them are converging best towards the
Pareto-optimal front. Special care must be taken to preserve
solution spread, thus diversity is either maintained indirectly
by the convergence metric or through a separate tertiary
operator which gauges the crowdedness of solutions. Examples
of previously proposed convergence metrics are knee points
[36], grid-based fitness [37] and sub-objective dominance
count [38].

The third category of methods is to integrate performance
metrics during optimization, helping to distinguish desirable
solutions. Here, a performance indicator which ideally mea-
sures both spread and convergence is chosen to guide the
search, selecting individuals which contribute best to more
desirable values for the indicator. Since the computational
cost of most useful performance indicators (e.g., hypervolume)
grows with the number of objectives, many indicator-based
optimizers possess a considerably high level of computational
complexity for MaOPs. While recent work [26], [39], [40]
has successfully reduced the computational complexity of
some indicators, the issue is still far from remedied. The
indicator-based evolutionary algorithm [41] and hypervolume
estimation algorithm (HypE) [26] are two such examples of
indicator-based approaches.

The fourth category of methods to solve MaOPs is the
decomposition method. Decomposition-based optimizers es-
sentially extract a set of subproblems from a given MOP,
optimizing each of them simultaneously. A comprehensive
survey on decomposition-based EAs is presented in [42]. The
main representative of this category is the multi-objective
evolutionary algorithm using decomposition (MOEA/D) [6],
which utilizes a user-defined aggregation function to perform
MOP decomposition. MOEA/D has shown decomposition to
be a promising avenue for solving MaOPs, as it is a reasonably
fast method which performs quite well on MaOPs [24].
However, Isibuchi et. al [43] have shown that the performance

of decomposition-based optimizers is highly sensitive to Pareto
front shapes. Recently, three promising methods combining
dominance and decomposition have been proposed, namely
MOEA/DD [44], θ-DEA [45] and non-dominated sorting
genetic algorithm III (NSGA-III) [24].

Abandoning the Pareto-dominance relation entirely is an-
other viable possibility for scaling CIMOOs to MaOPs, form-
ing the final category of methods. New relations would be
used to determine the desirability of each solution, ideally
incorporating a blend of convergence and diversity. If the
relation favors convergence too much, diversity may be lost
and the search may converge to a small subregion near or on
the Pareto-optimal front. Conversely, if the relation overvalues
diversity it will encounter the same convergence issues of
traditional Pareto dominance, losing selection pressure to con-
verge to the Pareto-optimal front. Conformance to the original
Pareto-dominance relation is also a desirable property, i.e.,
the new relation always considers non-dominated solutions
as more desirable than non-dominated solutions. Approaches
which fall under this category are Fsum [46], Fmin [46], nor-
malized Fsum [47], [48], sum-of-ratios [49] and L-dominance
[50].

III. SELECTED ALGORITHMS

For the purposes of this research, state-of-the-art algorithms
are selected from each many-objective technique category
described in Section II. Each category along with a description
of the algorithm chosen to represent it is given within this
section. A summary of all selected algorithms is given in Table
I.

A. Dominance relation modification

The speed-constrained multi-objective particle swarm opti-
mization (SMPSO) algorithm, proposed by Nebro et. al [10],
is a multi-objective particle swarm optimization (PSO) variant
with two defining features. The first defining feature is an
external archive which stores non-dominated solutions, where
the solution with the worst crowding distance [5] is removed
when the maximum size has been exceeded. The second
defining feature is a unique velocity constriction mechanism,
which is performed by multiplying particle velocity using a
small factor in the event where a particle has exited the feasible
region. SMPSO also applies polynomial mutation [51] to 15%
of the particles in the swarm, selected randomly.

A many-objective extension of the original SMPSO algo-
rithm exists which modifies the traditional dominance relation
using the controlling dominance area of solutions (CDAS)
technique, referred to as CDAS-SMPSO [52]. The CDAS
method alters the area dominated by a solution through adjust-
ment of the angles that meet the axis bounding this area. CDAS
employs a vector ~S to modify the dominance area, where Si

corresponds to the dominance area control factor of objective
i. Note that CDAS shrinks the dominance area of objective
i if Si < 0.5, grows the area if Si > 0.5, and is equivalent
to the traditional Pareto-dominance relation if Si = 0.5. The
objective vector F̃ of a solution ~x is transformed into F′ by
CDAS using the equation:
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TABLE I
OVERVIEW OF SELECTED ALGORITHMS

Algorithm Category Reference Year

CDAS-SMPSO C1 de Carvalho and Pozo [52] 2012
KnEA C2 Zhang et. al [36] 2014

KnPSO C2 Maltese et. al [53] 2016
HypE C3 Bader and Zitzler [26] 2011

MOEA/D C4 Zhang and Li [6] 2007
MOEA/DD C4 Li et. al [44] 2015
NSGA-III C4 Deb and Jain [24] 2014
dMOPSO C4 Martı́nez and Coello [54] 2011

SrEA C5 Kukkonen and Lampinen [46] 2007

C1: Dominance relation modification
C2: Secondary convergence metric
C3: Indicator-based, C4: Decomposition-based, C5: Non-Pareto relation

F′i(~x) =
r(~x) · sin(λi(~x) + Siπ)

sin(Siπ)
(2)

where r(~x) = ||f(~x)|| (3)

and λi = arccos(
Fi(~x)

r(~x)
) (4)

B. Secondary convergence metric

Knee points are defined as Pareto front solutions for which
an improvement in any objective will severely degrade one
or more objectives. Knee points correspond to the naturally
preferrable points within the Pareto optimal front when no
problem-specific knowledge is available due to their maximal
marginal rates of return. In the absence of a decision maker
each objective is treated as equally important, thus minimally
improving an objective while immensely degrading others is
undesirable. Figure 1 exemplifies a knee point for a MOP
possessing two objectives. Within Figure 1, Solutions A to
E form the non-dominated front, each displayed with a gray
fill. Note that solution C is a knee point, as it exhibits
larger marginal rates of return than the other non-dominated
solutions.

Two many-objective optimizers incorporating knee
points are selected for comparison in this work, namely
the knee-driven evolutionary algorithm (KnEA) [36] and
knee-driven PSO (KnPSO) algorithm [53]. KnEA and
KnPSO employ the NSGA-II [5] and SMPSO [10] algorithm
frameworks, respectively, utilizing the concept of knee points
as an additional convergence metric alongside the traditional
dominance relation.

Converging knee points within the current front are given
archival priority in an elitist fashion, while non-crowded knee
points are given preference when selecting solutions to guide
the search. It is important to realize that solutions identified
as knee points during earlier stages of the search are often
not true knee points of the Pareto-optimal front, since the
current front is simply an approximation. Rather, knee points
of the current front represent solutions that are converging best
within their immediate neighbourhood and are therefore useful

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

C
D

B
A

E

H

F

G

Objective 1

O
bj

ec
tiv

e
2

Fig. 1. Eight solutions are shown for a bi-objective MOP. Each non-dominated
solution is displayed with a gray fill. Here, solution C is a knee point due to
its large marginal rates of return in comparison to the other non-dominated
solutions.

for increasing the selection pressure to converge towards the
Pareto-optimal front. Note that prioritizing knee points also
biases the search towards a higher hypervolume metric value
[36].

Both KnEA and KnPSO utilize an adaptive strategy to
determine knee points, initially proposed by Zhang et. al in
[36]. This strategy is as follows: First, construct a hyperplane
H which passes through the extremal points of each objective.
For each candidate solution s, s is deemed a knee point if, and
only if, s possesses the maximum objective space distance to
H within its neighbourhood. The neighbourhood of a solution
is a hypercube with nc sides, where each side is calculated as

Rj
t = (maxjt −min

j
t ) · rt (5)

where maxjt and minjt denote the maximal and minimal
values of the j-th objective at time t respectively and rt
corresponds to the ratio of the neighbourhood size to the range
spanned by objective j at time t. rt is updated using

rt = rt−1 · e−
1−(αt−1/T )

nc (6)

where αt−1 denotes the ratio of knee points to non-dominated
solutions at time t−1 and T is a user-defined parameter which
represents the desired ratio of knee points to non-dominated
solutions, with 0 < T < 1. Note that initially αt = 0 and
rt = 1. The strategy above essentially shrinks and grows the
neighbourhood size adaptively until the ratio of knee points to
non-dominated solutions in the solution set converges to T .

C. Performance indicator

The HypE algorithm [26] performs optimization based on
the popular hypervolume indicator, which measures both con-
vergence to the Pareto-optimal front and solution spread in a
single scalar value. However, since calculation of hypervolume
is extremely expensive for MaOPs, approximate hypervolume
values are generated when the number of objectives nc > 3.
The hypervolume-based fitness function fH central to HypE
is defined as
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fH(s) =

{
actual hypervolume(s), if nc ≤ 3.

estimate hypervolume(s), otherwise
(7)

where estimate hypervolume estimates the hypervolume
contribution of solution s using Monte Carlo sampling [55]
and actual hypervolume calculates the exact hypervolume
contribution of s using a given hypervolume calculation
method, e.g., [39].

D. Decomposition

Since recent studies have shown decomposition-based opti-
mizers to be very promising for MaOPs [44], [45], [24], sev-
eral algorithms are selected from this category. Each decompo-
sition approach utilizes a user-defined aggregation function to
decompose a MOP into a set of subproblems, since intuitively,
a Pareto-optimal solution to a MOP is an optimal solution of a
scalar optimization problem corresponding to an aggregation
of all objectives. All decomposition-based algorithms in this
work employ the penalty-based boundary intersection (PBI)
[6] aggregation method due to its promising performance for
many-objective optimization [24], defined formally as

minimize gpbi(~x|~w,~z∗) = d1 + θd2 (8)

where d1 =

∥∥(F(~x)− ~z∗)T ~w
∥∥

‖~w‖
(9)

d2 =

∥∥∥∥F(~x)− (~z∗ + d1
~w

‖~w‖
)

∥∥∥∥ (10)

where ~x ∈ Ω, ~w is a weight vector, ~z∗ = (z∗1 , ..., z∗nc)
T

corresponds to the ideal point such that z∗i = min{fi(~x)}
for all ~x. By modifying the choice of ~w, different Pareto
optimal points can be found. Note that the recently proposed
localized-weighted sum (LWS) method [56] is also a viable
aggregation function for many-objective optimization, as it
has exhibited promising performance on a variety of MaOPs.
The LWS technique selects the best solution from among
neighbouring solutions for each search direction, where a
neighbourhood is defined using a hypercone, allowing efficient
handling of non-convex problems.

The first decomposition-based optimizer selected is the
multi-objective evolutionary algorithm using decomposition
(MOEA/D) algorithm [6]. To maintain a diverse set of K
solutions, MOEA/D maintains uniformly spread weight vec-
tors {~w0, ..., ~wK}, where solution i solves the subproblem
corresponding to ~wi, i ∈ {1, ...,K}. For each ~wi, mating
selection is performed from the T closest weight vectors to
~wi, since a central idea in MOEA/D is that information about
subproblem i should be helpful for solving subproblem j if
~wi and ~wj are similar. Local replacement is also employed,
where a generated offspring p replaces solutions among its
neighbouring weight vectors if p possesses a better aggregation
function value. Note that population diversity benefits from the
inclusion of a small chance to conduct mating and replacement
from the entire population [57]. To preserve non-dominated
solutions, MOEA/D employs an external archiving structure.

The next decomposition approach is the
decomposition-based multi-objective PSO (dMOPSO)
[54] algorithm. dMOPSO is similar to MOEA/D in that a
set of weights are required, where each individual optimizes
the subproblem corresponding to its given weight. The
personal best ~yi of particle i is the best position ever position
experienced by particle i with respect to the subproblem
corresponding to ~wi. To select neighbourhood bests, an
archive Nbests is maintained, where Nbests(i) is the best
ever position found regarding the subproblem of ~wi. The
neighbourhood best update phase begins by shuffling the
Nbests archive, since dMOPSO assumes that all solutions in
Nbests are equally good. Thereafter, the neighbourhood best
~̂yi for particle i is simply set as Nbests(i).

A unique characteristic of dMOPSO is that each particle
maintains an age value, incremented whenever a particle does
not update its personal best. In the case that a particle ages
past a predefined age threshold parameter Ta, its position is
re-initialized using a parametric probability density function.

The third algorithm chosen from the decomposition cat-
egory is the recently proposed non-dominated sorting ge-
netic algorithm III (NSGA-III) algorithm [24]. The basic
flow of NSGA-III is identical to its predecessor, NSGA-II
[5], however, diversity preservation is significantly different.
At each generation, both NSGA-II and NSGA-III perform
non-dominated sorting to partition the combined parent and
offspring population into a set of fronts F0,F1, ...,FK . Each
front is then selected in ascending order, starting from F0, to
form the new population Pt+1.

In most cases the final selected front, denoted FL, will only
fit partially into Pt+1. In this situation, some form of diversity
score is calculated for each solution in FL to determine which
solutions should be inserted into Pt+1. It is here that NSGA-III
differs from NSGA-II, as NSGA-III computes the diversity of
each solution using a set of reference points rather than the
traditional crowding distance operator of NSGA-II, which has
been shown to perform poorly for MaOPs [23]. Reference
points can either be supplied by a user or generated in a
structured manner. The approach in [24] utilizes Das and
Dennis’s boundary intersection approach [58], which places
points on a normalized hyperplane possessing an intercept of
one on each axis.

The final selected algorithm from the decomposition cat-
egory is the multi-objective evolutionary algorithm using
dominance and decomposition (MOEA/DD), proposed by Li
et. al in [44]. MOEA/DD combines the strengths of the
well-known NSGA-II [5] and MOEA/D [6] algorithms, which
have been shown to excel at different problems [29], to form a
promising steady-state evolutionary many-objective optimizer.
A set of weight vectors {~w1, ..., ~wK} which each define a
subproblem are maintained as in MOEA/D. However, each
weight also corresponds to a subregion which can be used for
region density estimation purposes. Specifically, subregion ψi

is defined as

ψi = {~v ∈ Rnc |∀j ∈ {1, ...,K} : 〈~v, ~wi〉 ≤ 〈~v, ~wj〉} (11)
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where i ∈ {1, ..,K}, x ∈ Ω and 〈~v, ~wi〉 corresponds to the
acute angle between ~v and ~wi. Note that to generate weight
vectors, MOEA/DD employs Das and Dennis’s boundary inter-
section method [58] to sample a layer of

(
D+nc−1
nc−1

)
uniformly

spread points from a unit simplex, where D is the desired
number of divisions. In the case where nc ≥ 7, both a
boundary layer and inner layer are employed to reduce the total
number of generated reference points. After initializing the
population randomly and performing weight vector generation,
MOEA/DD performs the following steps for each weight
vector ~wi until some stopping criterion is satisfied:

Step 1) Mating Selection: Choose a set of parents Q for
mating purposes randomly from the closest T subregions to
~wi. Note that to benefit population diversity, a small probabil-
ity (1-δ) to select from the entire population is included. In
the case where no solutions exist in the closest T subregions,
Q is selected randomly from the entire population by default.

Step 2) Variation: Apply recombination operators to Q,
producing a set of offspring R. The original work in [44]
employs the simulated binary crossover [59] and polynomial
mutation [60] operators.

Step 3) Population Update: For each solution ~x ∈ R,
add ~x to P and update the non-domination structure of P
according to [61]. If after inserting ~x all solutions in P are
non-dominated, simply remove the worst solution according to
Algorithm 1. Else, if some solutions in P are dominated, P
can be divided into fronts F0, ...,FL and the following distinct
cases arise:

1) FL has one solution ~xj residing in subregion ψj and
multiple solutions exist in ψj : Here, simply remove ~xj
from P .

2) FL has one solution ~xj residing in subregion ψj and
~xj is the only solution in ψj : In this case, ψj is an
isolated subregion and thus ~xj should be preserved to
maintain solution spread. Remove from P the worst
solution according to Algorithm 1.

3) FL contains multiple solutions: In this case, identify
the subregion ψk which contains the largest number of
solutions in FL. If |ψk| = 1, then ψk is an isolated
subregion and diversity is preserved by simply removing
from P the worst solution according to Algorithm 1.
Otherwise, |ψk| > 1 and thus ψk is not an isolated
subregion. In this case, remove from P the solution
in ψk possessing the worst PBI value with respect to
subproblem k.

After removing a solution from P , the non-domination
structure is updated according to the efficient method in [61].

E. Non-Pareto Relation

A simple alternative to the traditional Pareto-dominance
relation is the Fsum method [46], which sums together the
rank of each individual objective of ~x. The Fsum method is
formally defined as

Fsum(~x) =
m∑
i=1

rank(i, fi(~x)) (12)

Algorithm 1 Retrieving the Worst Solution
1: Get the most crowded subregion ψk in P . If two subre-

gions are equally crowded, take the subregion with the
largest sum of PBI values.

2: S = ∅
3: for each ~u ∈ ψk do
4: if ~u ∈ FL then
5: S = S ∪ ~u
6: end if
7: end for
8: Identify ~y as the solution in S possessing the largest PBI

value with respect to the subproblem corresponding to ~wk.
return ~y

where ~x is a feasible decision vector and rank is a function
which takes an objective index i and objective value fi(~x) as
input, returning the rank of fi(~x) when compared to all other
objective vectors in the current front using objective i. The
process used to calculate Fsum is illustrated in Figure 2.

Since Fsum prioritizes convergence, diversity must be
maintained using an external metric. Unfortunately, this is
non-trivial, since solutions are already ordered according to
the chosen aggregation method. One method of preserving
diversity as proposed in [46] is to gradually increase in a
linear fashion the number of solutions selected according to
a diversity metric. Kukkonen and Lampinen [46] incorporated
this method into the NSGA-II algorithm [5], but did not give
a formal name for the resultant algorithm. This work refers
to this method as the sum-of-ranks evolutionary algorithm
(SrEA), which linearly increases the number of solutions
selected according to diversity such that:

• At generation 0, selection from FL for Pt+1 and selection
of the parent population Q is done according to the
ordering imposed by the Fsum method.

• Let Gmax denote the maximum number of generations.
At generation Gmax/2, half of the remaining solutions
for Pt+1 are selected from FL based on the Fsum

ordering and half are selected from FL according to a
diversity-preservation operator. Selection of Q is also
performed in this manner.

• At generation Gmax, selection from FL for Pt+1

and selection for Q is performed using only a
diversity-preservation operator.

The motivation behind this method is to promote conver-
gence early on and to prioritize diversity in later stages of the
search when the population has already converged. Within this
work, the diversity-preservation metric employed in SrEA is
the weighted distance metric [36].

IV. EXPERIMENTAL SETUP

This section describes the experimental setup employed
within this study. Topics covered include benchmark functions,
performance indicators, statistical analysis methodology and
algorithm parameters.
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Fig. 2. Calculation of the Fsum aggregation method is demonstrated for
a front containing five solutions. The MOP in question possesses three
objectives.

A. Benchmark Functions

Four problems from the Deb-Thiele-Laumanns-Zitzler
(DTLZ) suite [62] and nine problems from the Walking Fish
Group (WFG) suite [63] are used in this study. Collectively,
the set of chosen functions present a variety of shapes and
modalities which simulate practical environments and present
a challenging task for optimizers. Note that both the number
of objectives and decision variables are modifiable for each
selected function, useful for observing the scalability of each
selected CIMOO. Characteristics of all selected benchmark
functions are summarized in Table II.

B. Statistical Methodology

Pairwise Mann-Whitney-Wilcoxon rank sum tests [64] at
a confidence level of 95% were used to test for significant
performance differences between algorithms. For each pair-
wise test, if a statistically significant difference existed, the
algorithm with the higher mean over 20 independent runs was
given a win and the algorithm with the lower mean was given a
loss. The term difference is used to distinguish the performance
of algorithms, which is simply the difference between pairwise
wins and losses for a given algorithm. Additionally, the rank
of each algorithm denotes the ranking in comparison to all
other algorithms with respect to difference values for a given
benchmark function.

C. Algorithm Parameters

All algorithms used an identical number of candidate solu-
tions and function evaluations to ensure unbiased comparisons
as recommended in [65]. The number of candidate solutions
used is dependent on the number of reference points em-
ployed for the decomposition-based algorithms. To generate
uniformly spaced reference points, a unit simplex is sampled
from using Das and Dennis’s boundary intersection method
[58]. For problems where nc > 5, the method in [24] is
used to reduce the number of generated reference points using
parameters D1 and D2, which are the number of divisions
of the boundary layer of reference points and inner layer
of reference points, respectively. The number of generated
reference points for varying nc values are listed in Table III.
The number of candidate solutions used for all algorithms is
identical to the number of reference points generated. Note
that the relatively small number of reference points (135) for
nc = 15 is a consequence of the extremely high computational
complexity required for large-scale MaOPs. Ideally a larger
number of reference points and candidate solutions would

be used to measure performance. However, when D2 > 1
computational complexity is drastically increased such that
experimental runs are no longer feasible to complete in a
reasonable amount of time.

The number of function evaluations used for each algorithm
was dependent on the problem complexity and number of
objectives, and are displayed in Table IV. All algorithms
requiring non-dominated sorting used the recently proposed
efficient non-dominated sorting (ENS) [66] algorithm. Each
decomposition-based approach used the PBI function (see
Section III.D) with θ = 5.0 as recommended in [6]. Since
NSGA-III utilizes a normalization procedure [24], the other
decomposition-based algorithms, i.e., MOEA/D, MOEA/DD,
dMOPSO, are also normalized using an identical procedure to
ensure that the range of each objective is identical. Concerning
the T parameter of the KnPSO and KnEA algorithms, many
values were tested for each experiment and the setting which
produced the best IGD values on average over 10 runs was
chosen. The T values used are given in Table V.

1) Genetic Algorithms: All evolutionary algorithms within
this work used the simulated binary crossover [59] with a
distribution index of 30 and polynomial mutation [60] with a
distribution index of 20. Crossover probability was set to 1.0
and mutation probability was set to 1/nx. The weighted dis-
tance metric employed by SrGA and KnEA used k = 5 nearest
neighbours. A value of 20 was used for the neighbourhood size
T of the MOEA/D and MOEA/DD algorithms. Both MOEA/D
and MOEA/DD used a neighbourhood selection probability of
δ = 0.9, identical to the value recommended in [44], [57]. The
number of points used for Monte Carlo sampling in the HypE
algorithm was set to 10,000 as recommended in [26].

2) PSO Algorithms: CDAS-SMPSO and KnPSO each uti-
lized a maximum archive size identical to the number of ref-
erence points generated (see Table IV). Polynomial mutation
[60] was used with a probability of 1/nx, identical to the
evolutionary algorithms. The age threshold Ta of dMOPSO
was set to 2, as recommended in the original study [54]. For
the CDAS-SMPSO and KnPSO algorithms, at each iteration
c1 and c2 varied randomly in the range [1.5,2.5] while ω
varied randomly in the interval [0,0.8]. To handle boundary
constraints, personal and neighbourhood bests were only up-
dated if their positions remained within the legal bounds of
the search space. Initial particle velocity was set to zero to
comply with the recommendations given in [67].

With regards to the sensitive S value of CDAS-SMPSO,
many values were tested for each experiment and the setting
which produced the best IGD value on average over 10 runs
was chosen. The exact S values used are shown in Table VI.

D. Performance Indicators

Hypervolume: The hypervolume metric, introduced in [7],
indicates both the convergence and spread of a MOO in
a single scalar value by measuring the amount of space
covered by a given solution set. A desirable property of the
hypervolume metric is that it is maximized if and only if the
solution set consists of equidistant Pareto-optimal points [68].
Additionally, the hypervolume metric can be used to show



8

TABLE II
OVERVIEW OF BENCHMARK FUNCTIONS USED

Function Separability Bias Shape Modality

DTLZ1 Separable No Linear Multi

DTLZ2 Separable No Concave, Disconnected Uni

DTLZ3 Separable No Concave Multi

DTLZ4 Separable Yes Concave Uni

WFG1 Separable Yes Convex Uni

WFG2 Non-Separable No Convex, Disconnected Multi

WFG3 Non-Separable No Linear Uni

WFG4 Separable No Concave Multi

WFG5 Separable No Concave Deceptive

WFG6 Non-Separable No Concave Uni

WFG7 Separable Yes Concave Uni

WFG8 Non-Separable Yes Concave Uni

WFG9 Non-Separable Yes Concave Multi, Deceptive

TABLE III
NUMBER OF REFERENCE POINTS EMPLOYED. NOTE THAT THE NUMBER

OF CANDIDATE SOLUTIONS IS IDENTICAL TO THE NUMBER OF REFERENCE
POINTS.

nc D1 D2 # of reference points

3 12 0 91
5 6 0 210
8 3 2 156
10 3 2 275
15 2 1 135

TABLE IV
NUMBER OF FUNCTION EVALUATIONS USED

Benchmark Function nc = 3 nc = 5 nc = 8 nc = 10 nc = 15

DTLZ1 30,000 50,000 60,000 85,000 100,000
DTLZ2 25,000 45,000 55,000 80,000 100,000
DTLZ3 75,000 75,000 100,000 100,000 150,000
DTLZ4 40,000 70,000 80,000 100,000 150,000

WFG1-2 40,000 60,000 70,000 90,000 95,000
WFG3-9 35,000 55,000 70,000 85,000 90,000

that a solution set is not worse than some other solution set
for all pairs of solutions [69]. Note that calculation of the
hypervolume metric does not require the Pareto-optimal front.

In this work, exact hypervolume is calculated using the
WFG algorithm [39] for problems with ten or less objectives.
When more than ten objectives are present, hypervolume is
estimated using a Monte Carlo sampling technique [26] with
10,000,000 sampling points. In all experiments, each objective
value is normalized to the range [0,1] before calculating the
hypervolume, where 0 and 1 correspond to the best and worst
objective values in the approximated front, respectively. The
reference point is chosen to be a vector with values slightly
larger than the nadir point, which is the unit vector of length
nc. The motivation behind this choice of reference point is to
include the hypervolume contribution of each extreme Pareto
optimal solution [70]. Specifically, the reference point in all
experiments is set to (1.1, 1.1, ..., 1.1), as this vector has
been shown to appropriately emphasize the convergence and
diversity of the solution set [71].

TABLE V
T VALUES OF KNEA AND KNPSO

Number of Objectives
Function 3 5 8 10 15
DTLZ1 0.6 0.6 0.1 0.2 0.1
DTLZ3 0.6 0.4 0.1 0.1 0.1
WFG4 0.6 0.5 0.2 0.3 0.3
WFG9 0.6 0.4 0.3 0.3 0.3
others 0.6 0.5 0.5 0.4 0.4

TABLE VI
S VALUES OF CDAS-SMPSO

Number of Objectives
Function 3 5 8 10 15
DTLZ1 0.30 0.25 0.35 0.40 0.45
DTLZ2 0.25 0.25 0.35 0.45 0.40
DTLZ3 0.45 0.45 0.40 0.40 0.45
DTLZ4 0.35 0.25 0.25 0.45 0.40
WFG1 0.35 0.30 0.35 0.45 0.45
WFG2 0.25 0.35 0.35 0.45 0.35
WFG3 0.25 0.45 0.40 0.40 0.45
WFG4 0.35 0.35 0.25 0.45 0.45
WFG5 0.45 0.40 0.40 0.40 0.40
WFG6 0.35 0.30 0.30 0.40 0.45
WFG7 0.40 0.30 0.35 0.35 0.40
WFG8 0.35 0.25 0.25 0.45 0.45
WFG9 0.30 0.25 0.35 0.45 0.40

Inverted Generation Distance: The IGD metric [72] mea-
sures both solution spread and convergence of the approx-
imated front POF ∗ towards the Pareto-optimal front. Let
POF ′ be a set of uniformly spread Pareto-optimal points. IGD
is calculated using

IGD =

√∑n
i=1 d

2
i

|POF ′|
(13)

where |POF ′| denotes the cardinality of POF ′ and di is the
Euclidean distance in the objective space between solution i of
POF ′ and the closest member of POF ∗. Note that POF ∗ =
POF ′ when IGD = 0.

In this work, the approach introduced by Deb and Jain
[24] is employed to obtain POF ′. This method utilizes
the analytical forms of the DTLZ functions in combina-
tion with the evenly spread weight vectors required by the
decomposition-based approaches. Specifically, for each evenly
spread weight vector ~w, the intersection of the Pareto-optimal
surface is calculated to obtain a Pareto-optimal point ~x∗ as

DTLZ1: fi(~x∗) = 0.5× wi∑nc
j=1 wj

(14)

DTLZ2-4: fi(~x∗) =
wi

||~w||
(15)

where i ∈ {1, ...,nc} and ||~w|| denotes the norm of ~w. Note
that as intersection points are calculated using the weight
vectors of the decomposition-based approaches, the number
of IGD points for each nc is identical to the values in Table
III.
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V. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents and discusses the results of all ex-
periments performed. Here, the intent is to investigate the
overall scalability of the selected many-objective optimizers.
This is accomplished by investigating objective scalability
and decision variable scalabity in separate subsections. Al-
gorithms are evaluated using the IGD metric for the DTLZ
functions, since a set of evenly spread Pareto-optimal points
can be easily calculated via the technique in Section IV.D
using the analytical forms of each DTLZ function. Since not
all of the WFG functions have simple analytical forms for
the many-objective cases, hypervolume is used to measure
algorithm performance on the WFG suite. This approach is
common in many-objective literature, e.g. see [44], [36].

A. Objective Scalability Experiments

First, the scalability of each selected CIMOO is evaluated
over an increasing number of objectives. To conform to the
recommendations in [63], n = k + l decision variables are
employed for each WFG test instance, where k = 2(nc − 1)
is the number of decision variables relating to position and
l = 20 is the number of decision variables relating to distance.
For DTLZ test instances, the number of decision variables is
set to n = nc +r−1 in accordance with the recommendations
given in [62], where r = 5 for DTLZ1 and r = 10 for DTLZ2
to DTLZ4.

Table VII presents IGD metric results of the objective
scalability experiments on DTLZ1 to DTLZ4. Hypervolume
metric results are given for WFG1 to WFG5 and WFG6 to
WFG9 in Tables VIII and IX, respectively. For each tested
benchmark function, the algorithm(s) which achieved the best
rank are highlighted in gray and written in boldface. Several
observations for each algorithm are present in these tables.
NSGA-III showed satisfactory scalability in several cases. For
the WFG7 problem, NSGA-III performed worst overall for
the three-objective instance, but scaled to third best when the
number of objectives were increased to 15. Here, the reference
point-based diversity preservation mechanism of NSGA-III
seemed to aid in maintaining overall convergence and di-
versity on the concave, separable WFG7 function. Similar
scalability was observed for the biased DTLZ4 function and
non-separable WFG9 function. Note that NSGA-III performed
especially poorly for the WFG1 function, which possesses a
flat bias and mixed geometries, as seven of the other eight
algorithms outperformed NSGA-III regardless of the number
of objectives used.

MOEA/D with PBI aggregation exhibited competitive per-
formance on the DTLZ functions, as it performed best overall
for the 3- and 10-objective instances of DTLZ2. DTLZ2
is a relatively simply MOP with a spherical Pareto-optimal
front, seemingly solved easily by MOEA/D. It is worth noting
that MOEA/D scaled very well for the 10-objective instance
of DTLZ4, which is surprising considering that DTLZ pos-
sesses the non-uniform property, known to be a weakness
of decomposition-based optimizers such as MOEA/D. This
weakness is a result of the reference point-based approach,
since a uniformly spread set of reference points does not

correspond to a uniformly spread set of Pareto-optimal so-
lutions for non-uniform MOPs. Objective scalability on the
WFG functions in general was less satisfactory for MOEA/D,
especially for WFG1, WFG4, WFG7 and WFG9. MOEA/D
scaled poorly in comparison to the other tested algorithm
for each of these functions, as a large increase in rank was
observed when comparing the 15-objective instances to the
3-objective instances.

MOEA/DD performed very well on DTLZ1 to DTLZ4,
ranking best overall for the 5-, 8- and 10- objective instances of
DTLZ2, the 10- and 15-objective instance of DTLZ3, and all
instances of DTLZ4. In each of these cases, the combination
of dominance and decomposition in MOEA/DD produced a
better approximated front and a better spread set of solutions
than the other tested CIMOOs. Li et. al [44] attribute this
phenomenon to MOEA/DD’s advanced technique for balanc-
ing convergence and diversity. MOEA/DD also scaled well in
general on the WFG functions, where it performed best for the
15-objective instances of WFG2, WFG4, WFG5, WFG7 and
WFG8. The only cases where MOEA/DD performed poorly
were the 5-, 10- and 15-objective instances of the WFG3
function. WFG3, whose Pareto-optimal front is the connected
version of the disconnected WFG2 function, is characterized
by its non-separability and linear Pareto-optimal front shape.

The dMOPSO algorithm obtained promising results for
DTLZ1 and DTLZ3, where it was the second best algorithm in
all instances except when the number of objectives were set to
15 for DTLZ3. The worst performance observed on the DTLZ
functions is seen for DTLZ4, where dMOPSO performed fifth
overall for the 5-,8-,10- and 15-objective test instances. For
the deceptive WFG5 function, dMOPSO scaled very poorly
as it degraded to worst overall when the number of objectives
were increased to 15. The scalability of dMOPSO was also
subpar on the WFG9 function, as its rank increased from 2 to
8 when the number of objectives were increased from 3 to 15.
Note that WFG9 also possesses a deceptive modality, which
suggests that dMOPSO experiences performance degradation
in the face of deceptive MaOPs.

IGD metric ranking of SrEA was generally poor in com-
parison to the other CIMOOs on the DTLZ functions. For
DTLZ1 to DTLZ4, SrEA was the worst performer over-
all on the 15-objective instances, indicative of poor overall
scalability with respect to the number of objectives. Here,
the gradual shift of emphasis from convergence to diversity
in SrEA seemed unable to produce a satisfactory set of
solutions that were simultaneously both well-converged and
well-spread. However, when tasked with solving the biased
WFG1 function, which possesses both convex and concave
geometries, SrEA obtained the second best rank for the 3- and
5-objective instances, and the best overall rank on the 8-, 10-
and 15-objective instances. SrEA also exhibited competitive
performance on the 3-, 5- and 8-objective test instances of
WFG3 and the 3-objective instance of WFG4 and WFG7.

The performance ranks of the KnPSO algorithm was gen-
erally poor on DTLZ1-4, as the best rank observed over all
instances was only five. However, for DTLZ1, the rank of
KnPSO improved from ninth best for the 5-objective test
instance to sixth best for the 15-objective instance. A similar
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TABLE VII
OBJECTIVE SCALABILITY OF EACH ALGORITHM IS DISPLAYED WITH RESPECT TO THE IGD METRIC USING MANN-WHITNEY DIFFERENCES AND

RANKS ON DTLZ1-4

Algorithm
Function Objectives Result NSGA-III MOEA/D MOEA/DD dMOPSO SrEA KnPSO HypE KnEA CDAS-SMPSO

DTLZ1
3 Difference -4 +1 +1 +6 -5 -2 0 -5 +8

Rank 7 3 3 2 8 6 5 8 1

5 Difference -1 +2 +4 +6 -6 -6 -1 -6 +8
Rank 5 4 3 2 7 7 5 7 1

8 Difference -4 +2 +4 +6 -8 -4 -4 0 +8
Rank 6 4 3 2 9 6 6 5 1

10 Difference -5 +3 +3 +6 -8 -5 -2 0 +8
Rank 7 3 3 2 9 7 6 5 1

15 Difference -6 +2 +4 +6 -8 -2 -2 -2 +8
Rank 8 4 3 2 9 5 5 5 1

DTLZ2
3 Difference +4 +8 +6 +2 -4 -2 0 -6 -8

Rank 3 1 2 4 7 6 5 8 9

5 Difference +4 +6 +8 +2 -2 -7 -7 0 -4
Rank 3 2 1 4 6 8 8 5 7

8 Difference +4 +6 +8 +2 -2 -8 -5 0 -5
Rank 3 2 1 4 6 9 7 5 7

10 Difference +1 +8 +6 +3 -7 -7 -1 +1 -4
Rank 4 1 2 3 8 8 6 4 7

15 Difference -2 +6 +8 +4 -8 -6 -1 +2 -3
Rank 6 2 1 3 9 8 5 4 7

DTLZ3
3 Difference -2 -2 +2 +6 -6 -2 +2 -6 +8

Rank 5 5 3 2 8 5 3 8 1

5 Difference -3 +1 +4 +6 -6 -8 +1 -3 +8
Rank 6 4 3 2 8 9 4 6 1

8 Difference -4 0 +4 +6 -7 -7 -1 +1 +8
Rank 7 5 3 2 8 8 6 4 1

10 Difference -4 +3 +8 +6 -8 -6 0 -2 +3
Rank 7 3 1 2 9 8 5 6 3

15 Difference -4 0 +8 +4 -8 -4 +2 -4 +6
Rank 6 5 1 3 9 6 4 6 2

DTLZ4
3 Difference -2 -4 +8 +2 -5 +2 -4 +5 -2

Rank 5 7 1 3 9 3 7 2 5

5 Difference +3 +1 +8 -1 -1 -8 -6 +5 -1
Rank 3 4 1 5 5 9 8 2 5

8 Difference +6 -2 +8 -1 -3 -5 -8 +4 +1
Rank 2 6 1 5 7 8 9 3 4

10 Difference +6 +2 +8 0 -3 -3 -6 -7 +3
Rank 2 4 1 5 6 6 8 9 3

15 Difference +4 +4 +8 0 -8 -4 -6 -1 +3
Rank 2 2 1 5 9 7 8 6 4

observation was seen for DTLZ1, where KnPSO ranked fifth
best when the number of objectives were increased to 15. Here,
KnPSO begins to demonstrate the ability to scale reasonably
well, thus further research into the scalability of KnPSO on
the DTLZ test suite is encouraged, specifically for instances
where the number of objectives are increased past 15. Results
on the WFG functions demonstrated the knee-point driven
technique of KnPSO to perform well when the number of
objectives were low, as it ranked second or better for the
3-objective instances of WFG3, WFG6, WFG7, and WFG9.
However, when the number of objectives were increased,
KnPSO decreased its rank on each of these functions except
for WFG6. KnPSO handled the non-separability and reduction
of WFG6 well, obtaining the highest hypervolume rank out of
all tested CIMOOs.

HypE shows promise when the number of objectives are
low, as it ranked competitively on the 3-objective instances
of DTLZ2, DTLZ3, WFG4 and WFG5. However, in nearly
all cases where the number of objectives were increased past
three, HypE generally did not rank very well for both the
WFG and DTLZ function suites. There are a few exceptions

to this, as HypE performed best overall for the 15-objective
instance of the linear WFG3 function and also performed
reasonably well for all instances of WFG5. Since HypE
estimates hypervolume contributions when nc ≥ 3, its poor
objective scalability can be attributed to inaccurate fitness
value assignments. An obvious solution to this issue is to
simply increase the number of Monte Carlo sampling points
employed during fitness calculation. However, the runtime of
HypE has already been shown to be considerably higher than
many other CIMOOs when 10,000 sampling points are em-
ployed [36], thus any further increases may quickly cause the
computational complexity of HypE to become unacceptably
large for MaOPs.

KnEA scaled favorably when the number of objectives
were increased for all DTLZ functions except for DTLZ4,
even though it did not actually perform best in any of these
instances. DTLZ4 challenges MOOs by investigating their
ability to maintain solution diversity in the objective space,
which KnEA had difficulty with. For the WFG function set,
KnEA performed very well, often outperforming all other
algorithms. Specifically, KnEA yielded the best hypervolume
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TABLE VIII
OBJECTIVE SCALABILITY OF EACH ALGORITHM IS DISPLAYED WITH RESPECT TO THE HYPERVOLUME METRIC USING MANN-WHITNEY

DIFFERENCES AND RANKS ON WFG1-5

Algorithm
Function Objectives Result NSGA-III MOEA/D MOEA/DD dMOPSO SrEA KnPSO HypE KnEA CDAS-SMPSO

WFG1
3 Difference -6 -4 +2 +1 +4 +2 -8 +8 +1

Rank 8 7 3 5 2 3 9 1 5

5 Difference -6 +5 -4 0 +5 0 -8 +8 0
Rank 8 2 7 4 2 4 9 1 4

8 Difference -7 +7 -1 -1 +7 -1 -7 +4 -1
Rank 8 1 4 4 1 4 8 3 4

10 Difference -7 +2 +5 -4 +8 -1 -7 +5 -1
Rank 8 4 2 7 1 5 8 2 5

15 Difference -7 +2 +4 -4 +8 -1 -7 +6 -1
Rank 8 4 3 7 1 5 8 2 5

WFG2
3 Difference +3 -8 -3 -3 +3 0 -3 +3 +8

Rank 2 9 6 6 2 5 6 2 1

5 Difference +6 -7 0 0 +5 0 -5 +7 -6
Rank 2 9 4 4 3 4 7 1 8

8 Difference +2 -8 +8 +2 +2 +2 -6 +2 -4
Rank 2 9 1 2 2 2 8 2 7

10 Difference +3 -7 +6 0 +1 0 -3 +6 -6
Rank 3 9 1 5 4 5 7 1 8

15 Difference +6 -6 +6 -2 +2 -4 0 +6 -8
Rank 1 8 1 6 4 7 5 1 9

WFG3
3 Difference +4 -7 +4 -3 +4 +5 -3 +3 -7

Rank 2 8 2 6 2 1 6 5 8

5 Difference +5 -6 -8 0 +6 -3 +2 +6 -2
Rank 3 8 9 5 1 7 4 1 6

8 Difference -3 -8 +5 -3 +5 -3 -3 +5 +5
Rank 5 9 1 5 1 5 5 1 1

10 Difference +6 -8 -4 -6 +5 -1 -1 +6 +3
Rank 1 9 7 8 3 5 5 1 4

15 Difference +5 -8 -3 -6 -3 +3 +8 +3 +1
Rank 2 9 6 8 6 3 1 3 5

WFG4
3 Difference 0 +2 +4 -1 +4 -5 +2 +2 -8

Rank 6 3 1 7 1 8 3 3 9

5 Difference 0 +4 0 +6 -5 0 -8 +8 -5
Rank 4 3 4 2 7 4 9 1 7

8 Difference 0 0 +7 -1 -3 +4 -8 +7 -6
Rank 4 4 1 6 7 3 9 1 8

10 Difference +3 -3 +6 -7 -3 +3 -7 +8 0
Rank 3 6 2 8 6 3 8 1 5

15 Difference 0 -8 +7 -5 +2 +4 -5 +7 -2
Rank 5 9 1 7 4 3 7 1 6

WFG5
3 Difference +1 0 +1 0 0 0 0 +1 -4

Rank 1 6 1 6 6 6 6 1 9

5 Difference +5 +2 +4 -5 +1 -2 -5 +8 -8
Rank 2 4 3 7 5 6 7 1 9

8 Difference +4 -1 +6 -8 +2 -1 -4 +8 -6
Rank 3 5 2 9 4 5 7 1 8

10 Difference +4 -4 +8 -8 +2 0 -2 +6 -6
Rank 3 7 1 9 4 5 6 2 8

15 Difference +5 -4 +8 -8 +2 -1 -1 +5 -6
Rank 2 7 1 9 4 5 5 2 8

rank for the 5-, 8-, 10- and 15- objective instances of WFG4,
WFG6 and WFG9. KnEA also performed notably well for
the deceptive WFG5 function. However, it was outperformed
in the 10- and 15-objective instances by MOEA/DD. The
prioritization of knee points during mating selection and
environmental selection seemed to obtain a well-converged,
well-distributed set of solutions on the majority of functions.
Note that knee point prioritization has been shown to produce
higher hypervolume values [36], which may explain the highly
competitive hypervolume performance of KnEA.

CDAS-SMPSO obtained its best performance on the lin-
ear DTLZ1, where it yielded the best IGD rank in all in-
stances. CDAS-SMPSO seemed to be mislead less than the

other optimizers by the 115 − 1 local optima of DTLZ1,
indicating that CDAS-SMPSO performed quite well in the
face of multi-modality. This observation is further supported
by the favorable performance of CDAS-SMPSO on DTLZ3,
which is another function possessing the multi-modal prop-
erty, as CDAS-SMPSO had the best performance for the
3-, 5- and 8-objective test instances. On the WFG func-
tions, CDAS-SMPSO performed well in some cases when
the number of objectives were low, outperforming all other
algorithms for the 3-objective instances on WFG2, WFG8
and WFG9. Here, the dominance area shrinkage technique of
CDAS-SMPSO seemed to be successful on the multi-objective
problems, as limitting the dominance region of each solution
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TABLE IX
OBJECTIVE SCALABILITY OF EACH ALGORITHM IS DISPLAYED WITH RESPECT TO THE HYPERVOLUME METRIC USING MANN-WHITNEY

DIFFERENCES AND RANKS ON WFG6-9

Algorithm
Function Objectives Result NSGA-III MOEA/D MOEA/DD dMOPSO SrEA KnPSO HypE KnEA CDAS-SMPSO

WFG6
3 Difference +2 -8 +7 0 +1 +7 -5 +2 -5

Rank 5 9 1 6 4 1 7 3 7

5 Difference +1 -4 +4 +4 -4 +3 -8 +8 -4
Rank 5 6 2 2 6 4 9 1 6

8 Difference +3 -7 +6 -3 -3 +3 -7 +8 0
Rank 3 8 2 6 6 3 8 1 5

10 Difference +2 -8 +5 -5 -2 +5 -5 +8 0
Rank 4 9 2 7 6 2 7 1 5

15 Difference +2 -8 +4 -6 0 +7 -3 +7 -3
Rank 4 9 3 8 5 1 6 1 6

WFG7
3 Difference -6 +1 +8 -2 +1 +4 -4 0 -2

Rank 9 3 1 6 3 2 8 5 6

5 Difference +1 +5 +8 -4 -3 +1 -6 +5 -7
Rank 4 2 1 7 6 4 8 2 9

8 Difference 0 +3 +8 -8 -2 +2 -3 +6 -6
Rank 5 3 1 9 6 4 7 2 8

10 Difference +4 -2 +6 -8 -1 +2 -3 +8 -6
Rank 3 6 2 9 5 4 7 1 8

15 Difference +4 -4 +8 -7 +2 0 -2 +6 -7
Rank 3 7 1 8 4 5 6 2 8

WFG8
3 Difference -1 -1 +1 -4 +1 -1 -4 +1 +8

Rank 5 5 2 8 2 5 8 2 1

5 Difference +1 +6 +2 -1 -5 +2 -5 +8 -8
Rank 5 2 3 6 7 3 7 1 9

8 Difference +4 -4 +8 -8 -4 +2 0 +6 -4
Rank 3 6 1 9 6 4 5 2 6

10 Difference +4 -7 +7 -7 -3 +1 +1 +7 -3
Rank 3 8 1 8 6 4 4 1 6

15 Difference +6 -8 +7 -6 +2 -1 -1 +5 -4
Rank 2 9 1 8 4 5 5 3 7

WFG9
3 Difference -1 +1 +1 +2 +1 +2 -7 -7 +8

Rank 7 4 4 2 4 2 8 8 1

5 Difference +5 +3 -2 +1 -3 +2 -8 +8 -6
Rank 2 3 6 5 7 4 9 1 8

8 Difference +5 -3 +5 -7 0 +2 -7 +8 -3
Rank 2 6 2 8 5 4 8 1 6

10 Difference +6 -6 +2 -8 +2 +2 -2 +8 -4
Rank 2 8 3 9 3 3 6 1 7

15 Difference +6 -7 +3 -7 +1 +2 -3 +8 -3
Rank 2 8 3 8 5 4 6 1 6

led to an improved convergence and diversity. When the num-
ber of objectives were increased, scalability of CDAS-SMPSO
seemed to be highly variable, dependent on the function at
hand. Favorable scalability is observed for WFG3-4, whereas
poor scalability is exhibited for WFG2, WFG8 and WFG9.

B. Decision Variable Scalability Experiments

The scalability of each CIMOO is also evaluated with
respect to an increasing number of decision variables. Table
X presents IGD metric results for each algorithm using 30,
100, 500 and 1000 decision variables on DTLZ1-4. In Tables
XI and XII, hypervolume metric results are given for WFG1-5
and WFG6-9, respectively. In each of these tables, the number
of objectives nc was set to the largest number of objectives
for which the 1000-variable instances were computationally
feasible to complete for each algorithm, determined by the
authors’ to be 10 objectives. Similar to Section V.A, each
algorithm is discussed individually in this subsection, noting
relevant observations where applicable. NSGA-III possessed
poor scalability in general for DTLZ1 to DTLZ4. The largest

performance decrease was observed on DTLZ4, which con-
tains a parametric variable mapping to DTLZ2, where the IGD
rank of NSGA-III increased from 2 to 7 when the number
of decision variables grew to 100. However, when tested on
the WFG functions, NSGA-III seemed to scale better than
the other tested EAs in many instances, despite being often
outperformed by the PSO algorithms. For WFG2, WFG4,
WFG5 and WFG7 it was the third best evolutionary optimizer
on the 500-variable instance. On the 1000-variable instance of
WFG5 and WFG8, NSGA-III was the second best EA. Note
that in all of these instances, NSGA-III was outperformed by
the three tested PSO algorithms. Regardless, NSGA-III scaled
reasonably well when tasked with an increasing number of
decision variables. Using a reference point-based selection
technique seemed to provide adequate convergence and di-
versity in many cases.

MOEA/D with PBI aggregation achieved better scalability
than the majority of the other tested EAs on DTLZ1 to
DTLZ4, but was outperformed by CDAS-SMPSO, dMOPSO
and KnPSO for 11 out of 16 test instances. Here, MOEA/D
was often unable to produce a better convergence and diversity
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TABLE X
DECISION VARIABLE SCALABILITY OF EACH ALGORITHM IS DISPLAYED WITH RESPECT TO THE IGD METRIC USING MANN-WHITNEY

DIFFERENCES AND RANKS ON DTLZ1-4 WITH 10 OBJECTIVES

Algorithm
Function Variables Result NSGA-III MOEA/D MOEA/DD dMOPSO SrEA KnPSO HypE KnEA CDAS-SMPSO

DTLZ1
30 Difference -6 +2 +4 +6 -8 -2 -2 -2 +8

Rank 8 4 3 2 9 5 5 5 1

100 Difference -6 -4 +4 +6 -8 0 +2 -2 +8
Rank 8 7 3 2 9 5 4 6 1

500 Difference -7 -1 +2 +7 -5 +4 -6 -1 +7
Rank 9 5 4 1 7 3 8 5 1

1000 Difference -6 -1 +2 +6 -4 +4 -5 -4 +8
Rank 9 5 4 2 6 3 8 6 1

DTLZ2
30 Difference -2 +8 +6 +4 -8 -6 -1 +2 -3

Rank 6 1 2 3 9 8 5 4 7

100 Difference -6 +6 +7 +5 -8 -1 -4 -1 +2
Rank 8 2 1 3 9 5 7 5 4

500 Difference -6 -2 0 +8 -8 +4 -4 +2 +6
Rank 8 6 5 1 9 3 7 4 2

1000 Difference -6 -2 -2 +7 -8 +4 -2 +2 +7
Rank 8 5 5 1 9 3 5 4 1

DTLZ3
30 Difference -4 0 +4 +6 -8 -4 +2 -4 +8

Rank 6 5 3 2 9 6 4 6 1

100 Difference -4 -1 +3 +6 -8 -1 -6 +3 +8
Rank 7 5 3 2 9 5 8 3 1

500 Difference -4 -2 0 +7 -7 +3 -7 +3 +7
Rank 7 6 5 1 8 3 8 3 1

1000 Difference -4 -2 0 +6 -7 +4 -7 +2 +8
Rank 7 6 5 2 8 3 8 4 1

DTLZ4
30 Difference +4 +4 +8 0 -8 -4 -6 -1 +3

Rank 2 2 1 5 9 7 8 6 4

100 Difference -4 +3 +7 +1 -6 -1 -8 +1 +7
Rank 7 3 1 4 8 6 9 4 1

500 Difference -4 0 +8 +6 -7 +4 -7 -2 +2
Rank 7 5 1 2 8 3 8 6 4

1000 Difference -4 0 +8 +6 -7 +4 -7 -2 +2
Rank 7 5 1 2 8 3 8 6 4

than the PSO approaches, despite yielding better performance
than the other EAs. Note that MOEA/D performed very well
for the 100-variable instances of DTLZ2 and DTLZ4, indicat-
ing that MOEA/D may yield good results even when 100 de-
cision variables are employed. Performance of MOEA/D was
not nearly as satisfactory on the WFG functions, except for
WFG1 and WFG2, where MOEA/D scaled to third and fourth
best performer, respectively, for the 1000-variable cases. It is
notable that MOEA/D, MOEA/DD and dMOPSO, which each
utilize the PBI aggregation approach, scaled exceptionally well
on the WFG1 function for the 100-, 500- and 1000-variable
cases. The aggregative decomposition technique seemed to
scale better than all other approaches on the flat bias and mixed
Pareto-optimal front geometries experienced on WFG1 when
the number of decision variables were increased up to 1000.

MOEA/DD exhibited very promising performance on the
tested large-scale MaOPs, performing well on most of the
DTLZ1 to DTLZ4 instances. For DTLZ4 in particular,
MOEA/DD demonstrated an exceptional ability to find a
converged and well-spread set of solutions, outperforming
all other algorithms for 31/32 instances, where no statis-
tically significant difference was found between itself and
CDAS-SMPSO in the single case where MOEA/DD did not
show better performance. Competitive scalability was also
shown for MOEA/DD on the WFG1, WFG2, WFG7 and
WFG9 functions. Note that the non-separable and reduced
WFG6 problem seemed to present the most difficulty for

MOEA/DD on the large-scale instances, as it obtained a rank
of 9 and 7 when 500 and 1000 decision variables were
employed, respectively. Aside from this, MOEA/DD was the
overall best-performing evolutionary optimizer in many cases
for the tested large-scale instances. These observations suggest
that the unique subregion-based mating restriction scheme of
MOEA/DD improves the effectiveness of the crossover oper-
ator for the immense search space encountered in large-scale
MaOPs. Since parents are nearly always selected from neigh-
bouring subregions, mated solutions are usually reasonably
close in the objective space, helping to avoid the production
of distant children in many instances. Thus, the degradation
experienced by the crossover operator in very large search
spaces, described in [24], is partially alleviated by MOEA/DD.

dMOPSO scaled very well on all of the DTLZ functions,
performing best overall for the 500-variable instances of
DTLZ1 to DTLZ3 and the 1000-variable instance of DTLZ2.
Notable scalability was achieved on the DTLZ4 function,
where the IGD rank of dMOPSO decreased from 5 to 2
when the number of decision variables were increased from
30 to 1000. For the WFG function suite, dMOPSO scaled well
for all problems except WFG4, WFG5 and WFG7, where it
possessed poor performance in all cases. Note that degradation
was severe for each of these functions, as dMOPSO was
outperformed by all other PSO optimizers and EAs, indicat-
ing that these functions in particular may present significant
difficulties for dMOPSO regardless of the number of decision
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TABLE XI
DECISION VARIABLE SCALABILITY OF EACH ALGORITHM IS DISPLAYED WITH RESPECT TO THE HYPERVOLUME METRIC USING MANN-WHITNEY

DIFFERENCES AND RANKS ON WFG1-5 WITH 10 OBJECTIVES

Algorithm
Function Variables Result NSGA-III MOEA/D MOEA/DD dMOPSO SrEA KnPSO HypE KnEA CDAS-SMPSO

WFG1
30 Difference -7 +4 +4 -4 +8 -1 -7 +2 -1

Rank 8 2 2 7 1 5 8 4 5

100 Difference -8 +6 +8 +2 -4 +2 -6 -2 +2
Rank 9 2 1 3 7 3 8 6 3

500 Difference -6 +6 +8 +4 -4 +1 -8 -2 +1
Rank 8 2 1 3 7 4 9 6 4

1000 Difference -6 +2 +8 +6 -4 +2 -8 -2 +2
Rank 8 3 1 2 7 3 9 6 3

WFG2
30 Difference +3 -7 +6 0 +1 0 -3 +6 -6

Rank 3 9 1 5 4 5 7 1 8

100 Difference +5 -7 +6 -5 +7 -3 -5 +1 +1
Rank 3 9 2 7 1 6 7 4 4

500 Difference -1 +2 +8 -8 +2 +6 -5 -3 -1
Rank 5 3 1 9 3 2 8 7 5

1000 Difference -2 +2 +6 -8 0 +8 -6 -4 +4
Rank 6 4 2 9 5 1 8 7 3

WFG3
30 Difference +6 -8 -4 -6 +5 -1 -1 +6 +3

Rank 1 9 7 8 3 5 5 1 4

100 Difference +4 -8 -5 -4 +5 -1 +5 -2 +6
Rank 4 9 8 7 2 5 2 6 1

500 Difference 0 -8 -5 +5 +2 +5 -5 -2 +8
Rank 5 9 7 2 4 2 7 6 1

1000 Difference 0 -8 -4 +6 +2 +4 -6 -2 +8
Rank 5 9 7 2 4 3 8 6 1

WFG4
30 Difference +3 -3 +6 -7 -3 +3 -7 +8 0

Rank 3 6 2 8 6 3 8 1 5

100 Difference 0 -6 +8 -8 +3 +6 -3 -3 +3
Rank 5 8 1 9 3 2 6 6 3

500 Difference 0 -2 +8 -8 +3 +3 -4 -6 +6
Rank 5 6 1 9 3 3 7 8 2

1000 Difference 0 -2 +7 -8 +3 +4 -4 -6 +7
Rank 5 6 1 9 4 3 7 8 1

WFG5
30 Difference +4 -4 +6 -8 +2 0 -2 +8 -6

Rank 3 7 2 9 4 5 6 1 8

100 Difference -2 -2 +8 -8 +5 +2 -6 +5 -2
Rank 5 5 1 9 2 4 8 2 5

500 Difference 0 +4 -3 -8 +2 +8 -3 -6 +6
Rank 5 3 6 9 4 1 6 8 2

1000 Difference 0 -4 0 -8 +4 +8 0 -6 +6
Rank 4 7 4 9 3 1 4 8 2

variables employed.
IGD metric performance of the SrEA algorithm was subpar

on DTLZ1 to DTLZ4, where SrEA was the worst overall
performing algorithm for 7/16 instances. Note that on DTLZ1,
SrEA began to scale well as the number of decision variables
increased, as it obtained a rank of 7 and 6 for the 500-
and 1000-variable cases, respectively. Further testing of SrEA
on DTLZ1 is encouraged, as it may scale well when more
than 1000 decision variables are employed if it continues
to follow the exhibited trend. The scalability of SrEA was
competitive for WFG4, as SrEA outperformed all of the other
optimizers for the 500- and 1000-variable instances of this
function. Here, the linearly increasing shift from convergence
to spread employed by SrEA was adept at producing excellent
hypervolume values. Another notable observation is that SrEA
scaled worse than the PSO optimizers on several problems,
namely WFG1 to WFG3, WFG7 and WFG9.

Scalability of the KnPSO algorithm with respect to the
number of decision variables was in general much more
satisfactory than its objective scalability observed in Section
V.A. KnPSO is the medium-high performer in most large-scale

cases, as it performed third best or better for 23/26 instances
where the number of decision variables were set to 500
or greater. KnPSO performed best overall on the 500- and
1000-variable instances of WFG8 and the 1000-variable in-
stance of the challenging WFG2 problem, which consists of
several disconnected convex segments and has non-separable
variables. Here, the focus on selecting and preserving knee
points in the approximated front allowed the swarm to discover
solutions that were converging well in non-crowded regions,
leading to a good blend of convergence and diversity.

HypE encountered considerable difficulty for large-scale
MaOPs on the DTLZ function set. HypE possessed the overall
worst scalability for DTLZ1, DTLZ2 and DTLZ4, where for
the 500- and 1000-decision variable instances it achieved a
rank of 8 on all functions. On the WFG1 function, HypE expe-
rienced significant difficulties regardless of the number of de-
cision variables employed, performing eight worst overall for
the 30- and 100-variable cases and ninth worst overall for the
500- and 1000-variable instances. Performance also declined
significantly for the higher-dimensional cases of WFG2 and
WFG3. The hypervolume-driven fitness assignment of HypE
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TABLE XII
DECISION VARIABLE SCALABILITY OF EACH ALGORITHM IS DISPLAYED WITH RESPECT TO THE HYPERVOLUME METRIC USING MANN-WHITNEY

DIFFERENCES AND RANKS ON WFG6-9 WITH 10 OBJECTIVES

Algorithm
Function Variables Result NSGA-III MOEA/D MOEA/DD dMOPSO SrEA KnPSO HypE KnEA CDAS-SMPSO

WFG6
30 Difference 0 -8 +5 -5 -2 +5 -5 +8 +2

Rank 5 9 2 7 6 2 7 1 4

100 Difference -6 -1 +6 -1 -4 +4 -8 +2 +8
Rank 8 5 2 5 7 3 9 4 1

500 Difference -4 +1 -8 +5 +1 +5 -3 -5 +8
Rank 7 4 9 2 4 2 6 8 1

1000 Difference -3 -5 -5 +7 +2 +4 0 -7 +7
Rank 6 7 7 1 4 3 5 9 1

WFG7
30 Difference +4 -2 +6 -8 -1 +2 -3 +8 -6

Rank 3 6 2 9 5 4 7 1 8

100 Difference 0 +4 +8 -8 +6 +2 -5 -4 -3
Rank 5 3 1 9 2 4 8 7 6

500 Difference 0 -6 +8 -8 -3 +3 +3 -3 +6
Rank 5 8 1 9 6 3 3 6 2

1000 Difference 0 -5 +6 -8 -5 +4 +2 -2 +8
Rank 5 7 2 9 7 3 4 6 1

WFG8
30 Difference +4 -7 +7 -7 -3 +1 +1 +7 -3

Rank 3 8 1 8 6 4 4 1 6

100 Difference +4 -8 +8 -6 +5 +2 -2 -3 0
Rank 3 9 1 8 2 4 6 7 5

500 Difference +2 -2 +4 -6 0 +8 -4 -8 +6
Rank 4 6 3 8 5 1 7 9 2

1000 Difference +1 -6 +4 -3 +1 +8 -2 -8 +6
Rank 4 8 3 7 4 1 6 9 2

WFG9
30 Difference +6 -6 +2 -8 +2 +2 -2 +8 -4

Rank 2 8 3 9 3 3 6 1 7

100 Difference +8 -7 +4 -7 +6 0 -1 -1 -2
Rank 1 8 3 8 2 4 5 5 7

500 Difference -4 -8 -2 +2 -4 +6 +4 -3 +8
Rank 8 9 5 4 8 2 3 6 1

1000 Difference -4 -6 +2 +4 -8 +6 -1 -1 +8
Rank 7 8 4 3 9 2 5 5 1

generally seemed to be ineffective at identifying desirable
solutions on large-scale MaOPs. However, one should note that
there were several instances where HypE exhibited promise
on large-scale MaOPs, namely for the 500- and 1000-variable
instances of WFG7 and WFG9.

The performance of KnEA was very good when low
amounts of decision variables were employed, but gener-
ally less satisfactory in high-dimensional decision space. For
WFG2 to WFG9, KnEA was the best performer overall for
the 30-variable cases, yet dropped to sixth best or worse when
1000 decision variables were employed. Note that the drop in
performance on large-scale instances was not as drastic for the
DTLZ functions, and in the case of DTLZ3 KnEA scaled well.
The drop in performance on large-scale MaOPs seen for KnEA
(and several other EAs) is potentially a result of the crossover
operator difficulties encountered for large search spaces [24].
Based on the competitive performance of MOEA/DD in this
section, it may be useful to employ a similar mating restriction
scheme for KnEA when solving large-scale MaOPs.

CDAS-SMPSO was generally very competitive on the
large-scale instances, as it scaled well to the increased number
of decision variables. Notable performances were observed on
DTLZ1 and DTLZ3, as CDAS-SMPSO was the best perform-
ing algorithm overall for all test instances on these functions. It
is notable that CDAS-SMPSO decreased its rank as the number
of decision variables grew for all WFG functions, indicative
of excellent scalability overall. The dominance area control

technique of CDAS-SMPSO seemed to provide excellent
convergence and diversity, as the stricter dominance criterion
led to the selection and preservation of better solutions. Given
the satisfactory performance of CDAS-SMPSO and the other
tested PSO algorithms on the large-scale MaOPs in this
section, it is clear that the swarm intelligence approach in
general scaled quite well to the increasing number of decision
variables.

VI. CONCLUSION

This paper investigated the scalability of many-objective
CIMOOs with respect to both the number of decision variables
and objectives. To accomplish this, various many-objective
algorithms were compared over 13 challenging MOPs using
three to 15 objectives and 30 to 1000 decision variables.
Results demonstrated the evolutionary approaches to generally
scale well with respect to the number of objectives for low
numbers of decision variables. The majority of evolutionary
optimizers were able to maintain a good blend of conver-
gence and diversity despite the increased size of the objec-
tive space. Techniques which performed especially well were
the knee-driven approach of KnEA and the subregion-based
decomposition approach of MOEA/DD. The dominance area
shrinkage technique also performed competitively when the
number of objectives grew, as CDAS-SMPSO was the best
swarm intelligence optimizer for most of the MaOP instances.
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When the number of decision variables were increased,
performance of several evolutionary optimizers waned in many
instances, while the PSO approaches scaled well generally.
It was hypothesized that this phenomenon was a result
of reduced crossover operator effectiveness due to the im-
mense search space and higher levels of epistasis encoun-
tered in large-scale MaOPs. However, it was noted that the
subregion-based mating restriction scheme of MOEA/DD was
very promising on large-scale MaOPs, as the algorithm found
a well-spread, well-converged solution set in many instances
despite the increase in decision variables.

While this work aims to serve as the starting point for
research on large-scale many-objective optimization, a broad
set of recommendations can be given for each algorithm
category in regards to improving performance on large-scale
MaOPs. For the decomposition-based optimizers, experimental
results in this work support the use of subregion-based mating
restriction schemes to ensure that parents are kept reasonably
close to each other, avoiding the issue mentioned in [24].

A similar idea can be applied to knee-driven algorithms
by considering the objective- or decision-space distance of
knee points during the mating selection phase, where closer
knee point pairs are given a higher priority to mate together.
For algorithms which fall under the indicator-based, domi-
nance relation modification or non-Pareto categories, exper-
imental results in this work highlighted the issue but did
not produce a solution for improving performance. However,
a general recommendation for these algorithm types is to
integrate co-operative co-evolution principles [73] into their
design, which have been shown to improve performance in
multi-objective environments [74]. While the recommenda-
tions given here are sufficient to improve performance on
large-scale many-objective problems, further research is en-
couraged to produce a more specific set of recommendations
for each algorithm type.

A variety of interesting opportunities for future work within
this area exist. It is within the realm of possibility that
some EAs may simply take longer to converge on large-scale
MaOPs, which would explain some of the performance dis-
parities observed in this study. Thus, a future study will
involve further analysis regarding the scalability of EAs on
large-scale MaOPs, specifically using a larger number of
function evaluations to allow more convergence time. Another
direction is to propose creative many-objective optimizers
designed with scalability in mind, as the many-objective
issue in general is still far from being solved satisfactorily,
especially for large-scale instances. Novel mating restriction
schemes can also be incorporated into a variety of evolutionary
many-objective optimizers, evaluating the subsequent perfor-
mance gains on large-scale MaOPs.
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