
-secretase inhibitors for Alzheimer’s disease: identification using 

pharmacoinformatics  

Md Ataul Islam
1,2

, Tahir S. Pillay
*1,3 

1
Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory 

Service Tshwane Academic Division, Pretoria, South Africa. 
2
School of Health Sciences, University of Kwazulu-Natal, Westville Campus, Durban, South Africa. 

3
Division of Chemical Pathology, University of Cape Town, South Africa. 

 

Email IDs:  MA Islam: ataul.islam80@gmail.com 

  TS Pillay: tspillay@gmail.com 

 

This work was supported by the National Research Foundation (NRF) Innovative post-doctoral fellowship of University of 

Pretoria, South Africa 

 

 

Correspondence should be addressed to T.S. Pillay, Department of Chemical Pathology, Faculty of Health Sciences, University 

of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007 

Email: tspillay@gmail.com  

Phone: +27-123192114 

Fax: +27-123283600 

 

 

Abstract 

In this study we searched for potential β-site amyloid precursor protein cleaving enzyme1 (BACE1) 

inhibitors using pharmacoinformatics. A large dataset containing 7155 known BACE1 inhibitors were 

evaluated for pharmacophore model generation. The final model (R = 0.950, RMSD = 1.094, Q
2
 = 0.901, 

se = 0.332, r
2

m = 0.901, R
2

pred = 0.756, sp = 0.468, rm
2

-test = 0.667) was revealed with the importance of 

spatial arrangement of hydrogen bond acceptor and donor, hydrophobicity and aromatic ring features. The 

validated model was then used to search NCI and InterBioscreen databases for promising BACE1 

inhibitors. The initial hits from both databases were sorted using a number of criteria and finally three 

molecules from each database were considered for further validation using molecular docking and 

molecular dynamics studies. Different protonation states of Asp32 and Asp228 dyad were analysed and 

best protonated form used for molecular docking study. Observation of the number of binding interactions 

in the molecular docking study supported the potential of these molecules being promising inhibitors. 

Values of RMSD, RMSF, Rg in molecular dynamics study and binding energies unquestionably 

explained that final screened molecules formed stable complexes inside the receptor cavity of BACE1. 

Hence, it can be concluded that the final screened six compounds may be potential therapeutic agents for 

Alzheimer‟s disease. 

 

Keywords: BACE1, BACE1 inhibitors, Pharmacophore, Virtual screening, Molecular Docking, 

Molecular dynamics 



2 
 

Introduction 

Alzheimer‟s disease (AD) is an incurable age-related neurodegenerative syndrome of the central nervous 

system which alters the mental capacity(Ghosh & Osswald, 2014) resulting in senile dementia, loss of  

memory, disorientation, difficulty in speaking or writing, loss of reasoning skills etc.(Selkoe, 2001). The 

disease was first identified more than hundred years ago by Alois Alzheimer, but about seventy years 

passed before it was recognized as the most common cause of dementia, as well as a major cause of 

death(Albert et al., 2011). According to World Health Organization (WHO), in United States an estimated 

5.4 million people had AD in 2016. Globally, about 44 million people are living with AD or a related 

dementia in 2016, while only 1 out of 4 people with AD have been diagnosed. It is observed that AD 

is very common in Western Europe followed by North America. Statistics indicate that AD prevalence is 

increasing exponentially which will result in the number of affected people doubling by 2030 and tripling 

by 2050(World Health Organization and Alzheimer’s Disease International. Dementia: a public health 

priority, 2012). Moreover, with progression of AD, other age-related risk factors also develop including 

hypertension, dyslipidaemia, metabolic syndrome and diabetes(Castello & Soriano, 2013, 2014; 

Drachman, 2014). To date there are no effective curative agents for the treatment of such a devastating 

disease except for management of symptoms(Ghosh & Osswald, 2014). 

Accumulation and deposition of amyloid β (Aβ) is the most popular and accepted hypothesis for the 

development of AD(Vassar et al., 1999). Aβ is a neurotoxic species produced by the consecutive cleavage 

of β-amyloid precursor protein (APP) by two aspartyl protease, beta-site APP cleaving enzyme1 

(BACE1) and finally by γ secretase(Cui et al., 2011; Sinha et al., 1999; Vassar et al., 1999; Yan et al., 

1999; Zhang, Thompson, Zhang, & Xu, 2011). This generates oxidative stress in the brain, changingthe 

cortico-cortical connectivity that leads to termination of the cerebral cortex and ultimate death of brain 

cells(Jellinger & Bancher, 1998). BACE1 is the trans-membrane aspartic protease and predominantly 

found in neurons. This enzyme is behaved like membrane-bound or related to membrane protein as it 

proficiently cut membrane-bound substrate. Several studies proved that BACE1 is an important drug 

target and active site of the enzyme covered by a flexible antiparallel β-hairpin, called a flap(Hussain et 

al., 2000). It is elucidated that the flap can control substrate access to the receptor site and set the 

substrate into the perfect orientation for the catalytic process(Lin et al., 2000). Hence, the inhibition of 

proteases such as BACE1 may represent modifying treatment for AD by controlling the production of 

Aβ(Tresadern et al., 2011). BACE1 has already been recognized as an important drug target for the 

treatment of AD(Butini et al., 2013; Eketjall et al., 2013; Zou et al., 2013).  Therefore BACE1 inhibitors 

may be used to treat AD. 
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In this  study, pharmacophore-based virtual screening of BACE1 inhibitors was performed to identify 

potential and less toxic chemical entities from the National Cancer Institute (NCI)(NCI, 2013) and 

InterBioScreen (IBS)(IBS, 2015) databases for the treatment of AD. Initial hit molecules from the 

databases were screened by imposing several criteria and the final proposed molecules were subjected to 

molecular docking study to observe binding interactions between molecules and catalytic amino residues 

at the active site cavity of BACE1. Finally, the docked complexes of final screened compounds and most 

active compound of the dataset were used for molecular dynamics simulation and binding energy 

calculation studies. 

 

Materials and method 

The 3D QSAR pharmacophore study is one of the most extensively used and versatile techniques to 

identify novel chemical entities for various targets. Pharmacophore modelling can mainly be categorised 

into two ways viz. ligand-based and structure-based. In the present study ligand-based pharmacophore 

modelling approach was considered for a set of BACE1 inhibitors with inhibitory activity (Ki). Among 

several commercially available tools the Discovery Studio 2016 (DS)(BIOVIA, 2016) is one of the 

important pharmacoinformatics tools for the development of the 3D QSAR model. The DS was used for 

the pharmacophore, virtual screening, molecular docking and binding energy calculation studies whereas 

Gromacs 5.1.2(Abrahama et al., 2015) used for molecular dynamics simulation. The DS contains several 

module packages widely used in pharmacoinformatics drug discovery(Al-Balas et al., 2013; Amin, 

Adhikari, Jha, & Gayen, 2016; Amin, Bhargava, Adhikari, Gayen, & Jha, 2017; Chhabria, 

Brahmkshatriya, Mahajan, Darji, & Shah, 2012; Huang et al., 2012; Middha et al., 2013; Pavadai et al., 

2016). The 3D QSAR Pharmacophore Generation module enables the use of structure and activity data 

for a set of potential BACE1 ligands to create hypotheses. Gromacs is a freely available versatile package 

to perform molecular dynamics, i.e. simulate the Newtonian equations of motion for systems with 

hundreds to millions of particles. 

 

Dataset 

A total 7155 compounds belonging to a collection of BACE1 inhibitors were downloaded from Binding 

DB (http://www.bindingdb.org/) with inhibition constant (Ki) activity in nM range. 2206 molecules were 

found to be duplicates and were deleted. Molecules with no activity and without definite activity were 

removed and it was found that 379 molecules possessed biological activity. Further the Lipinski‟s rule of 

five(Lipinski, Lombardo, Dominy, & Feeney, 2001) and Viber‟s(Veber et al., 2002) rules were checked 

and it was observed that 155 molecules failed to satisfy both rules. Therefore the remaining 224 
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molecules were considered for the study. The molecules of the dataset have a wide range of Ki, from 

0.494 to 82600.000 nM. The experimental inhibitory activity (Ki) of entire dataset were converted into 

logarithm value [pKi = log((1/Ki)x10
7
)]. 

The whole dataset was divided into three categories on the basis of inhibitory activities values; highly 

active (pKi >5.0 nM, +++), moderately active (3.0 < pKi ≤ 5.0 nM, ++) and least active/inactive (3.0 nM ≤ 

pKi, +).  Basic strategies of Li et al.(H. Li, Sutter, & Hoffman, 1999) were followed to select the training 

set molecules. The guidelines described as (a) molecules should be selected to provide clear and brief 

information with structure features and range of activity, (b) at least 16 diverse molecules for training set 

should be considered to ensure the statistical significance and avoid chance correlation, (c) the training set 

must include the most and the least active molecules and (d) the biological activity data of the molecules 

should have spanned at least 4 orders of magnitude. Following the above guidelines, the whole dataset 

was randomly divided into eight training sets (Tr1, Tr2, Tr3, ……, Tr8) containing 30 compounds each, 

except Tr8 which contains 28 molecules. It was also kept in mind that no compounds were common in 

any two training sets except for the most active and least active molecules. The remaining 294 

compounds were taken as test set molecules for each training set (Ts1, Ts2, Ts3, ……., Ts8) and used for 

assessing the performance of pharmacophore model. The observed and predicted activity along with 

SMILES representation of Tr1, Tr2, Tr3, Tr4, Tr5, Tr6 and Tr8 are given in Table S2 (Supplementary 

file) whilst 2D chemical representations of Tr7 with inhibition constant values are depicted in Figure 1. 

The 2D/3D visualizer of DS was used to generate 3D coordinates of the compounds. For each compound, 

the coordinates were corrected, atoms were typed and energy was minimized using the modified 

CHARMm force field.(Brooks et al., 1983; Momany & Rone, 1992) The several packages of DS were 

used for pharmacophore, virtual screening, molecular docking and binding energy calculation studies. 
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Figure 1. 2D chemical structures of the training set compounds and the inhibition constant values (pKi) are given in the 

parentheses. (pKi = log[(1/Ki)x10
7
]). 

 

Pharmacophore model generation 

In order to select the best training set molecules, the 3D QSAR Pharmacophore Model Generation 

module of DS was used and the pharmacophore models were developed from the each of eight training 

sets (Tr1, Tr2, Tr3, ……, Tr8). Conformations of each training set compounds were generated by Cat-
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Conf program of the DS software package. Among BEST/FAST, the BEST method was adopted to 

achieve multiple acceptable conformations that provide  complete and enhanced coverage of 

conformational space with help of rigorous energy minimization and optimizing the conformations by the 

poling algorithm(Smellie, Teig, & Towbin, 1995). In the BEST algorithm, the chemical features are 

arranged in space instead of simply by the arrangement of atoms (Kristam, Gillet, Lewis, & Thorner, 

2005). For prediction of the favourable features for the highly active compounds of the dataset the 

Feature mapping protocol was considered. It was observed that hydrogen bond (HB) acceptor („a‟) and 

donor („d‟), hydrophobic („p‟) and aromatic ring („r‟) were crucial pharmacophoric features present in the 

BACE1 inhibitors. Mapped features were given as input features for pharmacophore model generation. 

With the help of conformers along with chemical features the modules operates in two modes such as 

HipHop and HypoGen. The HipHop approach generates the pharmacophore models by using active 

compounds only, while the HypoGen approach considers  both active and inactive compounds in order to 

find hypotheses which are common in the active molecules and absent in the inactive compounds(Kristam 

et al., 2005).  The top ten hypotheses were generated by HypoGen with consideration of the training set, 

conformational models and chemical features through three steps: constructive, subtractive and 

optimization(Sadler, Cho, Ishaq, Chae, & Korach, 1998). In the first step, hypotheses are generated that 

are common in the most active compounds; in subtractive phase, inactive compounds are removed from 

those that fit the hypotheses. In final step, the remaining hypotheses improve the score with help of small 

perturbations (Kristam et al., 2005; H.  Li, Sutter, & Hoffmann, 2000). The best hypothesis was selected 

based on the best correlation coefficient (R), low root mean square deviation (RMSD), cost function 

analysis and good predictive ability.  

All eight training sets models were utilized separately to obtain statistically robust pharmacophore 

models. Furthermore, the pharmacophore models developed from each training set were used to predict 

the biological activity of corresponding test compounds. All training set molecules are depicted in the 

supplementary file. 

 

Validation of pharmacophore model 

The validation of any pharmacoinformatics model is an essential and crucial step to check the predictivity 

and applicability as well as the robustness of the model. The pharmacophore hypotheses developed from 

all training sets were validated by four different methods, (1) internal validation, (2) cost function 

analysis, (3) test set prediction and (4) decoy set. Moreover, the model developed from best training set 

molecules was also validated by Fischer‟s randomization test. 
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Internal validation 

The process of cross-validation using the training molecules used to develop the model is one of the 

important internal validation protocols. This is known as the Leave-one out (LOO) cross-validation 

technique, in which one compound is randomly deleted from the training set in each cycle and the model 

redeveloped using the rest of the compounds with the same parameters used in original model. The model 

developed with the new set is used to predict the biological activity of deleted molecule. All molecules of 

the training set were predicted as per above procedure and predicted activity recorded. The predicted 

activity of training set compounds based on the LOO method were used to calculate , the LOO cross-

validated correlation coefficient (Q
2
) and error of estimation (se). As described in previous reports high 

Q
2
 (>0.5) and low se  explain  better predictive ability (Kubinyi, Hamprecht, & Mietzner, 1998) of the 

model. Further, the modified r
2
 (r

2
m(LOO)) and Δr

2
m reported by Roy et al.(Ojha, Mitra, Das, & Roy, 2011; 

K. Roy et al., 2012) were also calculated to confirm the good predictive ability of the training set 

molecules. Both parameters measure the degree of deviation of the predicted activity from the observed 

ones. It was stated that model may be considered with r
2

m(LOO)>0.5 and Δr
2

m<0.2. 

 

Test set prediction 

In order to check the external prediction capability of the model developed from all eight training sets, the 

biological activity of corresponding test set (194 compounds) were predicted using the Ligand 

Pharmacophore Mapping protocol in DS. The quality of prediction of each pharmacophore model was 

adjudged based on statistical parameters, R
2

pred (correlation coefficient) and sp (error of 

prediction)(Golbraikh & Tropsha, 2002; Mitra, Saha, & Roy, 2010). The parameter, R
2

pred relies on the 

mean actual activity of the training set molecules. As both R
2

pred and sp depend on mean value, it might 

be achieved for compounds with a wider range of activity value, but this may not be assured that the 

predicted biological activity values are very close to those actual activity. Therefore, instead of a good 

overall correlation being maintained, there is chance of a significant numerical difference between the 

two values. In order to better indicate the prediction capability of the pharmacophore model, modified r
2
 

[r
2

m(test)](P. P. Roy, Paul, Mitra, & Roy, 2009; P. P. Roy & Roy, 2008) values were calculated (threshold 

value=0.5). 

 

Decoy set 

Decoy set validation is the approach to verify efficiency of screening capability of the selected 

pharmacophore model. Decoys are small compounds that are supposed to be inactive against the receptor 

or are not likely to interact with the target i.e. this method verifies how the pharmacophore model can 

retrieve active molecules over inactive molecules on virtual screening from a combined set of active and 
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inactive molecules. Hence, a set of decoys was generated by online DecoyFinder2.0(Cereto-Massague et 

al., 2012) tool. DecoyFinder tool selects decoys based on five parameters including molecular weight, 

number of rotational bonds, hydrogen-bond donor count, hydrogen-bond acceptor count, and the octanol–

water partition coefficient of the active inhibitors. In order to distinguish decoys and active molecules 

chemically the MACCS fingerprints were calculated based on the maximum Tanimoto coefficient values. 

The amalgamated decoys and active inhibitors were screened by best pharmacophore selected from each 

training set. Screened molecules based on pharmacophore model were ranked on basis of fit value. Based 

on screening results different statistical parameters were calculated to validate the model. The enrichment 

factor (EF) denotes total known active inhibitors retrieved from the part of screened database. In present 

study, EF (1%) was calculated from top 1% hits. The Boltzmann-enhanced discrimination of receiver 

operating characteristic (BEDROC) was calculated which gives the significance of the dataset screening. 

The BEDROC is a comprehensive form of receiver operating characteristic (ROC), which recognises 

problems in the screening method. Calculation of the enrichment factor and BEDROC are as described by 

Bhayye et. al(Bhayye, Roy, & Saha, 2016).  

 

Fischer’s randomization test   

The best model from final selected training set was used to check the strong relationship between the 

chemical compound and the biological activity of the training set molecules with the help of the Fischer‟s 

randomization test. In this method, the activity value was scrambled and assigned new values to the 

compound. Using compounds with new activity value, pharmacophore hypotheses were generated using 

the original pharmacophoric features and constraints used to generate the original pharmacophore 

hypotheses. If the randomization run generates improved correlation coefficient and/or better statistical 

parameters than the original hypothesis may be considered to be developed by chance. Different number 

of spreadsheets are generated based on the statistical significance randomization run. The statistical 

significance is given by following equation. 

[1 (1 ) / ]Significance a b         (1) 

Where, a represents the number of hypotheses with a total cost less than the best hypothesis, whereas b 

denotes a collection of HypoGen runs and random runs. For example, at 95% confidence level, the total 

number of random spreadsheets are generated as 19 (b = 20) and each generated spreadsheet is submitted 

to HypoGen using the same parameters as the initial run. In the present study, the developed 

pharmacophore model was tested at 99% confidence level which produced 99 spreadsheets. 
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Virtual screening 

The identification of potential small ligands from molecular databases is known as virtual screening and 

is one of the crucial techniques in the pharmacoinformatics approach.  The best model from the best 

training set molecules was used to screen the NCI and IBS databases to discover novel chemical 

molecules that could act as BACE1 inhibitors. The NCI database contains 265,242 compounds while IBS 

database consist of 523,421 molecules. Best pharmacophore model was submitted to the NCI and IBS 

databases with set „Limit Hits‟ as „Best N‟ and „Maximum Hits‟ as „All‟. The initial hit molecules from 

both databases were filtered separately with a number of criteria to find final promising BACE1 

inhibitors. Moreover, molecular docking study was carried out to analyse binding interactions between 

the potential BACE1 inhibitors and catalytic residues of the active site. Finally, molecular dynamics 

analysis of docked complexes of final screened compounds along with most active compound of the 

dataset was performed.  

 

Molecular docking 

Molecular docking is one of the crucial filtering approaches and an important method in the drug 

discovery pipeline. The LigandFit protocol of DS was adopted in order to determine how the screened 

drug-like virtual hits bind to the receptor through a molecular docking approach. First of all the LigandFit 

detects the cavity to find out and select the region of the protein as the active site followed by fitting the 

ligands to the selected active site. In order to find out the active site, the 3D regular grids of points were 

employed. The crystal structure of BACE1 enzyme was downloaded from RCSB Protein Data Bank 

(RCSB-PDB) for the molecular docking study. It has been elucidated that for molecular docking study,  

protein structures may have low resolution (<2.5Å) and R-factor (<0.28)(Anderson, 2003). In this study, 

the structure PDB ID: 4X7I(May et al., 2015) was selected from several BACE1 structures keeping in 

mind the above criteria along with receptor size and date of deposit. The resolution and R-factor of the 

selected enzyme are found to be 1.770Å and 0.208 respectively. Prior to molecular docking protein and 

ligands were prepared using the Prepare Protein and Prepare Ligand tools of DS respectively. The 

CHARMm force field(Vanommeslaeghe et al., 2010) was used to minimize both protein and ligands. In 

case of protein preparation by Prepare Protein module of DS the „Build Loop‟ and „Protonate‟ 

parameters were fixed to „True‟ while, dielectric constant, pH, ionic strengths and energy cut-off were 

taken as default value. While, for Prepare Ligand module, preparation „Change ionization‟, „Generate 

Tautomers‟ and „Generate isomers‟ were considered as „False‟, and „Generate Coordinates‟ was set to 

„3D‟. The active site cavity was identified on the prepared protein on the basis of volume occupied by the 

bound ligand at the receptor site. The validation of docking protocol prior to docking is an important step 
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to avoid false positive results of molecular docking. For this purpose the co-crystal small molecule in the 

PDB complex file was initially redrawn and the same docked into the active site of BACE1 (PDB ID: 

4X7I(May et al., 2015)). The binding interactions between the best docked pose of co-crystalized ligand 

was explored followed by superimposing the docked pose and the co-crystal. To verify docking 

parameters that were capable of regenerating a comparable conformation to that of the co-crystal at the 

active site of BACE1, the RMSD value was recorded. After validation, the same parameters of co-

crystalized docking were adopted for molecular docking studies of potential molecules. For the analysis 

of binding interactions and dock score values, top ten poses for each ligand were considered.  

BACE1 active site contains Asp dyad of two aspartate amino residues such as Asp32 and Asp228(Hong 

et al., 2000). Site directed mutagenesis studies revealed that BACE1 loses potency on mutation of either 

one of the aspartate dyad(Hussain et al., 1999). Asp32 and Asp228 behave as acid-base by frequently 

altering their protonation states(Barman, Schurer, & Prabhakar, 2011). Therefore, the determination of the 

exact protonation states of aspartate dyad is crucial to explore the binding interactions of ligands towards 

BACE1. Several studies have been done to explore the role of dyad Asp32 and Asp228 on catalytic 

activity of the BACE1. Park and Lee explained that  a protonated state of OD1 (inner un-protonated 

hydrogen atom) in Asp32 was energetically more favourable compare to protonated state of OD1 in 

Asp228(Park & Lee, 2003). In another study Rajamani and Reynolds reported that protonated state of 

OD1 in Asp228 at high pH; and, protonated state of OD2 (outer un-protonated hydrogen atom) in Asp32 

and OD1 in Asp228 at low pH were crucial for BACE1 for the same inhibitor(Rajamani & Reynolds, 

2004). Merz et al. performed QM/MM refinement technique on the eight different protonation states and 

reported that protonation state of OD1 in Asp32 was the most important state in the presence of 

considered inhibitor (Yu et al., 2006). Polg r and  eser  reported that protonation state of OD1 in Asp32 

is the most suitable protonation state for virtual screening (Polgar & Keseru, 2005). In a recent study by 

Ellis et. al. reported that the BACE1 flap is flexible and occupies pH-dependent conformational state and 

Asp32 visibly acts as the acid in peptide hydrolysis, while Asp228 acts as the base in active pH(Ellis, 

Tsai, Lin, & Shen, 2017). From the above observations it was unambiguously revealed that the chemical 

nature of the small molecules played a significant role to determine the protonation state of the Asp dyad 

in BACE1.  

In order to check the important protonated state of the Asp dyad, different combinations of the 

protonation states of oxygen atoms in Asp32 and Asp228 were generated using the Yet Another Scientific 

Artificial Reality Application (YASARA)(Krieger & Vriend, 2002) tool. Detailed different protonation 

states are given in Figure S1 (supplementary file). According to the Figure S1, Prot1 represents un-

protonated state of Asp32-Asp228 dyad. OD1 of Asp32; and, OD1, OD2 and OD1-OD2 atoms of Asp228 

were protonated for Prot2, Prot3 and Prot4 respectively. Similarly, OD2 of Asp32; and, OD1, OD2 and 
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OD1-OD2 of Asp228 were protonated to generate Prot5, Prot6 and Prot7 respectively. In case of Prot8 

and Prot9 both oxygen atoms of Asp32 were protonated along with OD1 and OD2 of Asp228 protonated 

for Prot8 and Prot9 respectively. Finally, Prot10 was generated by protonation of both oxygen atoms of 

each Asp32 and Asp228 dyad. All protein molecules (Prot1, Prot2,…Prot10) were used for docking using 

final proposed molecules and most active compound of the dataset to find critical protonation state of 

Asp32-Asp228 dyad. The best docked complex of all screened molecules including most active 

compound were considered for MD study for 20ns of time span. The protocol MD simulation is explained 

somewhere else(Islam & Pillay, 2017).  

 

Free energy calculation using MM-PBSA 

In order to quantitatively measure the binding strength between enzyme and ligands, the Molecular 

Mechanics Poisson-Boltzmann Surface Area (MM-PBSA)(Kumari, Kumar, Open Source Drug 

Discovery, & Lynn, 2014) method was adopted through Gromacs version 5.0.6. The binding free energy 

(ΔGbinding) can be expressed as below. 

  ( )binding complex protein ligandG G G G         (2) 

where, Gcomplex is the combined free energy of the protein-ligand complex, Gprotein and Gligand are the total 

energy of individual enzyme and ligand in solvent, respectively. Individual free energy of each Gcomplex, 

Gprotein and Gligand can be calculated as, 

 
complex MM solvationG E G         (3) 

 
protein MM solvationG E G         (4) 

 
ligand MM solvationG E G         (5) 

where, EMM is the average molecular mechanics potential energy in vacuum and Gsolvation is the free 

energy of solvation. The EMM can be calculated using the following equation: 

 ( )MM bonded non bonded bonded vdw elecE E E E E E     (6) 

where, Ebonded is bonded interactions including bond length, angle, dihedral angle and improper 

interactions. Enon-bonded represents two terms, van der Waals (Evdw) and electrostatic (Eelec) interactions. 

The ΔEbonded is always considered as zero.  

 
Results and discussion 

Pharmacophore 

All training set molecules were considered for pharmacophore model development using the HypoGen 

module of DS. In order to get statistically robust models the different input parameters  „Spacing‟, 

„Uncertainty‟ and „Weight variation‟ were varied. The best model of each training set was selected based 
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on Debnath‟s analysis(Debnath, 2002, 2003) which describes that the best model should have the low 

RMSD, high correlation coefficient, low cost value and high cost difference. It is also reported that a well 

validated hypothesis should have the overall cost of the hypothesis distant from the null cost and close to 

the fixed cost, and differences between null cost and total known as Δcost in the range of 40–60 bits 

explains the probability of the predictive correlation of 75–90%, while the cost difference more than 60 

bits defines the hypothesis and has a correlation probability of more than  90%(Sakkiah, Thangapandian, 

John, Kwon, & Lee, 2010). The best model of all training sets is reported in the Table S1 in 

supplementary file. The best model of each set was used to predict the inhibitory activities of 

corresponding test set compounds and the statistical parameters were calculated (Table S1 in 

supplementary file).  

In detail, it was observed that the correlation values (R) of all training sets were found to be from 0.865 to 

0.950. The highest correlation value was observed in case of Tr7. Table 1 explained that the highest LOO 

correlation coefficient values was found for Tr7 (Q
2
 = 0.901) and lowest for Tr8 (Q

2
 = 0.767). Further r

2
m 

and Δr
2

m values were calculated for all training sets. It was observed that r
2

m and Δr
2

m were found to be 

0.837 and 0.439; 0.757 and 0.189; 0.792 and 0.176; 0.889 and 0.093; 0.713 and 0.228; 0.881 and 0.109; 

0.901 and 0.092; and, 0.765 and 0.198 for Tr1, Tr2, Tr3, Tr4, Tr5, Tr6, Tr7 and Tr8 respectively. The 

Δcost (Null cost – Total cost) were recorded and it was found that all training sets had  values greater than 

60 except Tr6 which explained that except Tr6 Hypo1 of all training sets were not generated by chance. 

Observed and predicted activity (pKi) of all training sets except Tr7 are depicted in Figure S2 

(Supplementary file). 

 

Table 1. Statistical parameters of pharmacophore models derived from Training set 7 

Run 

No. 
Spacing 

1
Unc. 

2
Wt. 

Var. 

3
Hypo. 

No. 
4
R Rmsd 

Costs Out 

Null Fixed ∆ 
5
Config. Features 

1 3.0 3.0 0.3 Hypo1 0.925 0.854 174.566 120.626 41.36 16.596 a, d, p, r 

2 2.5 3.0 0.3 Hypo1 0.894 0.994 174.566 120.996 48.314 16.966 d, 2xp 

3 2.0 3.0 0.3 Hypo1 0.930 0.846 174.566 120.699 39.541 16.669 a, 2xd, p 

4 1.5 3.0 0.3 Hypo1 0.911 0.913 174.566 120.740 41.317 16.710 a, 2xd, p 

5 1.0 3.0 0.3 Hypo1 0.904 0.950 174.566 120.749 40.098 16.719 2xd, 2xp 

6 0.5 3.0 0.3 Hypo1 0.918 0.897 174.566 120.964 39.148 16.934 a, 2xd, p 

7 3.0 2.5 0.3 Hypo1 0.914 1.080 201.353 115.182 67.605 16.600 a, 2xd, p 

8 3.0 2.0 0.3 Hypo1 0.936 1.248 271.132 106.822 137.485 16.609 2xa, d, p 

9 3.0 1.5 0.3 Hypo1 0.934 2.113 611.772 90.010 442.067 16.883 a, d, p, r 

10 3.0 2.0 0.4 Hypo1 0.899 1.541 272.132 107.077 128.557 16.609 a, 2xd, p 

11 3.0 2.0 1.0 Hypo1 0.950 1.094 272.132 107.424 145.882 16.609 a, d, p, r 

12 3.0 2.0 1.5 Hypo1 0.928 1.306 272.132 107.626 138.513 16.609 a, d, p, r 

13 3.0 2.0 2.0 Hypo1 0.920 1.373 272.132 107.770 135.881 16.609 a, 2xd, p 

14 3.0 2.0 2.5 Hypo1 0.907 1.481 272.132 107.882 131.282 16.609 a, 2xd, p 
1
Uncertaunty; 

2
Weight variation; 

3
Hypothesis number; 

4
Correlation coefficient; 

5
Configuration cost 

 



Furthermore, the corresponding test compounds of each training set were predicted.  The statistical data 

are given in the Table S1. It was observed that few molecules in each training set were either extremely 

over estimated or extremely underestimated. Therefore these molecules were considered as outliers and 

deleted to calculate the R
2

pred, sp, r
2

m-test and Δr
2

m-test. In case of Ts1, Ts2, Ts3, Ts4, Ts5, Ts6, Ts7 and Ts8 

the number of outliers were found to be 14, 9, 7, 13, 12, 8, 8 and 7 respectively. The highest value of both 

R
2

pred and r
2

m-test were found to be 0.756 and 0.667 for Ts7 (Test of Tr7). The Δr
2

m-test value of all test sets 

satisfies the criteria (<0.20). The observed and predicted activity (pKi) of all test sets except Ts7 are 

plotted and given in Figure S3 (Supplementary file). 

Moreover, the best model of each training set was used to screen the amalgamation of 1448 decoy and 30 

active compounds. Based on the screening results different parameters were recorded and depicted in 

Table S3. The AUC curve was also plotted and it found that value under curve was maximum in case of 

Tr7 (0.680). As shown in Table 2, all test sets have AUC value more than 0.500 except Ts1, Ts2 and Ts4. 

The accuracy of all test sets were found more than 0.700 while maximum value was found for Ts2 

(0.970) followed by Ts7 (0.960). The highest specificity was found for Ts2 as 0.979 followed by of Ts7 

(0.967), but the specificity of Ts2 was 0.400 whereas for Ts7 it was 0.700.  

Therefore by analysing statistical parameters of all training, test and decoy sets it was observed that 

model developed from Tr7 was found to be more competent in case of predictivity and screening 

capability compared to models developed from other training sets. Hence, the model developed from Tr7 

was deliberated as the best model and considered for further validation and virtual screening. Statistical 

and cost parameters of several runs on Tr7 are given in Table 1. The observed and predicted activities of 

all training and test sets (except Tr7 and Ts7) are given in Figures S1 and S2 respectively. The structure 

of Tr7 is depicted in Figure 1 and inhibition constant given within parentheses.  

 

Figure 2. Mapped pharmacophore features with most active compound and the inter-feature distances of Hypo 1 of run no. 11 

(Table 1) of the best model of Tr7. 
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The detailed stepwise development of pharmacophore model from Tr7 with successive variation of input 

parameters is given in Table 2. From the Table 2 it can be seen that Hypo1 of run number 11 was found to 

have the highest correlation value and high cost difference. Hence, this model was considered as the best 

model and considered for further validation. Mapping between thebest model and most active compound 

of the dataset along with inter-features distances are given in Figure 2. The best model suggested (Figure 

2a) that one of each hydrogen bond (HB) acceptor and donor, hydrophobicity and aromatic ring features 

were crucial for inhibitory activity. The most active compound of the dataset was mapped with the 

pharmacophore model. The mapped features explained that sulphonamide group present in the molecule 

behaved as HB acceptor whereas imino group present in the same ring was revealed as HB donor. The 

benzene ring present in between two non-aromatic rings imparts the hydrophobicity of the molecule. The 

pyridine ring in the molecular system was found to be crucial as an aromatic ring feature. Therefore, from 

the best model it was revealed that pharmacophoric features namely, HB acceptor and donor, 

hydrophobicity and aromatic ring are critical for the design and discovery of new potential BACE1 

inhibitors.  

The observed and predicted activity of individual compounds of Tr7 set molecules are depicted in Table 2 

and Figure 3. Table 2 explained that one highly active compound (B25) (pKi > 5 nM, +++) was 

underestimated as moderately active molecule, while two moderately active (B3 and B7) molecules (3 < 

pKi ≤ 5 nM, ++) overestimated as highly active. The remaining molecules in the training set were found 

to be estimated correctly within their range. Therefore, from the above findings it can be explained that 

the Hypo 1 of run number 11 (Table 1) projected inhibitory activity of the training set molecules correctly 

which is echoed by the high correlation between experimental and predicted inhibitory activities. 

 

Validation of pharmacophore model 

In order to check the robustness of best pharmacophore model following validation procedures were 

adopted.  

 

Internal validation 

The Hypo 1 of the best selected model was used to calculate the predicted inhibitory activities. The 

observed and predicted activities of the training set are given Table 2 and Figure 3. The ratio between the 

observed and predicted activities were calculated which is represents as error value of all training 

molecules and reflects the consistency between both activities. The error values of each molecules were 

found in reasonable range (Table 2). Furthermore, the cross-validated correlation coefficient was 

calculated and it was observed that the best hypothesis gives Q
2
 of 0.901 with se of 0.332. Moreover, r

2
m 

and Δr
2

m parameters were also calculated and found to be 0.901 and 0.092 respectively. It is reported that 
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for acceptance of the model r
2

m and Δr
2

m should be more than 0.500 and less than 0.200 respectively. The 

high Q
2
 and r

2
m, and low se and Δr

2
m of the Hypo 1 (run no. 11 in Table 1) suggested that model is 

statistically robust in nature. 

 

Cost value analysis 

During the generation of pharmacophore hypotheses the HypoGen algorithm in DS computes and gives a 

number of parameters for preliminary assessment of the model. These parameters includes the Δcost which 

is the difference between null and total costs, the configuration cost, and RMSD between the estimated 

and the experimental inhibitory activities of the training set molecules. It was observed that the cost 

difference of the best model was found to be 145.882 which clearly explains that the selected hypothesis 

was not generated by chance. A consistent and robust pharmacophore model should also have a 

configuration cost value less than 17. Hypo 1 (Table 1) generated configuration cost of 16.609. It was also 

previously reported that lower differences between total and fixed costs is an indication of a robust model. 

For Hypo 1 of best model the difference between total and fixed cost was found to be 12.580 and this is 

significant for the model.  

 

Test set prediction 

It is crucial to check the predictive ability of compounds not involved in model generation. In this 

purpose Pharmacophore Mapping module of DS was used to predict inhibitory activities of the 194 test 

set compounds (Ts7). After prediction it was found that eight compounds were either extremely 

overestimated or underestimated and these molecules were deleted as outliers for the statistical parameter 

calculations. 

The remaining 186 test compounds in SMILES representation along with pKi values is given in the 

supplementary file (Table S4). From the observed and predicted (Table S4 and Figure 3) activity of test 

compounds it was revealed that five highly active and two moderately active molecules were 

overestimated as moderately active and least active respectively. Four moderately active compounds were 

underestimated as highly active molecules. Another two moderately active overestimated as least active 

compounds. Hence out of 186 compounds eleven compounds were either underestimated or 

overestimated from their original activity, whilst the remaining 175 were estimated correctly within their 

range. Furthermore the correlation coefficients (R
2

pred) between observed and predicted inhibitory 

activities and error of prediction (sp) were calculated and values found to be 0.756 and 0.468 respectively. 

The above observations clearly indicate that Hypo 1 of run number 11 (Table 1) is competent enough to 

estimate the inhibitory biological activity of the compounds beyond the training set.   
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Table 2. Observed, predicted activities values of the training set molecules (Tr7), obtained using the pharmacophore model 

Hypo 1 of run number 11 

Mol. No. 
Activity (pKi nM) 

Error 
Activity scale 

a
Obs. 

b
Pred. 

a
Obs. 

b
Pred. 

B1 2.783 2.704 +1.029 + + 

B2 6.032 5.302 +1.138 +++ +++ 

B3 4.745 5.300 -0.895 ++ +++ 

B4 5.027 5.270 -0.954 +++ +++ 

B5 5.194 5.401 -0.962 +++ +++ 

B6 5.824 5.405 +1.078 +++ +++ 

B7 5.367 5.467 -0.982 +++ +++ 

B8 6.312 6.380 -0.989 +++ +++ 

B9 5.046 5.016 +1.006 +++ +++ 

B10 4.676 4.870 -0.960 ++ ++ 

B11 4.066 4.386 -0.927 ++ ++ 

B12 6.000 5.187 +1.157 +++ +++ 

B13 2.083 2.329 -0.894 + + 

B14 3.420 3.896 -0.878 ++ ++ 

B15 3.770 3.651 +1.032 ++ ++ 

B16 4.260 4.271 -0.997 ++ ++ 

B17 4.785 5.074 -0.943 ++ +++ 

B18 5.222 5.291 -0.987 +++ +++ 

B19 5.056 5.139 -0.984 +++ +++ 

B20 5.288 5.047 +1.048 +++ +++ 

B21 4.423 4.764 -0.928 ++ ++ 

B22 4.593 4.325 +1.062 ++ ++ 

B23 5.078 5.185 -0.979 +++ +++ 

B24 5.143 5.062 +1.016 +++ +++ 

B25 5.084 4.661 +1.091 +++ ++ 

B26 7.023 7.343 -0.956 +++ +++ 

B27 6.622 6.147 +1.077 +++ +++ 

B28 5.319 5.087 +1.045 +++ +++ 

B29 6.523 6.877 -0.948 +++ +++ 

B30 5.119 5.236 -0.978 +++ +++ 
a
Observed. 

b
Predicted. pKi = log[(1/Ki)x10

7
] 

 

Further, to confirm  better determination of predictive ability of the selected model another important 

statistical parameter r
2

m(test) was calculated which explains how the predicted inhibitory activities are 

contiguous to the equivalent experimental values as a high correlation coefficient value (R
2

pred) cannot 

always put forward a low residual between the experimental and predicted activity data. In this regard, 

two parameters r
2

m(test) and Δr
2

m(test) were identified and values found to be 0.667 and 0.079 

correspondingly which explains that selected hypothesis (Hypo 1) has adequate predictive potential. 
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Consequently, the above findings explained that the selected hypothesis can reasonably predict the 

biological activities of new molecules. 

 

 

Figure 3. Observed and predicted activity of training and test set compounds as per pharmacophore model. 

 

Fischer randomization test 

Fischer randomization test was performed on the selected best model to evaluate the quality of the 

hypothesis by assigning a particular confidence level. In the present work, the model was considered for 

99% confidence level. In this process a total of 99 random spreadsheets (random hypotheses) were 

generated according to the equation (1) to accomplish a confidence level of 99%. The total costs and the 

correlation values of all 99 spreadsheets were analysed. Total cost of top 25 random spreadsheets along 

with best model is given in Figure 4. In addition, the lowest total cost and highest correlation value of all 

99 randomized runs and selected model were plotted and given in Figures S3 and S4 (Supplementary file) 

respectively.  From Figures 4, S3 and S4 it can be noted that no one hypothesis perceived higher 

correlation and lower total cost value compare to Hypo 1 of run number 11 in Table 1. Moreover it can be 

claimed that the statistics of the best model was far more superior to the top 25 random hypotheses as 

well as the other 74 random hypotheses. Therefore, the above observations of Fischer‟s randomization 

approach unquestionably explained superiority of the hypothesis and Hypo 1 of run number 11 was not 

generated by chance. 
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Figure 4. Total cost of top 25 randomized runs in Fischer’s randomization test. 

 

Decoy set 

The decoy set validation was performed to verify the screening competence of the best selected 

pharmacophore model. A set of 30 active BACE1 inhibitors was used as input for 

DecoyFinder2.0(Cereto-Massague et al., 2012) to retrieve decoys from ZINC database(Irwin, Sterling, 

Mysinger, Bolstad, & Coleman, 2012). A total 1448 decoys were found and 30 input active compounds 

amalgamated with decoys to screen through the best pharmacophore model to discriminate between 

actives and decoys. The accuracy value was found to be 0.960. The true positive (TP), false positive (FP), 

true negative (TN) and false negative (FN) values were found to be 21, 48, 1400 and 9 respectively. From 

the screening output the ROC plot of the model was plotted by the true positive rate of actives vs. false 

positive rate of inactive compounds and given in Figure 5.  

 

Figure 5. ROC curve for pharmacophore model, derived from true positive rate of actives vs. false positive rate of inactive 

compounds. 
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The Figure 5 undoubtedly clarified that actives and decoys are well-classified. Furthermore, the area 

under curve (AUC) was calculated and the value found to be 0.680 that indisputably explained that more 

true positives had been verified. Further, the enrichment factor (EF 1%) and Boltzmann-enhanced 

discrimination of ROC were also calculated and the value of average EF (1%) value for pharmacophore 

model was found to be 9.85 which showed that hypothesis has acknowledged active compounds very well 

and the top 1% hit is enriched with active molecules. The above-mentioned findings of decoy validation 

strongly explain that the developed pharmacophore features in the selected model are impeccably 

acceptable for the mapping of BACE1 inhibitors. 

 

Virtual screening 

Pharmacophore-based virtual screening of small molecule databases is one of the powerful techniques to 

search for novel and potential inhibitors. With regard to obtaining promising BACE1 inhibitors, Hypo 1 

of run number 11 was used to explore the NCI and IBS databases. In this purpose the „Search Database‟ 

protocol under „Pharmacophore‟ module of DS package was used. In the parameter list the protocol 

„Search Method‟ and „Limit Hits‟ were set to „Best‟ and „All‟ respectively. After searching using the best 

model we retrieved 32102 hits from the NCI database while 198 692 were retrieved from the IBS 

database. Molecules obtained from both databases were further screened separately using the number of 

criteria. First of all the “Ligand Pharmacophore Mapping” protocol of DS with “Maximum Omitted 

Feature” set to „0‟ to calculate the predicted inhibitory activity. After successful prediction, the estimated 

activities were compared with the experimental inhibitory activity (pKi = 7.023 nM) of the most active 

compound (B26 in Table 2) of the dataset. Compounds with better prediction than B26 i.e. estimated 

inhibitory activity less than 0.949 were considered for further analysis. It was observed that 86 from NCI 

and 299 from IBS fulfilled the above criteria. These compounds were further considered for the 

Lipinski‟s Rule of Five and Viber‟s rule validation. 32 and 213 compounds from NCI and IBS 

respectively passed both rules. These compounds were considered for the molecular docking studies. 

After completion of the molecular docking studies it was found that 3 compounds from NCI failed to fit 

into the active site of BACE1 but all compounds from IBS successfully fitted. It was observed that all 

docked compound from both databases were given higher dock score values compare to the most active 

compound of the dataset. Moreover, the ADMET descriptors were calculated using the ADMET 

Descriptor protocol of DS. The human intestinal absorption (HIA), aqueous solubility and blood brain 

barrier (BBB) were analysed and it was found that three compounds from each NCI (NSC11408, 

NSC367261 and NSC694875) and IBS (STOCK1N-03331, STOCK3S-74396 and STOCK6S-74113) 

databases show good absorption, aqueous solubility and penetration values (Figure 6).  
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Figure 6. Screened promising BACE1 inhibitors from NCI (NSC11408, NSC367261 and NSC694875) and IBS (STOCK1N-

03331, STOCK3S-74396 and STOCK6S-74113) databases. 

 

Finally, all the above six compounds were checked for synthetic accessibility using Sylvia. The synthetic 

accessibility score were found to be less than 5 for all of them which clearly indicated that these 

molecules will not be difficult to synthesize. Hence the above six compounds were considered to be 

promising BACE1 inhibitors and were analysed further to assess the critical interactions with the catalytic 

amino residues of BACE1. 

 

Molecular docking 

The best docked poses of final six compounds along with most active compound of the dataset were 

analysed to observe the preferred orientation and binding interactions at the receptor cavity of BACE1. 

The crystal structure of the BACE1 (PDB ID: 4X7I(May et al., 2015)) was obtained from RCSB-Protein 

Data Bank. In order to validate the docking protocol the self-docking(Taha et al., 2011) approach was 

adopted. In this method, the already bound small molecule was re-docked at the catalytic site of macro 

molecule and the conformer of the original bound small molecule was overlaid to the re-docked pose to 

calculate RMSD value. It is reported that the RMSD < 2 Å value of original bound ligand validates the 

docking procedure(Taha et al., 2011). After self-docking it was observed that the RMSD value between 

co-crystal and docked conformer found as 0.356Å, which clearly indicated that the protocol selected in 

the docking method was validated. The superimposition between bound crystal ligand and docked pose of 

the same is given in Figure S6 in supplementary file. 

Total ten different protein molecules (Figure S1, supplementary file) were generated by adding hydrogen 

atoms to the OD1 and OD2 of the aspartate dyad to find the critical protonated states of Asp32-Asp228 

dyad. All six proposed and most active molecule of the dataset were docked to the ten protein molecules 

separately. The dock score, binding energy and number of bonding interactions with Asp32-Asp228 were  
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recorded and given in the Table S5 (supplementary file). Detailed analysis of Table S5 explained that 

almost all screened molecules give higher dock score and binding energy when docked to Prot1. The most 

active compound also showed more affinity towards Prot1 compare to others. The number of hydrogen 

bond and non-hydrogen bond analysis also revealed that NSC11408, NSC367261, STOCK1N-03331, 

STOCK3S-74396 and STOCK6S-74113 formed 2, 5, 3, 3 and 2 bonding interactions respectively with 

Prot1 which is higher than any other protein molecule. Hence protonated state of Prot1 that is un-

protonated form of both Asp32 and Asp228 dyad was found to be crucial for the proposed molecule. 

Subsequently, Prot1 was considered for following docking analysis and MD simulations study. Best 

docked poses of B26, NSC11408, NSC367261, NSC694875, STOCK1N-03331, STOCK3S-74396 and 

STOCK6S-74113 are given in Figure 7.  From the Figure 7 it can be explained that most active 

compound (B26) of the dataset formed two binding interactions through hydrogen bond with Lys222 and 

bump interaction with Ile110. It was observed that all six final screened molecules were successful in 

forming a number of interactions with the catalytic amino acid residues of BACE1. In detail, each of 

Gly34 and Arg235 were found to form one hydrogen bond with NSC11408. Asp228 and Thr231 were 

observed to be crucial for interaction with NSC367261 and STOCK1N-0333 via hydrogen bond 

interactions. 

 

Figure 7. Binding modes of the most active molecule of the dataset and final screened compounds from databases. 

 

Tyr71 catalytic amino residue at the active site clashed with NSC11408, NSC367261, NSC694875 and 

STOCK6S-74113 with one, one, three and one bump interactions respectively. NSC11408 and 

NSC367261 interacted with Thr231 through bump interactions. Asp228 was sufficient enough to form a 

number of bump interactions with all screened molecules except NSC694875. Catalytic amino residue, 

Trp76 was formed one of each hydrogen bond and bump interaction with NSC694875 and also formed 

one bump interaction with STOCK3S-74396. Gly230 was connected with NSC694875, STOCK1N-
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03331 and STOCK3S-74396 via bump interaction, whereas same amino residue formed one hydrogen 

bonding and four bump interactions with STOCK6S-74113. Moreover, Asp32, Glu73 and Thr232 were 

connected via bump interactions with NSC367261. The side chains of STOCK3S-74396 interacted with 

Thr23 and Asp228 via two and one hydrogen bond interactions respectively. NSC367261, NSC694875, 

STOCK3S-74396 and STOCK6S-74113 were interacted with Glu73, Ile118, Val69 and Ser35 

respectively via one bump interaction each. Therefore the above observation undoubtedly explained that 

final screened molecules interacted with a larger number of binding interactions compared to the most 

active compound of the dataset.  

 

Molecular dynamics 

In order to analyse stability of complex between screened molecules and most active compound of the 

dataset with BACE1 the best docked poses of each were considered for molecular dynamics simulation 

study. For this purpose, Gromacs5.1.2 was used for a time span of 20ns. In order to understand the 

simulation output backbone RMSD, RMSF and radius of gyration (Rg) and RMSD of ligands were 

explored to analyse the complex constancy during simulation time.  

 

Figure 8. RMSD vs simulation time (ns): a) complex of most active compound of the dataset and screened molecules from NCI 

database; b) complex of most active compound of the dataset and screened molecules from IBS database. 

 

The mean RMSD value of protein backbone were calculated and found to be 0.131, 0.164, 0.130, 0.141, 

0.141, 0.130 and 0.108 nm for the BACE1 complex with B26, NSC11408, NSC367261, NSC694875, 

STOCK1N-03331, STOCK3S-74396 and STOCK6S-74113 respectively. The Figure 8 explained that 

protein backbone with complex B26 initially fluctuated but after 3 ns of time it became stable. On 

analysis of RMSD trajectories of screened compounds from NCI database (Figure 8a) it was found that 

RMSD value of protein backbone of complex with NSC11408 increased sharply up to about 16ns of time 
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span of simulation and then formed a stable complex at RMSD value approximately 2 nm. During the 

simulation of complex between BACE1 and NSC367261, it was observed that RMSD of the backbone of 

the BACE1 enzyme initially increased till about 8ns thereafter it formed stable complex at around 0.125 

nm of RMSD. The complex between BACE1 and NSC694875 was showed almost constant stability 

during the simulation study. The RMSD vs time plot of the complex with screened compounds from IBS 

database (Figure 8b) explained that STOCK1N-03331 initially showed disturbance in stability but 

achieved constancy in about 0.15 nm of RMSD value. The backbone of the protein molecule bound to 

STOCK3S-74396 was found to be stable throughout the simulation with minimum fluctuations. In the 

case of STOCK6S-74113 and BACE1 complex the trajectory was shown to fluctuate much less 

compared to the others and maintained consistency throughout the simulation. 

Furthermore, the variation of RMSD of screened molecules from both databases and B26 itself were 

analysed to verify how comfortably these molecules can fit inside the receptor cavity of BACE1. The plot 

of RMSD vs time of the ligands is portrayed in the Figure 9. 

 

 

Figure 9. RMSD vs time: a) most active compound of the dataset and screened molecules from NCI database; b) most active 

compound of the dataset and screened molecules from IBS database. 

 

The trajectories explained that maximum and minimum RMSD values were found to be 0.108 and 0.0005 

nm, 0.186 and 0.0005 nm, 0.198 and 0.0005 nm, 0.244 and 0.0005 nm, 0.172 and 0.0005 nm, 0.250 and 

0.000048, and, 0.191 and 0.0005 nm for B26, NSC11408, NSC367261, NSC694875, STOCK1N-03331, 

STOCK3S-74396 and STOCK6S-74113 respectively. The average RMSD value of the molecules were 

found to be 0.047, 0.115, 0.134, 0.192, 0.078, 0.163 and 0.134 nm for B26, NSC11408, NSC367261, 

NSC694875, STOCK1N-03331, STOCK3S-74396 and STOCK6S-74113 respectively. Figure 9 

demonstrates that all molecules attained consistency during the simulation. Therefore, from the RMSD 
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trajectories of ligands itself inside the receptor cavity, it was clearly indicated that molecules formed 

extensive binding interactions with catalytic amino residues to form stable complex.  

Furthermore, the RMSF were analysed to verify the role of amino acid in forming the stable complex 

between screened ligands and BACE1. On analysis of RMSF outputs it was observed that average and 

difference between maximum and minimum RMSF values were found to be 2.131 and 0.060 nm, 2.137 

and 0.074 nm, 2.118 and 0.048 nm, 2.130 and 0.061 nm, 2.131 and 0.063 nm, 2.130 and 0.062 nm, and, 

2.124 and 0.054 nm for B26, NSC11408, NSC367261, NSC694875, STOCK1N-03331, STOCK3S-

74396 and STOCK6S-74113 respectively. The plot between RMSF and residue number is given in 

Figure 10. In Figure 10a it can be seen that the backbone of protein complexes with all screened 

molecules from NCI and IBS databases fluctuated more around the amino residues Ala313, Thr314, 

Ser315 and Gln316. Backbone of BACE1 enzyme around amino residues Phe159, Pro160 and Leu161 

fluctuated about 0.13 nm when bound to NSC11408 and STOCK1N-03331. Further, it was observed that 

backbone of complex with STOCK1N-03331 and STOCK3S-74396 fluctuated about 0.2 to 0.3 nm scale 

around the amino acids Pro70, Tyr71, Thr72 and Gln73.  The possible reason of fluctuation of these 

region may be a lack of interactions between amino residues and ligands in these regions. 

  

Figure 10. RMSF vs number of residues: ): a) complex of most active compound of the dataset and screened molecules from 

NCI database; b) complex of most active compound of the dataset and screened molecules from IBS database. 
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Figure 11. Radius of gyration of Cα atoms of BACE1 over the simulation time. 

 

Finally the trajectories of the Rg was calculated and the plot is depicted in Figure 11. The trajectories 

explained that complexes with B26 show no noticeable fluctuation. Initially both complexes with 

NSC11408 and NSC694875 were found to achieve almost similar Rg about 2.12 nm but after about 14ns 

of time of simulation complex NSC11408 increases the Rg value up to 2.15 nm. In case of complexes 

with compounds screened from IBS database (STOCK1N-03331, STOCK3S74396 and STOCK6S-

74113) a similar type fluctuation around 2.13 nm of Rg was found. The above findings of MD simulation 

clearly explained that the complex with all screened molecules achieved stable conformation at low 

RMSD except NSC11408 and STOCK1N-03331. However, these compounds also attained stability with 

BACE1 at higher RMSD values. It was observed that both RMSD and RMSF analysis successfully 

correlated with findings of the molecular docking study. Fluctuation and the high Rg value in case of all 

complexes indicates the accessibility of the ligand to receptor cavity by opening of the binding pocket of 

the protein molecule.  

 

Comparison of drug-likeness with standard BACE1 inhibitors 

Drug-likeness of the screened compounds were compared with a four standard BACE1 inhibitors 

currently used in clinical trials. These molecules included AZD3289(Geschwindner et al., 2007), 

AZD3293(Geschwindner et al., 2007), Ly2886721(May et al., 2015) and MK-8931(Scott et al., 2016). 

Different parameters including dock score, estimated activity, fit value, hydrophobicity, molecular 

weight, violation of Lipinski‟s rule of five, molecular volume, molecular refractivity, number of H-bonds 

and number of bump interactions were recorded using the DS and online MolInspiration 

(http://www.molinspiration.com/cgi-bin/properties) and depicted in the Table 3.  
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From the Table 3 it was revealed that all four standard BACE1 inhibitors were successfully docked into 

the BACE1 and also mapped on the best pharmacophore model of our study. The dock score of 

AZD3289, AZD3293, Ly2886721 and MK-8931 was found to be 61.907, 67.953, 28.911 and 63.911 

respectively. The dock scores of B26, NSC11408, NSC367261, NSC694875, STOCK1N-03331, 

STOCK3S-74396 and STOCK6S-74113 were recorded as 4.011, 68.541, 67.239, 74.056, 72.746, 69.897 

and 73.444 respectively. The dock score values of screened compounds and standard BACE1 inhibitors 

clearly explain that screened molecules show higher affinity for binding inside the receptor cavity of 

BACE1. Higher fit score value of screened compounds compared to standard BACE1 compounds also 

indicate that screened compounds are more efficient at fitting the best model. The estimated inhibitory 

activity of all compounds were predicted. It was observed that predicted activity of standard BACE1 

inhibitors were much higher compared to the screened compounds which undoubtedly indicated that 

screened compounds might be more active than standard BACE1 inhibitors. The binding interactions 

were analysed from the best dock poses of screened and standard BACE1 inhibitors along with B26. 

Total number of interactions (hydrogen bonds and bump interactions) were found to be higher in number 

in case of screened compounds compared to the standard BACE1 inhibitors. Other parameters including 

molecular weight, molecular volume and molecular refractivity were also recorded and listed in Table 3. 

The above findings in comparison study indisputably explained that NSC11408, NSC367261, 

NSC694875, STOCK1N-03331, STOCK3S-74396 and STOCK6S-74113 may be promising BACE1 

inhibitors for therapeutic application in AD.  

Table 3. Comparative analysis of standard BACE1 inhibitors and screened compounds 

Molecules 
1
DS 

2
EA 

3
FV logP 

4
MW 

5
vROF 

6
MV 

7
MR 

8
HBond 

9
Bump 

B26 4.011 0.454 11.117 1.72 425.875 0 335.65 101.64 1 1 

AZD3289 61.907 99.616 9.076 4.28 451.530 0 368.21 118.43 3 4 

AZD3293 67.953 44.708 9.424 3.69 412.540 0 391.24 125.75 1 5 

LY2886721 63.370 393.058 8.480 2.04 390.420 0 316.26 96.07 4 3 

MK-8931 28.911 99.238 9.077 2.35 405.470 0 344.54 101.26 1 4 

NSC11408 68.541 0.020 12.780 3.62 343.470 0 342.49 103.86 2 4 

NSC367261 67.239 0.298 11.600 2.61 353.370 0 313.84 96.81 3 8 

NSC694875 74.056 0.022 13.729 4.11 445.570 0 427.30 129.15 1 7 

STOCK1N-03331 72.746 0.317 11.573 1.87 352.390 0 318.20 101.65 4 3 

STOCK3S-74396 69.897 0.013 12.976 1.41 302.38 0 288.93 88.76 3 5 

STOCK6S-74113 73.444 0.031 13.581 2.52 375.43 0 344.65 103.59 2 6 
1
Dockscore; 

2
Estimated activity; 

3
Fit value; 

4
Molecular weight; 

5
Violation of Lipinski‟s rule of five; 

6
Molecular volume; 

7
Molecular refractivity; 

8
Number of H-bonds; 

9
Number of bump interactions 

 

Free energy calculation using MM-PBSA 

The binding free energy calculation based on MM-PBSA method was performed with all seven 

complexes. The average values of van der Waals, electrostatic and binding energy are given in the Table 

4. Table 4 clearly indicates that all molecules have higher binding energy than complex with B26 except 

complex with NSC367261 and STOCK3S-74396. The highest binding energy was found in the complex 
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when STOCK6S-74113 bound to BACE1 and the value is -302.991 kcal/mol. Further it was noticed that 

the van der Waals and electrostatic energies negatively contributed to total energy of binding. As per 

Table 4, van der Waals interactions were given much higher contribution compared to electrostatic 

interactions for all cases. The total binding energies of all complexes are given in Figure 12. Therefore 

binding energy analysis between BACE1 and screened compounds undoubtedly explained that screened 

compounds have enough potential to form a number of bonded and non-bonded interactions with the 

catalytic amino residue at the active site cavity of BACE1. 

 

Table 4. Average van der Waals, electrostatic and total binding energies of complexes of screened compounds and most active 

compound of the dataset with BACE1 

Complex with compound van dar Waals Electrostatic Binding energy 

B26 -142.126 -13.571 -155.697 

NSC11408 -130.844 -32.233 -163.077 

NSC367261 -112.192 -36.210 -148.489 

NSC694875 -160.391 -37.124 -197.515 

STOCK1N-03331 -85.346 -22.148 -179.080 

STOCK3S-74396 -82.389 -23.038 -106.223 

STOCK6S-74113 -156.805 -146.187 -302.991 

  

 
 

Figure 12. Total binding energy of complexes with a) most active and screened molecules from NCI and b) most active and 

screened molecules from IBS. 

 

Conclusion 

The current study developed ligand-based pharmacophore models followed by virtual screening, 

molecular docking and molecular dynamics study to identify promising BACE1 inhibitors for the 

treatment of AD. A total of eight training sets were generated and finally Tr7 was found to be more 

appropriate to develop models compared to others. The best model developed from Tr7 explained the 
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importance of HB acceptor and donor, hydrophobicity and ring aromatic features. The best model was 

validated internally and externally using R, Q
2
, se, rm

2
, Rpred

2
, sp, rm(test)

2
, Δrm(test)

2
, Fischer‟s 

randomization and decoy set. The NCI and IBS databases were used for virtual screening using best 

pharmacophore model. Initial hits from NCI and IBS respectively were passed through a number of 

criteria separately and finally three from each NCI (NSC11408, NSC367261 and NSC694875) and IBS 

database (STOCK1N-03331, STOCK3S-74396 and STOCK6S-74113) were found to be promising for 

inhibition of BACE1. The binding interactions between screened compounds and catalytic amino residues 

of BACE1 were analysed which revealed that screened compounds were able to form a number of 

binding interactions with the catalytic amino residues of BACE1. Furthermore, the molecular dynamics 

simulation study was performed with the complex between BACE1 and screened compounds along with 

most active compound of the dataset. Based on RMSD, RMSF and Rg values from MD simulation it can 

be proposed that all screened compounds might be promising BACE1 inhibitors. Comparison of the 

binding energy of complex between BACE1 and screened compounds along with most active molecule of 

the dataset and standard BACE1 inhibitors indicate that screened compounds have more potential to bind 

inside the BACE1 cavity. Therefore, it can be concluded that the final screened compounds might be 

potent and safer lead candidates for the treatment of AD but further confirmation will require 

experimental validation, in vitro. 
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