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Abstract 

A well designed clinical trial requires an appropriate sample size with adequate statistical power 

to address trial objectives. The statistical power is traditionally defined as the probability of 

rejecting the null hypothesis with a pre-specified true clinical treatment effect. This power is a 

conditional probability conditioned on the true but actually unknown effect. In practice, however, 

this true effect is never a fixed value. Thus we discuss a newly proposed alternative to this 

conventional statistical power: statistical assurance, defined as the unconditional probability of 

rejecting the null hypothesis. This kind of assurance can then be obtained as an expected power 

where the expectation is based on the prior probability distribution of the unknown treatment effect, 

which leads to the Bayesian paradigm. In this paper, we outline the transition from conventional 

statistical power to the newly developed assurance and discuss the computations of assurance using 

Monte-Carlo simulation-based approach. 
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1. Introduction  

 Clinical trials should be well designed for ethical consideration as well as cost 

effectiveness. An aspect of good design of clinical trial protocol is to determine appropriate 

number of patients (i.e., sample size) with adequate statistical power to address the clinical 

objectives. The statistical power is traditionally defined as the probability of rejecting the null if 

the true clinical trial treatment effect equals a prerequisite value. Therefore the statistical power is 

a conditional probability to this unknown prerequisite value, as discussed extensively in Chow et 

al. (2003), Chen and Peace (2011), and Walter and Chen (2014). In practice, this prerequisite value 

is obtained from previous trials or specified based on prior experience and knowledge, which could 

very well be different from the true treatment effect and then could lead to an imprecise  statistical 

power and its associated sample size.  

As a result, the traditional statistical power used to “power” a clinical trial cannot actually 

assure a successful clinical trial. To assure a successful clinical trial, a newly proposed alternative 

to this conventional statistical power is “assurance” which is defined as the unconditional 

probability of rejecting the null hypothesis as propagated in O’Hagan and Stevens (2001), 

O’Hagan et al. (2005), Chuang-Stein (2006),  Chow and Chang (2012), and Ren and Oakley 

(2012). This assurance can then be obtained as the expected power with respect to the prior 

probability distribution of the prerequisite value, which leads to the Bayesian paradigm. O’Hagan 

et al. (2005) discussed the computational aspects with WinBUGS and gave the analytical formula 
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for normally distributed data when the variance is known and the Bayesian clinical trial simulation 

(BCTS) when the variance is unknown. They also discussed how to apply BCTS to binary data. 

Chuang-Stein (2006) also illustrated the calculations for normal data with known variance using 

SAS/R by numerical integration. For time-to-event data, Ren and Oakley (2014) reviewed various 

methods and the associated calculations.  

 Assurance, as an alternative to the important concept of statistical power, is still new to 

many biostatisticians, clinicians and government regulators. Further illustrations of this concept 

along with software implementation for public use remain an unmet practical need, which leads to 

this paper. In this paper, we outline the concept of assurance and discuss the computations of 

assurance using Monte-Carlo simulation-based approach.   

In Section 2, we outline the concept of transitioning from the conventional statistical power to 

assurance. In Section 3, we demonstrate the implementation of Monte-Carlo simulation-based 

approach to calculate statistical power and assurance. Finally, in Section 4, a discussion is provided.   

 

2. Conventional Statistical Power to Assurance  

2.1. Conventional statistical power and its limitations 

Typically, the general objective of a clinical trial is to compare whether a new drug is better 

than placebo. In order to demonstrate the new drug is effective, one needs to determine how many 

patients should be enrolled in each treatment. In statistical terms, the null hypothesis H0 is defined 

as the two treatments being not different versus the alternative hypothesis Ha is defined as the new 

drug being better than placebo. The hypothesis testing is then to test whether there is a statistically 

significant treatment effect between these two treatments. The associated concepts for this 

hypothesis testing are the type-I error and type-II error. The type-I error (α, typically controlled at 
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5%) is defined as the probability of rejecting the null hypothesis when it is true and the type-II 

error (β) as the probability of not rejecting the null hypothesis when it is false. The statistical power 

(π) is then defined as the probability of rejecting the null hypothesis when it is false (i.e., π = 1 −

β), which is typically set between 0.8 and 0.9. The associated sample size can then be determined 

based on this power and the type-I error rate.   

Following the notations from O’Hagan et al. (2005), we denote R as the event of rejecting the 

null hypothesis.  The conventional definition of statistical power is then 

 

π(𝜃) = 𝑃(𝑅|𝜃)     (1) 

 

where π(. ) is the power function and θ is a vector of the assumed parameters, such as the treatment 

effect, sampling variance and possible others. It can be seen that the statistical power defined in 

equation (1) is a conditional probability of R conditioned on the unknown parameter vector θ. The 

value of this power as well as the associated sample size calculation is then dependent on the 

unknown parameter vector θ.  

Generally, this parameter vector θ cannot be provided precisely in practical clinical trials 

as pointed out in O’Hagan et al. (2005) and others. Therefore the statistical power, as one of the 

most important concepts in clinical trials, traditionally has been quoted as a fixed probability based 

on a prerequisite parameter value from the unknown alternative hypothesis parameter space. It is 

rare that the observed data will coincide with the prerequisite parameter value, which often lead to 

the issue of over-powering or under-powering a clinical trial.  

 

2.2. Assurance in clinical trials 
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To eliminate these limitations from the conventional statistical power, O’Hagan and Stevens 

(2001) advocated the “assurance” (denoted by 𝛾) as an alternative to this statistical power, which 

is defined as an unconditional probability to reject the null hypothesis, i.e. 𝛾 = 𝑃(𝑅), where R is 

rejection of the null hypothesis. The assurance can then be viewed as the expected power to the 

parameter vector space of  𝜃. It can be seen that 

 

γ = 𝑃(𝑅) = ∫ 𝑃(𝑅, 𝜃)𝑑𝜃 = ∫ 𝑃(𝑅|𝜃)𝑃(𝜃)𝑑𝜃 = 𝐸𝜃(P(R|θ))   (2) 

 

where the expectation is to the (prior) probability distribution of parameter vector space of θ.  

With this definition, the "assurance" provides a bridge between the frequentists’ approach 

in statistical power and the Bayesian paradigm of averaging or integrating out the conditional 

statistical power with all possible (prior) values of parameter vector space of  θ. This assurance 

can then provide an unconditional probability or evidence to assess the success of a clinical trial 

and therefore is more realistic and robust than that of the conventional statistical power.  

As pointed out in O’Hagan et al. (2005), the concept of assurance can be dated back to the 

1980s by Spiegelhalter and Freedman (1986) and later named as a ‘hybrid classical-Bayesian’ 

approach in Spiegelhalter et al. (2004). To our experience and knowledge in clinical trials, it is 

very reasonable to use this hybrid frequentist-Bayesian approach in study design since prior 

information has always been used to calculate sample size. Whenever this prior information for 

the unknown parameter θ (i. e., treatment effect) is sufficiently strong such that the prior variance 

would approach to zero, the assurance defined in equation (2) would approach the conventional 

statistical power defined in equation (1). On the other hand, if the prior information is weak, the 

prior variance would be large and the assurance defined in equation (1), which averages all the 
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potential values of this vague prior distribution, would be more appropriate than the conventional 

statistical power to assess the probability of a successful trial.  

2.3. Illustrations 

Conceptually, assurance defined in equation (2) is the expected power to the parameter vector 

space of 𝜃. Depending on the dimension of this parameter vector space, the expected power can 

be high-dimensional integration, which makes analytical formula virtually impossible. As an 

illustration from the computational aspect, we use the simple case of normally distributed data for 

two treatments to illustrate the transition process from statistical power to assurance.  

Suppose that in a two-treatment clinical trial with ni patients randomized to treatment i (i = 1, 

2), the continuous outcome xij from jth patient is normally distributed as 𝑥𝑖𝑗~𝑁(𝜇𝑖, 𝜎𝑖
2). Assuming 

that 𝜎𝑖
2  are known and we estimate the population means with the sample means as  

�̅�𝑖~𝑁(𝜇𝑖, 𝜎𝑖
2/𝑛𝑖). Then the treatment difference 𝛿 = 𝜇1 − 𝜇2 can be estimated by 𝛿 = �̅�1 − �̅�2 

and the standard deviation can be calculated as 𝜏 = √
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2
, i.e. 𝛿 = �̅�1 − �̅�2~𝑁(𝛿, 𝜏2). The 

statistical power is then calculated based on this distribution which is a conditional distribution on 

the unknown treatment difference 𝛿.  

The assurance is then defined based on the expected power with a prior distribution on this 

unknown parameter 𝛿. Using a commonly used conjugated prior normal distribution from previous 

clinical trials as 𝛿~𝑁(𝑚, 𝑣), the unconditional distribution can be obtained as �̅�1 − �̅�2~𝑁(𝑚, 𝜏2 +

𝑣). O’Hagan et al (2005) used this formulation and derived the analytical formula for one-sided 

superiority trial, two-sided superiority trial, non-inferiority trial and equivalence trial.  For example, 

in a two-sided superiority trial to test the null hypothesis H0: 𝛿 = 0 against the two-sided alternative 

Ha: 𝛿 ≠ 0 , the null hypothesis is rejected if |�̅�2 − �̅�1| > 𝜏𝑍𝛼/2  where 𝑍𝛼/2  is the upper 𝛼/2 



7 | P a g e  
 

significance point of the standard normal distribution. The assurance that the null hypothesis is 

rejected can be formulated based on the unconditional distribution of �̅�1 − �̅�2~𝑁(𝑚, 𝜏2 + 𝑣) as 

 

𝛾 = 𝑃(null hypothesis is rejected) = P(�̅�2 − �̅�1 > 𝜏𝑍𝛼/2) = Φ (
−𝜏 𝑍𝛼/2+𝑚

√𝜏2+𝑣
)  (3) 

 

This analytical formulation can reconcile the numerical integration proposed in Chuang-Stein 

(2006) where the assurance is defined as the probability to produce a successful trial. This paper 

elegantly conceptualizes the assurance from the biopharmaceutical aspects and illustrates the 

calculations from the designing aspect of a clinical trial. It defines the “success” as a “Trial 

produces a significant p-value”. With this definition, the assurance is given by the equation (2) in 

Chuang-Stein (2006) as follows: 

 

∫ 𝑃(Trial produces a significant p-value|Δ)𝑃(Δ|𝑑)𝑑Δ
+∞

−∞
        (4) 

 

where 𝑃(Trial produces a significant p-value|Δ) in equation (4) above is in fact the conventional 

statistical power, which is then “averaged” over the prior distribution of 𝑃(Δ|𝑑) for all possible 

values of Δ to obtain the assurance. Note that in the formulation defined in Chuang-Stein (2006), 

as seen in equation (4), the notations of Δ and d are equivalent to 𝛿 and m in O’Hagan et al (2005). 

The assurance given in equation (4) can be obtained only through a numerical integration and a 

trapezoid role was used in Chuang-Stein (2006), which was coded in both R and SAS in the 

appendix.  
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 It can be shown that Chuang-Stein’s definition in equation (4) is a special case of 

O’Hagan’s definition in equation (3) when 𝜎1
2 = 𝜎2

2 = 𝜎2, 𝑛1 = 𝑛2 = 𝑛 and then 𝜏 = √
2

𝑛
𝜎.  The 

prior variance in O’Hagan et al. (2005), v, is specified as 𝑣 = √
2

𝑚
𝜎 in Chuang-Stein (2006) (notice 

that m is the prior sample size in Chuang-Stein but used as the prior mean in O’Hagan et al.). We 

have programmed this comparison in R (see Appendix 1) using O’Hagan et al. (2005) formulation 

in equation (3) (in Appendix 1.2) and Chuang-Stein (2006) formulation in equation (4) (in 

Appendix 1.1). We reproduced the Table 1 in Chuang-Stein (2006) to illustrate the conventional 

statistical power and assurance calculation when there are 128 and 172 patients per group with 

prior distribution of 𝑁(2.5, (2/𝑚)7.142)  with the prior sample size m = 25 and 70.   

It can be seen from Appendix 1 that O’Hagan et al. (2005)’s formulation can be easily 

implemented using the standard normal cumulative distribution while the Chuang-Stein’s 

formulation will need to call the numerical integration routine in R (i.e. “integrate”) to obtain the 

integration in equation (4). We reproduced the results in Table 1, which illustrate the difference 

between the conventional statistical power and assurance.   One can use the R code in Appendix 1 

and find that the results from Chunag-Stein’s trapezoid numerical integration, the R numerical 

integration (i.e., “integrate” in Appendix 1.1) and O’Hagan et al. (2005) standard normal 

cumulative distribution (i.e., implemented in R function “pnorm” in Appendix 1.2) are exactly the 

same as seen in Table 1. 
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Table 1: Assurances calculated with “Known Variance” (in the middle column with boldface fonts)  

which reproduced Table 1 in Chuang-Stein (2006) by the R code from Appendix 1 and the 

corresponding assurance with “Unknown Variance” from Monte-Carlo simulation-based approach 

(in the right column).  

Sample Size in Future 

Trials and Associated 

Statistical Power 

Known Variance   Unknown Variance 

Sample Sizes in Prior Clinical Trials 

m = 25 m = 70 m = 25 m = 70 

128/group (80% power) 0.633 0.692 0.627 0.688 

172/group (90% power) 0.677 0.756 0.670 0.752 

 

 

To further illustrate the conventional statistical power and assurance under different sample 

sizes, we provide Figure 1 and its range of sample sizes for clincical trials. It can be seen and 

expected that the assurance is typically smaller than the conventional statistical power when 

sample sizes are larger (> 60 in this figure where statistical power > 0.5) because the assurance is 

intergrated over all possible parameter vector values. However, it is interesting to observe that 

when the sample sizes are relatively small and the clinical trials would be underpowered (<=50%), 

the assurance and  the conventionoal statistical power are similar.  
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Figure 1: Statistical power and assurance from different sample sizes for clinical trials. The two 

vertical arrow lines correspond to the sample sizes of 128 and 172 in Table 1 where the statistical 

powers are 0.8 and 0.9, and assurances are 0.633 and 0.677, respectively. 

 

3. Assurance Calculations 

The illustration in Section 2.3 can only be done using some simple cases with one-dimensional 

parameter vector 𝜃. Conceptually, assurance defined in equation (2) is the expected power to the 

parameter vector space of 𝜃 which could be high-dimensional. When the expected power involves 

high-dimensional integration, it will be impractical to obtain the analytical formula to be 

implemented in statistical software. With the computing technology, we can resolve the assurance 



11 | P a g e  
 

computations by Monte-Carlo simulation-based approach. Simulation-based computations for 

designing and analyzing clinical trials have been seen in Kimko and Duffull (2002), Kimko and 

Peck (2010), and Chow and Chang (2012). Here our focus is for assurance computations. We 

describe the Monte-Carlo simulation-based computations in this section by using R (in Appendix 

2). 

3.1. Bayesian Clinical Trial Simulation (BCTS) to Monte-Carlo Simulation-Based 

(MCSB) approach 

As proposed in O’Hagan et al. (2005) for assurance calculation, the general principle for BCTS 

is to incorporate sampling from the prior distribution of  𝜃  before sampling from the data.  

Specifically, the general algorithm to compute the assurances of outcomes A1, A2, …, Ak, is as 

follows: 

1. Define counters I for iteration and T1, T2, . . .,Tk for the assurances, and set all counters to 

0. Set the required number, N. Set I = 0 and start looping; 

2. Sample 𝜃 from the prior distribution, 

3. Sample the data and calculate the sufficient statistics using the model and the sampled 

value of 𝜃 from step 2, 

4. For j = 1,2,…,k, increment Tj by 1 if the outcome Aj has occurred,  

5. Increment I: If I<N; go to step 2 

6. For j = 1,2,…,k, estimate assurance 𝛾𝑗= P(Aj) by Tj/N. 

 

In fact, this BCTS can be simplified with the following MCSB approach (hereafter referred as 

MCSB-General) for computing assurance that involves the following steps: 
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1. Define counter I for iteration and the required number of simulations, N, (say N = 

1,000,000 simulations). Set I = 0 and start looping; 

2. Sample 𝜃 from the joint prior distributions, 

3. Calculate the conventional statistical power conditional on this sampled value of 𝜃 from 

step 2 with the data or calculated test statistics using the associated model for hypothesis 

testing, 

4. The assurance can be estimated as the average of the statistical powers from step 3 

 

We illustrate this BCTS-General to normally distributed data and binary data in the 

following sections.  

3.2. Assurance calculation for normally distributed data when variance is unknown 

When the variances are unknown, the commonly used test statistic is the Student t. Under the 

homogeneous variance assumption, this test statistic is formulated as  𝑡 =
�̅�2−�̅�1

𝜎 ̂ √
1

𝑛1
+

1

𝑛2

 which follows 

the Student t-distribution with degrees of freedom, 𝑑𝑓 =  𝑛1 + 𝑛2 − 2, where �̂� is the estimated 

pooled standard deviation. In the heterogeneous variance assumption, the approximate 

Satterthwaite 𝑡 =
(�̅�2 − �̅�1)

√
�̂�1

2

𝑛1
+

�̂�2
2

𝑛2

⁄
 (where �̂�1

2  and �̂�2
2  are the estimated sample variances) is 

used with degrees of freedom matching the moments (see, Chen and Peace, 2011, for details).  

The standard two-sided test for the null hypothesis of no treatment difference H0: 𝛿 = 0 against 

the two-sided alternative Ha: 𝛿 ≠ 0 is to reject the null hypothesis if |𝑡| > 𝑡𝛼/2,𝑑𝑓.  The statistical 

power can then be calculated based on this t-distribution. This distribution can also be used to 

calculate the assurance by two-dimensional numerical integration over the parameter space of 𝛿 

and 𝜎2  with the non-central t-distribution. However, the Monte-Carlo simulation-based BCTS 
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approach can be easily implemented for this purpose. Corresponding to the general algorithm in 

Section 3.1, this approach (hereafter referred as MCSB-Normal) can be implemented in the 

following steps: 

1. Set counter I = 0 and the number of simulations, N (say, N=1,000,000), 

2. Sample  𝛿 and 𝜎2 from their joint prior distribution, 

3. Sample  �̅�2 − �̅�1~𝑁(𝛿, (𝑛1
−1 + 𝑛2

−1)𝜎2)  and (𝑛1 + 𝑛2 − 2) �̂�2

𝜎2⁄ ~𝜒𝑑𝑓
2 , calculate the t-

test statistic and statistical power, 

4. Estimate the assurance with the average of the resulted sample of N statistical powers. 

 

This MCSB-Normal approach is implemented in R as seen in Appendix 2. We first 

implemented this MCSB-Normal in Appendix 2.1 with known variance (i.e., the function “ANDks” 

in short for “Assurance for Normal Data with Known Sigma”) to confirm the results given by 

Chuang-Stein (2006) shown in the middle column of Table 1. We then programed the MCSB-

Normal with unknown variance in Appendix 2.2 (i.e., ANDus in short for “Assurance for Normal 

Data with unknown sigma”) for the same scenarios and the estimated assurances from this MCSB-

Normal shown in the right column in Table 1. It can be seen from these results that the assurances 

with unknown variance are smaller than the assurances with known variance. This is considered 

reasonable and consistent with general conclusion in the statistical power. When the variance is 

known, then the calculations can be done more precisely, whereas when the variance is unknown, 

it needs to be estimated and therefore introduces additional variability in assurance calculations. 

 

 

3.3. Assurance calculation for binary data with O’Hagan et al. (2005)’s formulation 
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In clinical trials with binary data with xi successes from total ni patients for treatment i (i = 1, 

2), denote 𝑝𝑖 as the population success rate for treatment i. Then the null hypothesis to test the 

treatment efficacy is H0: 𝑝1 = 𝑝2. The classical statistical test is based on approximated normality 

of the sample proportions �̂�𝑖 =  
𝑥𝑖

𝑛𝑖
⁄  (see, for example, in Chen and Peace 2011) and the null 

hypothesis is rejected in a two-sided test if |𝑍| > 𝑍𝛼/2  where 𝑍 =

( �̂�2 −  �̂�1)

√
𝑝1(1− 𝑝1)

𝑛1
+

𝑝2(1− �̂�2)

𝑛2

⁄
  is approximately standard normally distributed. The 

conventional statistical power can then be approximated by 

 

𝑃(𝑅|𝑝1, 𝑝2) ≈ Φ (−𝑍𝛼/2 +
𝑝2−𝑝1

√
𝑝1(1−𝑝1)

𝑛1
+

𝑝2(1−𝑝2)

𝑛2

)    (5) 

 

where Փ(.) is the standard normal density function.  

This definition of statistical power is a conditional probability conditional on two unknown 

parameters  𝑝1 and 𝑝2 from both treatments. The assurance would then be calculated by integrating 

these two unknown parameters 𝑝1 and 𝑝2 from their joint prior distributions, which are typically 

beta conjugate prior distributions. This would not be feasible to obtain analytical formula based 

on the equation (5). However, this can be easily implemented with MCSB approach (hereafter 

referred as MCSB-Binary) as follows: 

1. Set counter I = 0 and the number of simulations N (say, N=1,000,000), 

2. Sample  𝑝1 and 𝑝2 from their prior distributions which are typically beta-distributions, 

3. Calculate the Z-statistic and then the statistical power using equation (5), 

4. Estimate the assurance with the average of the resulted sample of N statistical powers. 
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This MCSB-Binary approach is implemented in R as seen in Appendix 2.3. We make use of 

example 4 in Section 5.1 from O’Hagan et al. (2005) for clinical trials in rheumatoid arthritis where 

prior information for control drug is specified as E(p1) = 0.2 and sd(p1) = 0.08 from the published 

results for methotrexate in Kremer et al. (2002). This prior information can be represented by a 

beta-distribution as p1 ~ Beta(5, 20). The new drug has more uncertainty as specified by E(p2) = 

0.4 and sd(p2) = 0.17, which corresponds to beta-distribution as p2 ~ Beta(3, 4.5).  

Recognizing the ineffectiveness, the development team used a weighting scheme with a 0.15 

probability for Beta (2, 23) and 0.85 for Beta (3, 4.5). The trial was planned with unequal sample 

size, n1= 200 patients in the control (methotrexate) group and n2 = 400 in the treatment group for 

a two-sided 5% significance level test for superiority. With these sample sizes to detect an 

improvement from p1= 0.2 to p2 = 0.3 (i.e. a 50% treatment effect), the statistical power can be 

calculated by equation (5) to be 78%. Using the MCSB-Binary described above, which is 

implemented in Appendix 2.3, the assurance is 0.633, smaller than the conventional power of 0.78. 

3.4. Assurance calculation for binary data with logit-normal formulation 

In designing and analyzing binary data, it is common to consider the logit-normal transformation 

to the response rates which then lead to the logistic regression for categorical data. The logit-

normal formulation was introduced in Mead (1965) and Aitchison and Shen (1980). In analyzing 

dose-response relationship incorporating historical control data, Chen (2010) used this logit-

normal formulation with an empirical Bayes approach.   

Traditionally, this transformation is as follows: 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝑙𝑜𝑔 (
𝑝𝑖

1−𝑝𝑖
) = 𝛼𝑖 for each 

treatment i=1 and 2. It is known that the ratio pi/(1-pi) is the odds of success so that logit(pi) is 

often called the log odds, which is used as logit link in generalized linear model for binary or 
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binomial data (see, for example, Chen and Peace, 2011). Transforming this back, we would have  

𝑝𝑖 =
𝑒𝛼𝑖

1+𝑒𝛼𝑖
 ; therefore, the typical null hypothesis H0: p1 = p2 is equivalent to H0: 𝛼1 = 𝛼2.  

With this logit-normal transformation to pi, the αi is usually assumed to be normally distributed 

as 

 

𝛼𝑖~𝑁 (𝑙𝑜𝑔 (
𝑝𝑖

1−𝑝𝑖
) , 𝜎𝑖

2)     (6) 

 

and then the MCSB approach can be implemented to sample the 𝛼𝑖 from the above distribution in 

equation (6).  

The MCBS approach (hereafter referred as MCSB-Power) to estimate the statistical power 

for testing treatment efficacy between two treatments with sample sizes n1, n2 and probabilities  𝑝1 

and 𝑝2, can be implemented by the following steps: 

1. Set counter I = 0 and the number of simulations, N (say, N=1,000,000), 

2. Sample 𝑥𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖, 𝑝𝑖)  and perform logistic regression to test the null 

hypothesis H0: 𝛼1 = 𝛼2, or essentially H0: p1 = p2, 

3. If the associated p-value from this logistic regression is less than 0.05 for H0,  increase 

I by one, 

4. Repeat steps 2 and 3 for N times and the statistical power can be then estimated by I/N. 

 

Now this MCSB approach can be similarly implemented to calculate the assurance using 

the logit-normal formulation (hereafter referred as “MCSB-LogitNormal”) for testing treatment 

efficacy between two treatments with sample sizes ni, probabilities 𝑝𝑖  and 𝜎𝑖
2  (i=1,2), can be 

implemented by the following steps: 
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1. Set counter I = 0 and the number of simulations, N (say, N=1,000,000), 

2. Sample 𝛼𝑖~𝑁 (𝑙𝑜𝑔 (
𝑝𝑖

1−𝑝𝑖
) , 𝜎𝑖

2) from equation (6) and then calculate 𝑝𝑖 =
𝑒𝛼𝑖

1+𝑒𝛼𝑖
 using 

the sampled 𝛼𝑖, 

3. Sample 𝑥𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖, 𝑝𝑖)  and perform logistic regression to test the null 

hypothesis H0: 𝛼1 = 𝛼2, or essentially H0: p1 = p2, 

4. If the associated p-value from this logistic regression is less than 0.05 for H0,  increase 

I by one, 

5. Repeat steps 2 and 4 for N times and the statistical power can be then estimated by I/N. 

 

Both MCSB-Power and MCSB-LogitNormal proposed above can be easily implemented 

in any software that handles logistic regression. Appendix 3 is the R code for these two approaches. 

 To illustrate these approaches, again we make use of the Section 5.1 in O’Hagan et al. 

(2005) for clinical trials in rheumatoid arthritis where p1= 0.2  and p2 = 0.3, which corresponds to  

𝛼1 = −1.386  and 𝛼2 = -0.847 respectively. To simplify the illustration and without loss of 

generality, we assume 𝜎1
2 = 𝜎2

2 = 𝜎2 and consider one case of small variance 0.01 and the other 

case of large variance 0.1. In addition, we consider equal sample size for the two treatments (i.e. 

n = n1 = n2). With these settings, we run these two MCSB approaches for sample sizes from 50 to 

800 and calculate the statistical power using MCSB-Power and assurance using MCSB-

LogitNormal. The results are summarized in Table 2 and graphically displayed in Figure 2. 

 

Table 2. “MCSB-Power” approach for statistical power (the 2nd column) and “MCSB-

LogitNormal” approach for assurance with variance =0.01(the 3rd column) and assurance with 

variance =0.1 (the 4th column) for various sample sizes (1st column). 
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Sample Size /Group 

(n = n1 = n2 ) 

Statistical 

Power 

Assurance with 

Variance =0.01 

Assurance with 

Variance =0.1 

50 0.195 0.212 0.262 

100 0.382 0.377 0.434 

200 0.640 0.616 0.580 

300 0.809 0.761 0.665 

400 0.907 0.839 0.702 

500 0.957 0.899 0.737 

600 0.980 0.925 0.767 

700 0.991 0.945 0.786 

800 0.996 0.955 0.801 
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Figure 2: Statistical power and assurance for a range of sample sizes under two different variances 

of 0.01 and 0.1 

 

It can be seen from Table 2 and Figure 2 that the statistical power is generally larger than 

the assurance for sufficient large sample size (>180 in this simulation) but similar for small sample 

size (< 180 in this simulation). This conclusion is consistent with the results in Table 1 and Figure 

1.  It is observed that the statistical power is greater than 0.8 for sample size 300 per group. This 

power is similar to the result in Section 3.3 where it is 0.78 for sample size of 200 for the control 

group and 400 for the treatment group. It is also observed that given this sample of 300, the 

assurance (expected probability to have a successful trial) is 0.76 and 0.67 for variance = 0.01 and 

variance = 0.1, respectively, which are smaller but not by much. In order to have assurance to be 

0.8 to ensure an absolute successful trial, the sample size would have to be 350 (where the power 

is 0.85) for smaller prior variance (i.e., when variance =0.01) and an enormous 800 (where the 

power is 0.99) for large prior variance (i.e., when variance =0.1), as seen in Table 2 and Figure 2.  

With a further increase the sample size from 300 to 400, the associated statistical power 

increases from 0.8 to 0.9, roughly a 12% increase.  Nonetheless, the assurance increase is about 

10% from 0.76 to 0.84 for smaller variance of 0.01 and 6% from 0.66 to 0.70 for large variance of 

0.1. It is important to observe that the assurance is bounded. In our case with the larger variance 

of 0.1, the assurance limit is roughly 0.7, no matter how big the sample size is. This indicates that 

assurance is constrained by the variability of prior information, which is reasonable because with 

uncertainty in the prior distribution and without collecting the actual data, it is impossible to be 

100% assured that a trial will be successful. In light of this, assurance should be compared within 

the context, rather than in a vacuum or using the absolute magnitude.  
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4. Discussion 

In this paper we illustrated the transition from the conventional statistical power to assurance 

proposed in O’Hagan and Stevens (2001) in designing clinical trials. The conventional statistical 

power is the probability of rejecting the null hypothesis conditional on the specified treatment 

effect, whereas the assurance is the unconditional probability of a successful clinical trial averaged 

over the parameter space of this pre-specified treatment effect. Then the calculation of the 

assurance involved a high-dimensional integration would have to resort to numerical integration. 

We promote the Monte-Carlo simulation-based approach in this paper and illustrated its 

implementation in R for clinical trials with normally distributed data given known or unknown 

variances, as well as clinical trials with binary data from beta and logit-normal distributions.  

It is common knowledge that a traditionally powered clinical trial at 80% to 90% does not 

guarantee 80% to 90% of probability of success, as the power calculation is based upon a pre-

specified fixed treatment effect which most likely will be different from the true treatment effect. 

Typically the assurance is lower than the statistical power for a sufficient sample size, even though 

we observe that the assurance could be higher than the statistical power for underpowered clinical 

trials as seen in Figures 1 and 2.  It is well known that as the sample size increases and approaches 

to infinity, the traditional statistical power will approach to 1. However, the assurance will be 

bounded by a value less than 1 even when the sample size approaches to infinity. This can be 

analytically illustrated using the descriptions in Section 2.3. As study sample sizes (e.g., n1 and n2 

in our examples) approach to infinity, the standard error (i.e., 𝜏) should approach to zero. The 

assurance defined in O’Hagan et al. (2005) would then approach to: 𝛾 = Φ (
𝑚

√𝑣
), which is the prior 

probability of success (positive outcomes).  
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In the real world of clinical trials, we believe that the assurance can provide a more realistic 

and robust measure of probability of success than the traditional power can. Assurance does 

depend on the prior distribution of treatment effects, which can be very subjective with varying 

Bayesian priors. Thus the related issues in the Bayesian approach also apply to assurance. 

Nevertheless, assurance typically will be used by the pharmaceutical industry sponsors for internal 

decision-making and therefore it is the industry sponsor’s risk of using it. As such, it will also be 

at the industry sponsor’s best interest to get the most relevant prior distribution for the treatment 

effect. This can be accomplished by various ways such as historical data driven or expert elicitation 

or a hybrid of both. Good decision-making is important for clinical development and therefore any 

method that can enhance good decision-making will be beneficial to patients, sponsors and 

regulators, as well as society in general.  
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Appendices: 

Appendix 1: R Code to Compare Chuang-Stein (2006)'s numerical integration formulation 

with O'Hagan et al. (2005)'s formulation when prior variance is known. 

######################################################################### 

# 1.1. Use R "integrate" instead of the trapezoidal numerical integration #   in Chuang-Stein (2006) which 

can compute the assurance faster 

######################################################################### 

sprob.Chuang = function(prior.mean,prior.sd,prior.size,post.size){ 

prior.sdm = sqrt(2/prior.size)*prior.sd # prior sd for the mean 

post.sdm  = sqrt(2/post.size)*prior.sd # posterior sd for the mean 

# fn for the Prob(trial produces a significant p-val)*prior distribution 

integrand <- function(delta) 

pnorm(1.96*post.sdm,mean=delta,sd=post.sdm,lower.tail=FALSE,log.p=FALSE)* 

  dnorm(delta,mean=prior.mean,sd=prior.sdm,log = FALSE) 

# Numerical integration of delta from -Inf to Inf 

avg = integrate(integrand, lower = -Inf, upper = Inf)$value 

# output 

avg 

} # end of "sprob.Chuang" 

 

## Run the function and Reproduce Table I in Chuang-Stein (2006) 

> sprob.Chuang(2.5,7.14,25,128) 

[1] 0.6330728 

> sprob.Chuang(2.5,7.14,25,172) 

[1] 0.6767027 

> sprob.Chuang(2.5,7.14,70,128) 
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[1] 0.6915049 

> sprob.Chuang(2.5,7.14,70,172) 

[1] 0.7555993 

 

####################################################################### 

# 1.2: O’Hagan's formulation to call “pnorm” 

######################################################################### 

sprob.OHagan = function(prior.mean,prior.sd,prior.size,post.size){ 

tau = sqrt(2/post.size)*prior.sd; v = sqrt(2/prior.size)*prior.sd 

 sprob.OHagan = pnorm((qnorm(0.025)*tau+prior.mean)/sqrt(tau^2+v^2)) 

# output 

sprob.OHagan 

} # end of "sprob.OHagan" 

 

## Run the code and Reproduce Table I in Chuang-Stein with O’Hagan et al. 

> sprob.OHagan(2.5,7.14,25,128) 

[1] 0.6330783 

> sprob.OHagan(2.5,7.14,25,172) 

[1] 0.6767073 

> sprob.OHagan(2.5,7.14,70,128) 

[1] 0.6915124 

> sprob.OHagan(2.5,7.14,70,172) 

[1] 0.7556054 

 

Appendix 2: R Code for BCTS 

##################################################################### 

# 2.1: Assurance for Normal Data with Known Sigma (ANDks)  
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# to check with the results from Appendix 1 

###################################################################### 

ANDks = function(nsimu,prior.mean,prior.sd,prior.size,post.size){ 

sim.pow = rep(0, nsimu) 

for(i in 1:nsimu){ 

 # calculate the standard deviation for the means 

 prior.sdm = sqrt(2/prior.size)*prior.sd # prior sd for the mean 

 post.sdm  = sqrt(2/post.size)*prior.sd # posterior sd for the mean 

 # sample the prior 

 Delta = rnorm(1,prior.mean,prior.sdm) 

 # with the sampled prior, calculate the power 

 sim.pow[i]=pnorm(qnorm(1-alpha/2)*post.sdm, 

mean=Delta,sd=post.sdm,lower.tail=FALSE,log.p=FALSE) 

   } # end of i-loop 

# average the simulated power 

mean(sim.pow) 

} # end of "ANDks" function 

 

## run the code to check with the calculations in Appendix 1 

> ANDks(1000000,2.5,7.14,25,128) 

[1] 0.6329084 

> ANDks(1000000,2.5,7.14,25,172) 

[1] 0.6761969 

> ANDks(1000000,2.5,7.14,70,128) 

[1] 0.6915248 

> ANDks(1000000,2.5,7.14,70,172)  

[1] 0.7555312 
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###################################################################### 

# 2.2: Assurance for Normal Data with unknown sigma(ANDus) 

###################################################################### 

 

ANDus = function(nsimu,prior.mean,prior.sd,prior.size,post.size){ 

sim.pow = rep(0, nsimu) 

for(i in 1:nsimu){ 

 # sample chisq for sigma since (n-1)*s^2/sigma^2 ~chisq(n-1) 

 sd = sqrt((prior.size-1)*prior.sd^2/rchisq(1,df=prior.size-1)) 

 # calculate the standard deviation for the mean 

 prior.sdm = sqrt(2/prior.size)*sd # prior sd for the mean 

 post.sdm  = sqrt(2/post.size)*sd # posterior sd for the mean 

 # sample the prior 

 Delta = rnorm(1, prior.mean,prior.sdm) 

 # with the sampled prior, calculate the power 

 sim.pow[i] = pnorm(1.96*post.sdm,mean=Delta, 

sd=post.sdm,lower.tail=FALSE,log.p=FALSE) 

  } # end of i-loop 

# assurance is the average of simulated power 

mean(sim.pow) 

} # end of "ANDus" function 

 

#### run the function for assurance with unknown variance 

> ANDus(1000000,2.5,7.14,25,128) 

[1] 0.627181 
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> ANDus(1000000,2.5,7.14,25,172) 

[1] 0.6700293 

> ANDus(1000000,2.5,7.14,70,128) 

[1] 0.687614 

> ANDus(1000000,2.5,7.14,70,172) 

[1] 0.7515066 

 

 

######################################################################### 

# 2.3: Assurance with binary clinical trial in O’Hagan et al. Example 4 

########################################################################## 

library(Rlab) # for rbern 

nsimu = 1000000;alpha=0.05; post.size1 = 200; post.size2 = 400 

sim.pow = rep(0,nsimu) 

for (i in 1:nsimu){ 

 # sample Beta for p1  

 p1 = rbeta(1,5,20) 

# sample Beta for p2 from a mixture  

 w = rbern(1,0.15);p2=w*rbeta(1,2,23)+(1-w)*rbeta(1,3,4.5) 

 # z-value in equation  

 z.val = (p2-p1)/sqrt(p1*(1-p1)/post.size1+p2*(1-p2)/post.size2) 

 # with the sampled prior, calculate the power 

 sim.pow[i] = pnorm(-qnorm(1-alpha/2)+z.val) 

} # end of i-loop 

 

# Assurance as the mean 

mean(sim.pow) 
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[1] 0.6334372 

 

 

 

Appendix 3: MCSB approach for statistical power and assurance 

 

######################################################## 

# MCSB function  

######################################################## 

pow2assurance=function(nsimu,n1,n2,pA,pB,sig2A,sig2B,sig2A2,sig2B2,alpha){ 

# initializes the power and assurance 

pow = assu1 = assu2 = 0 

# loop for calculation 

for(i in 1:nsimu){ 

 ### power simulation 

 xA=rbinom(n1,1,pA);xB=rbinom(n2,1,pB) 

 dd=data.frame(x=c(xA,xB),trt=c(rep("A",n1),rep("B",n2))) 

 md=glm(x~trt,dd,family="binomial"); 

pval.md = summary(md)$coef["trtB","Pr(>|z|)"] 

 pow = pow+sum(pval.md < alpha) 

 ### assurance simulation for sigma1 

 alphaA=rnorm(1,log(pA/(1-pA)),sqrt(sig2A)); 

alphaB=rnorm(1,log(pB/(1-pB)),sqrt(sig2B)) 

  pAs = exp(alphaA)/(1+exp(alphaA));pBs = exp(alphaB)/(1+exp(alphaB)); 

 xA = rbinom(n1,1,pAs);xB = rbinom(n2,1,pBs) 

 dd = data.frame(x = c(xA, xB), trt = c(rep("A", n1), rep("B", n2))) 

 md = glm(x~trt, dd, family="binomial"); 
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pval.md = summary(md)$coef["trtB","Pr(>|z|)"] 

 assu1 = assu1+sum(pval.md < alpha) 

 ### assurance simulation for sigma2 

 alphaA=rnorm(1,log(pA/(1-pA)),sqrt(sig2A2)); 

alphaB=rnorm(1,log(pB/(1-pB)),sqrt(sig2B2)) 

  pAs = exp(alphaA)/(1+exp(alphaA));pBs = exp(alphaB)/(1+exp(alphaB)); 

 xA = rbinom(n1,1,pAs);xB = rbinom(n2,1,pBs) 

 dd = data.frame(x = c(xA, xB), trt = c(rep("A", n1), rep("B", n2))) 

 md = glm(x~trt, dd, family="binomial"); 

pval.md = summary(md)$coef["trtB","Pr(>|z|)"] 

 assu2 = assu2+sum(pval.md < alpha) 

  } #End of i-loop 

# output 

list(pow = pow/nsimu,assu1=assu1/nsimu,assu2=assu2/nsimu ) 

} # end of pow2assurance 

 

 


