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Abstract

Today’s supply chains face increasing volatility on many fronts. From the shop-floor where
machines break and suppliers fail to the boardrooms where unanticipated price inflation
erodes profitability. Turbulence is the new normal.

To remain competitive and weather these (daily) storms, supply chains need to move
away from an efficiency mindset towards a resilience mindset. For over a little more than
a decade industry and academia have awakened to this reality. Academic literature and
case studies show that there is no longer a shortage of resilience strategies and designs.
Unfortunately, industry still lacks the tools with which to assess and evaluate the effec-
tiveness of such strategies and designs. Without the ability to quantify the benefit it is
impossible to motivate the cost.

This thesis adds one piece to the puzzle of quantifying supply chain vulnerability.
Specifically, it focussed on supply chains within urban areas. It addresses the question:

“How does a supply chain’s network design (internal configuration) and its
dependence on the underlying road network (external circumstances) make it
more or less vulnerable to disruptions of the road network?”

Multilayered Complex Network Theory (CNT) held promise as a modelling approach
that could capture the complexity of the dependence between a logical supply chain
network and the physical road network that underpins it. This approach addressed two
research gaps in complex network theory applications. In the supply chain arena CNT
applications have reaped many benefits but the majority of studies regarded single-layer
networks that model only supply chain relations. There were no studies found where
the dependence of supply chain layers on underlying physical infrastructure was modelled
in a multilayered manner. Road network applications offered many more multilayered
applications but these primarily focussed on passenger transport, not freight transport.

The first artefact developed in the thesis was a multilayered complex network formula-
tion representing a logical (supply chain) layer placed on a physical (road infrastructure)
layer. The individual layers had predefined network characteristics and on their own could
not hint at the inherent vulnerability that the system as a whole might have. From the
multilayered formulation, the collection of shortest paths emerged. This is the collection
of all shortest path alternatives within a network. The collection of shortest paths is
the unique fingerprint of each multilayered network instance. The key to understanding
vulnerability lies within the characteristics of the collection of shortest paths.

Three standard supply chain network archetypes were defined namely the Fully Con-
nected (FC), Single Hub (SH) and Double Hub (DH) archetypes. A sample of 500 theoret-
ical multilayered network instances was generated for each archetype. These theoretical
instances were subjected to three link-based progressive targeted disruption simulations to
study the vulnerability characteristics of the collection of shortest paths. Two of the sim-
ulations used relative link betweenness to prioritise the disruptions while the third used
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the concept of network skeletons as captured by link salience. The results from these
simulations showed that the link betweenness strategies were far more effective than the
link salience strategy.

From these results three aspects of vulnerability were identified. Redundancy quantifies
the number of alternative shortest paths available to an instance. Overlap measures to
what degree the shortest path sets of an instance overlap and have road segments in
common. Efficiency step-change is a measure of the magnitude of the “shock” absorbed
by the shortest paths of an instance during a disruption. For each of these aspects one
or more metrics were defined. This suite of vulnerability metrics is the second artefact
produced by the thesis.

The design of the artefacts itself, although novel, was not considered research. It is
the insights derived during analysis of the artefacts’ performance that contributes to the
body of knowledge. Link-based progressive random disturbance simulations were used to
assess the ability of the vulnerability metrics to quantify supply chain vulnerability. It
was found that none of the defined vulnerability aspects are good stand-alone predictors
of vulnerability. The multilayered nature and random disturbance protocol result in vul-
nerability being more multi-faceted than initially imagined. Nonetheless, the formulation
of the multilayered network proved useful and intuitive and even though the vulnerability
metrics fail as predictors they still succeed in capturing shortest path phenomena that
would lead to vulnerability under non-random protocols.

To validate the findings from the theoretical instances, link-based random disturbance
simulations were executed on 191 case study instances. These instances were extracted
from real-life data in three urban areas in South Africa, namely Gauteng Province (GT),
City of Cape Town (CoCT) and eThekwini Metropolitan Municipality (ET). The case
study instances showed marked deviations from the assumptions underlying the theoret-
ical instances. Despite these differences, the multilayered formulation still enables the
quantification of the relationship between supply chain structure and road infrastructure.
The performance of the vulnerability metrics in the case study corroborates the findings
from the theoretical instances.

Although the suite of vulnerability metrics was unsuccessful in quantifying or predict-
ing vulnerability in both the theoretical and case study instances, the rationale behind
their development is sound. Future work that will result in more effective metrics is
outlined in this thesis. On the one hand the development of a more realistic disrup-
tion strategy is suggested. Road network disruptions are neither completely random nor
specifically targeted. Important segments with greater traffic loads are more likely to be
disrupted, but the reality is that disruptions such as accidents, equipment failure or road
maintenance could really occur anywhere on the network. A more realistic disruption
strategy would lie somewhere on the continuum between targeted and random disrup-
tions. Other future work suggests the refinement of both artefacts by incorporating link
weights in both the logical and physical layers.

An unanticipated finding from this thesis is that future research in the field may be
expedited if theory-building emanates from real-life empirical networks as opposed to
theoretically generated networks. Expanding the scope of the case study, characterising
the true network archetypes found in practice and increasing the number of case study
samples is a high priority for future work.
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Chapter 1

Introduction

Ask any operations manager on the warehouse floor, in the distribution centre’s cross-dock
or at the receiving bay of the retail store and they will confirm that disruptions in supply
chain activities are far less exceptional and far more costly than commonly believed. It
is not only the natural disasters and terrorist attacks that cost supply chains billions
in turnover, the less extraordinary realities of traffic congestion, power outages, internet
network failure and even industrial action can be just as harmful. The impact of these
disruptions could range from missed delivery time windows to stock-outs or unplanned
overtime. Although these impacts are of a smaller scale, over time they could lead to
death by a thousand cuts for any supply chain.

1.1 Turbulence is the new normal

It is difficult to find a supply chain management paper published after 2001 that does
not bemoan the perplexing turbulence of the global business community. From natural
disasters to oil price volatility, political unrest to market (mis)behaviour — the anecdotes
abound. In contrast to the neutral definition adopted by classical decision theory and
even the international standard ISO3100:2009 (Purdy, 2010), risk in the Supply Chain
Management (SCM) arena is regarded as negative (Wagner and Bode, 2006).

Supply chain risk is “anything that [disrupts or impedes] the information,
material or product flows from original suppliers to the delivery of the final
product to the ultimate end-user” — Peck (2006).

This definition is in character for a management science where risky is synonymous
with dangerous and where the assessment of risk blends qualitative information and gut
feel with statistics (March and Shapira, 1987).

Christopher and Holweg (2011) were the first to propose a quantitative metric to mea-
sure and trace supply chain turbulence. The first version of the Supply Chain Volatility
Index (SCVI) included parameters relating to financial indicators, raw material availabil-
ity, stock market volatility and maritime shipping costs. This first iteration of the SCVI
showed that “[a]s of 2008, we have left an almost 30-year lasting period of stability be-
hind and are now entering a period of turbulence that was last seen during the oil crisis
of 1973” (Christopher and Holweg, 2011). The magnitude of the peaks and troughs post-
2008 were, however, larger than those in the 70’s. Four pertinent trends have burgeoned
supply chain volatility: an increase in natural and man-made disasters; a rise in supply
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chain complexity; heightened financial pressure on supply chain operations; and fiercer
global competition (Wagner and Neshat, 2010). Six years later, Christopher and Holweg
(2017) recalculated a much refined version of the SCVI. They showed that volatility had
reduced somewhat from the unprecedented levels post global financial crisis but had not
returned to its pre-crisis state. The authors warned that current volatility is the new
normal. Turbulence is now the rule, not the exception.

1.1.1 Supply chain vulnerability

It is not just the specific disruption that determines the magnitude of its damaging effect,
but also the degree to which a supply chain is susceptible to that damage (Wagner and
Bode, 2006). A retail chain with multiple distribution centres in a metropolitan area
would be less susceptible to a power failure at one of the centres than a similar chain
with only one consolidated distribution centre. The former would be able to fill orders
from the other centres during the downtime while the latter would be debilitated. This
is a typical example of susceptibility arising from the internal configuration of the supply
chain. Let’s now consider a scenario where the internal configuration of two chains are
identical, but one operates in a City A where snowstorms are a common occurrence and
the other in a City B where it hasn’t snowed in twenty years. Should a blizzard hit both
cities, the infrastructure and municipal services in City A would cope far better than that
of City B (which probably doesn’t have more than one working snow plough). In this case
the susceptibility is due to external circumstances. Wagner and Bode (2006) discussed
the works of numerous contributors to the definition of supply chain vulnerability and the
definition adopted in this thesis echoes that of the main proponents they mentioned.

Supply chain vulnerability is the degree to which the supply chain’s in-
ternal configuration and external circumstances make it susceptible to the
damaging effects of a disruption.

Although there is a significant body of literature addressing Supply Chain Risk Man-
agement (SCRM), reviewers noted that most work fixates on definitions, frameworks and
taxonomies. These theoretical constructs are too vague and ambiguous to offer practi-
cal solutions to managers who wish to account for vulnerability in their decision making
(Heckmann et al., 2015; Hohenstein et al., 2015; Rao and Goldsby, 2009). Nonetheless,
some frameworks can be a useful starting point. One such framework is that of Peck
(2005). From their study of critical sectors in the UK economy, they classified supply
chain vulnerability drivers into four levels:

Level 1: Value stream/product or process. This level adopts a typical engineering-
based process flow view of vulnerability. It is concerned with the smooth execution
of the sequential processes in the value chain. Typical risks include machine break-
down, product failure or an inability to respond to volatile demand or changing
market needs.

Level 2: Asset and infrastructure dependencies. Vulnerability on this level pertains
to the dependence of the supply chain on facilities, communication & Information
Technology (IT) infrastructure, power grids and transportation networks. These
infrastructures most often do not fall within the supply chain’s ambit of control.
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Level 3: Organisations and inter-organisational networks. This level zooms out
even further to view supply chains as an interactive network of individual organi-
sations. Vulnerability on this level relates to corporate strategy, business relations
and micro-economics.

Level 4: The environment. Finally the fourth level regards the wider macro-economic,
socio-political and natural environments within which the supply chain operates.

Different modelling paradigms are better suited to each level of vulnerability drivers.
Thus, this framework is useful in determining the gaps relating to the quantification of
supply chain vulnerability drivers.

While the stream of SCRM research grapples with the classification and avoidance of
supply chain risk and vulnerability, Supply Chain Resilience (SCRes) formulates strategies
and approaches to overcome those disruptions that do occur. The discourse around SCRes
began after the terrorist attack of 9/11 with seminal works by Christopher and Peck
(2004), Rice and Caniato (2003), and Sheffi and Rice (2005) and has surged since 2011
(Kilubi, 2016b; Tukamuhabwa et al., 2015).

1.1.2 Building resilient supply chains

A resilient supply chain, as Sheffi and Rice (2005) plainly put it, is one that can bounce
back. Recent reviews summarised how definitions had evolved to include the phases of
readiness, response, recovery and growth (Hohenstein et al., 2015; Kamalahmadi and
Parast, 2016) and even the concept of cost effectiveness (Tukamuhabwa et al., 2015). We1

drew from these definitions but returned to the simplicity of the original proposition.

Supply chain resilience is the degree to which a supply chain, after being
disrupted, can return to a state of operation where it provides the same or
better service to its customers at an equal or greater level of efficiency.

To build resilient supply chains, companies need to know both what implementation
strategies are available to them and how to weigh these against other corporate objectives
such as cost efficiency and short-term profits.

Resilience strategies

The very first strategies to make supply chains more resilient focussed on flexibility and
redundancy (Rice and Caniato, 2003; Sheffi and Rice, 2005). A multi-skilled workforce or
production process capable of quick product changes are examples of flexibility. It creates
the capability to respond and change quickly to adapting needs. Redundancy focusses
on maintaining current capacity during a disturbance. This is possible only if additional
capacity is available in the form of safety stock, overtime or unutilised production ca-
pacity. Investment in flexibility and redundancy has to be made before a supply chain
faces trouble. While both strategies represent additional costs, the authors argued that
redundancy is more costly to implement and maintain.

1In this thesis I make many references to myself, noting decisions and approaches that I am ultimately
responsible for. Dealing with these references in the third-person reads awkwardly, and does not reflect
the blood, sweat, swearing and tears of a real person. Hence, I will make reference to “we”. The efforts
and decisions attributed to the royal “we” reflect my own inputs, and not that of others in the research
group, unless explicitly acknowledged.
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As the discourse of SCRes continued, researchers elaborated many more resilience
strategies and investigated their relationships. In their review of 100 SCRes papers,
Kamalahmadi and Parast (2016) identified four prevailing SCRes principles and mapped
the strategic themes to these principles as shown in Figure 1.1.

Figure 1.1: SCRes Strategies (adapted from Kamalahmadi and Parast (2016)).

Although it is widely acknowledged that adopting resilience strategies often challenges
prevailing management culture, few authors have been as explicit as Christopher and Hol-
weg (2011, 2017). They dismissed altogether the traditional supply chain management
style premised on stability. They argued that in this era of turbulence the quest for control
and emphasis on streamlined systems actually does more harm than good. The rigidity of
control mechanisms often serve to amplify, instead of dampen variability. Popular exam-
ples of such philosophies include lean, SIX SIGMA and consolidation. These approaches
prioritise cost efficiencies under the assumption of stability, failing which their benefit is
short-lived. The long term costs of a traditional SCM approach can be crippling when,
not if, disruption strikes.

Christopher and Holweg (2011) differentiated between dynamic and structural flexi-
bility. Dynamic flexibility is reactive: when facing disruption a supply chain is able to
contract in additional resources or temporarily adjust transport options — in short, make
a quick plan. But these solutions are temporary departures from the state-of-practice and
cannot be sustained indefinitely. Structural flexibility is proactive: the very make-up of
the supply chain — its internal configuration — is adaptable to changes in the business
environment. They cited the case of Zara, a global clothing label that could respond
within a week or two to changes in fashion and demand. Their “rapid-fire” supply chain
was reported to utilise small modular factories in Northern Spain that made them adapt-
able, not just reactive. The progression towards resilience is from an efficient supply chain
(traditional view) to a stable supply chain (dynamic flexibility) and finally an adaptable
supply chain (structural flexibility). But this progression requires a very real mental and
cultural shift. Table 1.1 contrasts the mindsets behind efficient and adaptable supply
chains.
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Table 1.1: Efficient versus adaptable supply chains (Christopher and Holweg, 2011).

Efficient supply chain Adaptable supply chain

Focus
Establish control to reduce
variability and thus cost to
compete.

Embrace volatility and develop
superior ability to adapt.

Decision time
horizon

Short-term, quarterly results.
Long-term viability, while
maintaining positive cash flow.

View on
turbulence

Bad, as it causes instability and
cost.

Inevitable, hence the need to
pre-empt it by creating
adaptable structures.

Approach to
dealing with
turbulence

Use SIX SIGMA and other tools
to eradicate it where possible.

Use tools to increase flexibility
“bandwidth” to cope.

Weighing efficiency against resilience

In the early days of SCRes, Tang (2006) lamented that while managers acknowledged
supply chain risks, they failed to make proportionate investments in resilience. Along
with other earlier works (Rice and Caniato, 2003; Zsidisin et al., 2000, 2004) the author
proposed three reasons for this observation:

Assessment: In the absence of an accurate assessment of prevailing risks and a firm’s
inherent vulnerability, managers underestimated the problem.

Ingenuity: Should firms have acknowledged the need to act, they were uncertain of what
to do.

Evaluation: Existing accounting methods could not properly capture the cost/benefit
or return on investment of resilience strategies.

More recent feedback from industry showed that the attitude towards resilience has
changed. A World Economic Forum survey reported in 2011 that more than 90% of
respondents said that supply chain and transport risk had been elevated as a top priority
in the preceding five years (Chacon et al., 2012). The following year the survey’s focus
shifted to “building resilience”. This time more than 80% of companies were concerned
about resilience and wanted to act. Most of the experts surveyed believed that resilience
and efficiency could coexist and that it didn’t have to be an either-or decision (Bhatia
et al., 2013). A recent study of the FMCG sector in South Africa observed that managers
were willing to invest significantly in resilience strategies even in spite of the potential
short-term losses this may cause (Agigi et al., 2016). These sentiments contrast the
reluctance voiced by industry a few years earlier.

So what are the current impediments to creating resilient supply chains? The wealth
of resilience strategies emanating from case studies and surveys indicate that ingenuity
is no longer the issue. Companies know the options available to them. Assessment and
evaluation remain the primary hindrances.
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1.1.3 Quantitative tools for a new management mindset

Although a number of quantitative models have been proposed in the fields of SCRM
(Heckmann et al., 2015) and SCRes (Kamalahmadi and Parast, 2016; Kilubi, 2016a), not
all levels of vulnerability drivers have been equally addressed.

Vulnerability drivers on the first level have traditionally received the most attention. It
is an established field with frequent applications of Monte Carlo type models, stochastic
programming (Klibi and Martel, 2012) and simulation models (Wu et al., 2013). Any
mathematical model that can test outcomes over a range of probabilistic scenarios can
quantify risk and vulnerability on this level. The quality of the assessment depends on
the appropriate choice of model and the reliability of risk information.

The other level that has received increasingly more attention as new modelling tech-
niques developed is the third level. Complex Network Theory (CNT) and agent-based
modelling have been applied with much success (Bellamy and Basole, 2013). In CNT
organisations are modelled as nodes and their relationships as links. The topology, com-
munity structure and hierarchy of nodes and links then offer good insights of a business
landscape that otherwise can seem undecipherable. Agent-based simulation is then capa-
ble of modelling the behaviour of autonomous agents that interact within these networks.
Section 1.2.2 elaborates on such studies.

While the first and third levels have received considerable scrutiny, the second and
fourth levels pose verifiable gaps in assessment. In both cases the difficulty is in under-
standing the relationship between the supply chain and the vulnerability driver. What
impact would political unrest in Europe really have on a vehicle manufacturer in the
USA? To what degree would damage to SEACOM’s fibre-optic submarine cable on the
East coast of Africa impede communication in a retail supply chain in South Africa? And
how would this affect the coordination of deliveries? What is required is models that can
capture the relationship between these phenomena external to the supply chain and the
supply chain’s operations.

1.1.4 Problem statement

Supply chain networks in urban areas often face volatile demand with short notice periods,
tight transport lead times, fierce competition and fickle customers. Urban centers also
frequently experience traffic congestion and disruptions due to roadworks or accidents,
infrastructure or equipment failure. The reality of the supply chain’s daily dependence
on urban transport infrastructure makes it vulnerable. But how vulnerable exactly?

Executives concerned with this dependence on the urban road network may ask: “How
vulnerable is our current distribution network design in City A? By what margin could we
lessen this vulnerability by changing our facility locations? Alternatively, by what margin
could we reduce vulnerability if we moved operations to neighbouring City B? What impact
would these changes have on our bottom line in the short, medium and long term?” To
answer these questions requires a model that can quantify the dependence.

1.2 A complex network theory perspective

Graph theory, which is the study of networks, originated with Euler’s famous solution of
the Seven Bridges of Königsberg in 1736. Since then it has been pivotal in disciplines
such as mathematics, quantitative geography and operations research. In the late 1950s
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Erdös and Rényi (1959) proposed the famous random network model, since called the
Erdös-Rényi (ER) network. In the ER network each node is connected to a random set of
remaining nodes. For decades, before the advent of Global Positioning System (GPS) data
and other technologies, the capability to study large real-life networks without extensive
simplification to either a completely regular or completely random network representation
did not exist.

In 1998, Watts and Strogatz (1998) tried to find a middle ground by rewiring regular
networks to induce randomness. What they observed was a topology that has dense
clustering, like that of a regular network, but also relatively short path lengths, similar to
ER networks. They called this the small-world network, because every node is only a few
links away from every other node, regardless of network size. The small-world network is
also referred to as the Watts-Strogatz (WS) network.

One year later, Barabási and Albert (1999) observed that for many diverse real-world
systems the connectivity of the nodes follow a scale-free, power-law distribution. This
meant that the majority of the network nodes only have a few connections while a few
nodes are highly connected. These highly connected nodes are also called hubs. The
authors developed an algorithm to grow networks that replicate this real-world topology.
The algorithm adds nodes to an existing network using preferential attachment to nodes
that are already well connected. This finally gave shape to the intuition that large,
ungoverned networks are self-organising. This topology became known as the scale-free
or Barabási-Albert (BA) network. (Figure 1.2 show examples of each of the three principal
topologies.)

(a) Erdös-Rényi/ Random (b) Watts-Strogatz/ Small-world (c) Barabási-Albert/ Scale-free

Figure 1.2: The three foundational CNT topologies (reproduced from Basole and Bellamy
(2014) with permission).

Within seven years comprehensive reviews examined the structure and dynamics of a
host of theoretical and real-world networks (Albert and Barabási, 2002; Boccaletti et al.,
2006; Dorogovtsev and Mendes, 2002; Newman, 2003). Topics covered in these reviews
included: structural characteristics such as centrality measures, clustering coefficients
and shortest path metrics; growth models relating to the ER, WS and BA networks;
spreading processes such as percolation theory and disease spread; and error and attack
tolerance. These works set the stage for the surge of complex network theory applications
to systems in sociology, neurology, biology, ecology, transportation, computer science and
critical infrastructures.

A next wave of research probed community structure in networks. In his review Fortu-
nato (2010) discussed a library of algorithms and techniques for identifying and extracting
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communities. Some authors have referred to communities as meso-level characteristics.
Another meso-level characteristic recently identified is that of network skeletons. To

reduce the complexity of large networks scientists have developed methods that reduce
the “noise” in the network while preserving key characteristics. Network skeletons contain
only the nodes and links that remain once “unimportant” nodes and links have been fil-
tered out according to some rationale (Grady et al., 2012; Serrano et al., 2009; Shekhtman
et al., 2014).

In 2011, Barthélemy (2011) focussed a review on the subset of spatial networks. These
networks are embedded in space and the links represent a physical distance as opposed
to a purely relational distance. Empirical networks discussed in the review included
transportation networks, infrastructure networks, origin-destination matrices, mobility
networks and neural networks. He asserted that the geographic distance affects many
metrics and processes in a significant way and thus warrant a separate discussion.

CNT revolutionised the study of real-world systems. It gave tools and paradigms with
which to make sense of dense complexity.

1.2.1 Multilayered complex network theory

Infrastructure systems are tangible, measurable, definitive and (often) immovable. Supply
chains, on the other hand, are a conglomeration of interconnected business relationships
that cannot be easily defined or measured and are subject to change. These are two
separate networks — one physical and one logical — a perfect scenario for multilayered
CNT.

Multilayered CNT captures interdependent intricacies between individual networks.
Consider the social network example of relationships between colleagues all working to-
gether in a department. Some may be no more than work acquaintances, others may
work together on projects and therefore have a closer relationship, and then there are
those who have become friends outside of work and compete together in the volleyball
league. This scenario describes three distinct relationship networks. Consider now the
same group of colleagues but focus only on the project team relationships. As time goes
by project teams change, giving rise to a unique set of relationships. Once again there are
two distinct networks, separated by time. All of these distinct networks can be combined
and studied simultaneously using techniques developed by multilayered complex network
theory. The network science community regard the study of multilayered networks as
a new frontier in many areas of science and a rapidly expanding movement that will
stimulate interdisciplinary research (Boccaletti et al., 2014). Similarly, it offers promise
in getting a handle on supply chain vulnerability, especially in terms of its underlying
infrastructure.

1.2.2 Supply chain applications

Supply chains are interconnected networks of multiple entities (agents) that exhibit adap-
tive action in response to change in both the environment and system of entities itself
(Choi et al., 2001). It has structural complexity (the interconnectedness of firms) and
adaptivity (dynamic learning) (Pathak et al., 2007). These are typical characteristics of
Complex Adaptive Systems (CAS). There is a growing body of knowledge proposing
more appropriate models to emulate CAS (Bellamy and Basole, 2013) and CNT is fast
becoming a favourite.
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CNT is a well-suited approach to making sense of the structural complexity of supply
chains. Hearnshaw and Wilson (2013) set a standard in applying CNT to supply chains by
comprehensively mapping different facets of a supply chain to complex network constructs.
They investigated which topological characteristics make for an efficient supply chain.
Another study by Kim et al. (2011) modelled material flow and relationships in the
automotive industry using a complex network framework. The analysis showed that this
approach provided additional quantitative insights that the initial case study by Choi and
Hong (2002) missed. These and similar studies provided good descriptions of the structure
of a supply chain, but to study the topic of vulnerability one needs to understand the
adaptivity of a supply chain.

Recent studies have used two CNT approaches to studying supply chain vulnerability.
The first approach uses simulations of random errors and targeted attacks. Thadakamalla
et al. (2004) defined a resilient supply chain as one that

“maintains connectivity between the majority of its nodes; does not suffer a
significant increase in the average shortest path length between nodes; has
well-defined clusters that offer many alternative shortest paths and can auto-
matically re-wire itself after disruption to establish functionality”.

According to these criteria they evaluated the resilience of the random, small-world
and scale-free topologies. Their results showed that a hybrid topology is more resilient.
Nair and Vidal (2011) extended this purely topological perspective by adding inventory
flow to the random and scale-free formulations. They found that there is a significant
relationship between topological vulnerability and vulnerability from an inventory level,
backorder disruption and total cost point of view. In a study customised for military
supply chains Zhao et al. (2011) proposed alternate vulnerability metrics that took into
account the fact that different facilities performed distinct functions. Their customisation
provided a more accurate analysis of the real-life vulnerability compared to approaches
that did not consider facility function.

The second approach to studying vulnerability uses concepts from epidemiology to
study the spread of risk or damage through a network. Basole and Bellamy (2014) studied
risk diffusion in networks where nodes represented individual firms and links represented
business relationships. Their results showed that small-world networks are more robust
than scale-free networks when it comes to risk diffusion. A following study evaluated
financial risk diffusion amongst supply networks from the electronics industry spread
across North America, Asia and Europe (Basole et al., 2016). Their results showed that
networks that were not as dependent on a few central hubs (scale-free) but instead had
relationships that connected distant neighbours (small-world) reduced the impact of risk
propagation and increased overall network health.

Considering the four levels of vulnerability drivers defined by Peck (2005) we observed
that the work of Basole and Bellamy (2014); Basole et al. (2016) and Thadakamalla et al.
(2004) addressed third level drivers relating to organisations and inter-organisational net-
works. Nair and Vidal (2011) and Zhao et al. (2011) addressed a combination of third
level and first level drivers by respectively adding the inventory and supply-demand per-
spectives. None of these studies addressed the multilayered dependency between supply
chains and infrastructure.
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1.2.3 Road network applications

Road transport systems have a more mature repertoire of CNT applications than supply
chain management. Standard network representations and methodologies have emerged,
making results comparable. Applications have either focussed on understanding and com-
paring the topological characteristics of networks or quantifying vulnerability through the
simulation of targeted attacks and random errors. Multilayered applications in urban
transportation systems have also become popular.

Many studies focussed exclusively on the topological structure of the road network,
disregarding transport activity. Insights from such applications complemented the under-
standing of urban structures, densities and dynamics (Barthélemy and Flammini, 2008;
Crucitti et al., 2006; Jiang and Claramunt, 2004; Jiang, 2007; Masucci et al., 2009; Porta
et al., 2012; Strano et al., 2009). However, there are very few studies that have incorpo-
rated transport activity in a road-only network. Most studies that incorporated transport
activity focussed on public transit systems that combined multiple modes.

One very relevant exception that modelled commercial vehicle activity on a road-only
network is that of Joubert and Axhausen (2013). They developed an innovative method-
ology to study the complex network characteristics of commercial vehicle movement in
Gauteng, South Africa. The activity chains of commercial vehicles were extracted from
GPS data (Joubert and Axhausen, 2011) and used to pinpoint logistics facilities (nodes)
using clustering algorithms (Joubert and Axhausen, 2013). The approach was refined
in Joubert and Meintjes (2015a). These authors built a complex network of commercial
vehicle movement and used centrality metrics to identify key logistics players.

A significant restriction of single layer CNT is that it is limited in terms of capturing
the multimodal nature or multiple service layers characteristic of real-life transportation
systems. We considered a supply chain network layered on an urban road network. The
supply chain layer represented a logical layer defined by the supply chain network design.
The links represented inter-firm or intra-firm relations. Freight could not travel along
such ethereal links but instead travels along the urban road network which represents the
physical layer of the network.

Notably two other multilayer transportation studies also placed a logical layer on a
physical layer (Kurant and Thiran, 2006b; Zhuo et al., 2011). However, these studies
addressed passenger transport, not freight.

Van Heerden and Joubert (2014) described how the understanding and modelling of
freight traffic lags far behind that of passenger traffic. Although freight traffic may consti-
tute a small percentage of traffic within an urban environment, it has a disproportionate
effect on economic activity. Traditional freight modelling focuses on commodity flow,
not vehicular movement. Most traffic models add commercial vehicle activity as back-
ground noise or by multiplying passenger traffic by some factor. However, recent studies
of disaggregate commercial vehicle movement have shown explicitly that commercial ve-
hicles simply do not behave like passenger vehicles (Joubert and Axhausen, 2011, 2013;
Van Heerden and Joubert, 2014). Although these studies have made inroads in addressing
the freight transport research gap, they still focus on a single-layer view of freight connec-
tions, not explicitly incorporating the physical infrastructure. So while there have been
numerous CNT and multilayer CNT studies relating to the road network, none directly
address the problem statement in this thesis.
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1.3 Road vulnerability studies

Robust and reliable road transport systems are essential to economic activity and wel-
fare. Consequently, the vulnerability of road networks has been a topic of ardent research
since the 1960s (Mattsson and Jenelius, 2015). In their review, the authors identified two
traditions of road network vulnerability research. The one tradition, termed topological
vulnerability studies, regards only the topological properties of road transport networks.
The second tradition, termed system-based vulnerability studies, takes into account the
demand and supply profiles of the transport system and how these are affected. Although
related, these two traditions have limited interaction, distinct authors and are even pub-
lished in different types of journals.

Advocates of system-based vulnerability studies contend that it is a far more realistic
representation of the real-life system’s response to disruptions. Because the metrics are
also more intuitive, expressed in terms of costs or time or percentage served, it is easier
for planners to see the path to practical application. Another benefit (data permitting) is
that studies can focus on discrete population segments such as the elderly or commuters
living in a specific feeder town outside a major city. Unfortunately, the drawbacks of this
approach can be quite significant. System-based studies are data intensive, computation-
ally burdensome and have a lower level of standardisation and comparability (Mattsson
and Jenelius, 2015).

In this thesis we were limited by the availability of supply chain data. For the data
regarding commercial vehicle movement that were available to us, not enough was known
about the travel demand, behaviour and user value of commercial vehicles in those urban
settings to posit generalisable assumptions.

In topological vulnerability studies real-life transport systems are represented as ab-
stract networks. CNT is the prevailing approach used to model these networks. Vulnera-
bility is then investigated using targeted attack and random error simulations.

Although the bulk of these studies focussed on subway systems and other public transit
systems, there are examples that have dealt exclusively with road network vulnerability.
Dems̆ar et al. (2008) studied the road network of the Helsinki Metropolitan Area in
Finland while Duan and Lu (2014) compared vulnerability across three levels of geographic
granularity using six real city road networks from Asia, Europe and North America.

The relative simplicity of the topological approach and its limited data requirements
make it easy to execute large experiments for multiple vulnerability scenarios. This is
desirable for studies that are exploring new network metrics as the validity of the metrics
can be compared across a range of topologies with relative ease.
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1.4 Topological vulnerability studies using CNT

Topological vulnerability studies are concerned with identifying the critical nodes and/or
links in a network that, if removed, will cause greatest damage to the network.

There are two pertinent reasons that make prioritising critical elements non-trivial.
Firstly, the very structural complexity that defines these networks makes it impossible to
find analytic answers. Relationships are emergent, not predefined. Therefore, simulation
studies have become state-of-practice in testing different prioritisation schemes. Secondly,
the response variables defined to measure network damage in these simulation studies
differ. If there are different viewpoints on how to measure damage, then there will be
different ways of prioritising critical elements.

Three common dimensions of network damage have evolved. Robustness refers to
the connectedness of a network, whether it has broken into disconnected sub-networks
or still functions as a cohesive unit. Efficiency (referred to by some as responsiveness)
determines how quickly a message (or people or freight) can travel from one node to
another. Flexibility refers to the network’s inherent ability to find alternative paths if the
shortest paths are destroyed.

In multilayered networks, the concept of cascading failures and damage in terms of
network robustness have been the foremost phenomena in vulnerability studies. If the
layers of a multilayered network are interdependent then the links between the layers are
called dependency links. Removing any node in one layer would then trigger the removal
of all nodes in all other layers that are connected via dependency links. Such failures
cascade back and forth until all dependent nodes are removed.

Simulations either emulate random errors or targeted attacks. In random error simula-
tions the nodes or links to be removed are selected randomly. Targeted attack simulations
use some predefined strategy to prioritise nodes or links for removal (Albert et al., 2000).

1.5 Research design

The following thesis statement was formulated:

Metrics related to the shortest path sets of the multilayered supply chain/road
network formulation can quantify the inherent vulnerability of a specific supply
chain to its choice of internal configuration and the underlying urban road
network’s integrity.

In order to evaluate this statement the following objectives had to be achieved:

1. Development of a multilayered complex network model that captures the dependence
of a supply chain network on an urban road network.

2. Identification of the characteristics of this model that describe the nature of the
supply chain’s vulnerability to the integrity of the urban road network.

3. Development of metrics that could quantify a supply chain’s inherent vulnerability
based on its internal configuration and the underlying road network.

4. Evaluation of the validity of the suite of vulnerability metrics through statistical
analysis and a real-life case study.

These objectives were achieved using a design research approach as described by Man-
son (2006).
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1.6 Research methodology

Design research is

“a process of using knowledge to design and create useful artefacts, and then
using various rigorous methods to analyse why, or why not, a particular arte-
fact is effective” (Manson, 2006).

Design itself is not considered research but it is through the insights derived during
analysis of the designed artefact’s performance that the body of knowledge in a field
grows. The phases of the design research approach are shown in Figure 1.3. In this
thesis the awareness of CNT, particularly its application to system vulnerability, led
to the suggestion that it could be applied to supply chain vulnerability to address the
practical knowledge gap outlined in the problem statement. This led to the development
of two artefacts: a multilayered complex network formulation of the problem, and a suite
of vulnerability metrics that were proposed to quantify the inherent vulnerability of the
supply chain.

The artefacts were evaluated in two ways. Using the multilayer formulation we gener-
ated large samples for three different supply chain network archetypes. The distributions
of the topological characteristics were investigated and compared to verify the formula-
tion. We then used random error simulations and statistical correlation tests to assess
the performance of the suite of vulnerability metrics.

After the evaluation we tested the thesis statement and formalised what we had learnt
(circumspection). Further feedback of the artefacts’ utility was obtained when we applied
these to a case study of three South African urban areas. Feedback from the case study
added to the operation and goal knowledge obtained through the study.

Figure 1.3: Design research methodology (reproduced from Manson (2006)).
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1.6.1 Multilayered network formulation and theoretical datasets

The first objective of this thesis was:

1. Development of a multilayered complex network model that captures the
dependence of a supply chain network on an urban road network.

The multilayered network consisted of a logical layer and a physical layer. The logical
layer represented the inter-firm business rules and intra-firm relationships that defined
how freight could be transported between logistics facilities in an urban environment.
The physical layer represented a typical urban road network that commercial vehicles
could use to ship freight.

The physical network was represented as a regular grid network and the logical net-
work was one of three predefined supply chain network archetypes. There was thus little
mystery regarding these networks individually. It was how the logical network was layered
on the physical network that created distinct multilayered network instances. Depend-
ing on the size of the individual networks, the possible layering permutations could have
ranged from thousands to millions.

A representative sample of 500 multilayered network instances was generated for each
of the three network archetypes. One instance was generated by associating each node in
the logical layer to a randomly selected node in the physical layer.

What distinguished one multilayered instance from the next was its unique collection of
shortest paths. The shortest relational path between any two nodes in the logical network
was predefined. However, freight cannot move along relational paths, it requires the road
infrastructure. Thus, when calculating the shortest freight movement path between two
nodes in the logical network, one had to take into account the position of these nodes on the
physical road grid. The collection of shortest paths that resulted from each multilayered
instance was its distinct fingerprint. The characteristics that would describe the supply
chain’s vulnerability therefore emanated from these shortest path sets.

1.6.2 Link-based targeted attack simulation

Armed with large samples of randomly generated multilayered instances for each of three
supply chain network archetypes, the second and third objectives of the thesis could be
tackled.

2. Identification of the characteristics of this model that describe the nature
of the supply chain’s vulnerability to the integrity of the urban road network.

3. Development of metrics that could quantify a supply chain’s inherent vul-
nerability based on its internal configuration and the underlying road network.

While it is possible that in reality a disruption could damage or destroy an entire
intersection — like a catastrophic multi-vehicle accident, it is unlikely. It is more likely
that disruptions will disable individual road segments. The same rationale has applied
in other transport-related vulnerability studies (Viljoen and Joubert, 2016). Therefore,
removing links was more appropriate than removing nodes.

To identify the characteristics of the collection of shortest paths that are indicative of
network vulnerability we used three link-based targeted attack simulations. Each simula-
tion used a different characteristic of the shortest path sets to prioritise links for removal.
The resultant damage was tracked and compared across the three strategies to show which
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characteristics were more telling than others. Based on the performance, a suite of vul-
nerability metrics was formulated. The proposition was that this suite of metrics could
quantify the inherent vulnerability of a supply chain to its internal configuration and the
integrity of the underlying road network. To test this proposition, the suite of metrics
was evaluated using a random error simulation and statistical tests.

1.6.3 Link-based random error simulation and statistical tests

The urban road network is frequently disturbed by congestion, roadworks, accidents, and
infrastructure failure. This could be described as a combination of random errors and
targeted attacks. Streets that are more central could be more likely to experience conges-
tion or higher traffic loads could increase the likelihood of accidents (targeted attacks).
However, accidents, equipment failure and roadworks could really happen anywhere on
the grid at any time (random error).

The suite of vulnerability metrics were deduced from the outcomes of targeted strate-
gies, therefore testing their validity using further targeted strategies would not have
yielded much insight. If a metric is a good quantifier and predictor of vulnerability under
completely random link disruption, it is expected that its power will be even greater in
circumstances where disruptions have both random and targeted elements2. Thus, vali-
dating the metrics using random link-based disruptions was the most conservative method
of evaluation. A random error simulation was used to track the performance of the suite
of vulnerability metrics. Statistical tests based on these results addressed the first part
of the fourth research objective:

4. Evaluation of the validity of the suite of vulnerability metrics through
statistical analysis and a real-life case study.

Pairwise correlation tests were used to determine the strength, direction and signifi-
cance of correlation of the vulnerability metrics to efficiency loss and robustness (number
of disruptions endured before breaking). Those vulnerability metrics that were found to
have strong, significant correlations to efficiency loss and robustness were then further
tested to determine whether they could be good discriminators of disconnection or effi-
ciency loss in the next disruption. These two tests provided a comprehensive evaluation of
whether the suite of vulnerability metrics was able to quantify the inherent vulnerability
of the multilayered network instances.

Up until this stage of the thesis, the multilayered network instances were theoretical.
To establish the utility and performance of the artefacts in real-life scenarios, they had
to be applied to case study network instances.

1.6.4 Case study validation

The case study addressed the last part of the final research objective:

4. Evaluation of the validity of the suite of vulnerability metrics through
statistical analysis and a real-life case study.

2Note that regardless of whether a link was selected by a targeted or random strategy, the impact of
the disruption was equal — i.e. the removal of the link.
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A total of 191 case study network instances were extracted from real-life data in three
urban areas in South Africa namely the City of Cape Town (CoCT) in the Western
Cape, eThekwini Metropolitan Municipality (ET) in the KwaZulu-Natal province and
the Gauteng Province (GT).

The complex network of commercial vehicle movement was used as a proxy for supply
chain relationships. In these networks the nodes were logistics facilities and the links
represented commercial vehicles travelling between the facilities. The rationale was that
if freight is frequently shipped between two facilities, there is a supply chain relationship
between these facilities.

The methodologies used to transform commercial vehicle GPS logs into complex net-
works are documented in Joubert and Axhausen (2011, 2013) and Joubert and Meintjes
(2015a,b). The dataset used in the case study contained the complex network of freight
movement for each of the three urban areas as extracted from the February 2014 GPS
logs. From these three urban networks, the logical layers of 191 case study instances were
extracted.

Each of these logical layers had an underlying road network. The physical layers that
represented these road networks were extracted from OpenStreetMap (OSM) data. For
each of these 191 instances, the logical layer was placed on the physical layer to create a
multilayered network instance.

The link-based random error simulation described in Section 1.6.3 was executed on
the real-life multilayered instances. Their response to the simulation and the performance
of the vulnerability metrics were compared to the results of the theoretical instances.

Based on the simulation results of both the theoretical and case study instances, we
could complete the evaluation of the artefacts. The design research loop was closed by
commenting on the utility of the artefacts and suggesting future improvements.

1.7 Thesis overview

The thesis is structured as follows: Chapter 2 grounds the proposed research design by
reviewing the body of knowledge that promotes CAS techniques for modelling supply
chain systems, surveying other relevant applications of CNT to road networks and inves-
tigating the most prevalent parameters used in designing topological vulnerability studies.
Chapter 3 presents the mathematical formulation of the multilayered network, describes
how the 500 theoretical instances were generated for each of the three supply chain net-
work archetypes. The chapter concludes with an analysis of the characteristics of the
undisturbed instances. Chapter 4 presents the targeted attack simulations executed on
the theoretical instances and identifies key vulnerability characteristics in these networks.
Based on these discoveries, Chapter 5 details the development of the suite of vulnerability
characteristics. Chapter 6 describes the random error simulation, details its results and
presents the statistical evaluation of the vulnerability metrics. Chapters 7 and 8 showcase
the case study. The first chapter details the data preparation and case study instances
extracted from the real-life data. It also highlights the (influential) differences between
the case study instances and the theoretical instances. The results of the random error
simulation performed on the case study instances is given in Chapter 8. This chapter com-
pares the case study and theoretical results in detail before concluding with a discussion
regarding the validity of the vulnerability metrics in real-life scenarios. Finally, Chap-
ter 9 concludes the thesis by summarising its approach and findings, stating its research
contribution and limitations and providing an outlook of future research.
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Chapter 2

Literature review

This review provides a deeper discussion of how the supply chain has been modelled as a
Complex Adaptive Systems (CAS). It particularly elucidates why Complex Network The-
ory (CNT) is an up-and-coming technique for modelling supply chain systems. Thereafter
CNT applications to road transport systems are described in more detail, showing the
scope of research questions tackled in the domain using CNT as well as the most preva-
lent techniques and metrics used. Finally, common design parameters for topological
vulnerability studies and their applicability to this thesis are discussed.

2.1 Modelling the complex adaptive nature of supply

chains

Initially it was convenient to imagine the dynamics of supply chains exactly as the name
implies: a chain of supply activities. A linear sequence of processes and partnerships.
Until recently this was also how supply chains were modelled (Hearnshaw and Wilson,
2013). But supply chains are not really chains. They are networks: complex networks
with autonomous actors. Cause-and-effect is non-linear. Hierarchies and structure are
ill-defined. And just when you think you have it mapped, everything changes. Supply
chains are CAS in every sense (Bellamy and Basole, 2013; Choi et al., 2001; Hearnshaw
and Wilson, 2013; Kim et al., 2011; Pathak et al., 2007; Tukamuhabwa et al., 2015).

The term CAS has its roots in complexity theory, a field concerned with the “emer-
gence of order in dynamic and non-linear systems that operate at the edge of chaos”
(Tukamuhabwa et al., 2015). CAS are both structurally complex and adaptive (Pathak
et al., 2007). Anderson (1999) defined four essential characteristics of CAS:

Schema: Aggregate trends are the result of autonomous entities that interact with other
autonomous entities and their environment by following simple decision-making
rules.

Self-organisation: Patterns and regularity emerge from the recursively applied rules of
the autonomous agents. There is no central controlling mechanism or parameters
that govern the system.

Co-evolution: Autonomous agents will continue adapting to improve their payoff. When
the adaptation of many agents pushes a system to chaos, the agents will self-regulate
to re-establish equilibrium. This process is recursive.
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System evolution: Cycles of co-evolution among agents cause the system as a whole
to evolve. Although this evolution is not predictable using parametric models,
prototypical behaviours emerging recursively over time can be observed.

In their seminal work, Choi et al. (2001) mapped these four characteristics to supply
chains. A number of case studies followed that proved that the CAS approach to solving
supply chain problems reaped at least four benefits over previous approaches namely:
increased efficiency, better preparedness for external uncertainty, increased awareness of
markets and competition; and overall improved decision making (Pathak et al., 2007).

Bellamy and Basole (2013) conducted a comprehensive review of of 126 papers pub-
lished between 1995 and 2011 that considered the concept of network analysis in the
supply chain context. Although they did not use the term CAS, it is clear that their
perspective of network analysis was synonymous. They identified three themes of CAS
applications to supply chain systems:

Network structure (system architecture). This considers the node-level, link-level and
network-level properties of a system. These properties are typically quantified
by traditional CNT metrics such as centrality, embeddedness, clustering and tie
strength.

Network dynamics (system behaviour). These studies analyse the initial formation
of a network, its evolution over time as well as the emergence or propagation of
phenomena. At this level, concepts from CNT, epidemiology, systems thinking and
Supply Chain Risk Management (SCRM) are combined to study system behaviour.
Time-based simulations are used to monitor the response of the system architecture
metrics to network growth or to specific stimuli or disruptions.

Network strategy (system control and policies). This stream of research studies how
the implementation of strategies and protocols regarding the network structure and
behaviour impact performance. In this field researchers have drawn heavily from the
fields of systems engineering, SCM and SCRM to study scope, intent and governance
of the supply chain system.

CNT has been used to address problems relating to both network structure and network
dynamics. Entities are modelled as nodes within the network. The relationships that
connect them — be these business contracts, infrastructure or even the flow of goods
— are the links. CNT offers an interdisciplinary lens that aggregates these elementary
relationships in such a way that one can appreciate the structures and behaviours that
emerge from the system. On an elementary level micro-level metrics such as centrality
and betweenness illuminate hierarchical structures. Community structures and network
skeletons come to the fore using meso-level techniques. On the macroscopic level one can
differentiate between different network topologies based on the distributions of metrics.
CNT holds great promise in studying supply chains which are known for their scale and
complexity and nonlinear behaviour (Basole and Bellamy, 2014; Pathak et al., 2007).
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2.2 Relevant applications of CNT to road networks

There are different ways of representing a transport system as a complex network. Al-
though defining nodes can be straightforward, how one defines the links of the network
governs the interpretation of the results (Ducruet et al., 2010; Hu and Zhu, 2009; Kurant
and Thiran, 2006a).

In their analysis of mass public transit systems, Kurant and Thiran (2006a) defined
three types of network representations that are relevant to all constrained-link networks.
Quite simply, the stations are the nodes, but the differentiation lies in how the links are
defined. In the space-of-stations representation two nodes are connected if there is a
roadway or rail line linking them directly (i.e. there is no intermediate station). Space-of-
stops considers two nodes linked if they are consecutive stops on a route. Once again it is
a direct link with no intermediate stops. Space-of-changes considers two nodes linked if
the same vehicle visits both on a route, thus there may or may not be intermediate stops.

In constrained-link transport modes there are many studies that only regarded the
network of physical infrastructure and disregarded transport activity. Such studies used
a space-of-stations representation. Applications of this kind are particularly popular in
road transport where insights from network modelling complement the understanding
of urban structures, densities and dynamics. The works of Barthélemy and Flammini
(2008); Crucitti et al. (2006); Jiang and Claramunt (2004) and Jiang (2007) compared
urban structures and growths of world cities using the urban street network. Masucci et al.
(2009) focussed more specifically on the growth of London’s urban street network and the
resultant ease of navigation. Porta et al. (2012) and Strano et al. (2009) approached urban
street networks from another perspective, investigating the correlation of street centrality
to economic activities in Barcelona, Spain and Bologna, Italy, respectively.

Other studies used either a space-of-stops of space-of-changes representation to for-
mulate single layer complex networks of transport activity. Kurant and Thiran (2006a)
mapped the multimodal public transport system of Warsaw, Poland; the railway network
of Switzerland; and the regional rail system of central Europe. They used timetable data
as a proxy for transport activity and modelled all three networks using different represen-
tations. What they found was that the different representations produce fundamentally
different networks. Sen et al. (2003) deduced transport activity profiles from India’s
passenger rail schedules. Using a space-of-changes representation they showed that the
system has strong small-world properties. Joubert and Axhausen (2013) used an inno-
vative methodology to study the complex network characteristics of commercial vehicle
movement in Gauteng, South Africa. They extracted the activity chains of commercial
vehicles from Global Positioning System (GPS) data and used this to pinpoint logistics
facilities (nodes) (Joubert and Axhausen, 2011). Using a space-of-stops representation
they built a complex network of commercial vehicle movement. Centrality metrics helped
to identify key logistics players, offering unique insights to transport planners.

A significant restriction of single layer applications in transportation is that it is limited
in terms of capturing the multimodal nature or multiple service layers characteristic of
real-life systems.

Multilayered representations

Multilayered network studies in transportation have been more recent. Most studies to
date have either used the layered approach to model interdependent transport modes
(Gallotti and Barthelemy, 2014, 2015; Parshani et al., 2011; Solé-Ribalta et al., 2016;
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Strano et al., 2015) or used different passenger services or cargo flows that utilised the
same mode (Cardillo et al., 2013; Ducruet, 2013; Kaluza et al., 2010; Lordan et al., 2015;
Tsiotas and Polyzos, 2015).

A context familiar to many is the multimodal interaction between the street network
and subway systems of New York and London. Strano et al. (2015) modelled the street
and subway networks as interdependent layers and found that these two cities show sim-
ilar emergent transport topologies despite their different geographies. Network metrics
suggested that the subway layer acts as a decentralising force that moves congestion from
the centers of the cities to the terminal stations of the subway lines. This multilayered
view also highlighted that speeding up subway lines is not always better but can result
in an uneven spatial distribution of accessibility. Solé-Ribalta et al. (2016) explored the
similar phenomenon of congestion onset. They proved analytically that the very fact that
transport layers are interdependent induces congestion and so they developed equations
that could approximate this onset based on characteristics of individual layers.

Gallotti and Barthelemy (2014) broadened the scope of multimodal urban mobility
when they considered all modes within the British public transport system. They asserted
that the growth of multimodal transportation systems has the unintended consequence
of an increase in time lost through connections. They compared theoretical shortest trip
statistics to ‘time-respecting’ paths to quantify time spent riding, waiting and walking.
The value of their insights to transport network planners is clear. Following up on this
work, Gallotti and Barthelemy (2015) documented a comprehensive methodology used to
construct a temporal multilayered network dataset of all passenger modes in the United
Kingdom for a week in October 2010.

Adding socioeconomic considerations to urban mobility, Lotero et al. (2016) con-
structed six multilayer representations of transit systems in Bogotá and Medelĺın for
different socioeconomic strata. The strata corresponded to household income. The net-
work for each stratum contained layers corresponding to different transport modes. This
novel representation allowed unique insights into the mobility patterns of different socioe-
conomic classes. The poorest used few and cheap modes to cover large parts of the urban
area in a sparse way. The middle income classes showed truly multimodal behaviour and
covered nearly all the urban zones. Finally the wealthiest commuters used the most ex-
pensive modes and travelled only in certain urban areas. Such insights are invaluable to
city planning and policy making.

Of all the multilayered road network studies surveyed, only two other studies placed
a logical layer on a physical layer. Kurant and Thiran (2006b) investigated the centrality
metrics of public transport systems in three European geographies by defining one layer
as the transport infrastructure and the other as transport intensity extracted from timeta-
bles. They asserted that the layered view offers a better estimation of the real traffic load
on the network than other commonly used techniques. Zhuo et al. (2011) studied conges-
tion vulnerability on a selection of experimental random and scale-free networks. They
also defined one layer as physical infrastructure while the other comprised traffic profiles
generated by an algorithm. Their results showed that a homogenous network structure
is more tolerant of congestion. While these two studies moved closer to the topic of this
thesis, the key difference remains that they addressed passenger transport, not freight.
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2.3 Common design parameters for topological vul-

nerability studies

A wealth of topological vulnerability studies are accumulating in the transport domain.
In this section we discuss the most prevalent ways in which network damage has been
assessed in single-layer and multilayered complex networks. Then the typical decision
process followed by researchers when designing targeted attacks is discussed.

2.3.1 Metrics to assess network damage

In their seminal work on targeted attacks and random errors, Albert et al. (2000) proposed
that the diameter of a network is an indication of connectedness (is it possible to travel
between two nodes at all) and efficiency (how easy it is to travel between two nodes).
Therefore, they measured the change in the diameter of the network as an indication of
damage.

Since this seminal work, three common dimensions of network damage have evolved.
Robustness refers to the connectedness of a network, whether it has broken into discon-
nected sub-networks or still functions as a cohesive unit. Efficiency (referred to by some
as responsiveness) determines how quickly a message (or people or freight) can travel from
one node to another. Flexibility refers to the network’s inherent ability to find alternative
paths if the shortest paths are destroyed. The most prevalent metrics used to express
these dimensions in single layer complex network studies are listed in Table 2.1.

Table 2.1: Common metrics used to measure network damage along the dimensions of
robustness, efficiency and flexibility in single-layer complex network studies.

Dimension Metrics

Robustness % of nodes in the Largest Connected Component (LCC) (P∞); and
critical point (pc).

Efficiency Diameter of the LCC;
Average shortest path length for all connected node-pairs; and
Inverse efficiency indicator.

Flexibility Average clustering coefficient.

The LCC is the largest subset of network nodes that has an undirected path between
all node-pairs. The fraction of all network nodes in the LCC is referred to as P∞ and is
the benchmark for measuring network robustness. Essentially when P∞ → 1, messages
from any node have a high probability of reaching any other node of the network1. In this
case the LCC is also called the giant connected component. As P∞ reduces, nodes become
disconnected and can no longer be reached by other network nodes. Below some value of
P∞ the network would become dysfunctional due to increasing disconnectedness (Danziger
et al., 2014). However, the threshold value of P∞ is instance-specific and depends greatly
on the field of application (social systems, transportation, neural networks etc.).

1Danziger et al. (2014) use the symbol ∼ instead of→ to indicate a variable approaching a value. The
intended audience of this thesis would better relate to the use of → than ∼ in this regard.

February 1, 2018 21



Quantifying supply chain vulnerability using a multilayered complex network perspective

Percolation theory is concerned with determining P∞(p) after a random fraction 1− p
of nodes have been removed and defining the critical point pc such that for p > pc,
P∞(p) > 0; as p → pc, P∞(p) → 0; and finally P∞(p) ≡ 0 when p < pc (Danziger et al.,
2014).

It has been shown, in single layer networks, that pc → 0 for scale-free networks, mean-
ing that in cases of random failures, nearly all of the nodes have to be removed before the
LCC becomes disconnected (Cohen et al., 2000). Scale-free networks are therefore highly
robust to random failures. Random networks, on the other hand, are highly vulnerable
with pc = 1/〈k〉 where 〈k〉 is the average network degree2 (Danziger et al., 2014).

A significant caveat is that percolation (and the determination of pc) refers to random
failures and not targeted attacks. Cohen et al. (2001) showed that under targeted attack
scale-free networks disintegrate long before the calculated pc is reached. In fact, Pastoras-
Satorras and Vespignani (2001) proved that a pc that takes into account targeted attack
cannot be analytically determined. Despite the fact that pc is not always a relevant
indicator, measuring the size of the LCC remains the most popular robustness metric.

Notably, alternative metrics for measuring robustness are emerging. For example in
their study of network skeletons, Shekhtman et al. (2014) showed that the size of the
skeleton could also be a valid interpretation of robustness. When extracting network
skeletons, scientists seek to remove the “noise” by judiciously removing links and/or
nodes. The result is a minimal subset of links and nodes that still represents all the key
topological characteristics of the original network.

In terms of efficiency, the average shortest path length is only defined as long as all
node-pairs are connected. That is, when P∞ ≡ 1. This is hardly the case for real-life
networks and certainly not the case as networks undergo successive disruptions. Therefore
some studies have reverted to measuring the average shortest path length of the LCC.
However, if the LCC shrinks significantly the averages are no longer comparable. The
efficiency indicator of Berche et al. (2009) is therefore a good workaround for disconnected
networks. It uses a summation of inverse lengths so that disconnected pairs can still affect
the measurement.

Of all three dimensions, the metric for flexibility is the most abstract. The clustering
coefficient is the ratio of the actual links to the theoretically possible links between the
first order neighbours of a node. The average clustering coefficient is then a measure of
the tightness of clusters in a network. To date it has been accepted as a measure that
indicates the probability of alternative paths in a network (Thadakamalla et al., 2004;
Viljoen and Joubert, 2016). Admittedly, there can be exceptions to this rule. In lieu of a
better measure of flexibility, the average clustering coefficient remains the standard.

Although the majority of single-layer vulnerability studies used these dimensions, there
is merit in deviating from the standard if the context calls for it. The work of Zhao et al.
(2011) is a good example. In their application to military supply chains they proposed
that the heterogeneity of demand and supply nodes and the function of the network would
be disregarded if the traditional dimensions and metrics were used. Instead they suggested
availability, connectivity and accessibility and modelled these with encouraging results.

Multilayered networks behave very differently to single-layer networks. Researchers
have shown, both analytically and empirically, that one cannot simply deduce multilayered
characteristics by studying the single-layer components in isolation. This is particularly
true for the topics of resilience and spreading processes (Boccaletti et al., 2014; Danziger

2Danziger et al. (2014) and many other network scientists use 〈k〉 to indicate average network degree.
We recognise that for the audience of this thesis it may be an unusual convention.
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et al., 2014; Kivelä et al., 2014; Lee et al., 2015; Salehi et al., 2015).
In multilayered networks, the concept of cascading failures has been the foremost

phenomenon in vulnerability studies. If the layers of a multilayered network are inter-
dependent then the links between the layers are called dependency links. Removing any
node in one layer would then trigger the removal of all nodes in all other layers that are
connected via dependency links. Such failures cascade back and forth until all dependent
nodes are removed. In studying multilayered vulnerability, scientists have focussed on
the calculation of the Mutually Connected Giant Component (MCGC) and the critical
percolation properties of cascading failures ((Boccaletti et al., 2014; Kivelä et al., 2014),
and references therein).

Studies that have used the concepts of cascading failures and percolation to investigate
vulnerability made three a priori assumptions:

1. the layers of the multilayered network were interdependent, resulting in cascading
phenomena;

2. nodes were removed during failures or attacks; and

3. a network was considered robust when P∞ was larger than some fraction.

If these a priori assumptions are not present in a specific problem context, it is necessary
to find different means to measure the robustness of a multilayered network.

So far the discourse on multilayered vulnerability has centred only around robustness.
Efficiency and flexibility have not been discussed as pertinently.

Once it has been established how network damage will be measured, simulations must
be designed to progressively disrupt the networks. Firstly, one must determine whether
the simulation will use random errors or targeted attacks. Random error simulations
are mostly used to establish a baseline or control of a network’s vulnerability. Targeted
attacks are used either to assess a network’s vulnerability to a plausible real-life threat
or when scientists want to investigate the best way to identify and prioritise the critical
elements of a network.

2.3.2 Targeted attack strategies

There are three decisions to be made when designing a targeted attack:

1. Will nodes or links be removed in each disruption?

2. Which metric will be used to prioritise critical elements for removal?

3. Will this prioritisation be dynamic (i.e. recalculated after each disruption) or static?

The most prevalent method of prioritisation has been based on the concept of cen-
trality. Centrality has been interpreted in many ways for network nodes with metrics
like degree centrality, betweenness, closeness, eccentricity and so on. This abundance of
node-based metrics is part of the reason why the majority of vulnerability studies have
concentrated on node removal. The other reason is that node removal makes sense, con-
textually, in relational networks such as those found in sociology, epidemiology and even
supply chain networks. Link removal studies have recently picked up the pace in spatial
networks. In transportation networks especially it is far more likely that a link would be
removed/damaged than a node (Viljoen and Joubert, 2016).
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Initially defined for nodes, some centrality measures have been adapted for links such
as link betweenness and degree product (Girvan and Newman, 2002; He et al., 2009;
Holme, 2002; Travieso and da Fontoura Costa, 2012). Other approaches that use node-
based centrality metrics to prioritise links have either inverted the network to a dual
representation where urban streets are modelled as nodes while intersections are modelled
as edges (Dems̆ar et al., 2008; Jiang and Claramunt, 2004; Porta et al., 2006; Tomko et al.,
2008) or have prioritised those links associated with central nodes (Zhang et al., 2007).
In the former technique node-based metrics were directly applied to streets while in the
latter streets were “guilty by association” with their incident nodes.

Apart from centrality metrics, some authors have used metrics relating to distance
(Ortigosa and Menendez, 2014) or geodesic range (Motter et al., 2002).

Another method of prioritisation stemmed from the study of network skeletons (Grady
et al., 2012; Serrano et al., 2009; Shekhtman et al., 2014). Shekhtman et al. (2014) were the
first to use network skeletons — specifically the salience network and disparity backbone
— to prioritise links in vulnerability studies. Their study concluded that while skeletons
remained capable to present global network statistics after perturbation, the way in which
the skeletons morph in response to disruptions remained to be understood. Viljoen and
Joubert (2016) compared the efficacy of targeting salient links versus links with high be-
tweenness in the global container shipping industry. They found that removing salient
links quickly reduced commonality between shortest paths, which meant reducing consoli-
dation options for shipping liners. However, by the same mechanism the salience strategy
degraded the very skeleton used to prioritise links, therefore the strategy’s efficacy was
short-lived.

More recently, Travieso and da Fontoura Costa (2012) argued that typical centrality
approaches do not adequately reflect the connectivity of the network. Spectral decom-
position (or eigendecomposition) presents a new range of metrics (such as eigenvector
centrality) that better characterise cycles, modularity and cuts in the network. In com-
parison to other techniques, targeting links according to their spectral decomposition
metrics had a more devastating effect on overall network clustering. Unfortunately, spec-
tral decomposition is suited to networks in which divisible objects (such as information or
infection) flow between nodes and not indivisible objects (such as commercial vehicles).
Therefore it is not directly relevant to transportation studies (Zadeh and Rajabi, 2013).

Having selected an appropriate metric to prioritise critical links, it must be decided
whether this metric will be recalculated between disruptions. The critical elements to be
removed next are then based on this recalculated value. In node-based removal strate-
gies the results generally show the dynamic approach decisively more effective than an
approach based on initial values (Berche et al., 2012; Holme, 2002; Nie et al., 2015).
Some studies have also shown the dynamic approach to be more effective in the case of
link-based removal (Holme, 2002; Nie et al., 2015). There are, however, studies such as
the one by Berche et al. (2012) that do not find the dynamic approach decisively more
effective in the case of link-based removal. They studied 5 node-based and 5 link-based
removal strategies targeting public transport systems across 14 global cities. Their results
show that dynamic link-based strategies are sometimes more effective and other times not
compared to the static strategies.

However, the choice between dynamic and static prioritisation does not solely depend
on which approach degrades a network quickest. It depends on the question to be answered
by the vulnerability study. One would use static prioritisation if one is interested in the
longevity of that characteristic’s ability to identify vulnerability. In other words, if the
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initial prioritisation according to a characteristic continues to effectively destroy a network
in successive disruptions, it would imply that the power of that characteristic is robust to
the changes the network undergoes as it is destroyed. On the flip side, using an approach
that is as destructive as possible allows one to explore the boundaries of a network’s
vulnerability.

2.4 Conclusion

CNT has been successfully applied in both the supply chain and road transport domains.
In road transport (and urban transport in general) multilayered CNT is providing break-
throughs in multimodal and multi-service models such as public transit. Topological vul-
nerability studies have also yielded great insights in both these domains and the field has
matured to offer benchmark metrics for network damage and targeted attack strategies.

In supply chain literature most studies focus on single-layer representations of supply
chain relationships. The multilayered dependency on infrastructure networks has not been
studied. This thesis targets a yet unexplored domain within supply chain applications of
CNT.

In terms of road network applications there remains a gap in recent literature in terms
of studying freight transport and its interaction with the road network. Freight transport
represents a small proportion of traffic. However, when one considers congestion, emissions
and infrastructure damage the contribution of commercial vehicles is disproportionately
large. Equally so, the positive economic impact of this “relatively small” segment of
traffic is also significant. Therefore there is justification to understand the behaviour of
freight transport in its own right, not just as an inflation of passenger transport. The
multilayered scenario studied in this thesis is novel. It considers freight transport activity
on the urban road network instead of passenger traffic in multimodal transit systems.
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Chapter 3

Multilayered network instances

This chapter describes the conceptual structure of the multilayered network by describ-
ing the logical and physical network layers and how these interrelate. It then presents
the adaptation of a generic multilayered network formulation to capture this conceptual
structure. Next the generation of random instances for each of the supply chain net-
work archetypes is explained. The collection of shortest path sets that result from each
randomly generated instance is unique to that instance. A formulation is proposed to
describe these collections and their two key statistics namely the shortest path length and
shortest path set size. Lastly, the distributions of these statistics for the initial networks
were analysed to investigate the differences between the archetypes as well as between
distinct instances of the same archetype.

3.1 Conceptual structure of the multilayer network

Before delving into the mathematics, we describe the two layers of the multilayered net-
work conceptually.

3.1.1 Urban road network (physical) layer

The road network was presented as a regular grid. This simplification is typical in theo-
retical models of urban road grids as it is a good approximation of the general topology of
cities around the world. Similar to the representation in Ortigosa and Menendez (2014),
the road network was a directed, unweighted grid network with m rows and n columns,
and the nodes were numbered sequentially from 1 to m×n as shown in Figure 3.1. Nodes
were connected with two directed, opposite links, �, instead of one undirected link, ↔.
The assumption was that should a road segment in one direction fail, the associated
lane in the opposite direction would not necessarily be affected as well. This occurs, for
example, when the two opposing lanes of a road are separated by a median strip.

3.1.2 Supply chain (logical) layer

Hearnshaw and Wilson (2013) proposed that efficient supply chains have a scale-free
topology. This is typically referred to as a hub-and-spoke structure. In industry, hub-
and-spoke supply chain designs are indeed prevalent as consolidation and economies-of-
scale are tenets of an efficiency-focussed supply chain mindset (Christopher and Holweg,
2011). However, Hearnshaw and Wilson (2013) conceded that small-world characteristics
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Figure 3.1: Unweighted, directed grid layouts to approximate the urban road network in
an urban context.

like short average path length and high clustering could enhance efficiency. Basole and
Bellamy (2014); Basole et al. (2016) and Thadakamalla et al. (2004) also promoted small-
world supply chain designs but for the sake of better resilience, not efficiency.

Reliable empirical data describing the true topologies of supply chain networks among
facilities in an urban environment is lacking. In absence of such real-life knowledge, we
postulated three theoretical supply chain network design archetypes (hereafter referred to
as ‘archetypes’) based on the insights from literature. For the same reason we also assumed
that supply chain facilities fulfil the same function. Therefore, we did not distinguish
between supply and demand facilities, or between warehouses, retail stores, manufacturing
facilities and so on.

The Fully Connected (FC) archetype represented a network of facilities where all fa-
cilities could ship freight to and receive freight from all other facilities. This archetype
was represented as a fully connected, unweighted, directed graph (Figure 3.2a). Each
node-pair was connected by bi-directional links. By definition this network had an aver-
age shortest path length of one. In addition, because each node was connected to every
other node in the network the clustering coefficient of each node was one. The clustering
coefficient of a node is calculated as the fraction of actual versus theoretically possible
connections between the first order neighbours of a node. The average clustering coef-
ficient of the FC archetype was thus also one, reflecting the dense connectedness of the
network. The FC archetype was one extreme on the spectrum between small-world and
scale-free.

The Single Hub (SH) archetype represented a network where all facilities were con-
nected to one single hub facility, but not to each other. The archetype was a typical star-
network and lay on the other extreme between small-world and scale-free (Figure 3.2b).
The clustering coefficient was, by definition, zero and the average shortest path length
approached the diameter of the network.

The Double Hub (DH) archetype consisted of two hub facilities, each with their own
spoke facilities, connected to each other through bi-directional links. Each hub was con-
nected to its spoke facilities by means of bi-directional links, but the spoke facilities were
not connected to one another (Figure 3.2c). In essence it was two SH networks connected
at the hubs. The clustering coefficient of this network was also, by definition, zero. The
concentration of centrality, however, was now split between two hubs. It lay between the
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FC and SH archetypes on the spectrum, albeit very close to the SH network.

(a) FC archetype (b) SH archetype (c) DH archetype

Figure 3.2: Conceptual representation of the three supply chain network archetypes.

With this collection of network archetypes, the thesis explored the performance on
the boundaries of the topology spectrum. Granted there are many potential topologies
between the FC and SH network and the choice of the DH may seem arbitrary. The
assertion is that more real-life networks resemble hub-and-spoke networks with distributed
hubs than densely connected networks. Therefore, we wanted to concentrate the study
on hub-and-spoke topologies using the FC topology as a comparative archetype. The
choice of a DH archetype instead of networks with three or more hubs that would be
further along the spectrum towards the FC archetype was also intentional. It seemed like
a small change to divide the centrality of the network from one hub into two, but it was
suspected that it could cause step-changes in the vulnerability metrics related to shortest
paths. This was a phenomenon worth monitoring. There is scope for further research to
investigate many more network archetypes, but time and computational resources limited
this thesis to three.

3.2 Multilayered network formulation

With multilayered research exploding simultaneously amongst different groups of network
scientists, a diverse cloud of definitions and mathematical formulations have mushroomed
around the topic. Although there has been effort to cement a common vernacular, sci-
entists have not yet reached a point of consensus and one is faced with many different
alternatives to describe and formulate multilayered networks.

3.2.1 Generic multilayered formulation

The formulation in this thesis was based on the generic formulation of Boccaletti et al.
(2014) as it was intuitive to the application at hand. The multilayer network was a pair
M = (G, C) where G = {Gb; b ∈ {1, 2, . . . ,M}} was a family of M individual graphs
Gb = (Xb, Eb) which each represented a layer of M.

In this generic formulation, α and β referred to layers of G such that α, β ∈ {1, 2, . . . ,M}
and α 6= β. The set of nodes in a layer Gα were denoted by Xα =

{
xα1 , . . . , x

α
Nα

}
and

Eα ⊆ Xα × Xα. The set of interconnections between nodes in Gα and Gβ with α 6= β
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were defined by

C = {Eα,β ⊆ Xα ×Xβ;∀α, β ∈ {1, . . . ,M}, α 6= β} (3.1)

Therefore the elements of Eα,β, α 6= β were interlayer connections while elements of
Eα and Eβ were the intralayer connections.

3.2.2 Customised multilayered formulation

For this thesis we adapted the generic formulation. One universal adaptation was that the
indices that named the different network layers (α and β in the generic formulation) were
superscripts in the customised formulation instead of subscripts. This was necessary to
avoid confusion with node indices which were (as per convention) indicated as subscripts.

Let M = (G, C) be the multilayered network where G = (G1K , G2). G1K represented
the logical layer with K ∈ {F, S,D} such that F , S and D denoted the FC, SH and
DH archetypes, respectively. There were 12 nodes in each of the archetype models. The
nodes1 of G1K were thus defined by:

N1K = 12 ∀K ∈ {F, S,D} (3.2)

X1K = {x1K
1 , x1K

2 , . . . , x1K
N1K} ∀K ∈ {F, S,D} (3.3)

E1K = {e1K
ij } ∀i, j ∈ {1, 2, . . . , N1K}|i 6= j, ∀K ∈ {F, S,D} (3.4)

where

e1K
ij =

{
1 if x1K

i was connected to x1K
j ∀K ∈ {F, S,D}

0 otherwise.
(3.5)

G2 represented the road network with m = n = 10 as illustrated in Figure 3.3. The nodes
of G2 were defined by:

N2 = m× n = 100 (3.6)

X2 = {x2
1, x

2
2, . . . , x

2
N2} (3.7)

E2 = {e2
st} ∀s, t ∈ {1, 2, . . . , N2}|s 6= t (3.8)

where

e2
st =

{
1 if x2

s was connected to x2
t

0 otherwise.
(3.9)

1Throughout this thesis there is no comma between node indices in the subscript unless one or both
of the indices were double digits.

February 1, 2018 29



Quantifying supply chain vulnerability using a multilayered complex network perspective

Figure 3.3: G2 — the 10×10 directed, unweighted representation of the road network.

3.3 Sample generation of multilayered network in-

stances

To generate a multilayered network instance M, the logical layer G1K had to be placed
onto the physical layer G2 by associating each node in X1K with exactly one node in
X2. Simplifying assumptions made were that the logistics facilities correspond with their
nearest intersections on the grid and that at most one logistics facility is associated with
each intersection. These associations were the interlayer connections denoted by E1K,2.
The adjacency matrix of the interlayer links E1K,2 was defined as A[1K,2] = (a1K,2

is ), where:

a1K,2
is =

{
1, if (x1K

i , x2
s) ∈ E1K,2 ∀i ∈ {1, 2, . . . , N1K}, s ∈ {1, 2, . . . , N2}

0, otherwise
(3.10)

The pseudocode in Algorithm 1 shows how the associations were randomly generated
to produce multilayered network instances of G1F on G2. In this manner, a sample of 500
random instances was generated for the FC archetype.

Algorithm 1: Random generation of A[1F,2]

Input : G1F , G2

Output: A[1F,2]

1 used← NULL //vector that stores x2
i already assigned;

2 A[1F,2] ← NULL //set all elements in matrix as unassigned;

3 for x1F
i ∈ X1F do

4 continue =TRUE;
5 while continue do
6 randV ertex← randomly selected x2

j ∈ X2;

7 if randV ertex /∈ used then

8 a
[1F,2]
ij ← 1 ;

9 Append used with randV ertex;
10 continue = FALSE;

11 return A[1F,2]

February 1, 2018 30



Quantifying supply chain vulnerability using a multilayered complex network perspective

Multilayered network instances of G1S on G2 were generated similarly as shown in
Algorithm 2. A sample of 500 instances was generated for the SH archetype.

Algorithm 2: Random generation of A[1S,2]

Input : G1S , G2

Output: A[1S,2]

1 used = NULL //vector that stores x2
i already assigned;

2 A[1S,2] = NULL//set all elements in matrix as unassigned;

3 for x1S
i ∈ X1S do

4 continue =TRUE;
5 while continue do
6 randV ertex← randomly selected x2

j ∈ X2;

7 if randV ertex /∈ used then

8 a
[1S,2]
ij ← 1 ;

9 Append used with randV ertex;
10 continue = FALSE;

11 return A[1S,2]

Finally, generating multilayered instances of G1D on G2 was slightly different as the
assignment of nodes to hubs had to be constrained. The two hubs were first associated
with grid nodes. Thereafter, the nodes assigned to a hub had to be placed on the grid
such that the distance to the hub (along G2) was shorter than or equal to the distance to
the other hub. Algorithm 3 displays the pseudocode.

The probability of generating identical multilayered instances was very small. There-
fore, although the algorithms did not explicitly prevent the generation of duplicate in-
stances, no duplicates were produced for any of the three archetypes. A description of the
data files used as input and produced as output is described in the working paper Viljoen
and Joubert (2017). The datasets are also published on Mendeley (Joubert and Viljoen,
2017).

3.4 Formulation of the collection of shortest path sets

The shortest relational path between any two nodes in G1K was predefined. However,
freight cannot move along relational paths, it requires the road infrastructure. Thus, when
calculating the shortest freight movement path between two nodes in G1K , the positions
of these nodes on G2 had to be taken into account.

Figure 3.4 shows the example of G1D layered on G2 with nodes x1D
5 and x1D

8 iden-
tified as origin and destination, respectively. If only the relational path were consid-
ered, the shortest path between x1D

5 and x1D
8 would have consisted of three segments:

x1D
5 →x1D

1 →x1D
2 →x1D

8 (Figure 3.4b). However, the physical constraints of the infrastruc-
ture also had to be regarded. Where there was only one shortest relational path between
the node-pair G1K , there could have been be multiple alternatives in the multilayered
network. Figure 3.4c presents the three alternative shortest paths between x1D

5 and x1D
1 ,

each of length 3. Similarly, there were 20 alternative shortest paths between x1D
1 and x1D

2 ,
each of length 6 (Figure 3.4d) and 2 alternative shortest paths between x1D

2 and x1D
8 , each

of length 2 (Figure 3.4e). The length of the shortest paths between node x1D
5 and x1D

8

was thus 11 and there were 120 alternatives.
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(e) Segment 3: shortest paths

Shortest Path Statistics

Length

Segment 1 (5 to 1) : 3

Segment 2 (1 to 2) : 6

Segment 3 (2 to 8) : 2

Total (2 to 8): 3 + 6 + 2 = 11

Set Size

Segment 1 (5 to 1) : 3

Segment 2 (1 to 2) : 20

Segment 3 (2 to 8) : 2

Total (2 to 8): 3 x 20 x 2 = 120

(f) Calculations

Figure 3.4: Calculating the length and number of shortest paths between a node-pair in
M by adhering to both relational and physical constraints.

All metrics pertaining to shortest paths referred to a specific realisation ofM, therefore
in the definitions that follow we dropped the superscripts relating to the layers and network
archetype for simplicity’s sake. Generally:

Sij = {SDij, SIij} (3.11)

where SDij was the subset of all shortest path sets between node-pairs (x1K
i , x1K

j ) that
were directly connected in G1K :

SDij = {s1, s2, . . . , sPij} ∀e1K
ij ∈ E1K (3.12)

and SIij was the subset of all shortest path sets between node-pairs that were indirectly
connected in G1K :

SIij = {s1, s2, . . . , sPij} ∀e1K
ij /∈ E1K (3.13)

We then defined the collection of shortest paths as

C(Sij) =
⋃
i,j

Sij ∀i, j ∈ {1, 2, . . . , N1K}, i 6= j (3.14)

There were two statistics of interest namely the length of a shortest path and the number
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of alternative shortest paths between two nodes. Therefore:

Lij ≡ length of a shortest path between node x1K
i and x1K

j (3.15)

∀i, j ∈ {1, 2, . . . , N1K}, i 6= j

Pij ≡ number of alternative shortest paths between node x1K
i and x1K

j (3.16)

∀i, j ∈ {1, 2, . . . , N1K}, i 6= j

The efficiency of M, which was the average shortest path length, was:

L̄ =
Σi,j,i6=jLij

N1K(N1K − 1)
where i, j ∈ {1, 2, . . . , N1K} (3.17)

where N1K was the number of nodes in G1K .

3.5 Shortest path statistics of the initial datasets

The initial characteristics of C(Sij) depended greatly on the network archetype. We
specifically compared the distributions of the initial shortest path lengths and the set
sizes.

3.5.1 Initial distribution of the shortest path length

Figure 3.5a plots the distributions of L̄, showing that the FC archetype had significantly
shorter paths than the other two archetypes. This directly resulted from the fact that
all node-pairs were directly connected, not requiring rerouting through a hub node. A
Kolmogorov-Smirnov test (KS-test) comparing the distributions of L̄ for the SH and DH
archetypes rejected the null hypothesis that the distributions were similar with p = 0.0047.
The lower mean and wider spread in both tails of the DH archetype was explained by the
structure of GD

1 . Intra-hub paths (paths between nodes that shared a common hub node)
in the DH archetype were generally shorter than intra-hub paths of the SH archetype.
This was because in the DH archetype the placement of the two hubs on the grid effectively
split the grid and therefore the intra-hub nodes were closer to their respective hubs. On
the other hand, the inter-hub movements were longer as they had to be rerouted through
two hubs. Intra-hub paths accounted for 45% of the network, inter-hub for 38% and the
remainder of the paths were links between one hub and a node assigned to the other hub
and vice versa. Paths in this last group were not distinctly longer or shorter between the
two archetypes. As the majority of the links in the DH archetype had shorter lengths, L̄
was lower.

The diameter of a network is the length of its longest shortest path denoted by max (L).
Figure 3.5b plots the distributions of max (L), where once again the FC archetype showed
far shorter paths than the others. This time, the KS-test failed to reject the null hypothesis
that the distributions of max (L) for DH and SH archetypes were similar with p = 0.29.

The FC archetype was thus most efficient by a large margin, whereas the clear winner
between the two hub archetypes was instance-specific, with a slight prejudice in favour of
the DH archetype.
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Figure 3.5: Distributions of the diameter and average shortest path lengths for each of
the three archetypes.

3.5.2 Initial distributions of the shortest path set sizes

The shortest path set size (Pij) for two directly connected nodes was the combinatorial
product of the number of columns and rows of G2 traversed when moving from one node
to the other (refer to Figure 3.4). Furthermore, Pij for any indirectly connected node-pair
was the combinatorial product of the shortest path set sizes of all the directly connected
node-pairs that constituted the logical path in G1K .

The sum of the shortest path set sizes of an instance were denoted by
∑

i,j∈Sij ;i 6=j
Pij

and
∑

i,j∈Sij ;i 6=j
Pij, when considering only the direct connections (SDij) and full network

(Sij), respectively. Figure 3.6a shows the box plots of the distributions of the sums over
the directly connected node-pairs (SDij) in each instance, according to the archetypes.
The distributions had very long tails as confirmed by the high kurtosis values. A kurtosis
value of 3 indicates that a distribution is mesokurtic, being no more likely to produce
outliers than a normal distribution. A value greater than three indicates a leptokurtic
distribution that has a greater degree of “tailedness” than the normal distribution and
kurtosis less than 3 indicates a platykurtic distribution with a smaller likelihood than the
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normal distribution to produce outliers.
For the FC archetype all nodes were directly connected thus the relevant distributions

in Figures 3.6a and 3.6b are the same. For the hub archetypes the distributions in Fig-
ure 3.6b were disproportionately wider due to the fact that 83.3% of the node-pairs were
indirectly linked in these archetypes and each of these sets SIij was the product of the
set sizes of its component sets SDij. The DH archetype had the smallest set sizes for
directly connected node-pairs, owing to the fact that its directly connected nodes were
closer together on the grid. Interestingly, the kurtosis of SDij for the DH archetype also
showed that it was far more likely to produce outliers than the other two archetypes.
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Figure 3.6: Analysis of the distributions of the sum of the shortest path set sizes for direct
paths (SDij) and the full network (Sij)

When regarding only shortest path lengths one could have concluded that there wasn’t
great variance between the different instances of a single archetype, nor was there really
a pronounced difference between the two hub archetypes. This was definitely not true
when considering the sizes of the shortest path sets. One randomly generated instance of
M could have had vastly different set sizes than the next randomly generated instance.

This chapter showcased the first artefact of the thesis: a multilayered complex network
model to capture the dependence of a supply chain network on an urban road network.
It also described how a sample of random instances were generated and discussed the
characteristics of the initial collections of shortest paths. These initial instances were also
referred to as the “undisturbed” instances and presented the baseline for the targeted
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attack and random error simulations discussed in the following chapters.
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Algorithm 3: Random generation of A[1D,2]

Input : G1D, G2

Output: A[1D,2]

1 used = NULL //vector that stores x2
j already assigned;

2 A[1D,2] = NULL//set all elements in matrix as unassigned;

3 //Assign hubs first
4 for i← 1 to 2 do
5 continue =TRUE;
6 while continue do
7 randV ertex← randomly selected x2

j ∈ X2;

8 if (randV ertex /∈ used) then

9 a
[1D,2]
ij ← 1 ;

10 Append used with randV ertex;
11 continue =FALSE;

12 //Assign remaining vertices
13 for i← 3 to N1 do
14 continue =TRUE;
15 while continue do
16 randV ertex← randomly selected x2

j ∈ X2;

17 if randV ertex /∈ used then
18 Dist1← Dijkstra’s shortest path on G2

19 between randV ertex and x1D
1 ;

20 Dist2← Dijkstra’s shortest path on G2

21 between randV ertex and x1D
2 ;

22 if i ≤ 2 + (N1S − 2)/2 then //vertices around hub 1//
23 if Dist1 ≤ Dist2 then //distance to hub 1 must be smaller or equal to distance

to hub 2//

24 a
[1D,2]
ij ← 1 ;

25 Append used with randV ertex;
26 continue =FALSE;

27 else //vertices around hub 2//
28 if Dist2 ≤ Dist1 then //distance to hub 2 must be smaller or equal to distance

to hub 1//

29 a
[1D,2]
ij ← 1 ;

30 Append used with randV ertex;
31 continue = FALSE;

32 return A[1D,2]
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Chapter 4

Discovering vulnerability
characteristics

In topology-based vulnerability studies, targeted attack simulations are frequently used
to identify the most critical or most vulnerable elements in a network. A targeted attack
simulation selects nodes or links to remove based on some characteristic — for example
degree centrality or node betweenness. If the simulation causes significant damage, one can
know that the characteristic used to prioritise elements for removal is a key determinant
of the network’s vulnerability.

In this thesis three link-based targeted attack strategies were used to investigate which
characteristics of the collection of shortest path sets, C(Sij), could be most effective in
identifying critical links in G2. The analysis of the results of the three simulations paved
the way for the development of a suite of vulnerability metrics.

4.1 Link-based targeted attack simulations

An illustrative example of a simple supply chain network around the O.R. Tambo Interna-
tional Airport near Johannesburg, South Africa is introduced to facilitate the description
of the targeted attack strategies. Imagine a supply chain network that contains three fa-
cilities namely an Airfreight Warehouse, a Distribution Centre and a Retail Outlet. The
Distribution Centre is an intermediary between the Airfreight Warehouse and the Retail
Outlet. Therefore, freight can be shipped from the Airfreight Warehouse to the Distribu-
tion Centre and visa versa. Similarly, freight can be shipped from the Distribution Centre
to the Retail Outlet and visa versa. However, freight cannot be directly shipped between
the Retail Outlet and the Airfreight Warehouse. Figure 4.1 shows these three facilities
and their logical relationships. In the terminology of this thesis this supply chain net-
work represents a Single Hub (SH) network with three nodes (G1S) where the Airfreight
Warehouse and the Distribution Centre as well as the Distribution Centre and the Retail
Outlet are directly connected, while the Airfreight Warehouse and Distribution Centre
are indirectly connected.

To keep the illustration simple we assume that there are only three shortest path
alternatives between the Airfreight Warehouse and the Distribution Centre, namely Path
1, Path 2 and Path 3 as indicated in Figure 4.2. Similarly, there are also only three
shortest paths in the opposite direction from the Distribution Centre to the Airfreight
Warehouse (Paths 4, 5 and 6 ). We also assume that there are only two shortest path
alternatives, namely Path 7 and Path 8 between the Distribution Centre and the Retail
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Figure 4.1: An illustrative example of a supply chain network around O.R. Tambo Inter-
national Airport, South Africa. The arrows indicate the logical relationships that dictate
how freight flows between facilities (Source: OpenStreetMap contributors (2017)).

Figure 4.2: Shortest path alternatives of the illustrative supply chain network. Although
more alternatives could exist in reality, only a few paths are assumed to keep the illustra-
tion simple. The difference in path lengths is also assumed to be within some allowable
tolerance (Source: OpenStreetMap contributors (2017)).

Outlet and two paths (Paths 9 and 10 ) in the opposite direction. A further assumption
is that the differences in these paths’ lengths are within some allowable tolerance and
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therefore they can be assumed to be of “equivalent” length.
In the remainder of this chapter we will refer back to this example when describing

the design of the targeted attack strategies. When designing the three link-based targeted
attack simulations, three questions had to be answered:

1. How was network damage to be defined and measured?

2. How were links to be prioritised for removal?

3. Would the prioritisation be revised after each disruption or not?

4.1.1 Defining network damage

In this thesis we tracked the robustness and efficiency loss of the network as indica-
tors of damage. In keeping with contemporaries we regarded efficiency as the average
shortest path length between connected node-pairs in G1K . With regards to robustness
we recognised that in practice facilities would be heterogenous and could not always be
substituted (Zhao et al., 2011). Unfortunately, we lacked the data required to make as-
sumptions regarding facility function in typical urban supply chains. To compensate for
this we assumed that all facilities were important to the functioning of the supply chain
and thus could not be substituted. Therefore the network was considered “connected”
as long as all node-pairs in G1K were still connected. Given these two dimensions, three
escalating levels of network damage were defined.

Efficiency loss

Efficiency was lost when the average shortest path length increased. In the example,
efficiency loss would occur when road links are removed so that all of the three paths
between the Airfreight Warehouse and the Distribution Centre are destroyed. This would
require that a new set of alternative shortest paths be found by looking for detours on
the road network. The lengths of these new shortest path alternatives would be greater
than that of the initial paths because of the detours. Therefore, the average shortest path
length of the whole network would increase. Similarly, efficiency would be lost if the path
sets in the opposite direction or between the Distribution Centre and Retail Outlet were
destroyed as new alternative path sets would be longer.

Therefore, in the simulations, efficiency loss was regarded as an increase in the average
shortest path length (L̄).

Disconnection

A network was disconnected when one or more node-pairs in G1K no longer had any path
connecting them. Imagine that Paths 1–3 were all destroyed and there were no viable
detours that could be used to find new alternatives. It would then be impossible to travel
from the Airfreight Warehouse to the Distribution Centre (even though it may still be
possible to travel in the opposite direction). According to our definition of robustness,
the network would be dysfunctional because one of the logical links are now disconnected.

In the simulations, a network was considered disconnected if one or more node-pairs in
G1K became disconnected. However, while still investigating the behaviour and charac-
teristics of the collection of shortest paths we decided to continue the simulations beyond
the initial disconnection.
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Destruction

A network was considered destroyed when all node-pairs had become disconnected. In
the example this would mean that it is not possible to travel between the Airfreight
Warehouse and Distribution Centre in either direction nor is it possible to travel between
the Distribution Centre and the Retail Outlet in either direction.

In the simulations destruction meant that G1K had become an empty graph.

4.1.2 Prioritising links for removal

In reviewing the literature on link-based strategies, it was noted that betweenness and
network skeletons were the most relevant concepts as these are defined by the shortest
paths of a network. This aligned with our interest in the characteristics of the collection
of shortest paths. In terms of network skeletons, the hub-and-spoke nature of the SH
and Double Hub (DH) archetypes promoted the use of link salience (Grady et al., 2012).
Therefore prioritisation relating to link betweenness and link salience was used.

The purpose of using the targeted attack simulations in this study was to compare
the effectiveness of three prioritisation characteristics namely Overall link betweenness
(Overall-B) (Section 4.1.3), Elemental link betweenness (Elemental-B) (Section 4.1.4), and
Link salience (Overall-S) (Section 4.1.5). With limited computational resources and time
either static or dynamic prioritisation could have been selected, but not both. A dynamic
prioritisation approach, where Overall-B, Elemental-B and Overall-S were recalculated
after each removal of links, held two specific benefits. Firstly, simulations were expected
to be shorter as targeted attacks remained more effective. Secondly, the evolution of the
characteristics could also be tracked by comparing the intermediate and final prioritisation
to the initial prioritisation.

In summary, link-based targeted attack simulations with dynamic prioritisation were
used to test three characteristics based on link betweenness and link salience. Each sim-
ulation started with a sample of 500 undisturbed multilayered instances for each network
archetype. Iterative disruptions removed approximately 1% of links from G2 according
to the specified strategy. The performance of these simulations was compared based
on the progression through three levels of escalating network damage namely efficiency
loss, disconnection and destruction. The following three subsections describe the three
prioritisation characteristics with reference to the illustrative example.

4.1.3 Overall link betweenness (Overall-B)

If we consider the set of alternative paths between the Airfreight Warehouse and the
Distribution Centre, we notice that eOP , which is the link from node O to P , features on
all the paths, while ePO features on all the paths in the opposite direction. Therefore,
regardless of which path you choose, you will travel on eOP in one direction or ePO in
the other. On the flip side, if either of these links are removed, it would immediately
destroy all the alternatives in a particular direction. This is what it means when a link is
“between” two nodes. It features heavily in the set of shortest paths that connects them.

Link betweenness is then an aggregated measure of a link’s importance when consid-
ering all the shortest paths of the network. We call this Overall-B. To calculate Overall-B
for eOP (i.e. from the Airfreight Warehouse to the Distribution Centre), we start by count-
ing how many times it features in the shortest paths of the entire network (see Table 4.1).
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It then follows that:

Overall-B(eOP ) =
Occurrences

Total shortest paths

=
9

22
= 0.41

Table 4.1: Illustrative example of calculating Overall-B.

From To Path sequence
Occurrences of

eOP

Airfreight
Warehouse

Distribution Centre
Path 1 –
Path 2 –
Path 3 –

Distribution Centre Retail Outlet
Path 7 –
Path 8 –

Airfreight
Warehouse

Retail Outlet

Path 1+Path 7 –
Path 1+Path 8 –
Path 2+Path 7 –
Path 2+Path 8 –
Path 3+Path 7 –
Path 3+Path 8 –

Distribution Centre
Airfreight
Warehouse

Path 4 D

Path 5 D

Path 6 D

Retail Outlet Distribution Centre
Path 9 –
Path 10 –

Retail Outlet
Airfreight
Warehouse

Path 4+Path 9 D

Path 4+Path 10 D

Path 5+Path 9 D

Path 5+Path 10 D

Path 6+Path 9 D

Path 6+Path 10 D

Total occurrences in all shortest paths: 9

To calculate Overall-B of each intralayer link in G2 required that we first find a way
to count on how many shortest paths each link featured. The collection of shortest paths,
C(Sij), was a collection of all of the path sequences for directly and indirectly connected
node-pairs in G1K . Each of these sequences consisted of a subset of the intralayer links of
G2. Therefore, if one reconstructed the grid using only the links in C(Sij), the result was
a partial grid of all the links that featured in the shortest paths ofM. We reconstructed
such a grid using all the paths in C(Sij) and called this Gζ = (Xζ , Eζ) where Xζ ⊆ X2 |
xζu ∈ C(Sij) and u ∈ {1, 2, . . . , N ζ}. The links were defined by Eζ ⊆ E2 | eζuv ∈ C(Sij) and
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u, v ∈ {1, 2, . . . , N ζ}.
Unlike G1K and G2, the links of Gζ were weighted. The weight of each link eζuv ∈ Eζ

was the number of times that link featured in the path sequences of C(Sij) and was
denoted by wζuv. Therefore the link betweenness could be calculated from these weights1

as follows:

Overall-B(e2
st) =



wζuv∑
i,j;i6=j

Pij
if e2

st ≡ eζuv and thus e2
st ∈ Eζ ;

where Pij was the shortest path set size,

u, v ∈ {1, 2, . . . , N ζ},
i, j ∈ {1, 2, . . . , N1K}, and

s, t ∈ {1, 2, ..., N2}
0 otherwise

(4.1)

The Overall-B attack strategy prioritised e2
st in descending order of Overall-B(e2

st).
The four top-ranking links were removed during a disruption (≈ 1% of E2). After a
disruption, C(Sij) and Overall-B were recalculated before selecting the next four links to
remove.

The average Overall-B score was calculated per instance and the distribution of these
instance-averages is shown in Figure 4.3. The Fully Connected (FC) archetype had a rela-
tively narrow distribution with a low mean (4.4%) indicating that across all 500 instances
the grid links featuring in the shortest paths, eζuv, had very low betweenness scores as the
shortest paths were widely spread across G2. Contrast this to the SH and DH archetypes
that forced shortest paths to route via the hubs. This resulted in fewer links in Eζ that
each carried a larger proportion of shortest paths. A Kolmogorov-Smirnov test (KS-test)
rejected the null hypothesis that the hub network statistics were drawn from the same
distribution and therefore it was settled that the DH archetype had a higher concentra-
tion of shortest paths which resulted in the higher Overall-B values. Intuitively this made
sense as the grid links in the shortest path between the two hubs would have featured in
all inter-hub shortest paths. A strategy that removed links based on Overall-B was thus
expected to destroy the hub networks far quicker than the FC network.

Including all the shortest paths in the calculation is the classic way of calculating
betweenness. However, in M the shortest path sets of indirectly connected node-pairs
SIij were combinatorial products of the shortest path sets of the directly connected node-
pairs SDij that constituted them (refer Figure 3.4). Therefore if all the shortest paths
of any directly connected node-pair (x1K

i , x1K
j ) ∈ EK

1 were disconnected (i.e. SDij = ∅),
all the indirectly connected node-pairs that contained that SDij were also disconnected.
In the calculation of Overall-B there was thus a double counting of sorts. Therefore we
developed another betweenness metric that focussed only on the path sets of directly
connected node-pairs.

1For clarity’s sake, it is emphasised that both the index sets s, t and u, v referred to nodes in the
physical layer, the difference being that u, v referred to the subset of the nodes that appeared in C(Sij).
The distinction was necessary as an edge in Gζ had a weight wu,v while the corresponding edge in G2

was unweighted.
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Figure 4.3: Distribution of the instance-specific averages of Overall-B values in the initial
instances before disruption.

4.1.4 Elemental link betweenness (Elemental-B)

If we calculate Elemental-B for eOP , we only consider the paths between the Airfreight
Warehouse and the Distribution Centre as well as the Distribution Centre and the Retail
Outlet. Table 4.1.4 shows the count of the number of occurrences and it follows that:

Elemental-B(eOP ) =
Occurrences

Total shortest paths (direct only)

=
3

10
= 0.3
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Table 4.2: Illustrative example of calculating Elemental-B.

From To Path sequence
Occurrences of

eOP

Airfreight
Warehouse

Distribution Centre
Path 1 –
Path 2 –
Path 3 –

Distribution Centre Retail Outlet
Path 7 –
Path 8 –

Distribution Centre
Airfreight
Warehouse

Path 4 D

Path 5 D

Path 6 D

Retail Outlet Distribution Centre
Path 9 –
Path 10 –

Total occurrences in all shortest paths: 3

Once again, to calculate Elemental-B of any intralayer link in G2, it was required to
first count how many of the shortest paths between directly connected nodes in G1K it
featured in. We thus constructed a network of shortest paths Gγ = (Xγ, Eγ) where Xγ ⊆
X2 | xγu ∈ SDij and u ∈ {1, 2, . . . , Nγ}. The links were defined by Eγ ⊆ E2 | eγuv ∈ SDij

and u, v ∈ {1, 2, . . . , Nγ}.
Similar to Gζ , the links of Gγ were weighted by the number of times a link featured

in the path sequences of SDij. These link weights were denoted by wγuv, where u, v ∈
{1, 2, .., Nγ}. Therefore we used wγuv to calculate Elemental-B(e2

st) as follows:

Elemental-B(e2
st) =



wγuv∑
i,j;i 6=j

Pij
if e2

st ≡ eγuv and thus e2
st ∈ Eγ;

u, v ∈ {1, 2, . . . , Nγ},
i, j ∈ {1, 2, . . . , N1K}, and

s, t ∈ {1, 2, ..., N2}
0 otherwise

(4.2)

The Elemental-B attack strategy prioritised e2
st in descending order of Elemental-

B(e2
st). The four top-ranking links were removed during a disruption (≈ 1% of E2). After

a disruption SDij and Elemental-B were recalculated before selecting the next four links
to remove.

In the FC archetype all supply chain nodes were directly connected to all others and
therefore there were no indirectly connected sets (SIij = ∅∀i, j). The Overall-B and
Elemental-B scores for the FC instances were thus identical.

In Figure 4.4 we see that the distributions of the average values of Elemental-B for the
hub archetypes were very similar to that of the FC archetypes. (However, a KS-test still
rejected the null hypothesis that these sample distributions were drawn from the same
continuous distribution.) Suddenly importance (in terms of betweenness) was far more
dispersed among the links of G2. This showed the significant effect that the combinatorial
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nature of SIij had. Based on the initial distributions it seemed likely that the SH archetype
would have been most adversely impacted by a strategy based on Elemental-B. On average
the links in Eγ had slightly higher betweenness in the SH instances and would thus affect
more shortest paths if removed.
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Figure 4.4: Distribution of the instance-specific averages of Elemental-B values in the
initial instances before disruption.

4.1.5 Overall link salience (Overall-S)

Where link betweenness calculates the absolute dependence of a network’s shortest paths
on one link, link salience is a consensus-based metric that quantifies to what fraction of
the shortest path sets a certain link is important. If a link features in one, more than
one or all of the shortest paths between two nodes, it is important to that node-pair, if it
does not feature on any of the shortest paths, it is not important to that node-pair. We
denoted link salience by Overall-S.

To calculate Overall-S for eOP we first determine whether it played a role in each of
the shortest paths of each node-pair to determine a consensus score (see Table 4.3). It
then follows that:

Overall-S(eOP ) =
Consensus score

Number of node-pairs

=
2

6
= 0.33

The most salient links tend to be spread out throughout the network while the most
between links are concentrated in the barycenter (Grady et al., 2012; Viljoen and Joubert,
2016). One of the powerful advantages of salience as a prioritising metric is that most
empirical networks display a bathtub distribution of salience scores which means that
links can be clearly defined as salient or not (Grady et al., 2012). For our purposes, we
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Table 4.3: Illustrative example of calculating Overall-S.

From To Path sequence
Occurrence of
eOP in path set

[DYes/– No]

Airfreight
Warehouse

Distribution Centre
Path 1

–Path 2
Path 3

Distribution Centre Retail Outlet
Path 7

–
Path 8

Airfreight
Warehouse

Retail Outlet

Path 1+Path 7

–

Path 1+Path 8
Path 2+Path 7
Path 2+Path 8
Path 3+Path 7
Path 3+Path 8

Distribution Centre
Airfreight
Warehouse

Path 4

DPath 5
Path 6

Retail Outlet Distribution Centre
Path 9

–
Path 10

Retail Outlet
Airfreight
Warehouse

Path 4+Path 9

D

Path 4+Path 10
Path 5+Path 9
Path 5+Path 10
Path 6+Path 9
Path 6+Path 10

Total consensus score: 2

regarded salience as a better indicator of how widely spread the impact of a disruption
would be than betweenness.

To calculate Overall-S for links in G2 we first had to calculate the consensus scores for
each link:

cst =
∑
i,j;i 6=j

cst(i, j)|s, t ∈ {1, 2, ...N2}, i, j ∈ {1, 2, ..., N1K} (4.3)

where

cst(i, j) =

{
1 if e2

st ∈ Sij
0 otherwise

(4.4)

In a network where all node-pairs are still connected, the number of shortest path sets
‖C(Sij)‖ is equal to the number of node-pairs. However, we continued the targeted attack
simulation beyond disconnection, therefore we divided the consensus score by the number
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of shortest path sets and not the number of node-pairs:

Overall-S(e2
st) =

cst
‖C(Sij)‖

where i, j ∈ {1, 2, ..., N1K} (4.5)

Overall-S prioritised e2
st in descending order of Overall-S(e2

st). The four top-ranking
links were removed during a disruption (≈ 1% of E2). After a disruption C(Sij) and
Overall-S were recalculated before selecting the next four links to remove.

We expected to find a clear distinction between salient and non-salient links and
thus calculated two statistics per instance. The first was the average Overall-S score of
all non-salient links of an instance (Overall-S(e2

st) < 0.5). The second was the average
Overall-S score of all salient links of an instance (Overall-S(e2

st) ≥ 0.5). Figure 4.5 shows
the distribution of these two statistics side-by-side.

The first observation was that there were no salient links for the FC archetype. That
meant that no e2

st was included in more than half of the shortest path sets. In fact,
links were quite conclusively non-salient with averages below 0.15. The lack of restrictive
business rules to govern the logical paths in G1F resulted in a somewhat random dispersion
of shortest paths. There was no salience skeleton to extract.

While the hub archetypes showed a clear concentration of salient and non-salient links,
the average for the salient links was far lower than observed in other studies which typically
noted scores u 1. Similarly, the values for the non-salient links were far higher than in
other studies which typically saw scores u 0. The skeleton structure in these instances
was thus less distinct than in other real-life networks (Grady et al., 2012; Shekhtman
et al., 2014; Viljoen and Joubert, 2016). These real-life networks typically had strong
hub-spoke topologies (approximating scale-free networks). The FC archetype had no
hub-and-spoke characteristics at all, explaining the difference. One might’ve expected the
SH and DH archetypes to have a skeleton due to their explicit hub-and-spoke topologies.
However, these hub-and-spoke archetypes were layered on a regular grid, which had a
completely different skeleton structure. Therefore the multilayered nature diluted the
skeleton structure. It was presumed that the lack of skeleton structure would weaken the
effectiveness of Overall-S as prioritisation strategy.

4.2 Results of link-based targeted attack simulations

In analysing the results of the targeted simulations, we first determined the effectiveness
of each of the disruption strategies. This was based on the three defined levels of dam-
age. Secondly, we investigated how the metrics used to prioritise disruptions (Overall-B,
Elemental-B and Overall-S) changed with progressive recalculation.

4.2.1 Effectiveness of simulation strategies

To compare effectiveness, we first considered the efficiency loss in the instances up until the
point of disconnection. Thereafter, the number of disruptions required before instances
were disconnected was tracked. The simulations were continued until all instances were
completely destroyed and so the number of further disruptions required from disconnection
to destruction was also analysed.
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FC
SH
DH

0.0 0.1 0.2 0.3 0.4 0.5

Non−salient links

FC
SH
DH
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Figure 4.5: Distribution of the instance-specific averages of Overall-S values for salient
(0.5 ≤ Overall-S(e2

st) ≤ 1) and non-salient (0 ≤ Overall-S(e2
st) < 0.5) links in the initial

instances before disruption. There were no links in the initial FC instances that had a
salience value greater than 0.5.

Efficiency loss

Efficiency is lost in a network when it takes longer, on average, to travel from one node to
another. In M, a loss in efficiency was interpreted as an increase in the average shortest
path L̄. To measure the efficiency loss of an instance, the % difference between L̄ in the
initial undisturbed network and L̄ in the network right before it became disconnected was
determined.

The way in which efficiency and efficiency loss was measured in this thesis prevented
one from tracking efficiency after disconnection for two specific reasons. Firstly, it could
report “better” efficiency after a node-pair had become disconnected. If a node-pair was
disconnected Lij became 0. If this Lij were still included in the calculation of L̄ it would
have lowered the average making the network “more” efficient, which would obviously have
been untrue. Alternatively, if this node-pair were completely removed from the calculation
of L̄ it could still have resulted in a “higher” efficiency, depending on the changes in
the remaining node-pairs. Secondly, if one were to disregard disconnected node-pairs in
the calculation of L̄ different instances would have had different numbers of node-pairs
across which efficiency and efficiency loss were measured, making them incomparable. A
number of researchers have encountered a similar problem in the measurement of efficiency
in vulnerability studies and have suggested alternative measures to overcome it (Costa
et al., 2007). For the purposes of this thesis the average shortest path remained the most
intuitive. Thus, efficiency was not tracked beyond disconnection.

Instances were grouped into samples based on the number of progressive disruptions
endured before disconnection. In other words, the % change in L̄ of the 165 FC instances
that were disconnected after 4% of the grid links were removed by the Overall-B simulation
all constituted independent observations within one sample. These observations were all
made when 3% of the grid links had been removed as the next disruption disconnected
the instances. Figure 4.6 plots the observations in the samples corresponding to the
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point in the simulation at which they were made. The figure distinguishes between the
three simulations for each of the network archetypes2. In addition to the observations of
each sample, the sample means are also shown for all samples that had more than one
observation.

Across the board, the longer an instance survived, the greater its efficiency loss was.
This was evident from the upward trend in the sample means of the % change in L̄. With
regards to the effectiveness of the prioritisation strategy, this could have been interpreted
in two ways. Firstly, a strategy could have been considered more effective because it
resulted in greater efficiency loss, which was the first level of damage. However, instances
only incurred greater efficiency loss because they did not become disconnected, which was
the second level of damage. The second interpretation could have been that a strategy
was actually less effective in causing damage if it caused greater efficiency loss simply
because that meant that it could not disconnect the network.

There were also two practical interpretations to consider. The first was that a supply
chain would rather endure efficiency loss than disconnection and therefore a strategy that
disconnects sooner is more lethal. The second perspective was that a strategy that doesn’t
disconnect facilities would not necessarily raise a red flag with management. Unbeknownst
it would quietly whittle away efficiency until the cumulative damage turns out to be a
silent killer for the supply chain. Cognisant of both perspectives, we chose to regard a
strategy that disconnected sooner (i.e. lower efficiency loss) to be more effective.

The FC archetype sustained far greater efficiency loss before disconnection with L̄
increasing by more than half in 2.4% and 41.8% of the instances under the Overall-B and
Overall-S strategies, respectively (Figure 4.6a). In fact, the Overall-S strategy doubled L̄
in 6.6% of the instances. The first reason for this was that FC instances survived longer
and thus endured more disruptions. The second reason was that shortest paths could
explore the entire grid and were not constrained by hubs, allowing very inefficient, round-
about paths to keep two nodes connected. The hub archetypes sustained, overall, lower
efficiency losses than the FC archetype (see Figures 4.6b and 4.6c). This was because
they became disconnected quicker and the constraint of the hubs limited the opportunity
for greatly inefficient shortest paths to develop.

The Overall-B strategy resulted in more rapid efficiency losses for both the FC and
DH archetypes before instances became disconnected (Figures 4.6a and 4.6c, respectively).
However, efficiency losses in both these archetypes reached a peak under the Overall-S
strategy as more disruptions were endured before disconnection. Interestingly, differences
in efficiency losses were not notifiable across the three strategies for the SH archetype
(Figure 4.6b), presumably because instances became disconnected so quickly that there
was no opportunity for differentiation.

2For instances that became disconnected immediately during the first disruption, no % change in L̄
could be measured.
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Figure 4.6: Samples of efficiency loss observations corresponding to the % of grid links
remaining right before instances became disconnected.

Sample sizes varied quite dramatically in the investigation of efficiency loss. Smaller
sample sizes affected the confidence intervals of the sample means. The insights and
generalisations made with reference to the sample means therefore had to be tempered
by an appreciation of these confidence intervals. With sample sizes varying from 1 to
353 the Student’s t-distribution seemed most appropriate for calculating the confidence
intervals. However, the t-distribution required an assumption regarding the normality of
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the distribution of the % Change in L̄. The distributions of the initial values of L̄ discussed
in Section 3.5 did not show evidence of heavy tails. This was because the length of shortest
paths was not prone to combinatorial explosion, unlike the set sizes. The % Change was
calculated from these ‘contained’ distributions and therefore it was assumed that the
resulting distributions would also have central tendencies. The confidence intervals were
calculated with α = 95% for all samples that had five or more observations.

The confidence intervals were verified by a bootstrap analysis that performed 3 000
replications for each sample using the same parameters as the t-distribution calculations.
In comparing these intervals with those obtained by the t-distribution, it was found that
the upper bounds differed by a maximum of 7.6% while the lower bounds differed by less
than 5%. The exceptions were the FC archetype and the Overall-S simulation on the
DH archetype where the maximum difference was between 20% and 36%. This level of
consensus between the two techniques was regarded as satisfactory.

Figures 4.7 plots the confidence intervals along with the sample means to compare
efficiency losses for each strategy. It was clear that the impact of Overall-B was more
pronounced for the hub archetypes. In the case of the Overall-S strategy, greater efficiency
losses were initially observed for the hub archetypes. However, the efficiency losses for
the FC archetype were greater after many more disruptions were endured. Similarly, the
efficiency losses caused by the Elemental-B strategy were greater for the SH instances
initially but eventually DH instances suffered greater damage.
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Figure 4.7: Sample means and confidence intervals for efficiency losses inflicted by each
targeted attack strategy across the archetypes.

In summary, the Overall-B strategy was the quickest to cause efficiency loss across
the archetypes. However, because the Overall-S strategy took longer to disconnect the
instances, it resulted in greater efficiency loss in those instances that survived longest.
Similarly, the efficiency losses sustained by the FC archetype eventually outstripped that
of the hub archetypes.

Next we investigated the efficacy of the three strategies in disconnecting and destroying
the network instances.

Disconnection and Destruction

The cumulative plots in Figures 4.8–4.10 show what percentage of the grid links in G2 had
to be removed through progressive disruption before instances became disconnected and
later destroyed for each of the three simulation strategies. The plots show that Overall-B
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Figure 4.8: Comparison of the % of grid links removed by each simulation strategy before
instances became disconnected or destroyed in the FC archetype.

was the most effective disruption strategy for all three archetypes. Its curves on the cumu-
lative plots were consistently higher than that of the Elemental-B and Overall-S strategies.
This meant that at any point in the simulation (i.t.o. grid links removed) the Overall-B
strategy had broken more instances than either of the other strategies. Overall-S, on
the other hand, was the least effective across all three archetypes as illustrated by its
cumulative curve that is consistently lowest of the other strategies. Elemental-B was only
applied to the hub networks as Overall-B ≡ Elemental-B for the FC archetype (refer to
Section 4.1.4). The performance of Elemental-B was better than that of Overall-S and in
some cases closely mimicked that of Overall-B.

The instances of the FC archetype deteriorated very differently compared to those of
the hub archetypes (Figure 4.8). An impressive 91 instances were disconnected by the
Overall-B strategy after the very first disruption but only after a further 26 disruptions
was the first instance completely destroyed. The Overall-S strategy was also quick to
disconnect the first 7 instances but it took another 23 disruptions to completely destroy
an instance. In the case of the FC archetype, instances’ shortest paths need not have been
routed through hubs. Once the initial shortest paths were destroyed the full extent of G2

could be explored to find alternative routes. Therefore it is intuitive that these instances
survived longest.

Contrastingly, in both hub archetypes instances were completely destroyed soon after
they were disconnected. This was most evident in the SH archetype where the Overall-B
and Elemental-B strategies almost simultaneously disconnected and destroyed instances.
Each hub node had only four incoming and four outgoing links which, probabilistically,
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Figure 4.9: Comparison of the % of grid links removed by each simulation strategy before
instances became disconnected or destroyed in the SH archetype.
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Figure 4.10: Comparison of the % of grid links removed by each simulation strategy before
instances became disconnected or destroyed in the DH archetype.
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all had high Overall-B, Elemental-B and Overall-S scores. Therefore the links around the
nodes became targets very soon, disconnecting the instances. Furthermore, the logical
routing of G1K limited the options for alternative shortest paths, which led to quicker
destruction.

Reflecting on the initial distributions of Overall-B, Elemental-B and Overall-S the
dominance of the betweenness-based strategies was unsurprising. The next topic to in-
vestigate was how these prioritisation metrics changed as the networks were degraded.

4.2.2 Evolution of the prioritisation metrics

A dynamic prioritisation approach was chosen specifically so that the evolution of the
prioritisation metrics (Overall-B, Overall-S and Elemental-B) could be tracked. Observing
the change in these metrics gave further insight to the change in the shortest path sets as
G2 lost connectivity3.

The Overall-S strategy performed poorly in disconnecting the networks, especially the
FC archetype. In Figure 4.5 it was already identified that the initial instances showed weak
skeleton structure for the hub archetypes and zero skeleton structure for the FC archetype.
Figure 4.11 tracks the change in average Overall-S for salient and non-salient links. In the
FC archetype even the little consensus that existed quickly eroded (Figure 4.11a). This
meant that after the first few disruptions the Overall-S strategy had been reduced to a
quasi-random strategy. For the hub archetypes the scores of the non-salient links decreased
while those of the salient links increased (Figure 4.11b and 4.11c). This suggested that
the weak skeleton structure actually became more prominent in the hub archetypes as the
destruction of alternatives forced more and more node-pairs to use the same remaining
grid links. However, the skeletons were still not prominent enough to make it an effective
strategy.
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Figure 4.11: Change in the average Overall-S for salient and non-salient links as disrup-
tions progressed.

In both the betweenness-based strategies the effectiveness depended on whether there

3Two caveats to the observations in this section were that the sample sizes of surviving instances
decreased rapidly in the last few disruptions and that the number of remaining shortest path sets also
decreased as an instance went from being disconnected to being destroyed.
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were links that were far more important than others based on the frequency of their
appearance in shortest paths. Thus, distributions of Overall-B and Elemental-B with
heavy right-tails would have shown that a specific instance was extremely vulnerable to
the removal of its highest ranking links.

In Figures 4.3 and 4.4 the initial distributions of these two metrics were not heavily
skewed. Zooming in on the right tail of these distributions we investigated the range
between the 95th percentile and the maximum score value. The broader this range, the
longer the right tail, meaning that the highest ranking links were far more between than
the others. Figure 4.12 displays these ranges for both Overall-B and Elemental-B in
the case of the hub archetypes and Overall-B in the case of the FC archetype. After
each progressive disruption the average of the 95th percentile cut-offs and average of the
maximum values were determined across all instances that had not yet been disconnected.
Results are only shown until the number of surviving instances was smaller than 1% of
the original set of 500 instances.

In the case of the SH archetype (Figure 4.12a) we noticed that the 95th percentile did
not shift that far upward. That implied that the bulk of the betweenness values didn’t
increase much. However, for both Overall-B and Elemental-B the distance between the
maximum values and the rest of the distribution increased. This implied that the most
between links became even more crucial to the survival of the instances as disruptions
progressed, justifying the decisive effectiveness of the betweenness strategies on the SH
archetype.

In the DH archetype, the range increased slightly in the first few iterations but then
actually reduced again until the final ranges were even narrower than the initial ones
(Figure 4.12b). This implied that while initially there had been a concentration of shortest
paths — making some links crucially important — the importance of links later became
more evenly spread. Do note, however, that the 95th percentile increased by quite a margin
indicating an upward shift in the betweenness of many links. As disruptions removed more
and more routing options, all remaining links in G2 played more significant roles.

The FC archetype shows a similar pattern for Overall-B in that the range first increased
and then decreased while the 95th percentile shifted upward.
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Figure 4.12: Change in the right tail of the Overall-B and Elemental-B distributions as
disruptions progressed.

Initially the betweenness-based metrics were better at prioritising crucial links than
the salience-based metric. As disruptions progressed, the discriminatory ability of the
betweenness metrics actually increased before eventually tapering off while the limited
power of the salience metric just eroded further. The performance of the three metrics
constituted two elements: the ability to reduce efficiency and disconnect networks and
their sustained prioritising power. This was taken into consideration in defining the
characteristics that could identify a certain networkM as more vulnerable than another.
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4.2.3 Characteristics that made M vulnerable

The second objective of this thesis was:

2. Identification of the characteristics of M that describes the nature of the
supply chain’s vulnerability to the integrity of the urban road network.

Three targeted attack simulations were designed based on characteristics of C(Sij). The
Overall-S strategy tested the importance of links that were salient — in other words
links that featured in many different shortest path sets. Firstly, it was found that in the
multilayered formulation of M there were no clearly salient links in G2 as observed in
other systems (Grady et al., 2012; Shekhtman et al., 2014; Viljoen and Joubert, 2016).
The networks in these other studies were not multilayered. The regular grid structure
of G2 and its effect on constraining shortest paths influenced the salience of links. As
was expected, the salience strategy was least effective in disconnecting the networks. We
acknowledged that a redefined formulation of link salience better suited to the multilayered
context could potentially have performed better. This is regarded as worthwhile future
work. Our conclusion was that link salience as defined in this thesis was not a significant
indicator of network vulnerability.

On the other hand, the two metrics that measured the frequency with which links
appeared in C(Sij) were far better in identifying the links on which the connectivity of
M hinged. Higher betweenness scores implied that there were few alternative shortest
paths, or if there were alternatives, that there was a lack of diversity (i.e. the alternatives
included nearly all of the same links on G2). Overall-B also consistently outperformed
Elemental-B, therefore it was acknowledged that taking the full ambit of shortest paths
into account was more telling than just focussing on the shortest paths between directly
connected node-pairs.

Stepping away momentarily from micro-level statistics that pertain to individual links,
we focussed on L̄. When L̄ changed, it implied that a shortest path set had been emptied
and replaced by another with longer shortest path length. As noted in the case of the
FC archetype, this could happen many times before an instance is actually in danger of
disconnection. So the % change in L̄ was not necessarily an indicator of the increasing
vulnerability of M. However, when the difference in Lij for a specific node-pair before
and after a disruption was relatively large, it implied that G2 was becoming increasingly
sparse and it was becoming difficult to find alternative paths. Therefore, the % change of
Lij between disruptions was also deemed a characteristic worth further investigation.

With these characteristics in mind, the following two chapters detail the definition and
testing of a suite of vulnerability metrics that were proposed as indicators of the inherent
vulnerability of M.
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Chapter 5

Development and analysis of
vulnerability metrics

The way in which an urban road network is disturbed can be described as a combination
of random errors and targeted attacks. Non-random, targeted link-disruption strategies
were used to identify the characteristics of the shortest path sets that could be most
indicative of the vulnerability of M. The third objective of this thesis was then:

3. Development of metrics that could quantify a supply chain’s inherent vul-
nerability based on its internal configuration and the underlying road network.

The internal configuration referred to the logical design of G1K , where K ∈ {F, S,D},
while G2 was the underlying road network.

This chapter presents the suite of vulnerability metrics developed and their empirical
validation. Given that these metrics were deduced from the outcomes of targeted strate-
gies, it was expected that they would be good quantifiers and predictors of vulnerability
under similar targeted strategies. Confirming this intuition would not have validated the
metrics. Instead the power of these metrics had to be tested using a completely ran-
domised link-based disruption strategy. If a metric was a good quantifier and predictor
of vulnerability under completely random link disruption, it was expected that its power
would have been even greater in circumstances where disruptions had both random and
targeted elements. Testing the metrics using random link-based disruptions was thus the
most conservative method of evaluation.

5.1 Link-based random error simulation

The link-based random error simulation started again with the set of undisturbed network
instances described in Chapter 3. Each progressive disruption randomly removed 18
(≈ 5%) of the links from G2. A greater percentage of links was removed per iteration
in the random error simulation compared to the targeted simulations. In the targeted
simulations it was guaranteed that each link removed played a role in C(Sij). This was
not the case with the random error simulation where, depending on the spread of G1K on
G2, the likelihood of removing links from G2 that played no role in C(Sij) was considerable.
The random error simulation degraded C(Sij) far slower than the targeted simulations.

The simulation was continued only until an instance was disconnected and not until
it was completely destroyed (as with the targeted simulations). The assumption was that
in a practice, corrective action would be taken once two facilities become disconnected.
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Therefore, the primary interest was to test the ability of the metrics to quantify the
likelihood of efficiency loss and disconnection. The performance of the metrics between
disconnection and destruction was not monitored.

After each progressive disruption C(Sij) was recalculated and the vulnerability metrics
(presented hereafter) were measured. At the end of the simulation each instance had a
time-series of values for each vulnerability metric throughout the progressive disruptions.

5.2 Results of the link-based random error simula-

tion

First we investigated the effectiveness of the random error strategy in terms of the effi-
ciency loss caused before disconnection. Thereafter the rate at which instances became
disconnected was analysed.

5.2.1 Efficiency loss before disconnection

The efficiency loss per instance was once again described by the percentage change in the
average shortest path and was denoted by % change in L̄ (refer to Section 4.1.1). Similar
to the investigation of efficiency loss in Section 4.2.1, instances were categorised into
samples according to the number of progressive disruptions endured before disconnection.
The % change in L̄ reflected the difference between the initial, undisturbed network and
the last state of the network before disconnection. Figure 5.1 plots the observations per
sample as well as the sample means for efficiency loss across the three archetypes. The
average efficiency loss increased monotonically the longer instances survived. This was
similar to the trend observed in Figure 4.6 and occurred for the same reason: the more
disruptions an instance endured before becoming disconnected, the sparser G2 became
resulting in more of a roundabout route connecting a node-pair.
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(b) SH archetype
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Figure 5.1: Samples of efficiency loss observations corresponding to the % of grid links
remaining right before instances became disconnected under the random error strategy.

Once again the sample sizes varied greatly and it was decided to calculate the con-
fidence intervals for the sample means using the Student’s t-distribution. For samples
with five or more observations the confidence intervals were calculated with α = 95%.
These intervals were again compared to intervals calculated by a bootstrap analysis that
performed 3 000 replications at α = 95% for each sample. It was found that the upper
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bound of the intervals had a maximum deviation less than 5.3% across all the networks.
Meanwhile, the lower bound had maximum deviations of 10.9%, 18.3% and 22.5% for
the FC, SH and DH archetypes, respectively. This level of consensus between the two
techniques was regarded as satisfactory.

The sample means and confidence intervals were remarkably similar across the three
archetypes under the random error simulation (Figure 5.2a). Despite the similarity, it
could still be noticed that the DH archetype lost its efficiency more rapidly than the
other archetypes. However, in the end it was the FC archetype that had degraded the
most overall while the SH archetype had degraded the least. This relative similarity
was in contrast to the efficiency loss under the targeted attack simulations as shown in
Figure 4.7.

Figure 5.2b plots the efficiency loss trajectories of the targeted simulations along with
that of the random error simulation for each archetype. Notice that for all three archetypes
efficiency loss was far more rapid (i.e. a steeper slope) under the targeted simulations than
under the random simulation. The only reason the overall efficiency loss was higher under
the random simulation was because the instances survived so much longer. The targeted
simulations thus caused far greater damage than the random error simulation from an
efficiency loss point of view. Next the rate at which the instances became disconnected
under the random error simulation was investigated.
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different simulations.

Figure 5.2: Comparison of efficiency loss across networks and under different simulations.
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5.2.2 Disconnection of networks

The cumulative percentage of instances that had become disconnected after each disrup-
tion is shown in Figure 5.3. The distribution was very similar across the three archetypes
with the FC archetype being disconnected faster in the mid-range of the disruptions. All
instances of the FC archetype were disconnected after 50% of the links were removed with
the final surviving instances of the hub archetypes disconnected after 55% link removal.

Both in terms of efficiency loss and disconnection, it was notable that the effectiveness
of the random error was indifferent to the network archetype. This implied that it was
possible that a supply chain’s vulnerability to random road network disruptions were
more dependent on the external circumstances, rather than the internal configuration.
This was in stark contrast to the targeted simulation results in Chapter 4 where the
archetypes showed different levels of resilience.
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Figure 5.3: Cumulative percentage of instances that became disconnected with each pro-
gressive disruption.

The remainder of this chapter presents the vulnerability metrics that were developed
based on the results of the targeted attack simulations. These metrics were grouped under
three categories: Redundancy, Overlap and Efficiency step-change. First each category
is described conceptually. To facilitate this description we refer back to the illustrative
example used in Chapter 4. For convenience we repeat the image of the shortest path
sets (Figure 5.4) below. Thereafter, the mathematical formulation of the metrics and the
different measurements applied to each are presented. Finally, the ability of each metric
to quantify vulnerability is assessed by means of statistically testing the measurements
obtained from the random error simulation.

5.3 Vulnerability category 1: Redundancy

5.3.1 Conceptual description

In the illustrative example, there are three alternative paths when travelling from the
Airfreight Warehouse to the Distribution Centre namely Paths 1–3. It is recognised that
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Figure 5.4: Shortest path alternatives of the illustrative supply chain network. Although
more alternatives could exist in reality, only a few paths are assumed to keep the illustra-
tion simple. The difference in path lengths is also assumed to be within some allowable
tolerance (Source: OpenStreetMap contributors (2017)).

the actual difference in length of these paths is not negligible, but for the purposes of this
example we regarded the lengths as relatively equivalent. Suppose that there were never
any disruptions of the road network — no traffic jams or road closures. Then having
more than one alternative would be unnecessary, or redundant. However, disruptions are
a frequent reality and therefore having more alternative options available to the truck
driver or fleet manager is always better.

The availability of more alternative paths defines the concept of redundancy. The
rationale was that a network instance with more redundancy in its shortest path sets
could be more immune to efficiency loss and disconnection.

5.3.2 Formulation of metrics

The size of the shortest path set between any two nodes x1K
i and x1k

j in G1K was cap-
tured by Pij. Therefore the distribution of Pij was a reflection of the redundancy of a
network instance. The distribution of Pij was greatly skewed with a long right tail (see
Section 3.5.2). The underlying reason for this skew was that Pij increased exponentially
with the diagonal distance between two nodes on G2. Furthermore, for indirectly con-
nected node-pairs Pij was the product of the set sizes of its constituent, directly connected
node-pairs.

Both the centrality of the entire distribution and the average of its left tail was pro-
posed to be of importance when assessing redundancy. Centrality considered the redun-
dancy of all shortest path sets while the average of the left tail focussed on the ‘weakest
links’ — those shortest path sets that had the least alternatives.

Given the skewness of the distribution, the median of Pij was a better estimator of
centrality than the mean. The ordered set of Pij was defined by PPP . In the case of an even
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number of sets the median was calculated by:

P̃ = (Pmid + Pmid+1)/2 (5.1)

where Pmid ∈ PPP , and

mid = (N1K(N1K − 1) + 1)/2− 0.5 (5.2)

with N1K the number of nodes in G1K . The number of sets in the theoretical instances
were always even. Later in the case study instances the number of shortest path sets were
not always even (refer to Chapter 7). In that case the median was calculated by:

P̃ = Pmid (5.3)

where Pmid ∈ PPP , and

mid = (N1K(N1K − 1) + 1)/2 (5.4)

Conservatively, the left tail was interpreted as the first quartile (i.e. the 25th percentile)
of the distribution of Pij. The set of values that fell within the 25th percentile was denoted
by:

PPP 25% ⊂ PPP such that PPP 25% =
{
P1, P2, . . . , Pd‖PPP‖/4e

}
(5.5)

The mean of the elements of PPP 25% was defined as:

P̃ 25% =

∑
Pn∈PPP 25%

Pn

‖PPP 25th‖
(5.6)

Although the primary interest was in the redundancy across all shortest path sets in
C(Sij), comparing these statistics to those of only the directly connected node-pairs (SDij)
was considered prudent. Therefore, P̃ and P̃ 25% were also calculated for the distribution
of Pij that only considered SDij. Table 5.1 summarises the four metrics defined for
redundancy.

Table 5.1: Summary of redundancy metrics.

Aspect Scope Metric Equation

Centrality
C(Sij) P̃ (All) (5.1)(5.3) (Pij ∈ C(Sij))

SDij P̃ (Dir) (5.1)(5.3) (Pij ∈ SDij)

Left-tail
centrality

C(Sij) P̃ 25%(All) (5.6) (Pij ∈ C(Sij))

SDij P̃ 25%(Dir) (5.6) (Pij ∈ SDij)
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5.3.3 Results

After each disruption by the random error simulation, the four redundancy metrics were
calculated. Thus, for each instance there existed a time-series of observations for each of
the metrics from the initial, undisturbed network until the last state of the network before
it became disconnected. Three measurements were extracted from these time-series. The
initial value was the first observation of the undisturbed network. The final value was
the last observation of the time-series before the instance became disconnected. The
% Change measured the relative difference between the initial and final values.

The distributions of the initial values of P̃ (All) and P̃ (Dir) per network archetype
are displayed in box plots in Figure 5.5a. Initially the distributions of P̃ (All) were very
broad in the hub archetypes, spanning orders of magnitude. On the other hand, the FC
instances were far more similar with the range of P̃ (Dir) between 4 and 31.5.

The distributions of the % Change in Figure 5.5c show that redundancy decreased in
almost all of the instances (% change < 0). However, in the hub archetypes a number
of exceptional instances saw an increase in redundancy before breaking (% change > 0).
This could have happened when all the alternatives in a shortest path set were broken and
a new set with longer shortest paths was formed. If this new set offered more alternatives
than the initial shortest path set, it would have increased the redundancy of the instance.

While redundancy decreased significantly before disconnection, the distributions of
the final values in Figure 5.5b were still broad for the hub archetypes.
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Figure 5.5: Distributions of the three measurements of P̃ (All) and P̃ (Dir). (Three outliers of

DH: P̃ (All) not visible on graph (b): 500, 500 and 3 900.)

The distributions of the initial values (Figure 5.6a), final values (Figure 5.6b) and
% Change (Figure 5.6c) of P̃ 25% showed the same trends as the distributions of P̃ .
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Figure 5.6: Distributions of the three measurements of P̃ 25%(All) and P̃ 25%(Dir).

The first insight gained by examining the distributions was that redundancy, expressed
by the four metrics, does indeed decrease the closer instances come to disconnection. The
second insight, however, was that significant levels of redundancy were still present in
networks right before disconnection (Figure 5.5b). Even the least redundant shortest path
sets still had a number of alternatives available right before the final blow disconnected
the instance (Figure 5.6b). Finally we noticed that redundancy was the most variable
in the hub archetypes. These archetypes had additional constraints that routed shortest
paths via hubs. These constraints induced a greater overlap of shorter paths in the
hub archetypes compared to the FC archetype (Figure 4.12). The conclusion was that
redundancy alone was not the only determinant of vulnerability. If there existed 20
alternative paths but all shared one specific link in G2, that network could still have been
very vulnerable. The following category of vulnerability metrics focussed on quantifying
this overlap.

5.4 Vulnerability category 2: Overlap

5.4.1 Conceptual description

Reverting back to the illustrative example, we can observe two types of overlap. The first
is where one road segment features on multiple path sequences between two facilities. An
example is eOP that features in every path between the Airfreight Warehouse and the
Distribution Centre. The second type of overlap is where a road segment features in more
that one set of paths. For example eEF is part of the path set between the Airfreight
Warehouse and the Distribution Centre, but one would also travel on eEF when going
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from the Retail Outlet back to the Distribution Centre. So in this case two separate path
sets overlap in that they utilise the same link.

5.4.2 Formulation of metrics

The best way to account for both types of overlap was to calculate the link betweenness of
the road segments as described in the Overall link betweenness (Overall-B) and Elemental
link betweenness (Elemental-B) simulation strategies. Using (4.1) and (4.2) the relative
link betweenness for each link in G2 could be calculated considering C(Sij) and SDij,
respectively.

Similar to redundancy, we were interested in two characteristics of the distributions
of relative link betweenness: the centrality and the span of the right tail. The higher
the central value of the link betweenness distribution, the less diversity there was in
alternative shortest paths. This implied a high level of overlap across many shortest path
sets. The span of the right tail gave an indication of how pivotal those links with highest
betweenness scores were compared to the rest of the links.

Although the Overall-B strategy proved more effective than the Elemental-B strategy
on all fronts, both types of link betweenness were proposed as vulnerability metrics.
Overall-B accentuates the relative importance of the most between links while elemental
provides a more even scoring as it doesn’t double-count shortest paths. Therefore, because
the focus was not on identifying one pivotal link, but rather a group of pivotal links, there
was merit in using Elemental-B as well.

We started by defining BBBoverall as the set of Overall-B (4.1) scores for links in G2 in
descending order. Similarly, BBBelemental was the set of Elemental-B (4.2) scores for links
in G2 in descending order. The centrality of the link betweenness distributions was then
defined as:

Boverall =

∑
Bn∈BBBoverall

Bn

‖BBBoverall‖
(5.7)

and

Belemental =

∑
Bn∈BBBelemental

Bn

‖BBBelemental‖
(5.8)

To investigate the span of the right tail the range between the 75th percentile and the
maximum value was calculated. The range of the tail gave a better idea of how much
more important the links in the right tail were compared to the rest of the links. The
value of the 75th percentile was denoted by:

B75%
overall = Bb‖BBBoverall‖/4c (5.9)

and

B75%
elemental = Bb‖BBBelemental‖/4c. (5.10)
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The range was then defined by:

R(Boverall)
75% = max(BBBoverall)−B75%

overall (5.11)

and

R(Belemental)
75% = max(BBBelemental)−B75%

elemental. (5.12)

Table 5.2 summarises the four metrics developed to quantify overlap.

Table 5.2: Summary of overlap metrics.

Aspect Scope Metric Equation

Centrality
C(Sij) Boverall (5.7)
SDij Belemental (5.8)

Right-tail range
C(Sij) R(Boverall)

75% (5.11)
SDij R(Belemental)

75% (5.12)

5.4.3 Results

Following the same procedure as for the redundancy metrics, time-series of overlap metrics
were calculated for each instance from the initial, undisturbed network until the last state
of the network before it became disconnected. The same three measurements, namely
initial value, final value and % Change were extracted from these time-series for each
instance.

The distributions of the initial values of Boverall and Belemental (Figure 5.7a) show that
there wasn’t a great level of overlap present in any of the archetypes before the simulation
started. This could have seemed surprising as the targeted attack strategies based on
betweenness metrics had been most effective. The explanation lay in the initial values
of R(Boverall)

75% and R(Belemental)
75% as shown in Figure 5.8a. For instance, in the SH

archetype the bulk of R(Boverall)
75% values lay between 0.3 and 0.5. This meant that

in most instances there had been at least one link that had a betweenness score more
than 30% higher than three quarters of the other links. This link or multiple links were
the anchors of a great deal of overlap in those instances and were prioritised for removal
during the targeted attack simulations.

The distributions of the final values of Boverall and Belemental (Figure 5.7b) showed that
the overlap increased across all archetypes. This occurred because the reduced number
of links in G2 concentrated the shortest paths on the remaining links. It was also evident
that the distributions had become broader, meaning that the impact of the random error
simulation on the overlap was greatly instance-specific. Interestingly, the rate of change
from the initial to final values was similar regardless of whether Boverall or Belemental was
considered (Figure 5.7c).

The distributions of the initial values of R(Boverall)
75% and R(Belemental)

75% in Fig-
ure 5.8a showed that the FC archetype had the shortest right tail of all. It illustrated
that when networks are not constrained by hubs the importance of the links in G2 are
far more homogenous. However, the right tail did become more pronounced as more
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Figure 5.7: Distributions of the three measurements of Boverall and Belemental.

links were removed from G2 as evidenced in the distribution of the final values in Fig-
ure 5.8b. The % Change for the FC archetype was remarkably high with most instances
doubling the range of the right-tail (% change ¿ 100% in Figure 5.8c). Furthermore,
the broadness of the distribution of the % Change implied that the degree to which the
right tail increased was instance-specific. The distributions of the R(Belemental)

75% and
R(Boverall)

75% showed that the right tails of the hub archetypes also increased, showing a
more pronounced dependence on a few critical links.

A curious observation in Figure 5.8b was that in both hub archetypes there were
instances where R(Boverall)

75% > 1, meaning that one or more links in those instances had
a relative betweenness score higher than 1. This seemed counterintuitive at first and is
definitely not a phenomena frequently noted in vulnerability studies. This phenomena
was attributed to the multilayered nature ofM and will be best explained referring back
to the illustrative example.

Imagine that pervasive strike action by unionised airport staff have closed off various
road segments around O.R. Tambo International Airport. This disruption completely
disabled Paths 5 & 6 from the Distribution Centre to the Airfreight Warehouse, leaving
only Path 4 (Figure 5.9). Furthermore, all the original paths between the Airfreight
Warehouse and Distribution Centre were disabled. Because eJI was disabled and only eIJ
(indicated in red) remained, a new Path 11 had to be created that didn’t require eJI . This
path deviated via eJE → eEF → eFG. In a similar vein all the paths from the Distribution
Centre to the Retail outlet were also disabled and new paths had to be created. Because
link eFE had been disabled and only eEF remained (indicated in red) Paths 12 & 13 both
deviated via eHI → eIJ → eJE. Therefore, in any shortest path combination from the
Airfreight Warehouse to the Retail Outlet eJE will feature twice. This phenomena was
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called “doubling back”.
If there were many paths in a network that doubled-back, it resulted in one or more

links in G2 having a relative betweenness > 1 as the numerator in (4.1), which was the
count of occurrences, became larger than the denominator, which was the total number
of shortest paths. This phenomena occurred specifically because shortest paths were
constrained by both logical relationships in G1K and physical infrastructure in G2. It was
evident from the distributions in Figure 5.8b that many paths doubled-back in the hub
archetypes before disconnection.
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Figure 5.8: Distributions of the three measurements of R(Boverall)
75% and R(Belemental)

75%.
(One outlier of FC not visible on graph: % Change in R(Boverall)

75% = 1 498.)

In summary, overlap increased across the board with instances becoming increasingly
more dependent on a few critical links. However, the magnitude of the change seemed to
be very instance-specific.

The first two vulnerability categories considered the size of the shortest path sets and
the overlap. The final category investigated changes in the length of the shortest paths
for possible hints of increasing vulnerability.

5.5 Vulnerability category 3: Efficiency step-change

5.5.1 Conceptual design

The average shortest path of a network increased when all the paths in one or more
shortest path sets were broken and new shortest path sets were routed. Figure 5.10
illustrates this in a simple grid example. Two nodes, xi and xj, have a set of 20 shortest
paths connecting them (Figure 5.10a). Each path has a length of 6. A disruption removes
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Figure 5.9: Shortest path alternatives of the illustrative supply chain network after sig-
nificant disruptions in the road network (Source: OpenStreetMap contributors (2017)).

26 of the grid links so that all but one of the original shortest paths remain (Figure 5.10b).
Although Pij has decreased, Lij has remained the same. A next progressive disruption
removes a further 11 grid links so that the last remaining shortest path is also broken. A
new set of 4 shortest paths of length 10 is established (Figure 5.10c). If these two nodes
were part of a larger network the L̄ would have increased after the last disruption. This
is Scenario A.
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Figure 5.10: Step-change example: Scenario A. Two nodes on a grid are affected by two
successive disruptions of the underlying grid.

Consider now a Scenario B where the same two nodes (Figure 5.11a) undergo an iden-
tical first disruption (Figure 5.11b). This time the second disruption removes a different
set of 11 grid links (Figure 5.11c). As a result only one shortest path of length 14 could
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be found.
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Figure 5.11: Step-change example: Scenario B. Two nodes on a grid are affected by two
successive disruptions of the underlying grid.

The second disruption in Scenario B many of the grid nodes between xi and xj whereas
Scenario A’s second disruption removed grid links at the edge of the grid — less important
to xi and xj. Scenario B thus leaves the node-pair in much greater risk of disconnection
than Scenario A. Simultaneously, the step-change in Lij from 6 to 14 in Scenario B is
greater than the step-change from 6 to 10 in Scenario A.

While the results from the targeted attack and random error simulations showed that
the % Change in L̄ was not necessarily a good indicator of imminent disconnection, the
idea of step-change held promise. A large step-change was considered an indication of the
level of sparseness in G2. The efficiency step-change was defined as the relative change in
the shortest path length of a node-pair. The next section proposes a metric to capture
this concept on an aggregate network level.

5.5.2 Formulation of metrics

To define the relative step-change we started by defining the difference between the short-
est path length of a specific node-pair (x1K

i , x1K
j ) measured before and after a disruption:

∆Lij(t; t+ z) = Lij(t)− Lij(t+ z) (5.13)

where t is some defined point in time before a disruption occurred and z is some time
after a disruption of G2 occurred. The relative change is then:

Rel∆Lij(t; t+ z) =
∆Lij(t; t+ z)

Lij(t)
(5.14)

So in Scenario ARel∆Lij(1; 1+2) = 10−6
6

= 0.67 after two disruptions while in Scenario
B Rel∆Lij(1; 1 + 2) = 14−6

6
= 1.33. This reflected the step-change for an individual node-

pair. In the interest of overall vulnerability, we aggregated the step-changes across all
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node-pairs:

Rel∆L(t; t+ z) =

∑
i,j;i 6=j

Rel∆Lij(t; t+ z)

N1K(N1K − 1)
where i, j ∈ {1, 2, . . . N1K} (5.15)

Only one metric was developed in this vulnerability category, as shown in Table 5.3.

Table 5.3: Summary of efficiency step-change metrics.

Aspect Scope Metric Equation

Centrality C(Sij) Rel∆L(t; t+ z) (5.15)

5.5.3 Results

The efficiency step-change was measured after each disruption until disconnection, pro-
viding a time-series of values for each instance. In this thesis, step-change was measured
over only one disruption, not multiple disruptions (i.e. z = 1). To investigate this metric,
it made more sense to extract the minimum, maximum and average values from the time
series instead of the initial values, % Change and final values as was done for the other
two categories.

It was notable that the distributions of the minimum, average and maximum values
of the efficiency step-change were very similar across the three archetypes (Figure 5.12).
This was in contrast to the other vulnerability metrics where there were definite differ-
ences between the archetypes. The majority of instances in all the archetypes displayed
minimum step-changes under 5 (Figure 5.12a) and maximum step-changes under 50 (Fig-
ure 5.12c) with an average around 5 (Figure 5.12a). The distributions were also not as
broad as for the other metrics. One reason for this was that Lij, upon which this metric
was based, was a summative function and not a combinatorial product like Pij. Another
reason could have been that this metric was more generalisable and not as instance-specific
as the others.

This chapter described the random error simulation that was used to validate three
categories of vulnerability metrics and presented the results of this simulation in terms of
efficiency loss and disconnection. The three vulnerability categories namely redundancy,
overlap and efficiency step-change were discussed individually. For each category a con-
ceptual description was given followed by the mathematical formulation of the metrics.
Time-series of values for each metric were calculated during the random error simulation.
The behaviour of each metric was analysed by extracting three measurements from these
time-series and plotting their distributions.

The responses of the vulnerability metrics could be intuitively explained with regards
to the real-life problem addressed by this thesis. That in itself was positive feedback
regarding the usefulness of the first artefact of the thesis — the multilayered network
formulation of M.

While the behaviour of the metrics followed expectation, that was not enough to
assert their validity in quantifying the vulnerability of M. The next chapter continues
the evaluation of the metrics by testing a number of hypotheses.
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Figure 5.12: Distributions of the three measurements of Rel∆L(t; t+ 1).
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Chapter 6

Statistical validation of vulnerability
metrics

The hypothesis tests in this chapter address the first aspect of the fourth objective of the
thesis:

4. Evaluation of the validity of the suite of vulnerability metrics through
statistical analysis and a real-life case study.

Chapters 7 and 8 will present how the validity of the metrics was tested using a real-life
case study.

6.1 Statistical tests

In evaluating the statistical relation between the vulnerability metrics and the actual
vulnerability of M it was necessary to differentiate between correlation and causation.

Correlation: A statistical measure that expresses the strength and directionality of the
relationship between two or more variables.

Causation: An indication that one variable is causal in the behaviour of another variable.

Correlation between two variables does not imply causation. Variables may be cor-
related due to external factors or mutual relation to a third variable. However, if there
is a causal relationship between two variables then they are most definitely also corre-
lated. While we could test for correlation using established statistical methods, estab-
lishing causality required experiments with control groups. This was left for future work.
Although we could not test for causality, we did test whether certain variables could
discriminate between likely outcomes in a next disruption.

6.1.1 Correlation of efficiency loss and robustness to the vul-
nerability metrics

The two levels of damage assessed were efficiency loss and how quickly an instance became
disconnected. The longer it took to disconnect an instance, the more robust it was
considered to be. The interest was thus in identifying whether any of the vulnerability
metrics had a strong correlation with the efficiency loss, the robustness or both. In this
thesis we limited the evaluation to single variate correlation.
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Spearman and Kendall pairwise correlation tests

Pearson’s r correlation is the most widely used bivariate correlation test. Unfortunately,
it requires three assumptions that all proved troublesome:

• The variables must be normally distributed. The redundancy and overlap metrics
were not normally distributed and had heavy right tails (Figures 5.5–5.8).

• The variables must be linearly related. The combinatorial nature of Pij made linear
correlations including redundancy and overlap metrics unlikely.

• Variables must be homoscedastic — i.e. have the same finite variance. Finite vari-
ance could not be comfortably assumed.

These assumptions could not be made with much confidence regarding all the vulnerability
metrics and therefore less restrictive tests had to be used.

The Spearman and Kendall rank correlations are both non-parametric tests that do
not make any assumptions regarding the underlying distributions. The Spearman test
determines the strength and direction of the monotonic relationship between two vari-
ables. It requires that variables be at least ordinal. The Kendall test determines whether
variables are similarly ordered. Both Spearman’s ρ and Kendall’s τ are real numbers on
the interval (−1; 1) where −1 indicates the strongest possible negative correlation and
+1 the strongest possible positive correlation. In both tests the significance of the result
is expressed by means of the p-value. The p-value is the probability of observing the
calculated correlation if, in reality, no correlation exists. A p-value < 0.05 is considered a
significant result.

The correlations of the vulnerability metrics to efficiency loss and robustness were
tested using both the Spearman and Kendall tests. The two tests yielded similar re-
sults. Both identified the same bivariate correlations as significant. In each of these cases
both tests coincided in terms of the direction of the correlation. Kendall’s test, however,
consistently calculated a weaker correlation than Spearman’s.

The Spearman correlations were used to test hypotheses regarding the relationship
between the vulnerability metrics and efficiency loss or robustness. Six sets of hypotheses
were formulated. In these formulations vi represents the vulnerability metrics where i ∈
{P̃ (All), P̃ (Dir), P̃ 25%(All), P̃ 25%(Dir), Boverall, Belemental, R(Boverall)

75%, R(Belemental)
75%,

Rel∆L(t; t+ z)} and K ∈ {F, S,D} represents the different archetypes.

1. Correlation between the initial value of vi and efficiency loss.

• H0: There is a correlation between the initial value of vi and the efficiency loss
in the instances of archetype K under a random error strategy.

• HA: There is no correlation between the initial value of vi and the efficiency
loss in the instances of archetype K under a random error strategy.

2. Correlation between the % change of vi and efficiency loss.

• H0: There is a correlation between the % change of vi and the efficiency loss
in the instances of archetype K under a random error strategy.

• HA: There is no correlation between the % change of vi and the efficiency loss
in the instances of archetype K under a random error strategy.
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3. Correlation between the final value of vi and efficiency loss.

• H0: There is a correlation between the final value of vi and the efficiency loss
in the instances of archetype K under a random error strategy.

• HA: There is no correlation between the final value of vi and the efficiency loss
in the instances of archetype K under a random error strategy.

4. Correlation between the initial value of vi and robustness.

• H0: There is a correlation between the initial value of vi and the robustness in
the instances of archetype K under a random error strategy.

• HA: There is no correlation between the initial value of vi and the robustness
in the instances of archetype K under a random error strategy.

5. Correlation between the % change of vi and robustness.

• H0: There is a correlation between the % change of vi and the robustness in
the instances of archetype K under a random error strategy.

• HA: There is no correlation between the % change of vi and the robustness in
the instances of archetype K under a random error strategy.

6. Correlation between the final value of vi and robustness.

• H0: There is a correlation between the final value of vi and the robustness in
the instances of archetype K under a random error strategy.

• HA: There is no correlation between the final value of vi and the robustness in
the instances of archetype K under a random error strategy.

Using the Spearman correlation test, if two variables had a significant correlation (p-
value < 0.05) then we failed to reject the H0 that those variables were correlated. If,
on the other hand, the p-value ≥ 0.05 we rejected the H0 and accepted HA. Figure 6.1
plots the correlation values of those vulnerability metrics that had a significant correlation
to efficiency loss, robustness or both. The metrics are ranked according to increasingly
positive correlation to efficiency loss. In the case of the Single Hub (SH) and Double
Hub (DH) archetypes at least 70% of the significant relationships had a relatively weak
correlation (−0.5 < ρ < 0.5), while in the Fully Connected (FC) archetype 55% of the
significant correlations were relatively weak. The correlation results are tabulated in
Tables 6.1–6.3. All the cases where H0 was rejected are identified by the label insig.
Every other value tabulated indicates a significant correlation, meaning that H0 could
not be rejected for that pair of variables. Variables with a strongly positive or strongly
negative correlation are highlighted in the tables.

The significant correlations that were observed seemed, for lack of a better word,
vexing.
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23 Belemental Final
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25 Rel∆L(t; t+ 1) Average

(c) DH archetype

Figure 6.1: Correlations of all significant relationships between the vulnerability metrics
and efficiency loss or robustness.
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Table 6.1: Spearman’s correlation (ρ) between the vulnerability metrics and efficiency
loss and the vulnerability metrics and robustness for the FC archetype. Insignificant cor-
relations (p-value < 0.05) are indicated by insig. Strongly positive and strongly negative
correlations are indicated by pink and green highlighting, respectively.

Metric Measurement % Efficiency loss Robustness

Redundancy

P̃ (All)
Initial value -0.24 -0.16
% Change -0.43 -0.60
Final value -0.65 -0.78

P̃ 25%(All)
Initial value insig. insig.

% Change -0.17 -0.27
Final value -0.35 -0.44

Overlap

Boverall

Initial value -0.09 -0.09
% Change 0.77 0.81
Final value 0.81 0.85

R(Boverall)
75%

Initial value insig. insig.

% Change 0.27 0.21
Final value 0.28 0.21

Efficiency
Rel∆L(t; t+ 1)

Minimum insig. -0.14

step-change
Average 0.84 0.53
Maximum 0.83 0.64
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Table 6.2: Spearman’s correlation (ρ) between the vulnerability metrics and efficiency
loss and the vulnerability metrics and robustness for the SH archetype. Insignificant cor-
relations (p-value < 0.05) are indicated by insig. Strongly positive and strongly negative
correlations are indicated by pink and green highlighting, respectively.

Metric Measurement % Efficiency loss Robustness

Redundancy

P̃ (All)
Initial value -0.29 -0.13
% Change -0.09 -0.39
Final value -0.48 -0.60

P̃ 25%(All)
Initial value -0.27 -0.10
% Change insig. -0.23
Final value -0.37 -0.44

P̃ (Dir)
Initial value -0.25 -0.12
% Change insig. -0.34
Final value -0.44 -0.57

P̃ 25%(Dir)
Initial value -0.23 insig.

% Change 0.10 -0.11
Final value -0.25 -0.31

Overlap

Boverall

Initial value insig. insig.

% Change 0.74 0.75
Final value 0.71 0.71

R(Boverall)
75%

Initial value insig. insig.

% Change 0.22 0.13
Final value 0.20 insig.

Belemental

Initial value insig. insig.

% Change 0.71 0.75
Final value 0.70 0.70

R(Belemental)
75%

Initial value insig. insig.

% Change 0.22 0.15
Final value 0.24 0.11

Efficiency
Rel∆L(t; t+ 1)

Minimum 0.12 -0.16

step-change
Average 0.89 0.38
Maximum 0.88 0.50
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Table 6.3: Spearman’s correlation (ρ) between the vulnerability metrics and efficiency
loss and the vulnerability metrics and robustness for the DH archetype. Insignificant cor-
relations (p-value < 0.05) are indicated by insig. Strongly positive and strongly negative
correlations are indicated by pink and green highlighting, respectively.

Metric Measurement % Efficiency loss Robustness

Redundancy

P̃ (All)
Initial value -0.32 insig.

% Change insig. -0.34
Final value -0.40 -0.55

P̃ 25%(All)
Initial value -0.20 insig.

% Change insig. -0.26
Final value -0.28 -0.41

P̃ (Dir)
Initial value -0.19 insig.

% Change -0.12 -0.35
Final value -0.34 -0.50

P̃ 25%(Dir)
Initial value -0.13 insig.

% Change insig. -0.11
Final value -0.18 -0.24

Overlap

Boverall

Initial value insig. insig.

% Change 0.68 0.73
Final value 0.68 0.72

R(Boverall)
75%

Initial value -0.13 insig.

% Change 0.19 insig.

Final value 0.11 insig.

Belemental

Initial value insig. insig.

% Change 0.69 0.70
Final value 0.72 0.71

R(Belemental)
75%

Initial value -0.10 insig.

% Change 0.17 insig.

Final value 0.12 insig.

Efficiency
Rel∆L(t; t+ 1)

Minimum insig. -0.25

step-change
Average 0.86 0.35
Maximum 0.84 0.51

Redundancy

All the significant correlations of redundancy metrics to efficiency loss and robustness
were negative. In the case of the initial and final values this implied that the greater the
redundancy (i.e. the more shortest paths were available), the less the efficiency loss would
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be. This seemed reasonable, until one recalled that smaller efficiency loss usually indicated
that an instance became disconnected sooner rather than later. The negative correlations
between the redundancy metrics and robustness confirmed that the more shortest paths
were available to an instance, the sooner it would become disconnected (i.e. the weaker
its robustness).

Even though it was only the relationship between the final values of P̃ (All) and ro-
bustness that were strongly negative, the consistency of the negative correlations made
this a perplexing result. It was expected that correlations to robustness would be positive
— the more alternatives are available to a network, the longer it would survive random
disruptions. To understand these observations better, we considered the correlations of
the overlap metrics.

Overlap

In all three archetypes, the final values of and % change in Boverall showed a very strong
correlation to both efficiency loss and robustness. Astonishingly, the correlation was
positive, indicating that the more overlap developed in an instance, the more likely it was
to survive longer. The positive correlation to the % change also implied that the more
pronounced the change in overlap, the longer an instance survived. So the greater the
overlap right before disconnection, the longer an instance survived. Or was it the other
way around? Could it be that for the instances that survived longest there was more
opportunity for shortest paths to be forced to overlap? Unfortunately, the correlation
tests could not determine the direction of the causality. What was clear, was that there
were diehard instances that had very high levels of overlap. This lead us to believe that
greater overlap does not, in fact, suggest greater vulnerability! The expectation was for
a negative correlation of overlap with efficiency loss and robustness, especially in terms
of the initial values. The more overlap was prevalent in an instance, the quicker it was
expected to become disconnected. As a result of quick disconnection it would then also
suffer less efficiency loss.

The only plausible explanation for both the redundancy and overlap results lay in the
fact that the removal of links were random. A perspective that had not been considered
up until this point in the thesis was that the fewer grid links were included in the shortest
paths of an instance, the less likely it was that a random selection would affect the shortest
paths at all.

To investigate this further, the relationship between the grid coverage, redundancy
and overlap was investigated. The grid coverage was measured as the number of grid
links in C(Sij) divided by 360 which was the total number of grid links.

There were significant strongly positive correlations between redundancy and grid
coverage in each of the archetypes. Spearman’s ρ was 0.54, 0.68 and 0.64 for the FC, SH
and DH archetypes, respectively. This implied that the more alternative paths an instance
had, the greater the proportion of all grid links covered by the shortest path sets. This also
meant that the greater the redundancy, the more probable it was for a random disruption
to damage the instance. This was confirmed by the significant correlation between the
grid coverage and robustness which was −0.18, −0.24 and −0.15 for the FC, SH and DH
archetypes, respectively. These negative correlations implied that the more of the grid
was included in the shortest path sets, the quicker it would become disconnected. The
quicker it became disconnected, the lower its overall efficiency loss. This was confirmed
by the significant correlation of grid coverage with efficiency loss which was −0.18, −0.30
and −0.30 for the FC, SH and DH archetypes, respectively.
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The take-away was that redundancy had a more feeble influence on robustness than
first imagined. Rather, the probability of being affected at all by a random disruption
held prominent bearing. This result corroborated the work of Dehghani et al. (2014)
who also found that under random disruption the parameters of the disruption proba-
bility distribution were more indicative of road network vulnerability than topological
characteristics.

The correlation between overlap and grid coverage was also significant, but negative.
The degree of correlation was weaker than between redundancy and grid coverage. Spear-
man’s ρ was −0.34, −0.21 and −0.42 for the FC, SH and DH archetypes, respectively.
This relation illustrated that the more overlap there was within C(Sij), the less of the grid
was covered as the shortest paths were more concentrated. This result was congruent
with the correlation of grid coverage to efficiency loss and disconnection, as mentioned
earlier.

Certainly, as Chapter 4 showed, the degree of overlap is a critical vulnerability indi-
cator under targeted attack. Under random link-disruption this theory frayed somewhat.
Could it be that the probability of being affected by the upcoming disruption had more
bearing on vulnerability than the level of overlap?

From these results one could have been tempted to assert that redundancy and over-
lap did not have bearing on vulnerability, but we cautioned against such statements. As
mentioned before, it was recognised that road network failures are neither completely tar-
geted, nor are they completely random. Rather the “disruption” mechanism is somewhere
on the continuum between targeted and random. Although redundancy and overlap do
not seem to capture vulnerability in its essence, neither does road utilisation — the cor-
relations are too weak and causality was not established. What we could conclude was
that vulnerability was a multi-dimensional concept.

Another pivotal observation was the weak (if not insignificant) relation of the initial
values of redundancy and overlap to robustness. The initial state of the shortest paths
was a very shaky foundation for quantifying vulnerability.

Moving away from the number of shortest paths and their degree of overlap, we evalu-
ated the correlation of the changes in shortest path length to efficiency loss and robustness.

Efficiency Step-Change

The average and maximum efficiency step-change had significant, strongly positive corre-
lations to both efficiency loss and robustness. The longer an instance survived, the sparser
the road network became. A sparser road network foreshadowed larger step-changes in
the length of shortest paths. Larger step-changes increased the average values and also
made it more likely for a new maximum step-change to be observed.

The correlations of the efficiency step-change metrics made much more intuitive sense.
However, the correlation itself did not prove that by monitoring these metrics one could
discriminate between instances that were about to become disconnected and those that
would survive.

Despite the controversial results observed for redundancy and overlap, we evaluated
whether those metrics that were strongly correlated (either negatively or positively) could
in some way have discriminated which instances were more likely to experience efficiency
loss or disconnection during a subsequent disruption.
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6.1.2 Discriminatory ability of correlated metrics

To investigate whether a certain metric had the ability to discriminate between instances
that were about to experience efficiency loss or disconnection in a subsequent disruption,
we had to ascertain whether there were significant differences between the values of the
vulnerability metrics for those instances and the values for the rest. The vulnerabil-
ity metrics that were tested were those that were proven to have strong correlations to
efficiency loss or robustness. Table 6.4 lists these metrics for each archetype.

Table 6.4: Metrics tested for discriminatory power in each network archetype.

Efficiency Loss Robustness
FC SH DH FC SH DH

Redundancy
P̃ (All)

% Change D

Final value D D D D

P̃ (Dir) Final value D D D D

Overlap
Boverall

% Change D D D D D D

Final value D D D D D D

Belemental
% Change D D D D

Final value D D D D

Efficiency
Rel∆L(t; t+ 1)

Average D D D D

step-change Maximum D D D D D D

After each disruption, the instances were split into two samples: the sample of in-
stances that were known to have become disconnected or to have suffered efficiency loss
during the next disruption (sample X) and the sample of instances that were known to
have survived or not to have suffered efficiency loss (sample Y ). A Kolmogorov-Smirnov
test (KS-test) was used to test the following hypothesis:

• H0: The sample distributions of metric vi(X) and vi(Y ) are drawn from the same
theoretical distribution.

• HA: The sample distributions of metric vi(X) and vi(Y ) are not drawn from the
same theoretical distribution.

(Where vi is a vulnerability metric from Table 6.4.)

The test statistic (D) quantifies the distance between the Empirical Distribution Func-
tion (EDF) of the vulnerability metric as measured from the sample of surviving instances
X and the EDF of the vulnerability metric as measured from the sample of non-surviving
instances Y . The null hypothesis that the sample distributions were drawn from the
same theoretical distribution was rejected when the p-value was lower than the chosen
significance level, which in this case was 0.05.

The KS-test was conducted for each vulnerability metric after each disruption, pro-
vided that the samples X and Y had more than 15 observations each. The p-values of the
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tests are tabulated in Tables B.1–B.5 in Appendix B. The results were overwhelmingly
negative, failing to identify any generalisable discriminatory power in any of the metrics.

With regards to efficiency loss, the sample sizes of X in the FC archetype were less
than 15 after each disruption, therefore no test could be performed. The DH archetype
only had one out of 46 p-values smaller than 0.05. In the SH archetype the overlap metrics
could discriminate instances about to suffer efficiency loss, but only at one time-point in
the whole simulation, which made the result un-generalisable.

With regards to the robustness, there were many more occasions when the test rejected
the null hypothesis and confirmed a level of discriminatory power. The step-change met-
rics showed discriminatory power in the earlier disruptions of the FC archetype while the
overlap metrics were effective at unique time points for both the SH and DH archetypes.
Nonetheless, these results were not consistent across the entire simulation for any one
archetype with p-values measured at other time points variable and often greater than
0.5. This made it impossible to conclude that these metrics do really hold discriminatory
power.

It is possible that the relatively small sample sizes and the inherent limitations of the
KS-test affected the outcome. The KS-test asymptotically approximates p-values in the
presence of ties, an approximation which could have led to inaccuracies. Furthermore,
it is known to perform better with much larger sample sizes. Despite the effect of these
shortcomings, it could be said that the lack of discriminatory power was congruent with
the correlation results described in the previous section.

6.2 Conclusion of statistical validation

At this stage of the thesis we reverted to the design research methodology which stated:

“Design itself is not considered research but it is through the insights de-
rived during analysis of the designed artefact’s performance that the body of
knowledge in a field grows.” (Section 1.6)

The hypothesis tests led to three insights. Firstly, although more than one metric
was strongly correlated to efficiency loss and/or robustness for redundancy and overlap,
the direction of the correlations were unexpected. This implied that vulnerability under
random link disturbances was not a straight-forward product of redundancy and overlap.
Instead it was multi-faceted and the probability of removing a link that featured in shortest
path held pertinent influence. Secondly, the initial values of the vulnerability metrics were
surprisingly uncorrelated. Therefore, it was impossible to gauge the inherent vulnerability
of a network looking only at the initial, undisturbed network. Finally, by using the KS-test
we confirmed that even those metrics that were strongly correlated to either efficiency loss
or robustness unfortunately showed no discriminatory power. Overall we were satisfied
that the metrics developed quantified the concepts of redundancy, overlap and efficiency
step-change, however under random disruptions these were not convincing stand-alone
indicators of vulnerability.

So far the thesis had presented a useful multilayered network representation and a
thoughtfully crafted set of vulnerability metrics. Unfortunately, this suite of metrics did
not prove to be the silver bullet hoped for in quantifying vulnerability under random
disruptions. However, much was learnt from the performance of these metrics thus far.
These artefacts were both novel when compared to related studies. Therefore, it was not
possible to find comparable results from literature against which to assess the findings.
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The final phase of this thesis sought to determine the validity of the formulation of M
and the vulnerability metrics by applying them to real-life data from three urban areas
in South Africa.
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Chapter 7

Case study: Real-life networks from
South Africa

Two artefacts have been developed in this thesis, a multilayered network formulation and
a suite of vulnerability metrics. The theoretical validity of these two artefacts have been
evaluated using targeted attack and random error simulations combined with hypothesis
testing. The purpose of applying these artefacts to real-life networks was to evaluate
whether the theoretical findings could be corroborated when real-life data is used. The
following two chapters address the second part of the fourth thesis objective:

4. Evaluation of the validity of the suite of vulnerability metrics through
statistical analysis and a real-life case study.

The case study explored real-life data from three urban areas in South Africa namely
the City of Cape Town (CoCT) metropolitan municipality in the Western Cape province,
the eThekwini Metropolitan Municipality (ET) in the KwaZulu-Natal province and the
entire Gauteng Province (GT). The locations of the three areas, in the context of South
Africa, are shown in Figure 7.1. Using road network and freight movement data from
these three areas we were able to extract unique multilayered network instances (hereafter
case study instances) that approximated the three theoretical network archetypes, Fully
Connected (FC), Single Hub (SH) and Double Hub (DH).

This chapter starts by contextualising the three chosen areas. The methodology fol-
lowed in extracting the case study instances is then presented and the characteristics of
these instances are compared to the characteristics of the theoretical instances used in the
thesis up until now. Finally, the customised algorithm developed to construct the shortest
path sets is explained before concluding the chapter with an analysis of the initial shortest
path sets of the case study instances.

7.1 Three urban areas

The CoCT in the Western Cape Province and ET in the KwaZulu-Natal Province are
two metropolitan municipalities anchored by two of Southern Africa’s most prominent
seaports. The Port of Durban in ET is one of the busiest container ports in Africa and
also handles significant volumes of dry bulk and liquid bulk cargo. The Port of Cape Town
in CoCT handles mainly fruit & agricultural dry bulk trade and containerised cargo. Over
decades these ports have been pivotal in cultivating urban and industrial development in
their immediate hinterland.
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Figure 7.1: The CoCT and ET metropolitan municipalities and GT province in context
of the rest of South Africa.

Figure 7.1 shows GT, Western Cape and KwaZulu-Natal provinces in context of the
rest of South Africa. CoCT lies on the south-western edge of of the Western Cape province
while ET lies on the eastern coast of the country towards the southern edge of KwaZulu-
Natal. Geographic constraints, industrial activity and the legacy of urban development
under the Apartheid regime resulted in distinct urban road network topologies for each
of these areas.

The GT province is the nexus of Southern Africa’s industrial and economic activity.
Situated hundreds of kilometres inland from any port, its industrial heritage dates back
more than a century to the discovery of gold. Today it is still the economic powerhouse
of the country and even the Southern African region with industries diversified across
the primary (mining & agriculture), secondary (manufacturing), and tertiary (services)
sectors. It contributes a third of the country’s GDP and 10% of the GDP of the entire
African continent (Gauteng Online, 2017). Geographically it is the smallest province,
yet it is also the most densely populated in the country with a population exceeding 13
million (Statistics South Africa, 2016). Therefore, although GT consists of five separate
municipalities, it is considered a megacity according to international classifications (United
Nations, Department of Economic and Social Affairs, Population Division, 2015). Three
of its five municipalities are classified as metropolitan. The province is a dense web of
interconnected urban centres, as such it did not make sense to isolate one of the five
metropolitan municipalities for the case study. Instead the whole province was included.

To extract case study instances from any one of these areas required that we first
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extract the logical (G1K) layers of instances from freight movement data and the physical
(G2) layers from road network data. Thereafter each instance of G1K had to be layered on
G2 to create a multilayered network instanceM with its associated collection of shortest
paths C(Sij).

7.2 Constructing the logical layer

Joubert and Axhausen (2011) were the first to consider commercial vehicle movement as
a proxy for supply chain activity. Using the Global Positioning System (GPS) vehicle logs
of 40 000+ commercial vehicles over six months the authors developed a methodology to
extract commercial vehicle activity chains from the data. These chains indicate when and
where a vehicle performed logistics activities. The authors realised that the concentration
of logistics activities in a certain location is a clue in identifying logistics facilities. In
subsequent work, they used clustering algorithms to infer the positions of logistics facilities
based on the activity chains extracted from the commercial vehicle movement database
(Joubert and Axhausen, 2013; Joubert and Meintjes, 2015a,b). For almost a decade
Joubert and collaborators have been refining the methodology of extracting activity chains
and using these to identify logistics facilities in South Africa. The logical layers of the case
study instances were extracted from this database of commercial vehicle activity chains.

7.2.1 Creating supply chain networks for the three areas

All activity chains with one or more activities executed inside the areas during February
2014 were extracted from the database. These chains were used to construct one large
logical network layer for each area. These were called the area networks, each being a
combination of hundreds of small supply chain neighbourhoods or “building blocks” that
made up the freight economies in the areas.

These area networks were both directed and weighted. Nodes represented logistics
facilities while links indicated that there had been commercial vehicle activity, i.e. direct
trips between two facilities in the direction of the links. The weight of the links repre-
sented the number of times a commercial vehicle had travelled between two nodes during
February 2014. It was assumed that for supply chain interactions to be frequent and
ongoing, there had to be a minimum of four vehicle trips between facilities in a month —
equating roughly to one vehicle trip per week. Therefore, the area networks were filtered
to only include links with a weight of at least four trips per month. The dimensions of
these area networks are summarised in Table 7.1.

Table 7.1: Dimensions of the supply chain area networks.

Area Nodes Links Links:Node

GT 3 424 6 222 1.82
CoCT 1 440 3 308 2.30
ET 1 060 1 965 1.85

Although the area networks were weighted initially, the formulation of M was un-
weighted. Furthermore, the vulnerability metrics were based on unweighted networks.
Therefore, the link weights were only used to filter the noise resulting from the compre-
hensive activity chain database, thereafter the area networks were modelled as unweighted.
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Next, individual case study instances that mimicked the structure of the FC, SH and DH
archetypes had to be extracted from these directed, unweighted area networks.

7.2.2 Extracting potential case study instances

Node degree, the First Order Neighbourhood (FON) and triangles were three Complex
Network Theory (CNT) concepts used to identify and extract the logical layers of potential
case study instances. These concepts are explained here with reference to the DH and FC
archetype examples illustrated in Figure 7.2.

Node degree, in its simplest form, is the sum of the number of incoming and outgoing
links that connect a node to other nodes in the network. For example, from Figure 7.2a
we see the node degree of x1D

1 = 8, which is the sum of its four incoming and four outgoing
nodes. Meanwhile the node degree of x1D

6 = 2. In the FC example of Figure 7.2b, the
node degrees are all equal with x1F

1 = x1F
2 = x1F

3 = 4.

(a) Theoretical DH archetype with eight nodes, de-
noted by ND

1 = 8.
(b) Theoretical FC archetype with NF

1 = 3.

Figure 7.2: Illustrative DH and FC archetypes used to explain node degree, the FON and
triangles.

The FON of a node includes itself and all the nodes that are directly connected to that
node. The FON of x1D

1 is thus the set of nodes {x1D
1 , x1D

2 , x1D
3 , x1D

4 , x1D
5 } while the FON

of x1D
6 includes only two nodes {x1D

2 , x1D
6 }. While the FONs of x1D

1 and x1D
6 have a node

in common (x1D
2 ), they are not identical. The FONs of two nodes are only considered

identical if they are comprised of exactly the same set of nodes. By contrast, the FONs
of all the nodes in the FC archetype are identical — i.e. FON(x1F

1 )= {x1F
1 , x1F

2 , x1F
3 },

FON(x1F
2 )= {x1F

1 , x1F
2 , x1F

3 }, and FON(x1F
3 )= {x1F

1 , x1F
2 , x1F

3 }.
A triangle occurs when two first order neighbours of a certain node are also connected

to each other. In the FC archetype x1F
2 and x1F

3 are first order neighbours of x1F
1 . They

are also directly connected to each other. Thus, the three nodes form a triangle. By
contrast, there are no triangles in the DH network.

Table 7.2 summarises distinguishing characteristics of the theoretical FC, SH and DH
archetypes in terms of node degree, FON and triangles.

A census of all FONs was conducted for each area network. A decision was made to
filter out all FONs containing three or less nodes as a supply chain with three or less
nodes was not considered a true reflection of supply chain complexity in practice. The
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Table 7.2: Distinguishing characteristics of the FC, SH and DH archetypes.

Archetype

Characteristic FC SH DH

Node degree
Node degree is
equal to 2(n− 1) for
all nodes.

One hub node with
relatively high node
degree. All other
nodes have a degree
of 2.

Two hub nodes
with relatively high
node degree. All
other nodes have a
degree of 2.

FONs

All nodes have
identical FONs, i.e.
they are within the
same FON.

All nodes are
included in the
FON of the hub
node, while the
FONs of the other
nodes include only
itself and the hub
node.

All nodes are
included in the
FONs of the two
hub nodes, but the
FONs of the two
hubs are not
identical. The FON
of every other node
includes only itself
and one of the hub
nodes.

Triangles
All the possible
triangles are
complete.

No triangles
present.

No triangles
present.

number of nodes in a FON is its size. The distributions of FON sizes were heavily skewed
with long right tails for each of the area networks. For legibility’s sake, the distributions
of FON sizes are only shown up until the 95th percentile in Figure 7.3. Although there
were many more FONs in GT than in the other two areas, the median of the FON size
was five for each of the areas. This implied that despite their differences, the building
blocks of supply chain networks were similar across these three areas — at least in terms
of the number of participating facilities.
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Figure 7.3: Distribution of FON sizes for the three area networks. Only FONs with more
than three nodes that fell within the 95th percentile cut-off are shown here.

Next it was calculated what percentage of the possible triangles1 was present in each
FON2 (Figure 7.4). FONs that contained 100% of all possible triangles were potential FC
instances. On the other hand, FONs that contained zero triangles were potential SH and
DH instances.
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Figure 7.4: Distribution of possible triangles present in FONs.

Across all three areas there were a total of 120 FONs containing 100% of possible
triangles and 275 FONs containing zero triangles, yielding nearly 400 potential case study

1The possible triangles of a network with n nodes refers to the maximum number of triangles that can
be formed if that network is fully connected.

2The function in R’s igraph package (Csardi and Nepusz, 2006) that identifies triangles regards all
links as undirected, regardless of whether the network is specified as directed or not.
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instances. However, there was considerable similarity between many of these FONs. Sim-
ilarity is when two FONs have a significant proportion of nodes in common. Comparisons
were conducted and if two FONs had more than 50% of their node sets in common, the
smaller of the two FONs was discarded. Table 7.3 shows the samples of FONs that re-
mained in each of the areas after filtering according to triangles and removing similar
FONs. All the FONs with 100% triangles represented FC instances while all FONs with

Table 7.3: FONs remaining per area after filtering according to triangles and similarity.

GT CoCT ET Total

0% triangles 136 41 48 225
100% triangles 36 19 15 70

0% triangles represented SH instances. Identifying DH instances was slightly more tricky.
The DH archetype is essentially a combination of two adjacent SH instances. Consider

again the example network in Figure 7.2a. The FON of node x1D
1 includes node x1D

2 but
not nodes x1D

6 , x1D
7 or x1D

8 . Conversely, the FON of node x1D
2 contains node x1D

1 but not
nodes x1D

3 , x1D
4 or x1D

5 . The first clue to identifying adjacent SH instances was thus to
search for FONs that had more than one high degree node. We did this by searching
through all the 0% triangle FONs for those that contained a secondary node with degree
80% or higher than that of the focal node. Once such FONs had been identified, it had to
be determined whether the secondary node was, in fact, the hub of another SH instance.
If that was the case, the two SH instances were combined to form one DH instance.
Altogether 20 DH instances could be identified.

The case study instances had to be kept as independent as possible. Therefore the 36
SH instances that were combined in different configurations to form DH instances were
removed from the original pool of 225 SH instances. Table 7.4 lists the sample sizes of
each archetype in each area. This represented the initial sample of case study instances.

Table 7.4: FC, SH and DH instances per area

GT CoCT ET Total

FC
36 19 15 70

52% 27% 21% 100%

SH
110 37 42 189

58% 19% 22% 100%

DH
15 2 3 20

75% 10% 15% 100%

The question arose, how well does this sample represent the population of supply chain
neighbourhoods in the three areas?

7.2.3 Representativity of the case study instances

By applying the aforementioned criteria to extract case study instances we had whittled
away substantially at the area networks. What percentage of the original area networks
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were represented by this sample of case study instances? An average of 24% of the nodes
and 17% of the links of each area were included in the case study instances (Figure 7.5).
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Figure 7.5: Percentage of the nodes and links of the original area networks included in
the case study instances.

It was tempting to conclude then that the case study instances were significantly rep-
resentative. However, the sample had a very distinct bias towards instances with specific
characteristics — namely those that had either 100% or 0% of the theoretical triangles
present (refer back to Figure 7.4). These FONs were regarded as closely resembling the
FC, SH or DH archetypes. But what about all the other FONs? These were supply
chain neighbourhoods that didn’t have a clearly predefined structure. If we considered
the FONs shown in Figure 7.4, then these networks of mixed type constituted 73%, 79%
and 71% of the FONs in GT, CoCT and ET, respectively. It was notable that real-life
supply chains did not obey the neat confines of theoretical archetypes. It was also notable
that the percentage of supply chains that were of mixed type were similar across the three
areas despite the perceived differences in the economic activity of these areas.

We could thus conclude that the case study instances represented between a fifth
and a quarter of the FONs in the area networks whether considering only the number of
nodes/links included or the FONs themselves. However, it completely disregarded FONs
of mixed type, which constituted about three quarters of each area. This bias had to be
kept in mind when interpreting findings later in the study.

The criteria used to extract case study instances ensured that these closely resembled
the three archetypes. There remained, however, scope for the instances to deviate from
the assumptions that had been applied when generating the 1 500 theoretical instances.

7.2.4 Deviations from theoretical assumptions

As could be expected, not all of the assumptions made when generating G1K in the theo-
retical instances held true for the case study instances. Three deviations were identified:

• The number of nodes (N1K) very seldom equalled 12 in the case study instances.
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• Not all directly connected nodes were connected bi-directionally (i.e. one link in
each direction).

• Not all DH instances strictly adhered to the two-hub topology.

Number of nodes (N1K)

Figure 7.6 shows the distribution of N1K for each of the archetypes. The FC and SH
instances were all smaller than their theoretical counterparts and ranged between 4 and
10 nodes. The DH instances were closer to N1K = 12 with sizes varying between 8 and
18 nodes.
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Figure 7.6: Number of nodes in G1K for the case study instances.

Smaller networks meant fewer links that had to be maintained during successive dis-
ruptions. Surely it was plausible then that smaller networks would be more robust under
a random error simulation as there were fewer possible “points of failure”? Here the mul-
tilayered nature of the case study instances came into play. Although a supply chain may
have contained only a few facilities, these may have been many kilometres apart, travers-
ing a significant portion of the underlying road network. This distance introduced many
more possible points of failure in the road network. Thus, one could not have concluded
that instances would be less vulnerable to disruption based on the size of G1K alone.

What remained true, was that fewer nodes in G1K implied fewer logical links. The
next two deviations also affected the number of logical links in the case study instances.

Bi-directionality

The second deviation from the theoretical assumptions was that in the logical network
layers, not all node-pairs were connected bi-directionally. In the theoretical instances,
every link e1K

ij from node x1K
i to node x1K

j had a reciprocal link e1K
ji from node x1K

j to node
x1K
i . In the case study instances facilities were often not connected bi-directionally. It

made sense that in practice freight may typically be shipped only in one direction between
facilities — for example from a manufacturing facility to a warehouse. Therefore, it was
not surprising that many node-pairs only had a one-directional connection.

The link structures of the logical layers were left unaltered. Where nodes were only
connected in one direction, a reciprocal link was not inserted artificially. In the SH and
DH archetypes this simply meant that some nodes could either only receive incoming
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freight or send outgoing freight. The impact was a reduction in the total number of links,
both direct and indirect. The effect in the FC archetype was somewhat different. In
the theoretical instances, all nodes in G1F were directly connected. The number of direct
links was always N1F (N1F −1) and the number of indirect links always zero. The absence
of bi-directional links induced indirect connections between nodes that would not have
been necessary before. Figure 7.7 illustrates this phenomenon. The network on the left
has a direct link e1F

31 from x1F
3 to x1F

1 . When e1F
31 is not present, as in the network on the

right, the path from x1F
3 to x1F

1 is indirect x1F
3 → x1F

2 → x1F
1 . So while this deviation

also reduced the number of direct links in an FC instance, it induced indirect connections
that were not present before.

Figure 7.7: Example of the occurrence of indirect links in an FC instance. On the left
x1F

3 and x1F
1 are directly connected by e1F

31 . On the right e1F
31 is not present thus inducing

an indirect connection between x1F
3 and x1F

1 : x1F
3 → x1F

2 → x1F
1 .

This deviation was pervasive. On average 33% of the node-pairs in an FC instance
were only connected in one direction. Even more node-pairs were affected in the hub
archetypes. Figure 7.8 shows that the SH and DH instances had an average of 63% and
53% of the node-pairs connected uni-directionally. In all three archetypes there were
multiple instances with 90%–100% of the node-pairs connected uni-directionally. In fact,
in the SH archetype this was the second most prevalent bandwidth.
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Figure 7.8: Uni-directional node-pairs as a % of the total number of node-pairs per
instance.

Having node-pairs connected only in one direction did not change the levels of damage
that could be measured during a disruption simulation. Efficiency loss was still measured
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as the increase in the average shortest path over all logical links; an instance was still
considered disconnected when any single logical link was completely broken; and a network
was still considered destroyed when no more logical links remained.

The net result was less densely connected logical layers, indicated by a lower link to
node ratio for all three archetypes. For the FC archetype the occurrence of indirect con-
nections affected the homogeneity of all of its network metrics, making their distributions
broader and more similar to those of the hub archetypes than those of the theoretical
instances. Section 7.5.1 and Chapter 8 illustrate these observations.

Prohibited links in the DH archetype

The third deviation from the theoretical assumptions related to the structure of the DH
archetype. Strictly speaking, the DH archetype had two hub nodes, each surrounded by
a number of spoke nodes. Each spoke node was connected only to its respective hub and
the two hubs were connected to each other as illustrated in the network on the left in
Figure 7.9. In the case study, DH instances were created by joining two adjacent SH
instances. Sometimes a spoke node in one SH instance was connected to a spoke node in
the other. Thus, when the two SH instances were combined, it resulted in a DH instance
that had direct connections between spoke nodes as shown in the righthand network in
Figure 7.9.

Figure 7.9: Example of direct links between the spoke nodes of a DH instance. In the
instance on the left there would be no direct links between spoke nodes. In the case study,
combining two adjacent SH instances sometimes resulted in the direct connection of spoke
nodes for example x1D

3 → x1D
6 and x1D

8 → x1D
5 (right).

Compared to the previous two deviations, this deviation was less prevalent as it only
affected 20% of the instances in one of the three archetypes. In these instances the number
of logical links increased by 17%, on average.

One experimental implication of both the second and third deviations was that the
number of links in the logical layer could not be calculated by virtue of the network
archetype and number of nodes. Instead it had to be empirically determined for each
instance.

Net effect on the number of logical links

If all node-pairs had bi-directional links and there were no prohibited links occurring in
the DH instances, the number of logical links could be calculated based on the archetype
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and number of nodes as shown in the equations below.

FC: N1F (N1F − 1) (7.1)

SH: 2(N1S − 1) (7.2)

DH: 4(
N1D

2
− 1) + 2 (7.3)

The darker bars in Figure 7.10 indicate the theoretical number of logical links that should
have been present for instances of a specific archetype and size if there were no deviations.
The lighter bars indicate the average of the actual number of logical links present in
instances of that size. For all three archetypes the actual number of logical links was
less than the theoretical number of links. This confirms that, across the board, the
logical layers of the case study instances were less densely connected than the theoretical
instances.
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Figure 7.10: Theoretical number of links based on the number of nodes compared to the
average of the actual links in each case study instance containing that number of nodes.

7.2.5 Validity of the formulation of the logical layer (G1K)

In this thesis three archetypes were thoughtfully formulated based on prevalent supply
chain design theory and intuitive knowledge of supply chain network interactions. A
number of theoretical assumptions were made when generating samples of each of these
archetypes. This section investigated the validity of this formulation based on the real-life
data available in the three case study areas.

The first observation was that these archetypes, or at least close approximations of
these archetypes, were indeed present in the practice and captured between a fifth and
a quarter of the total population of supply chain neighbourhoods. The remainder of the
supply chain neighbourhoods were mixtures of theoretical archetypes.

The prevalence of the mixed type in practice can be discussed from two perspectives.
The first perspective acknowledges that reality simply does not pan out as we plan.
The partners in a supply chain may agree to design their network according to certain
philosophies. These may be centralised distribution (approximating the SH archetype),
decentralised distribution (multi-hub structures similar to the DH archetype) or fully
collaborative distribution (similar to the FC archetype). Unfortunately, when the rubber
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hits the road it is unlikely that the interactions between the facilities, at least in terms of
freight movement, will obey these academic designs. The second perspective posits that
supply chain network designs are really emergent and innovative — impervious to the
enforcement of theoretical archetypes.

This is one of the key opportunities for future research identified by this thesis. The
methodologies now exist to extract the building blocks of supply chain networks from big
data. It is worthwhile to investigate the prevalent supply chain designs that emerge from
practice and how these interconnect. A related question would be whether these designs
are correlated to certain geographies, countries or economic structures are indifferent to
these factors and therefore generalisable.

Despite the fact that the theoretical archetypes addressed only a portion of the popu-
lation, that portion remained significant. Any findings based on these archetypes would
be relevant to at least a fifth of the population.

The second observation was that the case study instances did not adhere to the theo-
retical assumptions in three specific ways. These deviations affected the size and densities
of the instances. It was speculated that such differences could have influenced the per-
formance of the suite of vulnerability metrics but it was impossible to predict what this
influence would have been based on the characteristics of the logical layers alone. Next
we present the methodology used to construct the physical layers (G2) corresponding to
each logical layer and the comparison of the real-life characteristics of these road networks
to the theoretical representation of the bi-directional grid.

7.3 Constructing the physical layer

The ubiquity of GPS technology has led to the success of Volunteer Geographic Informa-
tion (VGI) in the past decade. Non-experts and experts alike can now contribute to open
source geographic information platforms. One such viable platform is OpenStreetMap
(OSM). It is dedicated to creating and maintaining high-quality free geographic data.
The quality of VGI can vary based on the number of contributors and the rigour enforced
by the community. However, the quality and completeness of VGI in urban areas around
the world is typically comparable to commercial geographic data (Graser et al., 2013).
The OSM data for road networks in the three areas have been used in a number of studies
by the Centre for Transport Development at the University of Pretoria. Therefore, it was
assumed that the quality and completeness of this data were adequate for the purpose of
this thesis.

7.3.1 Extracting road networks from OpenStreetMap

The road networks within the areas were extracted from OSM using Osmosis, a Java
application developed specifically for processing OSM data. During data extraction one
had the option to exclude certain road types. In the commercial vehicle activity dataset
there was no discrimination of vehicle type, thus we assumed that the vehicles varied from
light delivery vehicles to the largest semi-trailer configurations. We further assumed that
most of these vehicles would have used highways, primary and secondary roads and other
major paved roads in an urban area. Suburban, private and dirt roads would have been
avoided as much as possible. Therefore, when extracting the road networks for the three
areas, filters were applied so that only major roadways were extracted.
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7.3.2 Clipping network sections for case study instances

For each case study instance, a section of the road network had to be clipped from the
larger area network. This was done to reduce the computational burden of conducting
simulations on the case study instances. From Figure 7.11 it is evident that the diagonal
span (in km) of the logical layers varied greatly across the different archetypes. FC
instances covered the smallest area, SH instances covered, on average, approximately
double the area of the FC instances. The DH instances in turn covered nearly double the
area of the SH instances in GT and ET, but were smaller on average in CoCT.

In practice the scope for finding detours between two facilities is far greater than on
the theoretical 10×10 grid. Nonetheless, there is a natural limit to the length of a detour
that would make sense when serving a specific supply chain. A detour of 15km may be
acceptable to a driver serving a DH instance with facilities strewn across the entire GT,
but that same 15km detour would be a deal-breaker for a driver whose original route was
less than 20km serving facilities in an FC instance.
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Figure 7.11: Diagonal span of the logical layers of the case study instances.

Clipping smaller sections from the area networks held two advantages. Firstly, as
simulations destroyed the road network new shortest paths were limited to a smaller
portion of the road network. This discouraged the routing of unrealistic shortest paths to
keep facilities connected. Secondly, the size of the physical network layer G2 built from
the road network was greatly reduced — easing computation. Algorithm 4 explains how
sections were clipped from the metropolitan network. In short, the distance between any
node in X1K and the edge of G2 had to be 25km or 20% of the latitude/longitude range
of X1K — whichever was greater.

7.3.3 Deviation from theoretical assumptions

Although using a bi-directional grid to represent urban road networks is acceptable prac-
tice in similar studies (Ortigosa and Menendez, 2014), it was obvious that the physical
layers of the case study instances would deviate from this simplistic model.

The theoretical 10×10 grid had 100 nodes representing road intersections. Each node
was connected to its adjacent node(s) by a pair of directed road segments (links) as shown
in Figure 7.12. The lengths of the links were uniform.

There were three features to inspect in the case study instances. The first was how
close these physical layers were to a grid-like structure. The second was how uniform
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Algorithm 4: Clipping a section from a area road network to create G2 for a case
study instance

Input : Area road network, X1K

Output: G2

1 minLat← minimum latitude coordinate in X1K ;

2 maxLat← maximum latitude coordinate in X1K ;

3 minLon← minimum longitude coordinate in X1K ;

4 maxLon← maximum longitude coordinate in X1K ;
5 bufPercent← buffer percentage

6 //Determine minimum and maximum latitude of bounding box;
7 tempMinLat← minLat + (maxLat−minLat) ∗ bufPercent;
8 // Latitude signs specific to road networks in the Southern Hemisphere;
9 dminLat ← Haversine distance between tempMinLat and minLat;

10 if dminLat ≥ 25km then
11 bbMinLat← tempMinLat;
12 bbMaxLat← maxLat− (maxLat−minLat) ∗ bufPercent;

13 else
14 bbMinLat← latitude that is 25km South of minLat;
15 bbMaxLat← latitude that is 25km North of maxLat;

16 // Determine minimum and maximum longitude of bounding box;
17 tempMinLon← minLon− (maxLon−minLon) ∗ bufPercent;
18 // Longitude signs specific to road networks in the Eastern Hemisphere;
19 dminLon ← Haversine distance between tempMinLon and minLon;
20 if dminLon ≥ 25km then
21 bbMinLon← tempMinLon;
22 bbMaxLon← maxLon + (maxLon−minLon) ∗ bufPercent;

23 else
24 bbMinLon← longitude that is 25km West of minLon;
25 bbMaxLon← longitude that is 25km East of maxLon;

26 X2 ← all nodes with coordinates within (bbMinLat, bbMaxLat; bbMinLon, bbMaxLon);
27 E2 ← all links with both incident nodes in X2;
28 G2 = (X2, E2)
29 return G2

the link lengths were. The third feature was the density of these layers compared to the
theoretical grid.

Regular grid structure

The degree distribution of a bi-directional grid is relatively homogenous. The 4 corner
nodes will always have the lowest degree of 4 (2 incoming and 2 outgoing links). The
nodes on the top, bottom, left and right edges will have a degree of 6 and all other nodes
will have a degree of 8. Changing the size of the grid will only increase/decrease the
number of nodes that have a degree of 6 and 8. As the degree distribution of the regular
grid is relatively stable for any number of nodes, it was used as a point of comparison to
assess the grid-likeness of the case study instances.

Figure 7.13a shows the box-and-whisker plot for the degree distribution of the 10 ×
10 grid. The box-and-whisker plots for the degree distributions of the physical layers
clipped from the GT network are shown on the same scale in Figure 7.13b. The degree
distributions of the physical layers were remarkably similar to each other with a minimum
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Figure 7.12: G2 — the 10×10 directed, unweighted representation of the road network.

value of 2, a mean of 4 and a maximum of 12. The bulk of the nodes had degrees between
3 and 6. Although the case study instances did not mimic the degree distribution of the
theoretical grid per se, they certainly exhibited a measure of regularity.
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(b) Degree distributions of the physical layer of the case study instances in GT.

Figure 7.13: Degree distributions of the physical layer of the case study instances in GT
compared to that of the bi-directional 10× 10 grid.

From Figure 7.14 it is apparent that the physical layers clipped from CoCT were also
greatly similar in terms of their degree distributions. Akin to the layers in GT, the mean
degree was 4. Most nodes had a degree between 2 and 6 with a maximum degree of
10. Again these distributions did not match that of the bi-directional grid exactly, but
exhibited impressive regularity.
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(b) Degree distributions of the physical layer of the case study instances in CoCT.

Figure 7.14: Degree distributions of the physical layer of the case study instances in CoCT
compared to that of the bi-directional 10× 10 grid.

Finally the degree distributions of the physical layers clipped from ET are compared
to the grid’s distribution in Figure 7.15. Here the distributions showed slightly more vari-
ation, yet were narrower and had a lower maximum degree compared to the other areas.
These distributions also exhibited regularity with a minimum degree of 2, a maximum
degree of 8 and the bulk of the distributions between 2 and 5. Again the physical layers
from ET were also not an exact match to the structure of the bi-directional grid.
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(b) Degree distributions of the physical layer of the case study instances in ET.

Figure 7.15: Degree distributions of the physical layer of the case study instances in ET
compared to that of the bi-directional 10× 10 grid.

In all three areas the physical layers of the case study instances were not bi-directional
grids, but they did all display the regularity that was expected of a road network.
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Uniform link length

In the theoretical grid, each link had a length of 1. Only in very exceptional downtown
road networks would it be reasonable to expect that road segments are of uniform length.
To assess the level of (non)uniformity of the case study instances, the standard deviation of
the link length (in km) was recorded for each. A histogram of these standard deviations
is plotted for each area in Figure 7.16. By comparison, the standard deviation of the
theoretical grid was zero as all links had the same length. From the figure it is apparent
that the standard deviations of the case study instances fell mostly within 2km. In light
of the diagonal spans of the instances which ranged from 17km to 89km, the variation in
link length was not considered exceptional.
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Figure 7.16: Standard deviation of the link length in G2 in each of the case study areas.

Density of G2

The final feature to compare was the density of the physical layers measured against the
density of the theoretical grid. Density was measured in two ways:

Links to node ratio: This ratio was an aggregate metric that indicated how densely
connected the network was. The theoretical grid had 360 links and 100 nodes and
thus a ratio of 3.6:1. In Figure 7.17a the highest ratios from the case study instances
didn’t even exceed 2.5:1.

The theoretical grid was unitless. To find a comparative unit of length in the case study,
the question was asked “what length of a road segment could a logistics facility reasonably
occupy?” Imagining a warehouse or retail store, 1m or 10m was obviously too short while
a facility spanning 1km in an urban area seemed far-fetched. Therefore 100m was defined
as the unit of measure for the following metric.

Nodes per area: The number of nodes divided by the area covered by the physical
layer in 100m2 units. This is a more conventional way of measuring “density”. The
theoretical grid spanned 100units2 and contained 100 nodes, resulting in a value
of 1. Measured in this way, the case study instances were more than 20 times less
dense than the theoretical grid with a maximum value below 0.06 (Figure 7.17b).
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Figure 7.17: Comparing the density of the case study physical layers to that of the
theoretical grid.

There are different approaches to comparing network densities. In this section we
assessed two metrics and both showed that the physical layers of the case study instances
were materially less dense than the theoretical grid. This meant that from the outset the
underlying road network offered fewer alternatives in getting from any Point A to Point
B.

In summary, although the case study instances did not mimic a bi-directional grid
there was notable regularity in the structure of the physical layers and the link length did
not vary greatly. The greatest divergence from the theoretical grid was in terms of density
and it was expected that this would have dire consequences for network vulnerability.

After extracting the logical layers (G1K) from freight movement data and clipping the
physical layers (G2) from the larger area road networks, these layers had to be associated
to create a multilayered network (M) for each of the 279 case study instances.

7.4 Creating multilayered case study instances

Layering G1K on G2 required that each node in X1K be associated with a node in X2

that was geographically closest. When creating the theoretical instances it was enforced
that each x1K

i be assigned to a unique x2
s. To preserve the realism, we did not enforce this

constraint in the case study instances. Therefore it did occur in a number of instances
that multiple nodes in X1K were associated with the same node in X2, especially for
networks that covered a small geographic area.

7.4.1 Duplicate associations

When two logistics facilities were associated with the same road intersection (i.e. x1K
i and

x1K
i were both assigned to x2

s where i 6= j), then the length of the shortest path between
these two nodes was considered to be N/A. Instances that had three or fewer unique
associations effectively reduced that case study instance to a supply chain that was too
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simple for the purposes of this thesis. Such instances were removed from the sample.
None of the instances of the DH archetype needed to be removed due to this criteria but
more than half of the SH instances and a quarter of the FC instances had to be removed
(Figure 7.18).

Remaining instances
 32 (46%)

 Removed instances
 38 (54%)

(a) SH archetype

Remaining
 instances

 139 (74%)

 Removed
 instances
 50 (26%)

(b) FC archetype

Figure 7.18: Percentage of case study instances removed due to excessive duplicate asso-
ciations.

7.4.2 Final sample of case study instances

After removing instances with too many duplicate associations, a sample of 191 case study
instances remained. The SH archetype represented 73% of the sample followed by the FC
archetype at 17% and the DH archetype at 10%. Intuitively, the majority of instances of
each of the archetypes came from the largest area, GT (Table 7.5).

Table 7.5: Final sample of FC, SH and DH instances per area.

GT CoCT ET Total

FC
15 12 2 32

47% 37% 16% 100%

SH
81 30 28 139

58% 22% 20% 100%

DH
15 2 3 20

75% 10% 15% 100%

From the real-life data it was apparent that for supply chain neighbourhoods that did
exhibit a definitive archetype3 a simple hub design was preferred to a collaborative or

3Remember that the sample was biased to those supply chain neighbourhoods that did exhibit a
definitive archetype and were not of mixed type.
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a multi-hub design. Urban supply chains are essentially distribution channels dispersing
goods from a central point (production facility, warehouse or distribution centre) to many
points of consumption (retail stores). Therefore, a collaborative design may not make
much sense functionally on a neighbourhood level. A multi-hub design on a neighbour-
hood level may also be overcomplicating the relationships, especially considering that the
number of nodes per neighbourhood ranged between 4 and 20 (Figure 7.19).
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Figure 7.19: Size distribution of the final sample of case study instances in terms of logical
nodes. (One outlier of SH not visible on graph: GT26 has 20 logical nodes.)

The distribution of the number of logical links illustrated the impact of the deviations
on the number of links as discussed in Section 7.2.4. The distribution of links was only
slightly higher than the distribution of nodes instead of being a multiple of the number
of nodes as suggested by the theoretical formulas in (7.1)–(7.3). The supply chain neigh-
bourhoods represented in the sample were far less densely connected than the theoretical
archetypes.
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Figure 7.20: Size distribution of the final sample of case study instances in terms of logical
links. (One outlier of SH not visible on graph: GT26 has 27 logical links.)

Finally, the diagonal span of the final sample of case study instances (Figure 7.21)
showed that the FC instances were still most tightly clustered geographically, followed
closely by the SH archetype. The DH archetype still covered the largest area by a great
margin. On average its diagonal span was nearly three times that of the FC instances
and twice that of the SH instances.
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Figure 7.21: Diagonal span of the final sample of logical layers for the case study instances.

Once the sample of multilayered case study instances had been created, the collection
of shortest path sets, C(Sij), had to be defined for each.

7.5 Shortest path sets for case study instances

In the theoretical instancesG2 was a bi-directional 10×10 grid where each link had a length
of one. This symmetry resulted in multiple shortest paths of equal length between any two
non-adjacent nodes in X2. Contrarily, in the case study instances G2 was asymmetrical
and link lengths varied to reflect true road segment length (refer again to the standard
deviations of link length in Figure 7.16). Thus, the probability of finding multiple shortest
paths of exactly the same length between two non-adjacent nodes in X2 was negligible.

In realistic scenarios, an alternative shortest path need not have exactly the same
length as the original shortest path to be considered a viable alternative. Therefore, in
the case study instances the requirement that all shortest path alternatives in Sij have
exactly the same length was relaxed. Instead, if the difference between the shortest path
length and that of an alternative path was within some acceptable margin, the alternative
path was also included in Sij.

Identifying alternative paths with lengths similar to that of the original shortest path
presented a computational challenge. R’s igraph package (Csardi and Nepusz, 2006) was
used to construct the case study instances and determine the shortest paths. Existing
shortest path algorithms could not accommodate the concept of “length tolerance” that
we wished to incorporate. These algorithms could only identify multiple shortest paths if
the paths had exactly the same length. One option was to use the algorithm that calcu-
lates all unique simple paths between two nodes and then extract only those paths with
lengths that fell within some tolerable variance. This approach would have yielded the
comprehensive set of all alternative paths that fell within the stated tolerance. Unfortu-
nately, when tested on just one node-pair from the smallest of the case study instances,
this algorithm took longer than two days to produce the set of all simple paths. The
exponential nature of the algorithm’s computation time negated its usefulness given the
size of G2 and the computational resources available. A custom algorithm was required
to compose Sij for each node-pair.

The algorithm is explained using the simplified network as shown in Figure 7.22. Note
that this network is not an example of the FC, SH or DH archetypes, but rather a fictitious
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network specifically chosen for its ability to explain the working of the algorithm. The
network has nine nodes denoted by xq, q ∈ {1, 2, . . . , 9} that are connected by directed
links as indicated in the figure. Each link is defined by:

eqr =


1 if xq is directly connected to xr

q, r ∈ {1, 2, . . . , 9}
0 otherwise

(7.4)

The length of each link is indicated by a blue link label in the figure.
For this illustration we wish to determine a set of shortest paths between source node

x1 and target node x4 using the steps outlined below:

Step 1: Determine the shortest path between x1 and x4.

Table 7.6: S14 after Step 1

Description Path LijLijLij Figure

Original e17 → e78 → e84 3 7.22a

Step 2: Sequentially remove one link from the original shortest path at a time and de-
termine the new shortest path(s).

Table 7.7: S14 after Step 2

Description Link removed Path LijLijLij Figure

Original – e17 → e78 → e84 3 7.22a

Alternative 1
e17

e12 → e23 → e34 5
7.22b

Alternative 2 e15 → e56 → e64 5

Alternative 3 e78 e17 → e79 → e94 4 7.22c

Alternative 4 e84 e17 → e79 → e94 4 7.22d

Step 3: Remove Alternative 4 as it is a duplicate of Alternative 3.

Table 7.8: S14 after Step 3

Description Path LijLijLij

Original e17 → e78 → e84 3

Alternative 1 e12 → e23 → e34 5
Alternative 2 e15 → e56 → e64 5

Alternative 3 e17 → e79 → e94 4
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(a) Step 1: Determine original shortest path
between x1 and x4.

(b) Step 2: Remove e17 and find alternative
shortest paths.

(c) Step 2: Remove e78 and find alternative
shortest paths.

(d) Step 2: Remove e84 and find alternative
shortest paths.

Figure 7.22: An illustration of the first two steps of the custom shortest path collection
algorithm used for the case study instances.
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Step 4: Remove shortest paths that fall outside the length tolerance. Assume that the
length tolerance was 50%. Then all alternative paths that are shorter than 150% of
the original shortest path length (3× 150% = 4.5) are retained.

Table 7.9: S14 after Step 4

Description Path LijLijLij

Original e17 → e78 → e84 3

Alternative 3 e17 → e79 → e94 4

This example illustrates the algorithm in the case where there was only one original
shortest path. In the exceptional cases where there were more than one original shortest
path, the algorithm had to break all original paths simultaneously to force the search for
new alternatives. Thus, one link from each original path had to be removed simultane-
ously. In such cases all the unique combinations of links were first enumerated as part
of Step 1. Then in Step 2, each of the combinations were removed in turn to determine
alternative paths.

This algorithm was executed to determine Sij in each of the case study instances.

7.5.1 Shortest path set statistics of the initial networks

The larger the length tolerance chosen for the shortest path algorithm, the more alterna-
tive paths would have been included in the shortest path sets. Although more would’ve
been better from a redundancy point of view, there was a limit to how large the tolerance
could be to still be realistic. As a starting point it was assessed how the median of the
shortest path set size and average shortest path length varied with different tolerances.

The algorithm was executed with a tolerance varying between +0% (no tolerance) and
+50%. After each execution P̃ (All) and L̄ was determined for each case study instance.
Figure 7.23a plots the average of P̃ (All) across all instances that correspond to a specific
tolerance. Figure 7.23b plots the average of L̄ across all instances.

At a +0% tolerance instances had, on average, 1 path in their shortest path sets for
each of the three archetypes. Increasing the tolerance had the greatest effect on the DH
archetype. The average of P̃ (All) rose sharply to more than 25 paths before reaching a
slight plateau from +40% onwards. The average of P̃ (All) was less sensitive in the hub
archetypes. There was an initial jump when the tolerance was increased to +5% but after
that the increase was gradual.

This difference could be explained by the geographic span of the instances. The bigger
the area covered by the instance, the larger the road network reflected in G2 and the more
links were included in initial shortest paths as facilities were further apart. Therefore,
the algorithm went through more iterations to remove each shortest path link and there
were more alternatives available due to the larger G2 network. The DH instances covered
the largest area, followed by the SH instances and then the FC instances as shown in
Figure 7.21.

The conclusion was that a small length tolerance had a decisive impact on increasing
the number of paths in the shortest path sets, but larger tolerances offered diminishing
returns in terms of increasing P̃ (All). The diminishing returns were a result of the bound-
ing box implemented when clipping the road networks using Algorithm 4. As the length
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Figure 7.23: Impact of length tolerance on the average shortest path set size and average
shortest path length.

tolerance increased, fewer and fewer shortest path sets could benefit as there were no
additional paths available on G2 within the bounding box.

The (un)availability of alternative paths also explained the minimal increase in the
average of L̄ (Figure 7.23b). In the case of a densely connected road network one would
have expected the average of L̄ to increase by the same % as the length tolerance, at
least until the bounding box constrained additional alternatives. However, at a length
tolerance of 50% the increase was only 4.5%, 4.3% and 6.2% for the FC, SH and DH
archetypes, respectively.

These results showed that an increase in length tolerance had a negligible impact on
the average shortest path length and only a small impact on the sizes of the shortest path
sets. In light of these results and based on intuition regarding freight transport in these
areas, the length tolerance was set at 25%.

Initial distributions of L̄

The initial distributions of L̄ for the case study instances are shown in Figure 7.24.
In comparing these distributions to those of the theoretical distributions repeated in
Figure 7.25 we noticed two differences.
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Figure 7.24: Case Study: Initial distributions of the diameter and average shortest path
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Figure 7.25: Theoretical: Initial distributions of the diameter and average shortest path
lengths.

Grouping of the distributions: In the theoretical instances the distributions for the
hub archetypes were very similar while the FC archetype was narrower and shifted
to the left. This implied that FC instances were distinctly more efficient than the
hub archetypes and that the hub archetypes were very similar.

In the case study instances we saw that the FC archetype was no longer that different
to the hub archetypes. At the same time the difference between the hub archetypes
had now increased slightly with the DH archetype shifted further to the right.

The second deviation discussed in Section 7.2.4 regarding the bi-directionality of
links offered an explanation for the change in the FC archetype. The FC in-
stances now included many indirect connections to compensate for the absence of
bi-directional links. Indirect connections resulted in longer shortest paths between
two nodes. This increased L̄ and therefore the distribution of the FC archetype was
closer to that of the hubs although it was still the narrowest of the three.

The DH archetype’s distribution was furthest to the right. One contributing factor
was that many indirect connections between spoke nodes had a logical path length
of three to start with. This made the shortest paths longer as they had to route
via more nodes. The greater contributing factor, however, was that the diagonal
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span of the DH archetype was so much broader than that of the other archetypes.
Facilities were spread further apart and therefore shortest paths were longer.

In the theoretical instances we could conclude that one archetype was more efficient
than another by virtue of the distribution of L̄. This same conclusion could not be
made from the case study instances due to the variance in the diagonal span.

Distribution shape: The theoretical distributions showed a clear central tendency with
kurtosis values close to 3. A kurtosis value of 3 indicated that a distribution was as
likely as the normal distribution to produce outliers. The case study distributions
did not show a central tendency at all. They were left-skewed with long right tails.
Kurtosis values exceeding 3 also indicated that the occurrence of outliers was far
more prevalent. Another observation was that the FC and DH distributions had
distinct modes in their right-tails.

The left tendency indicated that the majority of instances had relatively short av-
erage paths. The mean of L̄ was smaller than the mean of the diagonal span (Fig-
ure 7.21) for each archetype. The means of the diameter of each archetype were 68%,
62% and 24% larger than the mean of the diagonal span for the FC, SH and DH
archetypes, respectively. Therefore we concluded that initially there wasn’t a great
degree of zigzagging or roundabout travel on the road networks between facilities,
but that shortest paths were straight-forward.

The right tail and occurrence of outliers was again explained by the distribution of
the diagonal span of the instances. Each of the distributions in Figure 7.21 show
a prominent right tail. For each archetype there were a number of instances that
covered a much larger area than the rest. Intuitively these instances would also have
had much longer shortest paths between node-pairs.

In summary, two differences between the case study and theoretical instances resulted
in vastly different distributions for L̄. Firstly, the fact that the FC instances included a
number of indirect connections reduced the distinction between this archetype’s distribu-
tion and those of the hub archetypes. Secondly, case study instances covered a broad range
of geographic areas whereas the bounds of the area covered in the theoretical instances
were tighter with a minimum of 12units2 and a maximum of 100units2.

Initial distributions of the sum of set sizes

The sum of set sizes per instance is defined as:

Total set size (All) =
∑

i,j∈Siji 6=j

Pij (7.5)

when considering all node-pairs, and

Total set size (Dir) =
∑

i,j∈SDij ;i 6=j

Pij (7.6)

when considering only directly connected node-pairs.
This was an aggregate indication of the inherent redundancy present in an instance

before any disruptions had occurred. The initial distributions of the sum of set sizes for
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the case study instances are shown in Figure 7.26 and were compared to those of the
theoretical instances shown in Figure 7.27.
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Figure 7.27: Theoretical: Distributions of the sum of set sizes.

Again two notable differences were identified: the distributions’ shape and range, and
the ordering of the three archetypes.

Distribution shape and range: The theoretical distributions were orders of magni-
tude larger than the case study distributions. This meant that there were many
more alternative shortest paths present in the theoretical instances than in the case
study instances.

The density of G2 and its grid-like structure played a prominent role in providing
alternative shortest paths. The analysis in Section 7.3.3 showed that G2 was consid-
erably less dense in the case study instances than in the theoretical instances (Fig-
ure 7.17). Furthermore, although its degree distribution showed a regular structure,
G2 in the case study instances was not a bi-directional grid and intersections had
fewer road segments connecting them to the rest of the network (Figures 7.13–7.14).
In the theoretical instances it was the combinatorial effect of the grid structure that
resulted in the very long right tails and high kurtosis values for the distributions.
By comparison, the case study instances did not have significant right tails and their
kurtosis values showed that the occurrence of outliers was less likely than that of
the normal distribution.

Another factor influencing these distributions was the number of nodes and links
in G1K . These distributions represented a summative metric and therefore the
absolute size of the instances made a difference. Figure 7.19 shows that all FC
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and SH instances had fewer nodes than their theoretical counterparts which had
12 nodes. The DH instances were larger and some instances even exceeded the
theoretical size of 12 nodes, but the mean was still lower at 11 nodes. In addition
to having fewer nodes, the case study instances also had far fewer logical links than
expected (refer to Figure 7.10) because most of the supply chain relationships were
not bi-directional. Smaller instances (in terms of both nodes and links) resulted in
fewer shortest path sets to add together.

One last consideration related to the algorithm used to construct the shortest path
set. It could not be proven, theoretically, that the algorithm was guaranteed to con-
struct a comprehensive set of all shortest paths that fell within the stated tolerance.
Therefore, the shortest path sets were possibly incomplete. Exploring alternative
algorithms and comparing their performance in terms of completeness and compu-
tational complexity was marked for future research.

In brief, the far lower density of G2 and its deviation from the bi-directional grid
structure combined with the smaller G1K layers resulted in strikingly fewer shortest
path alternatives per instance. Admittedly, it was also possible that the shortest
path algorithm did not identify all possible paths.

Ordering of archetypes: In the theoretical instances the contrast between the archetypes
was prominent. In the case study instances the distributions were closer together
and the ordering of the archetypes was slightly different. The fact that the diagonal
spans and instance sizes varied so greatly between the case study instances made
comparisons dubious. For instance it was no longer valid to conclude that the DH
archetype could be less vulnerable as it had more alternative paths because this
distribution was greatly influenced by the fact that the DH instances spanned a
broader area and had more logical nodes and links than the other two archetypes.

Another observation was that the FC and SH distributions were more similar in
the case study. This was firstly due to their kindred diagonal spans and sizes and
secondly due to the fact that the FC instances now included indirect connections
instead of only direct connections.

In summary, making comparisons between and generalisations regarding the archetypes
was far less justifiable in the case study as the qualities that influenced shortest path length
and the sum of set sizes varied greatly. Having said that, it could still be concluded that
across the board there were far fewer alternative shortest paths available to the case study
instances. This was primarily due to the structure of the underlying road network. From
these initial results it was expected that the case study instances would be more vulner-
able than the theoretical instances had been. The following chapter presents the results
from the random error simulation used to assess this vulnerability. It also presents and
discusses the behaviour of the vulnerability metrics throughout the simulation.
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Chapter 8

Case study: Link-based random
error simulation

The previous chapter explained how 191 case study instances were constructed from
real-life data in three urban areas namely the City of Cape Town (CoCT), eThekwini
Metropolitan Municipality (ET) and Gauteng Province (GT). Comparing these case
study instances to the theoretical instances it was apparent that many of the assump-
tions made in constructing the theoretical instances no longer held true for the case study
instances — both in terms of the logical layer (G1K) and the physical layer (G2).

These deviations from the theoretical assumptions were reflected in the initial distri-
butions of the shortest path set size and average shortest path length of the case study
instances. From their characteristics it was postulated that the case study instances would
be far more vulnerable to random link disruption than the theoretical instances.

To test the vulnerability a link-based random error simulation was executed on the
case study instances. This simulation was similar to the one executed on the theoretical
instances in Chapter 5. The simulation started with an undisturbed case study instance.
One percent of the initial number of links in G2 were randomly selected and removed. If
all the direct and indirect connections between nodes in G1K were still intact, the instance
was still considered connected and a further 1% of the links were randomly removed. So
the instance was progressively disrupted until it became disconnected. Shortest path
statistics and the vulnerability metrics were measured after each progressive disruption.

The next section discusses the efficiency loss and rate of disconnection of the case
study instances. Thereafter the behaviour of the vulnerability metrics is presented and
their correlation to efficiency loss and robustness is discussed. The chapter concludes with
a discussion on the validity of the vulnerability metrics when dealing with real-life data.

8.1 Results of the link-based random error simula-

tion

The levels of damage endured by the case study instances were the same as those described
for the theoretical instances in Section 4.1.1. An instance experienced efficiency loss when
the average shortest path length of the overall network was increased. This implied that,
on average, it would take longer for freight to be transported from origin facilities to
destination facilities. An instance was considered disconnected when two facilities that
were directly connected could no longer ship freight from one to the other. In network
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terms this was when one of the links in G1K were broken. However, a supply chain
would presumably continue shipping freight between its other facilities after it becomes
disconnected. An instance was therefore only considered destroyed when there were no
more links in G1K intact.

In this thesis we only continued simulations until the point of disconnection. In prac-
tice, the disconnection of two facilities would spark mitigating action by a supply chain.
One example could be that other facilities are tasked to support the disconnected facili-
ties. This would change the structure of G1K . Because it was difficult to anticipate the
mitigating action that could have been taken and its effect on the instance’s structure,
continuing simulations beyond disconnection was questionable in terms of validity.

8.1.1 Efficiency loss before disconnection

The shortest path statistics were measured after each progressive disruption. Efficiency
loss was determined by measuring the percentage change in L̄ from the initial undisturbed
network to L̄ right before the final disruption that disconnected it.

Fully Connected (FC) archetype

At first the trend in efficiency loss for the FC archetype was problematic. Figure 8.1a
shows the efficiency loss for all 32 FC instances. After each disruption the mean of the
efficiency loss for all instances that were not yet disconnected was measured. This is
indicated by the red triangles in the graph. The trend in the sample mean would suggest
that overall efficiency was lost during the first few disruptions but from the 9th disruption
onwards L̄ actually became shorter and thus the instances more efficient. What was also
observed was that there were some exceptional efficiency loss percentages in excess of
400%.
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(d) FC efficiency loss for 500 theoretical in-
stances. The vertical line at 84% indicates the
limit of the x-axis of 8.1c.

Figure 8.1: Case Study vs Theoretical: Efficiency Loss (FC)

Upon further investigation three outlier instances1 were identified (Figure 8.1b). ET 2
showed virtually zero efficiency loss until its final two disruptions where suddenly efficiency
loss shot up to over 400%. GT 26 behaved similarly, shooting up suddenly to over 400%
efficiency loss after the 5th disruption. GT 34 was less extreme but the sudden jump to
over 200% efficiency loss still had an undue effect on the sample mean trend.

After removing the exceptional instances, the trend in efficiency loss was more intu-
itive (Figure 8.1c). Efficiency losses increased monotonically until the 11th disruption.
Thereafter the sample mean became more erratic as the number of instances that were
not yet disconnected dwindled.

1These instances are referred to by the an acronym for the urban area (CT, ET or GT) followed by
the index number of that instance, e.g. CT 1 which refers to instance 1 in the set of CoCT instances.
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By comparison the efficiency loss for the theoretical FC instances is graphed in Fig-
ure 8.1d. The extent of efficiency loss was comparable, but the rate at which the case
study instance lost efficiency was far greater. The orange line in Figure 8.1d indicates
the point at which all the non-exceptional case study instances were disconnected. By
the time the theoretical instances had lost only about 10% of their efficiency, the case
study instances had lost more than 50% of their efficiency. This implied that random
disturbance of the road network is very rapidly visible in these real-life instances through
the increase of travel distance between facilities.

Single Hub (SH) archetype

Similar to the FC archetype, the SH archetype exhibited a troublesome distribution of
efficiency loss at first. In Figure 8.2a the trend showed a decrease in efficiency up until
the 10th disruption. After this it seemed that the efficiency actually increased again.

February 1, 2018 123



Quantifying supply chain vulnerability using a multilayered complex network perspective

●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

rep(1, length(na.omit(deltaData$Sim_1)))

na
.o

m
it(

de
lta

D
at

a$
S

im
_1

)

●●●
●
●●●●
●●
●●●●●●●●●●●●●
●
●●●●●●
●
●
●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●
●
●●●●●●
●
●●● ●●●

●
●●●●
●
●
●
●●●●●●●●●●
●
●
●●
●●
●
●
●
●
●●
●

●●●
●●●●●●●●●●●●●●●
●●
●●●●●
●●
●●●●
●
●●●

●

●●

●

●●●●●●
●
●●●●
●
●●●

●
●●
●
●●●

●●
●●●●
●●
●●●●

●
●●
●

●

●

●

●●
●

●●●
●
●●●●●●●●●●●
●●●●●●●●
●●
●●
●●●●
●●●●

●

●
●

●

●
●
●●●
●
●●

●

●
●●●

●
●●
●

●

●●

●●
●●
●
●

●●
●
●●
●

●

●

●

●
●
●●●●
●●●
●
●●●
●
●
●●●●●●
●●
●●
●●
●
●
●
●●●

●

●
●

●

●
●●
●●
●
●●

●
●

●●●

●
●

●

●

●

●●
●
●
●

●●
●
●●

●

●

●

●

●
●

●

●
●●
●
●●●
●
●
●●
●
●●●
●●
●

●●
●●●●

●

●

●

●●

●

●●●

●
●●

●●

●

●

●

●
●
●

●
●

●
●
●●

●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●
●●
●●
●●
●
●●●

●

●

●
●

●

●

●

●
●●

●●

●

●
●
●
●
●●
●●

●

●

●

●

●

●

●●

●

●●

●

●●
●●
●●
●●

●

●●●

●

●

●
●

●

●

●

●

●●

●●

●

●
●●
●
●

●

●

●

●

●
●
●

●

●●

●

●
●
●●
●
●
●

●

●●

●

●

●
●●

●

●
●

●●

●

●

●
●
●

●

●●

●
●

●

●●

●

●
●

●●

●

●
●

●

●●

●

●

●●

●●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●●

●

●
●
●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●●●
●

●
●●

●

●

●

●

●

●

●

●●

●

●●●●
●
●●

●●

●

●

●

●

●

●●
●
●

●

●

●

●

●
●●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●● ●● ● ● ●

● Observation

Sample mean

99 96 93 90 87 84 81 78

%
 C

ha
ng

e 
in

 L

% of grid links remaining

O
Max: 655%

(a) SH efficiency loss for all 139 instances.
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(c) SH efficiency loss for 136 instances (excep-
tional instances removed).

●●
●●●
●
●●

●

●●
●
●●●0

50
10

0
15

0
20

0

deltaData[deltaData$disrupt == 2, 3]

de
lta

D
at

a[
de

lta
D

at
a$

di
sr

up
t =

=
 2

, 2
]

●
●

●●
●●●●
●
●

●
●●
●
●

●
●●●●●●

●

●●●●
●●●

●

●

●

●
●
●
●●

●
●
●●
●
●●
●

●

●
●●
●

●

●●

●
●●
●●

●

●
●

●

●
●

●
●
●

●

●

●
●

●
●
●

●

●
●●●
●
●

●

●●
●
●
●

●●
●●●

●

● ●●●

●

●

●●

●●

●

●●
●
●●
●
●

●

●
●
●

●
●

●
●●●
●

●
●
●

●

●
●
●
●
●
●

●

●●

●
●

●
●●

●

●

●

●
●
●

●

●●

●
●●
●

●

●

●
●
●
●●

●

●

●

●

●●
●●

●

●●
●
●

●

●

●

●●

●

●

●●

●
●

●●●●
●
●
●●
●

●●●●●
●

●
●

●

●
●

●
●
●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●●●

●

●

●

●

●
●●

●●●
●

●

●
●

●
●
●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

●
●●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●
●●
●

●

●
●

●
●

●●●

●●

●

●

●

●
●

●

●
●
●

●
●

●

●

●●
●
●

●
●
●●● ●

●

●

●
●

●

●●
●
●

●
●

●●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●
●

●●

●●●●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●●

●

●
●●

●●

●

●

●
●●

●
●●●

●

●

●
●●●
●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●
●

●
●
●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● Observation

Sample mean

90 85 80 75 70 65 60 55 50

%
 C

ha
ng

e 
in

 L

% of grid links remaining

O
Max: 137%

81%

(d) SH efficiency loss for 500 theoretical in-
stances. The vertical line at 81% indicates the
limit of the x-axis of 8.2c.

Figure 8.2: Case Study vs Theoretical: Efficiency Loss (SH)

Further investigation identified three exceptional instances (Figure 8.2b). CT 39 lit-
erally had no efficiency loss up until the 21st disturbance and then suddenly became
disconnected. This implied that the first 21 random disturbances did not affect the short-
est paths at all, but in the 22nd disturbance one or more very critical links were removed,
causing disconnection. Instance ET 39 showed reasonable efficiency losses at first which
then suddenly jumped beyond 600% before becoming disconnected. This jump had an
undue effect on the sample mean. Lastly, GT 129 showed minimal efficiency losses (be-
low 2%) until the 8th disruption. After that it actually became more efficient than the
initial network. This was possible because of the tolerance of 125% that allowed paths
to be included in the shortest path sets that weren’t the absolute shortest. The first 8
disruptions removed enough of these “longer” shortest paths to decrease the overall L̄.
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Figure 8.2c shows the efficiency loss of the remaining instances once the exceptions
were removed. The sample means show a monotonically increasing trend up until the
12th disruption. Thereafter the trend became erratic with pertinent decreases. Although
the sample size had decreased, a pertinent number of instances were still reflected in the
sample mean. What this showed was that the efficiency loss patterns between instances
were more heterogenous than the theoretical results shown in Figure 8.2d.

Similar to the FC archetype, the comparison between the case study and theoretical
trend showed that in general the efficiency losses were in the same range, but that the
case study instances lost efficiency far more rapidly.

Double Hub (DH) archetype

The sample of DH instances was the smallest of the three archetypes with only 20 in-
stances. Out of these 20 instances there were no notable exceptions. The trend of the
sample mean was monotonically increasing, indicating that in general efficiency was de-
creased as more road segments were removed from the underlying road network. Again
the extent of efficiency loss was relatively similar to that of the theoretical instances shown
in Figure 8.3b. Remarkably, all the case instances had incurred their total ambit of effi-
ciency loss and had become disconnected before the first theoretical instances even lost
any efficiency. This is illustrated by the orange vertical line in Figure 8.3b that precedes
the first observations of efficiency loss.
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(a) DH efficiency loss for all 20 instances.
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(b) DH efficiency loss for 500 theoretical in-
stances. The vertical line at 92% indicates the
limit of the x-axis of 8.3a.

Figure 8.3: Case Study vs Theoretical: Efficiency Loss (DH)

Discussion

The first observation was that for two of the three archetypes there were exceptional
instances whereas for the theoretical instances there were no notable exceptions. We
knew from our analysis in Chapter 7 that unlike the theoretical instances there were
pronounced differences in the structure of the case study instances. Particularly, the
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differences in the diagonal span and sizes of both the logical and physical layers could
have been the primary contributors to the variance in efficiency loss patterns.

A second observation was that while efficiency gain (the increase in L̄) was impossible
in the theoretical instances, it was possible in the case study instances due to the tolerance
used when establishing the shortest path sets. The result was that in a number of case
study instances efficiency actually increased after an initial few disruptions. Therefore, the
blanket statements that “the average shortest path continues increasing until an instance
is disconnected”, or that “the longer an instance survives the greater its overall efficiency
losses” could no longer be stated with such confidence. However, it made no sense,
realistically, that the more sparse the road network becomes, the shorter the paths between
facilities would become. This observation was the result of the way in which efficiency
loss is defined and measured. Finding more valid ways of measuring efficiency losses for
the case study instances was listed as future work emanating from this thesis.

The final observation was that for all archetypes, efficiency loss occurred more rapidly
than for the theoretical instances. This was explained by the fact that the physical layers
of the case study instances were so much less dense than the bi-directional grid of the
theoretical instances. The likelihood that a random selection of one percent of the road
segments would include road segments necessary for the shortest paths was just that much
greater in the case study instances. For the same reason, the case study instances were
also disconnected far quicker, as the next section shows.

8.1.2 Disconnection of networks

The cumulative percentage of theoretical instances that were disconnected after each
progressive disruption were remarkably similar for the three archetypes (Figure 8.4a). All
the theoretical instances had 12 nodes in the logical layer, strictly bi-directional links
between these nodes and were all limited in terms of span by the 10 × 10 grid. What
differentiated the instances were their archetypes and the placement of the nodes on
the grid. In Figure 8.4a we note that the distributions for the archetypes were nearly
indistinguishable. This implied that the archetype really played very little role in whether
an instance would become disconnected sooner rather than later.
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Figure 8.4: Case Study vs Theoretical: Cumulative distribution of instance disconnection.

On the other hand, in the case study the instances representing one archetype varied
from the instances representing another. The greatest difference was in terms of the
geographic span, but there were also differences in terms of the number of nodes and
number of links in the logical layers and the density of the physical layers. Despite
these important variations, the cumulative distributions of the case study instances were
relatively similar as seen in Figure 8.4b. Again it was apparent that the archetype was
not a major determinant in when an archetype would become disconnected.

Another observed difference between the theoretical and case study distributions was
that the theoretical distribution displayed a distinct S -curve shape while the case study
distributions did not. Initially the random error simulation had very little impact on the
theoretical instances. After 15% removal of the grid links, the rate at which instances
were disconnected hiked up until the last few diehard instances caused the distribution
to plateau. In the case study, the rate of disconnection was steep from the start with
a number of instances becoming disconnected immediately. The rate of disconnection
gradually tapered before plateauing. To explain this shape we also considered that all the
case study instances had been disconnected by the time that only 75% of the grid links
remained. In contrast, only 24% of the theoretical instances had become disconnected
when 75% of the grid remained. In a nutshell, the case study instances were far more
vulnerable with very little resistance to the removal of road segments. This concurred
with the observation in Section 7.5.1 that

∑
i,j∈Sij ;i 6=j

Pij was orders of magnitudes smaller

than that of the theoretical instances. There simply weren’t as many alternative shortest
paths available to the case study instances.

It was clear both from the efficiency loss and disconnection results that the impact of
the random removal of road segments was severe and immediate. Next, we investigated
whether the vulnerability metrics developed and tested using the theoretical instances
behaved similarly in the case study instances.
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8.1.3 Redundancy

Redundancy was defined as a measure of the number of alternative shortest paths that
were available to an instance in Section 5.3. The size of the shortest path sets Pij was
the underlying characteristic used to quantify redundancy. There were two aspects of the
distribution of Pij that were of interest. The first was the centrality of the distribution.
This gave an aggregate indication of the level of redundancy across all shortest path sets.
The second aspect was the centrality of the left-tail of the distribution that contained
those shortest path sets with the fewest alternatives. It was also deemed necessary to dif-
ferentiate between the redundancy of the direct shortest path sets alone and the collection
of all shortest paths sets. The summary of the aspects and their metrics from Section 5.3
is repeated below in Table 8.1 for convenience.

Table 8.1: Summary of redundancy metrics.

Aspect Scope Metric Equation

Centrality
C(Sij) P̃ (All) (5.1)(5.3) (Pij ∈ C(Sij))

SDij P̃ (Dir) (5.1)(5.3) (Pij ∈ SDij)

Left-tail
centrality

C(Sij) P̃ 25%(All) (5.6) (Pij ∈ C(Sij))

SDij P̃ 25%(Dir) (5.6) (Pij ∈ SDij)

The case study distributions of P̃ (All) and P̃ (Dir) as well as P̃ 25%(All) and P̃ 25%(Dir)
are compared to their theoretical counterparts (repeated from Section 5.3) in Figures 8.5
and 8.6, respectively. For this and the following section on overlap metrics, it is important
to note that SDij 6≡ C(Sij) for the FC archetype. Therefore there were two distributions
reflected in the graphs. This was contrary to the theoretical instances where SDij ≡ C(Sij)
and resulted from the bi-directionality deviation discussed in Section 7.2.4.

Distributions of P̃ (All) and P̃ (Dir)

In Figure 8.5 the top three graphs display three measures of P̃ (All) and P̃ (Dir) for the
case study instances. The initial values (Figure 8.5a) were measured in the undisturbed
case study instances. The final values (Figure 8.5b) were measured right before instances
became disconnected. The % change measured the difference between the initial and final
values. The three bottom graphs reflect the same measures observed for the theoretical
instances. Three observations were made when comparing the case study and theoretical
distributions.
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(b) Case Study: Final value
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(c) Case Study: % Change
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Figure 8.5: Case Study vs Theoretical: Distributions of the three measures of P̃ (All) and
P̃ (Dir).

Distribution range: The theoretical range of the initial and final distributions was two
orders of magnitude larger than that of the case study range. In addition the case
study distributions were tighter with fewer outliers. These results concurred with
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what was observed regarding
∑

i,j∈SDij ;i 6=j
Pij and

∑
i,j∈Sij ;i 6=j

Pij that the case study

instances started out with remarkably fewer shortest path alternatives. These how-
ever, were summative metrics. The vulnerability metrics regarded aggregate mea-
sures of redundancy. This controlled for the impact that the smaller G1K layers had
and highlighted the effect of the lower density of G2 and its deviation from the bi-
directional grid structure. Furthermore, the final values of the theoretical instances
indicated that even right before disconnection, the shortest path collections of these
instances were still orders of magnitude larger than the case study instances.

Ordering of archetypes: The ordering of the case study distributions was not greatly
different to that of the theoretical distributions. Generally the hub archetypes had
greater redundancy than the FC archetype. In the theoretical instances the SH
archetype had more alternatives than the DH archetype. This changed ever so
slightly in the case study instances were the DH archetype took the lead.

The geographic span of the case study instances influenced their redundancy scores.
The larger area an instance spanned, the more of the road network it covered and
thus the more detours were potentially available for inclusion in the shortest path
sets. A Spearman’s correlation test confirmed that P̃ (All) had a strongly positive
monotonic correlation to the geographic span (ρ = 0.69; p-value< 2.2 × 10−16).
This correlation explained why the DH archetype had higher redundancy scores
as its geographic spans were far greater than those of the SH archetype. In the
theoretical instances, archetypes also had varying spans but all three were bound
by the 10× 10 grid and therefore the scope for variation was limited.

Minimal change from initial to final values: The change between the initial and fi-
nal case study instances was almost imperceptible. The means of the % change in
Figure 8.5c hovered around 0% with the exception of P̃ (All) for the DH instances.
This was compared to the % change in the theoretical instances which showed an
average reduction between 50% and 100%. The case study instances simply became
disconnected so quickly that there was hardly opportunity to whittle away at the
shortest path sets.

Distributions of P̃ 25%(All) and P̃ 25%(Dir)

When zooming in to the least redundant instances, there was less difference between the
theoretical and case study distributions.
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(b) Case Study: Final value
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(c) Case Study: % Change
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(e) Theoretical: Final value
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Figure 8.6: Case Study vs Theoretical: Distributions of the three measurements of
P̃ 25%(All) and P̃ 25%(Dir).

Distribution range: Although the initial redundancy of the theoretical instances (Fig-
ure 8.6d) was still greater than that of the case study instances (Figure 8.6a), the
bulk of the instances now fell within a more comparable range. There was even
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greater similarity between the final distributions (Figures 8.6b and 8.6e) as the
redundancy of the theoretical instances was greatly reduced while the case study
instances remained almost static.

One notable difference was that the theoretical distributions had many more outliers.
This was owed to the combinatorial nature of the shortest paths on the theoretical
grid. Because the road networks in the case study instances were not bi-directional
grids, there was less opportunity for such a combinatorial explosion in shortest path
alternatives.

Minimal change from initial to final values: The change between the initial and fi-
nal case study instances was almost imperceptible, which was contrary to the marked
reduction in the theoretical instances. Again this was due to the fact that the case
study instances became disconnected so rapidly.

Correlation to efficiency loss and robustness

In Chapter 6 statistical tests were executed to test the correlation of the vulnerability
metrics to efficiency loss and robustness. Those tests were repeated for the case study
instances. However, because there was so little change in the redundancy metrics from
their initial values to their final values, the tests were only conducted for the initial values.

In the theoretical instances most measures of the redundancy metrics showed a sig-
nificant negative correlation to both efficiency loss and robustness (see Tables 6.1 to 6.3).
When repeating the correlation tests for the case study instances, only two relations
were significant. In the FC archetype, P̃ 25%(All) was negatively correlated to efficiency
loss whereas in the SH archetype it was negatively correlated to robustness. Although
significant, these correlations were weak.

In summary the case study instances were remarkably less redundant than the theo-
retical instances. There was also less significant correlations of the redundancy metrics
to efficiency loss and robustness. This combined with the fact that redundancy remained
practically unchanged up until disconnection aligned with the findings of the theoretical
instances. Redundancy was not a stand-alone indicator of vulnerability in the case study
instances under random disruptions.

8.1.4 Overlap

Overlap was defined in Section 5.4 as the degree to which the shortest path sets of an
instance had road segments in common. We used the concept of relative link betweenness
to quantify the fraction of shortest paths that a specific road segment featured on. A
distinction was made between the link betweenness when taking into account only the
directly connected node-pairs and when taking into account all node-pairs. The former
was called the Elemental link betweenness (Elemental-B) (4.2) score and BBBelemental was
defined as the set of Elemental-B scores for links in G2 in descending order. The Overall
link betweenness (Overall-B) (4.1) score was the latter and defined the link betweenness
based on the complete collection of shortest paths. Thus, BBBoverall was defined as the set
of Overall-B scores for links in G2 in descending order.

There were two aspects of the the distributions of BBBelemental and BBBoverall that were
of interest. Firstly, the centrality of the distribution was an aggregate indication of the
degree of shortest path overlap in an instance. The second aspect sought to quantify how
dependent the shortest paths of a single instance were on a critical few road segments.
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The road segments that were shared the most by the shortest paths had the highest
betweenness scores and were found in the right tail of the distribution. A longer right tail
indicated that a few links had scores remarkably higher than the majority of the other
road links. Therefore, a larger right-tail range indicated the presence of a few critical
links that, when removed, would have a dire impact on the instance’s connectivity. The
range of the right-tail, measured from the 75th percentile to the maximum value, was the
metric defined to quantify this aspect. The summary of the aspects and their metrics
from Section 5.4 is repeated below in Table 8.2 for convenience.

Table 8.2: Summary of overlap metrics.

Aspect Scope Metric Equation

Centrality
C(Sij) Boverall (5.7)
SDij Belemental (5.8)

Right-tail range
C(Sij) R(Boverall)

75% (5.11)
SDij R(Belemental)

75% (5.12)

The case study distributions of Boverall and Belemental as well as R(Boverall)
75% and

R(Belemental)
75% are compared to their theoretical counterparts (repeated from Section 5.4)

in Figures 8.7 and 8.8, respectively.

Distributions of Boverall and Belemental

There existed a significant relationship between redundancy and overlap in the case study
instances. If an instance had many shortest path alternatives, it would also have had
higher values for P̃ (All) and P̃ (Dir). This would have increased the denominator when
calculating Overall-B or Elemental-B, thus reducing the betweenness scores. The Spear-
man correlation test confirmed that there was a strong and significant negative relation-
ship between the centrality metrics of redundancy and overlap both initially and just
before instances became disconnected (see Table 8.3).

Table 8.3: Correlation between redundancy and overlap in the case study instances.

x y ρρρ p-value

Initial values

P̃ (All) Boverall -0.52 9.97× 10−15

P̃ (Dir) Belemental -0.64 < 2.2× 10−16

Final values

P̃ (All) Boverall -0.47 4.3× 1012

P̃ (Dir) Belemental -0.59 < 2.2× 10−16

The top three graphs of Figure 8.7 plot the distributions for the initial values, final
values and % change of the case study instances, respectively. The theoretical counterparts
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are repeated from Section 5.4 in the bottom three graphs.
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(a) Case Study: Initial value
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(b) Case Study: Final value
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Figure 8.7: Case Study vs Theoretical: Distributions of the three measurements of Boverall

and Belemental.

Distribution range: The case study distributions showed much greater overlap than
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the theoretical instances initially (Figures 8.7a and 8.7d). The negative correlation
between redundancy and overlap already offered one explanation for this observa-
tion. Because the case studies had much smaller shortest path collections, the link
betweenness of any road segment featuring in one or more paths was greater than it
would have been if the collections were as big as those of the theoretical instances.

Another pertinent explanation for the higher overlap observed in the case study
instances was that overlap was induced by the shortest path algorithm. The algo-
rithm started with an absolute shortest path that served as a “core path”. Each
iteration made only a small perturbation to this core path to search for alternatives.
Therefore, the alternatives were in a way “anchored” to the initial core path. As
a result most of the shortest paths in the final shortest path set included segments
of the core path. The road segments that constituted the core path would thus
have featured in many paths, inflating their link betweenness. On the flip-side, road
segments that were not in the core path would have featured on far fewer shortest
paths and thus have had a very low link betweenness.

In addition to the general elevation in overlap, the case study instances also had
broader initial distributions, implying that overlap was more instance specific. This
made sense given the significant variation between the case study instances.

Overlap increased markedly in the theoretical instances (Figures 8.7e) due to the
pertinent reduction in the number of shortest path alternatives before disconnection.
There was thus more similarity between the final values of the case study instances
(Figures 8.7b) and the theoretical instances, although the case study instances still
had higher overlap overall.

Ordering of archetypes: The correlation between redundancy and overlap then also
explained why in the case study distributions the DH archetype had lower distribu-
tions than the SH archetype when the opposite was true in the theoretical instances.
The DH instances had higher redundancy because of their greater diagonal span (re-
fer to the discussion in Section 8.1.3) and therefore less overlap.

Minimal change from initial to final values: As was the case with the redundancy
metrics, the change between the initial and final values of the case study instances
were negligible as the instances became disconnected so rapidly.

Distributions of R(Boverall)
75% and R(Belemental)

75%

The range of the right tail of the distribution of overlap scores gave an indication of how
dependent the shortest path sets were on a few critical road segments. The range was
measured as the difference between the road segment with the highest betweenness score
and the 75th percentile value. Keep this in mind when considering the y-axes in Figure 8.8.
Those values do not indicate the absolute betweenness score of instances, but the distance
between their most between road segments and the majority of the road segments.

Section 5.4.3 explained that if a road segment had a betweenness value greater than 1,
it implied that it featured more than once in one or many of the shortest paths. This was
called “doubling back”. Depending on the degree of overlap in an instance, it was therefore
possible to have instances where the most between road segments had a score much higher
than one. It was also possible that the range of the right tails in those instances would
then be greater than one. This was evident already in the final values of the theoretical
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instances (Figure 8.8e) where the R(Boverall)
75% scores of some instances exceeded one.

The two notable differences between the theoretical and case study instances were the
magnitude of the ranges and the ordering of the archetypes.
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Figure 8.8: Case Study vs Theoretical: Distributions of the three measurements of
R(Boverall)

75% and R(Belemental)
75%.
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Distribution range: The ranges of the right tails were much greater in the case study
instances than the theoretical instances. Thus, the case study instances were more
dependent on their most critical links.

The doubling back phenomenon was only possible in instances that had indirectly
connected node-pairs. For that specific reason it was not observed in the theoretical
FC instances. Conversely, the magnitude of the right tail ranges in the case study’s
FC archetype suggests that there were some instances where doubling back occurred.

Ordering of archetypes: When evaluating the centrality of the overlap distributions
for the case study instances, the DH archetype had lower overlap than the SH
archetype overall. Here, however, when considering the right tails, the DH archetype
had notably larger ranges. This owed to the structure of the logical layer of the DH
archetype. A number of the indirectly connected node-pairs had three logical links
from one node to another, making it possible for road segments to feature up to
three times on one shortest path. This made it possible for the most between road
segments to have even higher scores, resulting in a larger right tail range.

Minimal change from initial to final values: Again there was very little change be-
tween the initial and final values. This indicated that even for the instances that
survived a few disturbances, the impact on the importance of their most between
road segments was inconsequential.

Correlation to efficiency loss and robustness

The correlation between the initial values of the overlap metrics to efficiency loss and
robustness was determined. Again it didn’t make sense to measure correlation for the %
change and final values as the change from the initial to final values was negligible. In
the theoretical instances the initial values of the overlap metrics had insignificant or very
weak correlations to efficiency loss and robustness. Meanwhile, the % change and final
values showed strongly positive correlations.

In the case study instances the DH archetype showed a strongly positive correlation
between Boverall and efficiency loss. This suggested that the same phenomena was at play
in the case studies. Instances with higher overlap were more concentrated, covering less
of the road network. Therefore random disruptions were less likely to affect their shortest
path sets. Unfortunately, the correlations for the FC and SH archetypes were insignificant
or too weak to be compared to the theoretical instances.

In summary the case study instances displayed a greater degree of overlap in their
shortest path sets. The significant correlations of the overlap metrics to efficiency loss and
robustness combined with the fact that overlap remained practically unchanged up until
disconnection echoed the theoretical findings. Overlap was not a stand-alone indicator of
vulnerability in the case study instances under random disruptions.

8.1.5 Correlation between G2 coverage, redundancy and overlap

The realisation that redundancy and overlap did not capture vulnerability as expected was
first noted in Chapter 6 when conducting the statistical tests for the theoretical instances.
There it was found that the degree to which the shortest paths covered the 10× 10 grid
was correlated to redundancy, overlap and the damage of the instances. We concluded
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that the likelihood of the random simulation selecting grid links in the shortest paths had
an influence on vulnerability.

The degree to which the shortest path sets covered the road network in the case
study instances was determined. Figure 8.9 shows that the coverage in the case study
instances was not even comparable to the theoretical instances. The minimum coverage
of a theoretical instance was greater than 20%, meanwhile the maximum coverage of a
case study instance was less than 15%. Notwithstanding, the correlation of coverage to
specific response variables was remarkably alike.
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Figure 8.9: Comparison of G2 coverage in the case study and theoretical instances.

Similar to the theoretical instances, the coverage held a significant, strongly positive
correlation to redundancy and a significant, strongly negative correlation to overlap in all
three archetypes. The more shortest paths an instance had, the greater its coverage of
the underlying road network. Whereas the greater the overlap of these alternative paths,
the more concentrated they were and the smaller the coverage of the road network.

The coverage also held significant negative correlation to robustness in the FC and SH
archetypes. The more of the road network was covered, the sooner it became disconnected.
However this relation was weak. In the case of the DH archetype, the correlation was
insignificant.

Unlike the theoretical instances, significant correlation of coverage to efficiency loss
could not be established.

Table 8.4 lists the correlation values of the case study instances next to those of the
theoretical instances to enable comparison.
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Table 8.4: Comparison of Spearman’s correlation (ρ) of the coverage of G2 to redun-
dancy, overlap, efficiency loss and robustness in the theoretical and case study instances.
Insignificant correlations (p-value < 0.05) are indicated by insig.

Response variable Archetype Theoretical Case study

P̃ (All)
FC 0.54 0.82
SH 0.68 0.71
DH 0.64 insig.

Boverall

FC -0.34 -0.53
SH -0.21 -0.61
DH -0.42 -0.55

Efficiency Loss
FC -0.21 insig.

SH -0.30 insig.

DH -0.30 insig.

Robustness
FC -0.18 -0.35
SH -0.24 -0.35
DH -0.15 insig.

8.1.6 Efficiency Step-Change

In Section 5.5 the concept of efficiency step-change was defined. The change in the average
shortest path length (Lij) of a specific node-pair between two successive disruptions was
considered the step-change of that node-pair (5.13). We then converted the step-change
of that node-pair to a relative figure by dividing it by the shortest path length before the
disruption (5.14). To aggregate all these relative step-changes for a specific instance, we
divided their sum by the number of node-pairs (5.15). There was thus only one metric
defined to measure the efficiency step-change, as indicated in Table 8.5 repeated from
Section 5.5.

Table 8.5: Summary of efficiency step-change metrics.

Aspect Scope Metric Equation

Centrality C(Sij) Rel∆L(t; t+ z) (5.15)

Distributions of Rel∆L(t; t+ 1)

Measurements of Rel∆L(t; t + 1) were different to the measurements of the redundancy
and overlap metrics. Instead of considering the initial value, final value and the % change
between the two, the minimum (Figures 8.10a and 8.10d), average (Figures 8.10b and
8.10e) and maximum values (Figures 8.10c and 8.10f) of Rel∆L(t; t+ 1) were determined
over the time series from the initial to the final network.

In the theoretical instances it was impossible for the shortest paths to become shorter
after a disruption. Thus, the minimum values of Rel∆L(t; t+1) were always greater than
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or equal to zero (Figure 8.10d). In the case study instances, Lij was really the average
of all the shortest paths identified that fell within the stated tolerance of 125%. It was
thus possible that a disruption could break one or more of the longer paths included in
the shortest path set resulting in a lower value for Lij. If this negative step-change was
relatively large or occurred for a number of node-pairs, it resulted in a negative value for
Rel∆L(t; t+1). In Figure 8.10a negative values were observed for a few instances of both
the SH and DH archetypes.
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Figure 8.10: Case Study vs Theoretical: Distributions of the three measurements of
Rel∆L(t; t+ 1).

The fact that the case study instances had higher average values (Figures 8.10b) could
also be ascribed to the shortest path sets containing alternatives of differing lengths.
Unlike with the theoretical instances, it was possible for Lij to change before the entire
shortest path set was empty. In fact, it was highly probable that every time an alternative
path was removed from the shortest path set, Lij would change. On the contrary, in the
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theoretical instances, Lij only increased when an entire shortest path set had been emptied
and replaced by a new shortest path set. Therefore, step-changes were more frequent in
the case study instances, leading to slightly higher average values.

The case study instances also exhibited higher maximum values (Figure 8.10c) than
the theoretical instances (Figure 8.10f). This time the observation was attributed to the
bi-directional grid of the theoretical instances. The uniform link length, density of the
grid and geographic bound made it less likely for step-change to be as large as in the case
study instances.

Correlation to efficiency loss and robustness

In the case of the efficiency step-change, the correlation of the minimum, average and
maximum values to efficiency loss and robustness was determined. Here the case study
results echoed that of the theoretical instances. The average and maximum values showed
strongly positive correlations to robustness for the FC archetype and to efficiency loss and
robustness for the hub archetypes.

In summary the efficiency step-changes were more frequent and larger than those
experienced by the theoretical instances. This was primarily a by-product of the shortest
path algorithm and the characteristics of G2. Again the strong correlations were intuitive,
but it was not clear that efficiency step-change could predict disconnection or efficiency
loss.

Overall the theoretical instances showed much stronger correlation of the vulnerabil-
ity metrics to efficiency loss and robustness. Despite these correlations, the vulnerability
metrics held no discriminatory power in the theoretical instances. In light of the correla-
tion results from the case study instances, repeating the tests to determine discriminatory
power seemed futile.

8.2 Validity of the vulnerability metrics determined

from real-life data

The most prominent insight from repeating the random error simulation for the case
study instances was that in practice these instances were much more vulnerable. They
became disconnected quickly because they had relatively few alternative paths and a less
dense road network. Notwithstanding, the instances experienced the same magnitude of
efficiency loss as the theoretical instances before disconnection.

A question was raised regarding the validity of how efficiency loss was defined and
measured. The heterogenous nature of the shortest path sets in the case study instances
occasionally resulted in efficiency gains. This occurred when the alternative paths that
were longer than the core path, but fell within the tolerance, were removed. Considering
the real-life implications we asserted that even though the metric showed an efficiency gain,
it was not realistic as the core path remained the same length. It was suggested that the
formulation of efficiency loss is perhaps not the most valid for practice where acceptable
detours are not exactly the same length. An alternative proposition to measuring efficiency
loss was to only reflect the length of the core path in Lij, even if the shortest path set
contains other longer detours.

The patterns observed and behaviour of redundancy, overlap and efficiency step-change
were validly explained phenomena in the case study instances. The differences between
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the distributions of the theoretical instances and the case study instances were discussed.
These differences sprung primarily from the fact that the case study instances themselves
were not exact replicas of the theoretical instances — as described in Chapter 7. Regard-
less of these differences, we confirmed that the metrics as formulated still captured the
concept of redundancy, overlap and efficiency step-change as defined in Chapter 5 when
it came to real-life data.

Finally, we considered the correlation tests. The case study instances failed to yield
as many significant results as the theoretical instances did. The first reason was that only
the initial values could be used for redundancy and overlap as these distributions did not
change much before disconnection. The second and third reasons were presumably the
smaller sample sizes and the heterogeneity among the case study instances. However, the
few significant results that were observed were congruent with Chapter 6. Not one of the
vulnerability metrics was a stand-alone indicator of vulnerability. In fact, it would seem
that vulnerability itself was multi-faceted and that key influential factors not captured by
the vulnerability metrics (such as road network coverage) are yet to be explored.
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Chapter 9

Conclusion and future work

Today’s supply chains face increasing volatility on many fronts. From the shop-floor where
machines break and suppliers fail to the boardrooms where unanticipated price inflation
erodes profitability. Turbulence is the new normal.

To remain competitive and weather these (daily) storms, supply chains need to move
away from an efficiency mindset towards a resilience mindset. For over a little more than
a decade industry and academia have awakened to this reality. Academic literature and
case studies show that there is no longer a shortage of resilience strategies and designs.
Unfortunately, industry still lacks the tools with which to assess and evaluate the effec-
tiveness of such strategies and designs. Without the ability to quantify the benefit it is
impossible to motivate the cost.

This thesis aimed to add one piece to the puzzle of quantifying supply chain vulnera-
bility. Specifically, it focussed on supply chains within urban areas. It sought to quantify
to what degree an urban supply chain’s network design (internal configuration) and its
dependence on the underlying road network (external circumstances) made it more or less
vulnerable to disruptions.

Multilayered Complex Network Theory (CNT) held promise as a modelling approach
that could capture the complexity of the dependence between a logical supply chain
network and the physical road network that underpins it. Such an approach addressed
two research gaps in complex network theory applications. In the supply chain arena CNT
applications have reaped many benefits but the majority of studies regarded single-layer
networks that model only supply chain relations. There were no studies found where
the dependence of supply chain layers on underlying physical infrastructure was modelled
in a multilayered manner. Road network applications offered many more multilayered
applications but these primarily focussed on passenger transport, not freight transport.

The thesis statement was formulated as follows:

Metrics related to the shortest path sets of the multilayered supply chain/road
network formulation can quantify the inherent vulnerability of a specific supply
chain to its choice of internal configuration and the underlying urban road
network’s integrity.

In order to evaluate this statement the following objectives were achieved:

1. Development of a multilayered complex network model that captured the depen-
dence of a supply chain network on an urban road network.

2. Identification of the characteristics of this model that described the nature of the
supply chain’s vulnerability to the integrity of the urban road network.
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3. Development of metrics that could quantify a supply chain’s inherent vulnerability
based on its internal configuration and the underlying road network.

4. Evaluation of the validity of the suite of vulnerability metrics through statistical
analysis and a real-life case study.

These objectives were achieved using a design research methodology as described by
Manson (2006). Design research is

“a process of using knowledge to design and create useful artefacts, and then
using various rigorous methods to analyse why, or why not, a particular arte-
fact is effective” (Manson, 2006).

Two artefacts were developed namely a multilayered complex network formulation of
a supply chain’s dependence on its underlying road network, and a suite of vulnerability
metrics that were proposed to quantify the inherent vulnerability of the supply chain.
The artefacts were evaluated in two ways. Using the multilayer formulation we generated
large samples for three different supply chain network archetypes. The distributions of
the topological characteristics were investigated and compared to verify the formulation.
We then used random error simulations and statistical correlation tests to assess the
performance of the suite of vulnerability metrics. Further feedback of the artefacts’ utility
was obtained when these were applied to a case study of three South African urban areas.
Feedback from the case study added to the operation and goal knowledge obtained through
the study.

The design of the artefacts itself, although novel, was not considered research but it
was through the insights derived during analysis of the artefacts’ performance that we
contributed to the body of knowledge.

9.1 Key findings from the thesis

The multilayered network formulationM is a useful and intuitive artefact to capture the
dependence between a supply chain’s internal configuration and the road network that
underpins it. It is capable of combining both the logical and physical connectedness of the
multilayered system in a manner that enables quantitative experimentation and analyses.
Strict assumptions were applied in the generation of the theoretical instances. Later, in
the case study instances the evidence was overwhelming that these strict assumptions do
not hold in practice. Nonetheless, the formulation of M was still a useful and intuitive
artefact in studying the case study instances.

To develop the suite of vulnerability metrics, three targeted attack simulations were
executed on the theoretical instances. These simulations isolated the characteristics of
the the collection of shortest path sets (C(Sij)) believed to be most critical to network
vulnerability. From these simulations the concept of network skeletons was ruled out as
an indicator of vulnerability. The multilayered nature of M dilutes skeleton structures
that are present in the individual network layers. Instead, the role played by grid links in
C(Sij) in terms of betweenness is a far more convincing indication of vulnerability.

Disturbances in practice are neither fully targeted nor completely random. Rather,
these are somewhere on the continuum between targeted and random. There existed
no data that could characterise exactly where on this continuum disturbances should be
plotted. Thus, using completely random disturbances to assess the performance of the
suite of vulnerability metrics was regarded as sufficiently conservative.
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The damage caused by the random disturbances in terms of efficiency loss and dis-
connection were indifferent to the network archetype. Under random disturbances the
internal configuration of the supply chain network has very little bearing on when ef-
ficiency will be lost or facilities will become disconnected. This finding is contrary to
the accepted knowledge in single-layer CNT application which states that hub archetypes
are more robust to random errors. However, under targeted attack the hub archetypes
were far more vulnerable than the Fully Connected (FC) archetype. Here the observation
corroborated what is known from single-layer studies.

A definite plot twist occurred when testing the correlation of the vulnerability metrics
to efficiency loss and robustness. Although more than one metric was strongly correlated
to efficiency loss and/or robustness for redundancy and overlap, the direction of the
correlations were unexpected. Vulnerability under random link disturbances is not a
straight-forward product of redundancy and overlap. Instead it is multi-faceted and the
probability of removing a link that features in shortest path holds pertinent influence. The
initial values of the vulnerability metrics were also surprisingly uncorrelated. Therefore,
it is impossible to gauge the inherent vulnerability of a network looking only at the initial,
undisturbed network.

The thesis continued with a case study of three urban areas in South Africa. The
intention was to test the validity of the developed artefacts when applied to real-life data.
Many noteworthy findings emerged regarding the structure of supply chain neighbour-
hoods in urban areas.

Firstly, it was found that the three theoretical archetypes used in the thesis are preva-
lent in practice, accounting for between a fifth and a quarter of the population of supply
chain neighbourhoods in the case study. However, the remainder of the supply chain
neighbourhoods were of mixed type. The prevalence of the mixed type in practice was
viewed from two perspectives. The first perspective acknowledges that reality simply
does not pan out as we plan. The partners in a supply chain may agree to design their
network according to certain philosophies. Unfortunately, when the rubber hits the road
it is unlikely that the interactions between the facilities, at least in terms of freight move-
ment, will obey these academic designs. The second perspective posits that supply chain
network designs are really emergent and innovative — impervious to the enforcement of
theoretical archetypes.

Secondly, it was found that there is little difference between the size and structure of
the supply chain neighbourhoods across the three urban areas. Supply chain neighbour-
hoods in Gauteng Province (GT), City of Cape Town (CoCT) and eThekwini Metropoli-
tan Municipality (ET) seem indifferent to the varying geographies, demographics and
economic activities present in these areas.

Thirdly, supply chain neighbourhoods in practice very seldomly if ever exhibit the
simplifying theoretical assumptions used to generate the theoretical instances. Nonethe-
less, the formulation ofM is still valid and useful in modelling the real-life instances as it
is capable of describing any conceivable logical network layer when layered on a physical
network layer.

Moving on to the road network layer, the fourth finding was that although the road
network shows impressive regularity, it is not a bi-directional grid as it is often modelled
in literature. The degree distributions are homogenous but do not mimic that of a bi-
directional grid. More importantly though is that the road network has a much lower
density in reality than the bi-directional grid suggests.

A link-based random error simulation performed on the case study instances revealed a
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number of worthwhile findings. Firstly, the rate at which instances become disconnected in
practice is indifferent to the archetypes. This corroborated the earlier finding regarding the
theoretical instances. Therefore, under random link disruption the internal configuration
of the supply chain has little bearing on how quickly it will become disconnected.

Secondly, it was noted that the way in which efficiency loss was measured was invalid
for real-life instances. As soon as shortest paths were not exactly the same length (as is
the case in practice), this measure misrepresents the damage to the network in terms of
the average shortest path length.

Thirdly, the case study instances were far more vulnerable than the theoretical in-
stances. The fact that these instances were also far less redundant and had much greater
degrees of overlap anticipated this result. However, as was the case in the theoretical
instances, statistical tests again proved that neither redundancy nor overlap were stand-
alone indicators of vulnerability. Again it was found that the coverage of the road network
by the shortest paths played a pertinent role in quantifying vulnerability under random
disruptions. Therefore, in practice vulnerability itself is multi-faceted and key influential
factors not captured by the vulnerability metrics (such as road network coverage) are yet
to be explored.

In light of this summary of key findings, a reflection on the performance of the artefacts
is presented to close the design research loop.

9.2 Reflection on the performance of the artefacts

The multilayered network formulationM is a valid and useful representation of a supply
chain’s dependence on its underlying road network. In both the theoretical and case study
instances it enabled the quantification of the relationship to allow experimentation and
analysis. In this first version of the artefact a simplifying assumption was made that
the logical layer is unweighted. Certainly this could be refined in future iterations. The
capacity of the underlying road network could also somehow be reflected in the physical
layer. A road segment with multiple lanes would be less likely to fail completely than a
single-lane road segment.

The suite of vulnerability metrics were derived from the results of targeted attack
simulations on theoretical instances. This approach thoughtfully identified three aspects of
vulnerability namely redundancy, overlap and efficiency step-change. Both the theoretical
and case study instances show that these concepts were adequately modelled by the
metrics.

Unfortunately, under a random disruption strategy this suite of vulnerability metrics
fails to be a robust predictor or even quantifier of vulnerability. This is primarily owed
to the fact that random disturbances are the most unpredictable. Much of an instance’s
vulnerability comes down to “luck of the draw”. This “luck of the draw” is linked to the
degree to which the shortest paths of an instance covers the road network. Therefore,
under random disruption vulnerability is multi-faceted and not adequately covered by the
suite of metrics.

Despite the poor performance of the vulnerability metrics under random disturbances,
the rationale behind these metrics is sound. There remains a strong possibility that
these metrics will be good quantifiers and predictors of vulnerability when the disruption
simulation is less random — as is the case in practice. Three suggestions are made to
refine this artefact: The first is to increase the ambit of the suite and include the coverage
of G2 as a vulnerability aspect. The second is to test for multivariate correlations and
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covariances to better understand the interplay between metrics. The final suggestion is
to test these metrics using a more realistic disturbance simulation.

9.3 Research contribution and limitations

9.3.1 Research contribution

According to Hevner et al. (2004) effective design research must contribute in three ways:
the development of a design artefact that addresses an unsolved problem; the expansion
of the knowledge foundation in a domain through creative development of (evaluated)
constructs; and the creative development of evaluation methodologies.

Therefore, this thesis contributes to research in the following ways:

Artefact development: The formulation of the multilayered complex network model
captures the dependence of a supply chain on underlying infrastructure. The vulner-
ability metrics that emanate from this formulation capture the redundancy, overlap
and efficiency step-change of the multilayered network.

The vulnerability metrics were developed based on the performance of theoretical
instances under targeted disturbances. However, in the case study it was shown that
real-life supply chains are very different and respond very differently compared to
their theoretical counterparts. An unexpected contribution by this thesis is thus the
suggestion that future research in this field start with empirical networks sourced
from practice and develop artefacts based on reality as opposed to first studying the
performance of theoretical artefacts.

Foundational knowledge: Novel insights and perspectives were gained regarding the
influence of a supply chain’s internal configuration and the integrity of the road
network on its inherent vulnerability. Furthermore, the case study analysis offers
a rich description of supply chain neighbourhoods present in three urban areas in
South Africa. These descriptions are also novel and are unanticipated research
contributions made by the thesis.

Evaluation methodologies: The thesis used purely targeted disturbances to derive the
vulnerability metrics and then switched to purely random disturbances to test the
performance of the vulnerability metrics. The confounding performance of the vul-
nerability metrics under random disruptions highlights that it is crucial to develop
a simulation strategy that more closely reflects reality to use when testing the vul-
nerability metrics. Road network disruptions are neither completely random nor
specifically targeted. Important segments with greater traffic loads are more likely
to be disrupted, but the reality is that disruptions such as accidents, equipment
failure or road maintenance could really occur anywhere on the network. There-
fore, a blended disruption strategy on the continuum between targeted and random
disruptions would be more valid in evaluating the vulnerability metrics. The thesis
thus contributes to research by showing that the typical approaches used in CNT
vulnerability studies are not sufficient to solve this problem. One cannot model road
disruptions as exclusively targeted or purely random. A more tailored approach is
required.

This study adds its voice to ongoing research that seeks to develop methods and
models that quantify supply chain vulnerability. By improving the quality of quantitative
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information on the topic, better trade-off decisions can be made between supply chain
resilience and efficiency.

9.3.2 Limitations of the thesis

Supply chain vulnerability drivers can emanate from a number of sources. As described
in Section 1.1.1, Peck (2005) categorised these drivers into four levels. This thesis fo-
cussed on only one driver from the second level of vulnerability drivers namely asset and
infrastructure dependencies. Within this level it focussed only on the vulnerability of a
supply chain as induced by its dependence on underlying transport infrastructure. The
study was further confined to supply chain networks within urban areas that used only
road transport. This exact scope provides but one piece to a much larger supply chain
vulnerability puzzle and the findings should be appreciated within that context.

The developed artefacts are subject to four significant simplifying assumptions:

• Links are unweighted in both layers of the multilayered networks. Real-life road
networks could be weighted in terms of capacity or traffic density while supply
chains could be weighted in terms of freight volumes or even number of shipments.
Shudong et al. (2012) and Zadeh and Rajabi (2013) illustrated the importance of
using weighted links for more accurate prioritisation of critical links.

• The 10 × 10 grid chosen to represent the physical layer is small. Even so the
computational burden of calculating the collections of shortest paths was prohibitive.
Concerns are raised that such a small physical layer induces edge effects that could
either mask or distort results.

• The samples of 500 randomly generated network instances per archetype are not
negligible. However, the population of possible network instances could be orders
of magnitude bigger, depending on the similarity constraints imposed. Calculating
theoretical upper bounds would strengthen claims of representation.

• Shortest paths are not always the routes of choice. This model assumes that com-
mercial vehicles would choose the shortest path in terms of distance. In practice
routes that are longer in terms of distance could be shorter in terms of travel time
or longer routes could be chosen for other reasons. In addition elements such as
elevation and gradient could add to the perceived distance of a route.

• Cascading phenomena of road network failures are disregarded. Failure on one road
segment can easily have spill-over effects to other road segments (Feng et al., 2017;
Shudong et al., 2012).

• The road network does not recover. In the simulations we assume that there is no
post-disruption rewiring but that disrupted road segments remain disrupted. This
is certainly not the case in practice.

• The overall connectedness of the networks was defined purely in terms of the shortest
path sets of node-pairs. It did not consider truck routes and how these routes
would combine sets of facilities. Incorporating this into the formulation could have
implications for metrics and measurements based on efficiency.
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These simplifications were necessary to put forward a first iteration of the thesis arte-
facts. In their comparison between richer systems-based road vulnerability metrics and
the simplified topology-based metrics, Dehghani et al. (2014) illustrated how a simpler
approach can still yield very useful results. That was the case in this thesis as well.

Limitations regarding the representativity of the case study data must also be noted:

• The freight movement data is both commodity and vehicle “blind”. Supply chains
could have been better characterised and even categorised according to economic
sector if this were not the case.

• The data covers only one month namely February 2014. It is debatable whether
freight movement activities in this one month are representative of the whole year.

• The data only covers three urban areas in one country. This is certainly not rep-
resentative of urban areas worldwide. Furthermore, the study does not control for
different geographies, demographics and economy structures and the influences these
might have on supply chain structure.

• The road network was filtered according to assumptions of the road type that would
be used. Map matching data for the freight movements were not available to cor-
roborate these assumptions.

• The shortest path sets were determined by a custom algorithm. This algorithm does
not guarantee the identification of all allowbale alternative paths.

The key findings, reflection on the artefacts and the limitations mentioned above give
rise to a pipeline of future work that could further expand this research.

9.4 Future work

This thesis has lain sturdy groundwork for the quantification of supply chain vulnerabil-
ity as it relates to the urban road network. Three parallel streams of future work are
envisioned:

Refinement of the artefact formulations: The first suggested refinement is the in-
corporation of link weights into both the formulation of M and the vulnerability
metrics. In the logical layer link weight would denote the strength of the relationship.
In the physical layers it would denote capacity of the road segment. Incorporating
the capacity does not imply that traffic flow should be included. That would shift
this research from a topology-based study to a systems-based study, which is not
the intention. Instead, knowing the capacity of a road segment may make it more
or less prone to disruptions. Link weights, especially the logical link weights, should
also be incorporated into the vulnerability metrics.

The second suggested refinement is the expansion of the suite of vulnerability metrics
to account for the “luck of the draw” as described earlier in this chapter. The
probability of a disruption affecting the shortest paths of an instance at all seems to
have notable bearing on its vulnerability. The coverage of G2 is one possible metric
that could account for this, but this topic requires further exploration.

The third suggestion is to expand the library of supply chain network archetypes
beyond the FC, Single Hub (SH) and Double Hub (DH) archetypes. From the case
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study it was evident that at least three quarters of the supply chain neighbourhoods
are of mixed type. These types need to be characterised and represented in the
formulation of M in order to make it more representative.

Expansion of the theoretical model sizes and samples: With more efficient com-
putational techniques experiments should be repeated on theoretical models with
much larger physical layers. This would control for edge effects that could have in-
fluenced the results in this thesis. The size of the samples of network instances used
should also be determined taking cognisance of theoretical upper bounds to ensure
that they are large enough to be representative. With a greater variety of theo-
retical models (in terms of the physical layer size) and larger samples, asymptotic
behaviour of the collection of shortest paths could be studied.

Expansion and refinement of the case study: The insights drawn from the case study
show that real-life networks behave very differently to their theoretical counterparts,
primarily because they do not obey the simplifying constraints imposed on theoret-
ical models. We believe future research could be much more expedient if analyses
focus on building theory from real networks instead. The data exists within the
Centre for Transport Development at the University of Pretoria to expand the case
study over years and across many more urban areas. This would yield larger samples
for experimentation and analysis.

If the focus of this research now shifts to developing theory from real-life networks,
then the refinement of the shortest path algorithm is a priority. The current algo-
rithm was custom designed to build a shortest path set given a core path and an
allowable tolerance. This approach does not guarantee that a comprehensive set of
paths is determined. Furthermore, the algorithm produces paths that are strongly
anchored to the core path. It could be possible to find more diverse paths using
other approaches.

Another consideration in refining the shortest path algorithm is to assess whether
“least kilometres travelled” really translates to the preferred path in practice. It
may make more sense to define the shortest paths in terms of travel time or number
of turns.

Refinement of the disruption simulation and statistical analysis: In this first it-
eration, a link-based random disturbance simulation was used as it was regarded the
most conservative method to test performance. Admittedly, this approach does not
simulate how road disruptions occur in practice. Road network disruptions are nei-
ther completely random nor specifically targeted. Important segments with greater
traffic loads are more likely to be disrupted, but the reality is that disruptions such
as accidents, equipment failure or road maintenance could really occur anywhere
on the network. Further research is required to develop a topology-based disrup-
tion strategy that lies between targeted and random disruptions and more closely
approximates everyday road disruptions.

Again, if the focus shifts to theory-building from real-life networks, then the manner
in which the first level of damage, efficiency loss, is measured should be revised. The
current metric produces a slight misrepresentation when given heterogenous shortest
path sets.
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Finally, the statistical analysis could be refined and expanded. The current sin-
gle variate correlation analysis can be upgraded to multivariate analysis. The
Kolmogorov-Smirnov test (KS-test) could also be replaced by a more refined ap-
proach to test the similarity of distributions.
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Serrano, M. A., Boguná, M., and Vespignani, A. (2009). Extracting the multiscale back-
bone of complex weighted networks. Proceedings of the National Academy of Sciences
of the United States of America, 106(16):6483–6488.

Sheffi, Y. and Rice, J. B. (2005). A supply chain view of the resilient enterprise. MIT
Sloan Management Review, 47(1):41–48.

Shekhtman, L. M., Bagrow, J. P., and Brockmann, D. (2014). Robustness of skeletons
and salient features in networks. Journal of Complex Networks, 2(2):110–120.

February 1, 2018 157

https://www.openstreetmap.org


Quantifying supply chain vulnerability using a multilayered complex network perspective

Shudong, L., Lixiang, L., Yixian, Y., and Qun, L. (2012). Revealing the process of edge-
based-attack cascading failures. Nonlinear Dynamics, 69(3):837–845.
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Appendix A

Summary of mathematical
formulations

A.1 Glossary

Table A.1: Glossary of indices

Indices Description

α, β Indices of network layers in generic formulation
b, c Indices of network layers in generic formulation
i, j Node indices in the logical network G1K

n Index of ordered sets PPP 25%, BBBoverall and BBBelemental

s, t Node indices in the physical network G2

u, v Node indices of the betweenness networks Gγ and Gζ

K Index of supply chain network archetypes

Table A.2: Glossary of mathematical symbols and elements with reference to defining
equations.

Symbol Description Eq. ref

A[1K,2] Adjacency matrix of interlayer connections (A.29)

a1K,2
is

Elements of the adjacency matrix of interlayer
connections

(A.30)

BBBelemental Set of decreasing Elemental-B(e2
st) scores (A.60)

Belemental Mean of BBBelemental (A.63)
BBBoverall Set of decreasing Overall-B(e2

st) scores (A.61)

Boverall Mean of BBBoverall (A.62)
Bn Elements of the ordered set BBBoverall or BBBelemental (A.63) (A.62)

B75%
elemental

Value of the cut-off of the 75th percentile of
BBBelemental

(A.65)

B75%
overall

Value of the cut-off of the 75th percentile of
BBBelemental

(A.64)
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Table A.3: Glossary of mathematical symbols and elements with reference to defining
equations (continued).

Symbol Description Eq. ref

C Set of interconnections of M (A.5) (A.28)
C(Sij) Collection of shortest path sets for all node-pairs (A.34)

cst(i, j)
Binary consensus variable to determine if e2

st

features in the Sij
(A.51) (A.52)

Eα Intralayer link set of Gα (A.9)
Eβ Intralayer link set of Gβ (A.13)
Eα,β Interlayer link set of Gα and Gβ (A.14)
Eb Intralayer link set of Gb (A.4)

E1K Intralayer link set of logical layer G1K (A.20)

e1K
ij

Intralayer logical link connecting x1K
i and x1K

j in
G1K (A.21)

E2 Intralayer link set of physical layer G2 (A.26)

e2
st

Intralayer physical link connecting x2
s and x2

t in
G2 (A.27)

E1K,2 Interlayer link set of G1K and G2 (A.29)

Eγ Intralayer link set of Elemental-B network Gγ (A.47)
eγuv Intralayer link that features in SDij (A.47)
Eζ Intralayer link set of Overall-B network Gζ (A.41)
eζuv Intralayer link that features in C(Sij) (A.41)

Elemental-B(e2
st) Link betweenness score of e2

st based only on SDij (A.50)

G Family of individual network layers (A.2)(A.16)

Gα

Individual network layers of the generic formulation

(A.7)

Gβ (A.11)
Gb (A.4)

G1K Logical network layer (A.17)
G2 Physical network layer (A.22)

Gγ Elemental-B network layer (A.44)
Gζ Overall-B network layer (A.38)

Lij
Shortest path length between node-pair
(x1K

i , x1K
j )

(A.37)

L̄
Average shortest path across all node-pairs in
G1K (A.36)

Lij(t)
Shortest path length between node-pair
(x1K

i , x1K
j ) at a specific time t during a simulation

Lij(t+ z)
Shortest path length between node-pair
(x1K

i , x1K
j ) at a specific time t+ z during a

simulation
(A.68)

∆Lij(t; t+ z)
Difference in the shortest path length of a
node-pair (x1K

i , x1K
j ) between time t and t+ z
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Table A.4: Glossary of mathematical symbols and elements with reference to defining
equations (continued).

Symbol Description Eq. ref

max(BBBoverall) Maximum Overall-B value (A.66)
max(BBBelemental) Maximum Elemental-B value (A.67)

M Multilayered network (A.1)
M Number of individual network layers (A.3)
mid Midpoint of the ordered set of set sizes (PPP ) (A.55)(A.57)

Nα Number of nodes in Gα (A.8)
Nβ Number of nodes in Gβ (A.12)

N1K Number of nodes in G1K (A.19)
N2 Number of nodes in G2 (A.24)

Nγ Number of nodes in Gγ (A.46)
N ζ Number of nodes in Gζ (A.40)

Overall-B(e2
st) Link betweenness score of e2

st based on C(Sij) (A.43)
Overall-S(e2

st) Link salience score of e2
st based on C(Sij) (A.53)

Pij Number of shortest paths in Sij (A.35)

PPP Ordered set of shortest path set sizes Pij (A.58)

P̃ Median of PPP (generally)

P̃ (All) Median of PPP (considering C(Sij)) (A.54)(A.56)

P̃ (Dir) Median of PPP (considering SDij)

PPP 25% Set of Pij that fall within the 25th percentile of P̃ (A.58)

P̃ 25% Mean of PPP 25% (generally)

P̃ 25%(All) Mean of PPP 25% (considering C(Sij)) (A.59)

P̃ 25%(Dir) Mean of PPP 25% (considering SDij)

Pn Elements of the ordered set of PPP 25% (A.59)

Pmid
Left value of the median of even set or midpoint
value of an uneven set P̃

(A.54)(A.56)

Pmid+1 Right value of the median of even set P̃ (A.54)

Rel∆Lij(t; t+ z) Relative step-change in Lij(t; t+ z) (A.69)

Rel∆L̄(t; t+ z)
Average of Rel∆Lij(t; t+ z) over all node-pairs
in G1K (A.70)

R(Belemental)
75% Range between B75%

elemental and max(BBBelemental) (A.67)

R(Boverall)
75% Range between B75%

overall and max(BBBoverall) (A.66)

SDij
Shortest path set of a directly connected
node-pair in G1K (A.31)

SIij
Shortest path set of an indirectly connected
node-pair in G1K (A.32)

Sij Shortest path set of any node-pair in G1K (A.33)
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Table A.5: Glossary of mathematical symbols and elements with reference to defining
equations (continued).

Symbol Description Eq. ref

wγuv
Weight of link eγuv which is the number of times it
features in SDij

(A.49)

wζuv
Weight of link eγuv which is the number of times it
features in C(Sij)

(A.42)

Xα Node set of Gα (A.8)
xαb Node in node set Xα (A.8)
Xβ Node set of Gβ (A.12)

xβb Node in node set Xβ (A.12)

Xb Node set of Gb (A.4)

X1K Node set of logical network G1K (A.18)
x1K
i Node in node set X1K (A.18)
X2 Node set of physical network G2 (A.23)
x2
i Node in node set X2 (A.23)

Xγ Node set of Ggamma (A.45)
xγi Node in node set Xγ (A.45)
Xζ Node set of Gzeta (A.39)

xζi Node in node set Xζ (A.39)

A.2 Mathematical formulations

A.2.1 Generic multilayered network

(Refer to Section 3.2.1.)

M = (G, C) (A.1)

where

G = {Gb; b ∈ {1, 2, . . . ,M}} (A.2)

M ≡ number of individual graph layers (A.3)

Gb = (Xb, Eb) (A.4)

and

C = {Eb,c ⊆ Xb ×Xc;∀b, c ∈ {1, 2, . . . ,M}, b 6= c} (A.5)

Now let

α, β refer to layers of G|α, β ∈ {1, 2, . . . ,M} and α 6= β (A.6)

then

Gα = (Xα, Eα) (A.7)
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with nodes

Xα =
{
xα1 , x

α
2 , . . . , x

α
Nα

}
where Nα was the number of nodes (A.8)

and intralayer links

Eα ⊆ Xα ×Xα (A.9)

(A.10)

Then similarly,

Gβ = (Xβ, Eβ) (A.11)

Xβ =
{
xβ1 , x

β
2 , . . . , x

β
Nβ

}
where Nβ was the number of nodes (A.12)

Eβ ⊆ Xβ ×Xβ (A.13)

The interlayer connections were

Eα,β ⊆ Xα ×Xβ;∀α, β ∈ {1, 2, . . . ,M}, α 6= β} (A.14)

A.2.2 Customised multilayered network formulation

(Refer to Section 3.2.2.)
For this thesis we adapted the generic formulation. One universal adaptation was that

the indices that named the different network layers (α and β in the generic formulation)
were superscripts in the customised formulation instead of subscripts. This was neces-
sary to avoid confusion with node indices which were (as per convention) indicated as
subscripts.

M = (G, C) (A.15)

G = (G1K , G2) where K ∈ {F, S,D} (A.16)

G1K was the logical layer and G2 was the physical layer of M and F : FC archetype; S:
SH archetype and D: DH archetype.

Logical layer1:

G1K = (X1K , E1K) ∀K ∈ {F, S,D} (A.17)

with nodes

X1K = {x1K
1 , x1K

2 , . . . , x1K
N1K} ∀K ∈ {F, S,D} (A.18)

where

N1K = 12 ∀K ∈ {F, S,D} (A.19)
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and links

E1K = {e1K
ij } ∀i, j ∈ {1, 2, . . . , N1K}|i 6= j, ∀K ∈ {F, S,D} (A.20)

where

e1K
ij =


1 if x1K

i was connected to x1K
j

∀K ∈ {F, S,D}
0 otherwise.

(A.21)

Physical layer:

G2 = (X2, E2) (A.22)

with nodes

X2 = {x2
1, x

2
2, . . . , x

2
N2} where, (A.23)

N2 = m× n = 100 (A.24)

(A.25)

and links

E2 = {e2
st} ∀s, t ∈ {1, 2, . . . , N2}|s 6= t (A.26)

e2
st =

{
1 if x2

s was connected to x2
t

0 otherwise.
(A.27)

The interconnections of M were defined by:

C = E1K,2 (A.28)

where E1K,2 was defined by the adjacency matrix

A[1K,2] = (a1K,2
is ) (A.29)

and

a1K,2
is =


1, if (x1K

i , x2
s) ∈ E1K,2

∀i ∈ {1, 2, . . . , N1K}, and

∀s ∈ {1, 2, . . . , N2}
0, otherwise

(A.30)

A.2.3 Collection of shortest path sets

(Refer to Section 3.4.)
All metrics pertaining to shortest paths referred to a specific realisation ofM, therefore

in the definitions that follow the superscripts relating to the layers and network archetypes
were dropped for simplicity’s sake.

A shortest path set was a collection of shortest paths of equal length connecting two

February 1, 2018 165



Quantifying supply chain vulnerability using a multilayered complex network perspective

nodes x1K
i and x1K

j .

Shortest path sets between directly connected node-pairs:

SDij = {s1, s2, . . . , sPij} ∀e1K
ij ∈ E1K (A.31)

Shortest path sets between indirectly connected node-pairs:

SIij = {s1, s2, . . . , sPij} ∀e1K
ij /∈ E1K (A.32)

thus

Sij = {SDij, SIij} ∀i, j ∈ {1, 2, . . . , N1K}, i 6= j (A.33)

Collection of shortest path sets:

C(Sij) =
⋃
i,j

Sij ∀i, j ∈ {1, 2, . . . , N1K}, i 6= j (A.34)

where

Pij ≡ number of alternative shortest paths between node x1K
i and x1K

j (A.35)

∀i, j ∈ {1, 2, . . . , N1K}, i 6= j

The efficiency of M was the average shortest path and was defined by:

L̄ =
Σi,j,i6=jLij

N1K(N1K − 1)
where i, j ∈ {1, 2, . . . , N1K} (A.36)

where

Lij ≡ length of a shortest path between node x1K
i and x1K

j (A.37)

∀i, j ∈ {1, 2, . . . , N1K}, i 6= j

A.2.4 Targeted attack simulations

Overall link betweenness (Overall-B)

(Refer to Section 4.1.3.)
The partial grid network comprising all links that feature in C(Sij) was defined by:

Gζ = (Xζ , Eζ) (A.38)

with nodes

Xζ ⊆ X2 | xζu ∈ C(Sij), u ∈ {1, 2, . . . , N ζ} (A.39)
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where

N ζ ≡ number of unique nodes in Xζ (A.40)

and links

Eζ ⊆ E2 | eζuv ∈ C(Sij) u, v ∈ {1, 2, . . . , N ζ} (A.41)

and link weights

wζuv ≡ number of occurrences of eζuv in C(Sij) (A.42)

Overall-B was calculated from wζuv as follows:

Overall-B(e2
st) =



wζuv∑
i,j;i6=j

Pij
if e2

st ≡ eζuv and thus e2
st ∈ Eζ ;

where Pij was the shortest path set size,

u, v ∈ {1, 2, . . . , N ζ},
i, j ∈ {1, 2, . . . , N1K}, and

s, t ∈ {1, 2, ..., N2}
0 otherwise

(A.43)

Elemental link betweenness (Elemental-B)

(Refer to Section 4.1.4.)
The partial grid network comprising all links that feature in SDij was defined by:

Gγ = (Xγ, Eγ) (A.44)

with nodes

Xγ ⊆ X2 | xγu ∈ SDij, u ∈ {1, 2, . . . , Nγ} (A.45)

where

Nγ ≡ number of unique nodes in Xγ (A.46)

and links

Eγ ⊆ E2 | eγuv ∈ SDij u, v ∈ {1, 2, . . . , Nγ} (A.47)

(A.48)

and link weights

wγuv ≡ number of occurrences of eγuv in SDij (A.49)

Elemental-B was calculated from wγuv as follows:
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Elemental-B(e2
st) =



wγuv∑
i,j;i 6=j

Pij
if e2

st ≡ eγuv and thus e2
st ∈ Eγ;

u, v ∈ {1, 2, . . . , Nγ},
i, j ∈ {1, 2, . . . , N1K}, and

s, t ∈ {1, 2, ..., N2}
0 otherwise

(A.50)

Link salience (Overall-S)

(Refer to Section 4.1.5.)
Consensus scores were calculated by:

cst =
∑
i,j;i 6=j

cst(i, j)|s, t ∈ {1, 2, ...N2}, i, j ∈ {1, 2, ..., N1K} (A.51)

where

cst(i, j) =

{
1 if e2

st ∈ Sij
0 otherwise

(A.52)

In a network where all node-pairs were still connected, the number of shortest path sets
‖C(Sij)‖ was equal to the number of node-pairs. However, we continued the targeted
attack simulation beyond disconnection, therefore we divided the consensus score by the
number of shortest path sets and not the number of node-pairs such that:

Overall-S(e2
st) =

cst
‖C(Sij)‖

where i, j ∈ {1, 2, ..., N1K} (A.53)

A.2.5 Vulnerability metrics

Redundancy

(Refer to Section 5.3.)

The ordered set of Pij was defined by PPP . In the case of an even number of sets the
median was calculated by:

P̃ = (Pmid + Pmid+1)/2 (A.54)

where Pmid ∈ PPP , and

mid = (N1K(N1K − 1) + 1)/2− 0.5 (A.55)

with N1K the number of nodes in G1K . In the case of uneven case the median was
calculated by:

P̃ = Pmid (A.56)
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where Pmid ∈ PPP , and

mid = (N1K(N1K − 1) + 1)/2 (A.57)

The set of values that fell within the 25th percentile was denoted by:

PPP 25% ⊂ PPP such that PPP 25% =
{
P1, P2, . . . , Pd‖PPP‖/4e

}
(A.58)

The mean of the elements of PPP 25% was defined as:

P̃ 25% =

∑
Pn∈PPP 25%

Pn

‖PPP 25th‖
(A.59)

The vulnerability metrics related to redundancy are summarised in Table A.6.

Table A.6: Summary of redundancy metrics.

Aspect Scope Metric Equation

Centrality
C(Sij) P̃ (All) (A.54)(A.56) (Pij ∈ C(Sij))

SDij P̃ (Dir) (A.54)(A.56)(Pij ∈ SDij)

Left-tail
centrality

C(Sij) P̃ 25%(All) (A.59) (Pij ∈ C(Sij))

SDij P̃ 25%(Dir) (A.59) (Pij ∈ SDij)

Overlap

(Refer to Section 5.4.)

BBBoverall ≡ set of Overall-B(e2
st) in descending order (A.60)

BBBelemental ≡ set of Elemental-B(e2
st) in descending order (A.61)

Boverall =

∑
Bn∈BBBoverall

Bn

‖BBBoverall‖
(A.62)

and

Belemental =

∑
Bn∈BBBelemental

Bn

‖BBBelemental‖
(A.63)

The value of the 75th percentile was denoted by:

B75%
overall = Bb‖BBBoverall‖/4c (A.64)
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and

B75%
elemental = Bb‖BBBelemental‖/4c (A.65)

The range was then defined by:

R(Boverall)
75% = max(BBBoverall)−B75%

overall (A.66)

and

R(Belemental)
75% = max(BBBelemental)−B75%

elemental (A.67)

The vulnerability metrics related to overlap are summarised in Table A.7.

Table A.7: Summary of overlap metrics.

Aspect Scope Metric Equation

Centrality
C(Sij) Boverall (A.62)
SDij Belemental (A.63)

Right-tail range
C(Sij) R(Boverall)

75% (A.66)
SDij R(Belemental)

75% (A.67)

Efficiency step-change

(Refer to Section 5.5.)
The step-change in the shortest path length of a node-pair (x1K

i , x1K
j ) was:

∆Lij(t; t+ z) = Lij(t)− Lij(t+ z) (A.68)

where t was some defined point in time before a disruption occurred and z was some time
after a disruption of G2 occurred. The relative change was then:

Rel∆Lij(t; t+ z) =
∆Lij(t; t+ z)

Lij(t)
(A.69)

The aggregate of the relative step-changes across all node-pairs were:

Rel∆L(t; t+ z) =

∑
i,j;i 6=j

Rel∆Lij(t; t+ z)

N1K(N1K − 1)
where i, j ∈ {1, 2, . . . N1K} (A.70)

The vulnerability metrics related to efficiency step-change are summarised in Table A.8.
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Table A.8: Summary of efficiency step-change metrics.

Aspect Scope Metric Equation

Centrality C(Sij) Rel∆L(t; t+ z) (A.70)
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Appendix B

KS-test results

The tables in this appendix arrange the p-values for the Kolmogorov-Smirnov tests conducted in Section 6.1.2. The KS-test was used to
test the following hypothesis:

• H0: The sample distributions of vi(X) and vi(Y ) are drawn from the same theoretical distribution.

• HA: The sample distributions of vi(X) and vi(Y ) are not drawn from the same theoretical distribution.

(Where vi is a vulnerability metric from Table 6.4.)

The test statistic (D) quantifies the distance between the Empirical Distribution Function (EDF) of the vulnerability metric as measured
from the sample of surviving instances X and the EDF of the vulnerability metric as measured from the sample of non-surviving instances
Y . The null hypothesis that the sample distributions were drawn from the same theoretical distribution was rejected when the p-value
was lower than the chosen significance level, which in this case was 0.05.

The KS-test was conducted for each vulnerability metric after each disruption, provided that the samples X and Y had more than 15
observations each. In the case of efficiency loss, the sample size of X for the FC was smaller than 15 after each disruption. Therefore, no
tests were performed in this regard. The p-values for all the other tests are tabulated hereunder.
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Table B.1: p-values from the KS-tests comparing the EDFs of the vulnerability metrics and robustness for the FC network. If p < 0.05
(highlighted in green) then the null hypothesis that the EDFs are from the same distribution was rejected. Blank cells indicate sample
sizes ≤ 15.

Robustness
Percentage grid links remaining 95% 90% 85% 80% 75% 70% 65% 60% 55% 50%

Redundancy P̃ (All) % Change – – 0.90 0.82 0.24 0.16 0.57 – – –

Overlap Boverall
% Change – – 0.89 0.23 0.86 0.06 0.58 – – –
Final value – – 0.29 0.01 0.14 0.04 0.1 – – –

Efficiency
Step-Change

Rel∆L(t; t+ k)
Average – – 0.01 0.02 <0.01 0.37 0.39 – – –
Maximum – – 0.03 0.05 0.01 0.58 0.54 – – –
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Table B.2: p-values from the KS-tests comparing the EDFs of the vulnerability metrics and efficiency loss for the SH network. If p < 0.05
(highlighted in green) then the null hypothesis that the EDFs are from the same distribution was rejected. Blank cells indicate sample
sizes ≤ 15.

Efficiency Loss
Percentage grid links remaining 95% 90% 85% 80% 75% 70% 65% 60% 55% 50%

Redundancy P̃ (Dir) Final value 0.78 0.35 0.37 0.77 0.54 – – – – –

Overlap
Boverall

% Change 0.01 0.06 0.43 0.31 0.05 – – – – –
Final value 0.69 0.18 0.14 0.50 0.12 – – – – –

Belemental
% Change 0.04 0.17 0.20 0.31 <0.01 – – – – –
Final value 0.68 0.47 0.06 0.53 <0.01 – – – – –

Efficiency
Step-Change

Rel∆L(t; t+ k)
Average – 0.93 0.69 0.34 0.48 – – – – –
Maximum – 0.94 0.15 0.30 0.45 – – – – –
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Table B.3: p-values from the KS-tests comparing the EDFs of the vulnerability metrics and robustness for the SH network. If p < 0.05
(highlighted in green) then the null hypothesis that the EDFs are from the same distribution was rejected. Blank cells indicate sample
sizes ≤ 15.

Robustness
Percentage grid links remaining 95% 90% 85% 80% 75% 70% 65% 60% 55% 50%

Redundancy
P̃ (All) Final value – – 0.76 0.01 0.99 0.81 1.00 – – –

P̃ (Dir) Final value – – 0.59 0.13 0.15 0.99 0.94 – – –

Overlap
Boverall

% Change – – 0.11 0.30 0.15 <0.01 0.36 – – –
Final value – – 0.78 0.67 0.82 0.02 0.20 – – –

Belemental
% Change – – 0.26 0.68 0.41 <0.01 0.15 – – –
Final value – – 0.43 0.76 0.67 0.06 0.13 – – –

Efficiency
Step-Change

Rel∆L(t; t+ k)
Maximum – – 0.57 0.73 0.97 <0.01 0.45 – – –
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Table B.4: p-values from the KS-tests comparing the EDFs of the vulnerability metrics and efficiency loss for the DH network. If p < 0.05
(highlighted in green) then the null hypothesis that the EDFs are from the same distribution was rejected. Blank cells indicate sample
sizes ≤ 15.

Efficiency Loss
Percentage grid links remaining 95% 90% 85% 80% 75% 70% 65% 60% 55% 50%

Redundancy
P̃ (All) % Change 0.02 0.68 0.27 0.99 0.15 0.80 – – – –

P̃ (Dir) Final value 0.07 0.72 0.80 1.00 0.97 0.43 – – – –

Overlap
Boverall

% Change 0.93 0.90 0.21 0.43 0.59 0.72 – – – –
Final value 0.23 0.93 0.39 0.22 0.38 0.99 – – – –

Belemental
% Change 0.62 0.83 0.49 0.41 0.16 0.78 – – – –
Final value 0.14 0.19 0.14 0.69 0.50 0.40 – – – –

Efficiency
Step-Change

Rel∆L(t; t+ k)
Average – 0.45 0.13 0.39 0.51 0.61 – – – –
Maximum – 0.29 0.02 0.14 0.65 0.18 – – – –
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Table B.5: p-values from the KS-tests comparing the EDFs of the vulnerability metrics and robustness for the DH network. If p < 0.05
(highlighted in green) then the null hypothesis that the EDFs are from the same distribution was rejected. Blank cells indicate sample
sizes ≤ 15.

Robustness
Percentage grid links remaining 95% 90% 85% 80% 75% 70% 65% 60% 55% 50%

Redundancy
P̃ (All) Final value – 0.82 <0.01 0.80 0.14 0.70 1.00 – – –

P̃ (Dir) Final value – 1.00 0.17 0.89 0.93 0.99 0.76 – – –

Overlap
Boverall

% Change 0.65 0.60 0.23 0.41 0.05 0.51 – – –
Final value 0.85 0.78 0.39 0.60 0.04 0.39 – – –

Belemental
% Change – 0.41 0.82 0.14 0.59 0.06 0.45 – – –
Final value – 0.90 0.97 1.00 0.31 0.02 0.81 – – –

Efficiency
Step-Change

Rel∆L(t; t+ k) Maximum – 0.89 0.21 0.20 0.25 <0.01 0.22 – – –
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