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ABSTRACT
In this paper a bivariate gamma type distribution emanating from the diagonal elements of an inverse
Wishart type distribution is developed; which in turn originates from the complex matrix variate elliptical
class. From this, a bivariate Weibullised gamma type distribution is also presented, of which the bivariate
Nakagami-m type is a special case. The derived results may be applied as decision statistics for a MIMO
(multiple input multiple output) system with two transmit antennas. It is proposed that under this
elliptical umbrella some performance measures such as the outage probability of MIMO systems can be
analyzed in broad generality.
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1 Introduction

In the �eld of multiple input multiple output (MIMO) systems and wireless communications, fading
channels are characterized as statistical distributions used to model and describe the signal degradation
from the transmitter to the receiver of wireless signals. Certain assumptions such as geographical area,
type of transmitters or receivers etc. give rise to certain distributions being preferred to describe the fading
of signals. Some of these include the Rayleigh and Rician (see Miller (1974)), Hoyt (see Hoyt (1947)),
and Nakagami (see Nakagami (1960)) fading. Rayleigh fading is of particular interest in this paper.
de Souza and Yacoub (2008) mentioned that the Rayleigh probability density function (pdf), moreover
speci�cally the basis for assuming Rayleigh fading in wireless communications, is usually derived based
on the assumption that from the central limit theorem for large number of partial waves, the resultant
process can be decomposed into two orthogonal zero mean and equal standard deviation normal random
processes. This is an approximation and the restriction of complex normal is unnecessary - it is not
always a large number of interfering signals. Thus a more general assumption than normal may not be
that far from reality (see also Ollila et. al. (2011)).

In this paper, the complex matrix variate normal assumption in the construction and motivation of
the Rayleigh fading model is relaxed and generalized to that of the complex matrix variate elliptical
class. By doing so, di¤erent members of the complex matrix variate elliptical class can be assumed as
underlying models and compared to that of the usual complex matrix variate normal. In particular, the
complex matrix variate t distribution is assumed and investigated comparatively with regards to said
normal assumption. However, the complex elliptical class is assumed �rst in the fading environment, and
subsequently investigated for the complex matrix variate t case.

The complex matrix variate elliptical class is shortly reviewed next. Let H :m � p be a complex
matrix variate that is distributed according to the complex matrix variate elliptical distribution, denoted
as H � CEm;p(0; Im
�; h); with the following pdf2

fH(H) = j�j�mh(� trH��1HH); (1)

1Corresponding author: johan.ferreira@up.ac.za
2H denotes Hermitian transpose.
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with covariance matrix3 � > 0 :p� p and density generator4 h : R+ ! R+. Provost and Cheong (2002)
reports that the pdf of this complex elliptical random matrix H can be represented as

fH(H) =

Z
R+

fCNm;p(0;Im
t�1�)(Hjt)S (t) dt (2)

where fCNm;p(0;Im
t�1�)(Hjt) is the pdf of a complex matrix variate normal distribution, denoted as
CNm;p(0; Im
t�1�) and S (t) is a weight function depending only on t. Note that S (t) is not necessarily
positive on all its domain. From representation (2) it is evident that any characteristic of complex matrix
elliptical variates can be studied under a complex matrix variate normal assumption with a scale change
in covariance matrix.

Next, the platform is set for matrix variates within the wireless communications framework relevant
in this paper. A single user MIMO system depends on the channel propagation matrix H in the following
manner:

y = Hx+ v;

where y;v 2 Cm�1, x 2 Cp�1 and H 2 Cm�p (Cm�p denotes the space of complex positive de�nite
matrices of dimension m � p). For a Rayleigh fading model, the distribution of an m � p channel
matrix H is usually assumed to be CNm;p(0; Im 
 �) distributed, with m � p (see Miller (1974)).
However, assuming a Rayleigh type fading model implies that the channel matrix H and noise vector
v are independently distributed according the complex matrix variate elliptical distribution, in other
words, H � CEm;p(0; Im
�; h), and (independently) v � CEm;1(0; �

2Im) (see Telatar (1999)). Thus
in this paper the complex matrix variate normal assumption that H usually follows is substituted with
the complex matrix variate elliptical distribution following the assumption of Rayleigh type fading. The
following proposition presents the Rayleigh type fading under consideration in this paper.

Proposition 1 Let Z = X + jY where j =
p
�1, and where X; Y are independent and identically zero

mean elliptical random variates with common variance �2 (that is, CE
�
0; �2; h

�
). Let z =

p
x2 + y2 =

rei� denote an element hij of H. The joint pdf of r (amplitude of the fading signal) and � (phase of the
fading signal) in the complex elliptical class is given by

f
�
r; �j�2

�
=

Z
R+

r

2��2t�1
exp

�
� r2

t�1�2

�
S (t) dt

with

h(rj�2) =
Z
R+

r

�2t�1
exp

�
� r2

2�2t�1

�
S (t) dt;

where r > 0, as the Rayleigh type pdf. The distribution of the phase � remains uniform, with pdf (see
Miller (1974))

k(�j�2) = 1

2�
; 0 � � � 2�

and zero otherwise.

In this paper the main contribution is to propose a Rayleigh type fading distribution (see Proposition
1), and subsequently derive the joint distribution of the diagonal elements of (HHH)�1, where H �
CEm;2(0; Im
�; h); this is called a bivariate gamma type distribution and is discussed in Section 2. In

3For a matrix X, X > 0 indicates the matrix is positive de�nite.
4R+ denotes the positive real line.
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addition, particular members of the complex elliptical class is investigated (speci�cally the complex matrix
variate normal- and complex matrix variate t distributions) as underlying models for the newly proposed
bivariate gamma type distribution. Subsequently, a bivariate Weibullised gamma type distribution ema-
nating from the proposed bivariate gamma type distribution is introduced, where a special case of the un-
derlying complex matrix variate normal is a particular new contribution not studied by Xu et. al. (2009),
in addition to the underlying complex matrix variate t case. Bivariate distributions have been exten-
sively explored in the literature; we refer to Balakrishnan and Lai (2002), de Souza and Yacoub (2008),
de Souza et. al. (2012), Chen et. al. (2014), Ermelova and Tirkonnen (2015), and Mahdavi et. al. (2017)
to mention some. Finally in Section 3, possible application of the derived results are proposed with re-
gards to the outage probability and the equal gain diversity of an m�2 MIMO system; which is analyzed
in a broad generality from an elliptical viewpoint, and comparatively investigated for the underlying
complex matrix variate normal- and t cases. Section 4 contains �nal conclusions.

2 Bivariate distributions

In this section, a new bivariate gamma type distribution, extending the work of Xu et. al. (2009), em-
anating from the complex matrix variate elliptical class is proposed. In particular they considered the
joint distribution of the diagonal elements ofW = [w11 w12; w

�
12 w22], whereW = (HHH)�1, with H :

(m � 2) distributed according to a complex matrix variate normal distribution CNm;2(0; Im
�) with5
� = [1 �; �� 1] as the covariance matrix. Suppose H � CEm;2(0; Im
�; h). Then S = HHH is complex
matrix variate Wishart type distributed, and the pdf is given by

fS(S) =
jSjm�2G(S)
�2(m)j�jm

, S > 0; (3)

where �2(m) denotes the complex multivariate gamma function6 and where7

G(S) =
Z
R+

t2m etr
�
�t��1S

�
S (t) dt:

2.1 Bivariate gamma type distribution

The following lemma de�nes a complex matrix variate inverse Wishart type distribution. Subsequently,
a bivariate gamma type emanating from the diagonals of this complex matrix variate inverse Wishart
type distribution is derived.

Lemma 2 Suppose S follows a complex matrix variate Wishart type distribution with pdf (3). Then
W = S�1 follows a complex matrix variate inverse Wishart type distribution with pdf

f(W) =

Z
R+

t2m

�2(m)

�
1

w11w22 � w12w�12

�m+2� 1

1� ���
�m

(4)

� exp
�
� t

w11w22 � w12w�12(1� ���)
[w11 + w22 + w12�

� + w�12�]

�
S (t) dt

where W > 0.
5a� denotes the conjugate transpose of a.

6�2(m) =
2Q
i=1

�� (m� i+ 1) = �� (m) � (m+ 1)

7etr (�) de�nes exp (tr (�)) :
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Proof. ConsiderW = S�1, with Jacobian J = J(S!W�1) = jWj�2m (see Maiwald and Kraus (1997)).
From (3), it follows that the complex matrix variate inverse Wishart pdf is given by

f(W) = fS
�
W�1� J

=

Z
R+

t2m

�2(m)jWjm+2j�jm etr
�
�t��1W�1�S (t) dt (5)

where W > 0, which leaves the �nal result.

Theorem 3 SupposeW follows a complex matrix variate inverse Wishart type distribution with pdf (5).
Then the pdf of (X1; X2), the inverse of the diagonals W11 and W22 of W, is given by

f(x1; x2) =
2(1� a2)

�(m)�(m� 1)

1X
k=0

1

(k!)2

�
a2

1� a2

�k
(x1x2)

m+k�1

�
kX
p=0

�
k

p

�
(�1)k+p (1� a2)p

(x1 + x2)m+k+p+1

�
Z
R+

tm+k�p�1�

�
m+ k + p+ 1;

t

1� a2 (x1 + x2)
�
S (t) dt; (6)

where x1; x2 > 0, m > 0, 0 � a2 � 1, � (�) denotes the gamma function and � (�; �) denotes the upper
incomplete gamma function (see Gradshteyn and Ryzhik (2007), p. 899, eq. 8.350.2).

Proof. From (4), let

� = ae�ib; a = j�j; b = arg(�) and 0 � a < 1; w12 =
p
w11w22�e

�i�; 0 � � < 2�; 0 � � < 1;

where i2 = �1 is the complex unitary, then J = j2�w11w22j. It then follows that

f(w11; w22; �; �jt) =
t2m

�2(m)

�
1

w11w22(1� �2)

�m+2� 1

1� a2

�m
� exp

�
� t

w11w22(1� �2)(1� a2)
[w11 + w22 + 2a�

p
w11w22 cos(� � b)]

�
2�w11w22:

The focus is to obtain the joint pdf of the inverted diagonal elements of W. Making the transformations
X1 =W

�1
11 and X2 =W�1

22 with J = (X1X2)�2:

f(x1; x2; �; �jt) =
2t2m(x1x2)

m�1�(1� �2)�(m+2)
�(1� a2)m�(m)�(m� 1)

� exp
�
� t

(1� �2)(1� a2) [x1 + x2 + 2a�
p
x1x2 cos(� � b)]

�
:

The pdf of (X1; X2; �; �) is given by

f(x1; x2; �; �) =

Z
R+

f(x1; x2; �; �jt)S (t) dt

=
2(x1x2)

m�1�(1� �2)�(m+2)
�(1� a2)m�(m)�(m� 1)

Z
R+

t2mS (t)

� exp
�
� t

(1� �2)(1� a2) [x1 + x2 + 2a�
p
x1x2 cos(� � b)]

�
dt: (7)
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Note that

I(A(t)) =

Z 2�

0
exp (A(t) cos (� � b)) d�

=

1X
k=0

2�

(k!)2

�
A(t)2

4

�k

where A(t) = �2ta�px1x2
(1�a2)(1��2) and

R 2�
0 cos2n+1 �d� = 0 8 n. Thus, we have that

f(x1; x2; �) =
4(x1x2)

m�1�(1� �2)�(m+2)
(1� a2)m�(m)�(m� 1)

Z
R+

t2mS (t)

� exp
�
� t(x1 + x2)

(1� �2)(1� a2)

� 1X
k=0

1

(k!)2

�
t2a2�2x1x2

(1� a2)2(1� �2)2

�k
dt: (8)

To obtain the pdf of (X1; X2), let Zi = Xi=(1� a2), i = 1; 2, and Y = 1
(1��2) , with J =

�
1� a2

�2. Then
the pdf of the bivariate gamma type is given by

f(x1; x2) =

�
1

1� a2

�2
fZ1;Z2

�
x1

1� a2 ;
x2

1� a2

�
(9)

with pdf of (Z1; Z2; Y ) given by

f(z1; z2; y) =
2(1� a2)m

�(m)�(m� 1)

1X
k=0

a2k

(k!)2
(z1z2)

m+k�1ym+k(y � 1)k

�
Z
R+

t2(m+k) exp f�t(z1 + z2)ygS (t) dt: (10)

Subsequently, the pdf of (Z1; Z2) has form

f(z1; z2) =

1Z
1

f(z1; z2; y)dy

=

1Z
1

2(1� a2)m
�(m)�(m� 1)

1X
k=0

a2k

(k!)2
(z1z2)

m+k�1ym+k(y � 1)k

�
Z
R+
t2(m+k) exp f�t(z1 + z2)ygS (t) dtdy

=
2(1� a2)m

�(m)�(m� 1)

1X
k=0

a2k

(k!)2
(z1z2)

m+k�1
kX
p=0

�
k

p

�
(�1)k+p

(z1 + z2)m+k+p+1

�
Z
R+

tm+k�p�1� (m+ k + p+ 1; t(z1 + z2))S (t) dt; (11)

using Gradshteyn and Ryzhik (2007), p. 346, eq. 3.381.3. Therefore from (9) and (11), (X1; X2) has the
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following bivariate gamma type pdf

f(x1; x2) =
2(1� a2)

�(m)�(m� 1)

1X
k=0

1

(k!)2

�
a2

1� a2

�k
(x1x2)

m+k�1

�
kX
p=0

�
k

p

�
(�1)k+p (1� a2)p

(x1 + x2)m+k+p+1

�
Z
R+

tm+k�p�1�

�
m+ k + p+ 1;

t

1� a2 (x1 + x2)
�
S (t) dt;

where x1; x2 > 0, leaving the �nal result.

2.2 Graphical representation

In this section the graphs of pdf for the bivariate gamma type distribution (6) are displayed for two
special cases, namely the complex matrix variate normal and the complex matrix variate t distributions
as underlying models for H.

Corollary 4 For the bivariate gamma distribution, let (see Provost and Cheong (2002))

S (t) = �(t� 1) (12)

where �(�) is the dirac delta or impulse function having the property
R
R+
f(x)�(x)dx = f(0), for every

Borel-measurable function f(�), i.e. H has a complex matrix variate normal distribution. We then obtain
the result of Xu et. al. (2009). Speci�cally, let x = t� 1, then

I1 =

Z
R+

tm+k�p�1�

�
m+ k + p+ 1;

t

1� a2 (x1 + x2)
�
�(t� 1)dt

= �

�
m+ k + p+ 1;

1

1� a2 (x1 + x2)
�

which simpli�es to the bivariate gamma distribution

fnormal(x1; x2) =
2(1� a2)

�(m)�(m� 1)

1X
k=0

1

(k!)2

�
a2

1� a2

�k
(x1x2)

m+k�1

�
kX
p=0

�
k

p

�
(�1)k+p(1� a2)p
(x1 + x2)m+k+p+1

�

�
m+ k + p+ 1;

1

1� a2 (x1 + x2)
�
; (13)

where x1; x2 > 0.

Corollary 5 For the bivariate gamma t distribution, let

S (t) =

�
v
2

� v
2

�
�
�
2

� t v2�1e� vt
2 (14)
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i.e. H has a complex matrix variate t distribution with v > 0 degrees of freedom. Using
Gradshteyn and Ryzhik (2007), p. 657, eq. 6.455.1, observe that:

I2 =

�
�
2

� �
2

�
�
�
2

� Z
R+

t
�
2
+m+k�p�2e�

�t
2 �

�
m+ k + p+ 1;

t

1� a2 (x1 + x2)
�
dt

=

�
�
2

� �
2

�
�
�
2

�
�
x1+x2
1�a2

�m+k+p+1
�
�
�
2 + 2m+ 2k

�
�
�
2 +m+ k � p� 1

� �
x1+x2
1�a2 +

�
2

� �
2
+2m+2k

� 2F1

 
1;
�

2
+ 2m+ 2k;

�

2
+m+ k � p;

�
2

x1+x2
1�a2 +

�
2

!

where 2F1 (�) denotes the Gauss hypergeometric function (see Gradshteyn and Ryzhik (2007), p. 1010,
eq. 9.14.2). The �nal expression for the pdf of bivariate gamma t distribution with v degrees of freedom
has form

ft(x1; x2) =
2
�
�
2

� �
2

�(m)�(m� 1)�
�
�
2

�
(1� a2)m�2k

1X
k=0

a2k�
�
�
2 + 2m+ 2k

�
(k!)2

� (x1x2)m+k�1
kX
p=0

�
k

p

�
(�1)k+p

�
2F1

�
1; �2 + 2m+ 2k;

�
2 +m+ k � p;

�
2

x1+x2
1�a2 +

�
2

�
�
�
2 +m+ k � p� 1

� �
x1+x2
1�a2 +

�
2

� �
2
+2m+2k

; (15)

where x1; x2 > 0.

In Figure 1 through 4 the nature of pdfs (13) and (15) is illustrated for some arbitrary parameters.

Figure 1 Pdf (13) with contourplots for m = 5 and a = 0:25; 0:5; 0:75 (�tr)
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Figure 2 Pdf (13) with contourplots for a = 0:5; v = 10 and m = 4; 5; 6 (�tr)

Figure 3 Pdf (15) with contourplots for m = 5; v = 10 and a = 0:25; 0:5; 0:75 (�tr)
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Figure 4 Pdf (15) with contourplots for a = 0:5; v = 10 and m = 4; 5; 6 (�tr)

It is observed from Figures 1 and 3 that when a approaches 1, the pdf becomes more dense. The underlying
t case, in comparison to the normal distribution, exhibits fatter tails as expected.

2.3 Product moments

In this section, the product moments of the bivariate gamma type distribution with pdf (6) is derived.
Subsequently the expression of the product moments is obtained for both underlying complex matrix
variate normal- and t cases, and the Pearson correlation coe¢ cient investigated.

Remark 6 The product moment of (X1; X2) with pdf (6) is given by

E (Xr
1X

n
2 ) =

�
1� a2

�r+n
E (Zr1Z

n
2 ) (16)

with

E(Zr1Z
n
2 ) =

Z
R+

Z
R+

1Z
1

zr1z
n
2 f(z1; z2; y)dz1dz2dy

=

Z
R+

Z
R+

1Z
1

zr1z
n
2

2(1� a2)m
�(m)�(m� 1)

1X
k=0

a2k

(k!)2
(z1z2)

m+k�1ym+k(y � 1)k

�
Z
R+
t2(m+k) exp f�ty(z1 + z2)gS (t) dtdz1dz2dy

=
2(1� a2)m

�(m)�(m� 1)

1X
k=0

a2k

(k!)2

1Z
1

Z
R+

t�r�m�k�n�m�k+2m+2k

�� (r +m+ k)
yr+m+k

� (n+m+ k)

yn+m+k
ym+k(y � 1)kS (t) dtdy

=
2(1� a2)m

�(m)�(m� 1)

1X
k=0

a2k

(k!)2
�(r +m+ k)�(n+m+ k)

�
Z
R+

t�(r+n)S(t)dt

1Z
1

y�(r+n+m+k)(y � 1)kdy
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using (10) and Gradshteyn and Ryzhik (2007), p. 346, eq. 3.381.4. Further using Gradshteyn and Ryzhik (2007),
p. 315, eq. 3.191.2:

E(Zr1Z
n
2 ) =

2(1� a2)m
�(m)�(m� 1)

1X
k=0

a2k

(k!)2
�(r +m+ k)�(n+m+ k)

�
Z
R+

t�(r+n)S (t) dtB (r + n+m� 1; k + 1)

=
2�(r + n)(1� a2)m
�(m)�(m� 1)

1X
k=0

a2k

(k!)2
�(r +m+ k)�(n+m+ k)

�� (r + n+m� 1) � (k + 1)
� (r + n+m+ k)

=
2�(r + n)(1� a2)m
�(m)�(m� 1)

�(m+ r)�(m+ n)

(m+ r + n� 1) 2F1(r; n; r + n+m; a
2) (17)

using the de�nition of the Pochhammer symbol, and where B (�; �) is the beta function, and (provided it
exists)

�(u) =

Z
R+

t�uS (t) dt: (18)

Corollary 7 The product moment of (X1; X2) with pdf (13) is given by

Enormal (X
r
1X

n
2 ) =

2(1� a2)r+n+m
�(m)�(m� 1)

�(m+ r)�(m+ n)

(m+ r + n� 1) 2F1(r; n; r + n+m; a
2) (19)

using (12).

Corollary 8 The product moment of (X1; X2) with pdf (15) is given by

Et (X
r
1X

n
2 ) =

2(1� a2)r+n+m
�
v
2

�r+n
�
�
v
2 � (r + n)

�
�(m+ r)�(m+ n)

�(m)�(m� 1)�
�
�
2

�
(m+ r + n� 1)

(20)

� 2F1(r; n; r + n+m; a
2)

using (14) and Gradshteyn and Ryzhik (2007), p. 346, eq. 3.381.4.

By using the expressions for the product moment in (19) and (20), the Pearson correlation coe¢ cient can
now be determined using �X1;X2 =

E(X1X2)�E(X1)E(X2)q
E(X2

1)�E(X1)
2
q
E(X2

2)�E(X2)
2
. In Figure 5 this correlation coe¢ cient

is graphed for arbitrary parameter values (m = 3; v = 5; 15) against a2 to illustrate the e¤ect of a2 on
the correlation between X1 and X2.
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Figure 5 Pearson�s correlation coe¢ cient for increasing values of a2

Corollary 9 The moment generating function (mgf) of (X1; X2) is given by

M(q1; q2) =

1X
j=0

1

j!

jX
i=0

�
j

i

�
qi1q

j�i
2

2�(j)(1� a2)m+j
�(m)�(m� 1)

�(m+ i)�(m+ j � i)
(m+ j � 1) 2F1(i; j � i; j +m; a2)

where m > 0, 0 < a2 < 1, and with �(j) as de�ned in (18).

Proof. Substituting (16) and (17) into the de�nition of the mgf, together with Gradshteyn and Ryzhik (2007),
p. 25, eq. 1.111, yield

M(q1; q2) = E

0@ 1X
j=0

1

j!
(q1X1 + q2X2)

j

1A
=

1X
j=0

1

j!

jX
i=0

�
j

i

�
qi1q

j�i
2 E(Xi

1X
j�i
2 )

=

1X
j=0

1

j!

jX
i=0

�
j

i

�
qi1q

j�i
2

�
1� a2

�i+(j�i)
EZ1;Z2

�
Zi1Z

j�i
2

�

=
1X
j=0

1

j!

jX
i=0

�
j

i

�
qi1q

j�i
2

�
1� a2

�j 2�(j)(1� a2)m
�(m)�(m� 1)

��(m+ i)�(m+ j � i)
(m+ j � 1) 2F1(i; j � i; j +m; a2)

=

1X
j=0

1

j!

jX
i=0

�
j

i

�
qi1q

j�i
2

2�(j)(1� a2)m+j
�(m)�(m� 1)

��(m+ i)�(m+ j � i)
(m+ j � 1) 2F1(i; j � i; j +m; a2)

which concludes the proof.
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2.4 Bivariate Weibullised gamma type distribution

Bivariate Nakagami-m distribution has many applications in wireless communications (see
de Souza and Yacoub (2008) and references therein). A bivariate Nakagami-m type distribution that em-
anates from this bivariate gamma type distribution is thus of particular interest. A bivariate Weibullised
gamma type distribution (see also Chen et. al. (2014)) is proposed, which originates from the bivariate
gamma type distribution (see (6)), of which the bivariate Nakagami-m type distribution is a special case.

Theorem 10 Suppose that (X1; X2) is bivariate gamma type distributed with pdf (6). The pdf of (R1; R2),

where Ri =
�
Xi
m

� 1
�i is given by

f (r1; r2) =
2�1�2

�(m)�(m� 1)

1X
k=0

kX
p=0

�
k
p

�
(�1)k+p(1� a2)p+1

(k!)2
mm+k�p�1

�
a2

1� a2

�k
r
�1m+�1k�1
1 r

�2m+k�2�1
2

(r
�1
1 + r

�2
2 )

m+k+p+1

�
Z
R+

tm+k�p�1�

�
m+ k + p+ 1;

t

1� a2 (mr
�1
1 +mr

�2
2 )

�
S (t) dt (21)

for r1; r2 > 0; m; �1; �2 > 0 and 0 < a
2 < 1. This distribution is called a bivariate Weibullised gamma

type distribution.

Proof. Consider the transformations R1 =
�
X1
m

� 1
�1 and R2 =

�
X2
m

� 1
�2 with J = �1�2m

2r
�1�1
1 r

�2�1
2 .

The pdf of (R1; R2) is obtained from (6):

f(r1; r2) =
2(1� a2)

�(m)�(m� 1)

1X
k=0

1

(k!)2

�
a2

1� a2

�k �
mr

�1
1 mr

�2
2

�m+k�1
�

kX
p=0

�
k

p

�
(�1)k+p (1� a2)p

(mr
�1
1 +mr

�2
2 )

m+k+p+1

�
Z
R+

tm+k�p�1�

�
m+ k + p+ 1;

t

1� a2 (mr
�1
1 +mr

�2
2 )

�
S (t) dt�1�2m

2r
�1�1
1 r

�2�1
2

=
2�1�2

�(m)�(m� 1)

1X
k=0

1

(k!)2

�
a2

1� a2

�k
r
�1m+�1k�1
1 r

�2m+k�2�1
2

kX
p=0

�
k

p

�
(�1)k+pmm+k�p�1

� (1� a2)p+1

(r
�1
1 + r

�2
2 )

m+k+p+1

Z
R+

tm+k�p�1�

�
m+ k + p+ 1;

t

1� a2 (mr
�1
1 +mr

�2
2 )

�
S (t) dt

which concludes the result.

Remark 11 When �1 = �2 = 2, then (21) has the pdf of a bivariate Nakagami-m type distribution:

f(r1; r2) =
4(1� a2)m2m

�(m)�(m� 1)

1X
k=0

kX
p=0

�
k
p

�
(�1)k+p

(k!)2

�
a2m2

1� a2

�k
(r1r2)

2m+2k�1 (1� a2)p
(mr21 +mr

2
2)
m+k+p+1

�
Z
R+

tm+k�p�1�

�
m+ k + p+ 1;

t

1� a2
�
mr21 +mr

2
2

��
S (t) dt; (22)

for r1; r2 > 0; m > 0; 0 < a2 < 1. For the special cases under consideration, observe the following:
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i) Substituting (12) into (22), a bivariate Nakagami-m distribution has pdf

fnormal(r1; r2) =
4(1� a2)m2m

�(m)�(m� 1)

1X
k=0

kX
p=0

�
k
p

�
(�1)k+p

(k!)2

�
a2m2

1� a2

�k
(r1r2)

2m+2k�1

� (1� a2)p
(mr21 +mr

2
2)
m+k+p+1

�

�
m+ k + p+ 1;

1

1� a2
�
mr21 +mr

2
2

��
; (23)

where r1; r2 > 0.

ii) Substituting (14) into (22), a bivariate Nakagami-m t distribution has pdf

ft(r1; r2) =
4(1� a2)m2m

�
v
2

� v
2

�(m)�(m� 1)�
�
v
2

� 1X
k=0

kX
p=0

�
k
p

�
(�1)k+p

(k!)2

�
a2m2

1� a2

�k
(1� a2)p (r1r2)2m+2k�1

(mr21 +mr
2
2)
m+k+p+1

�
Z
R+

tm+k+
v
2
�p�2e�

v
2
t�

�
m+ k + p+ 1;

t

1� a2
�
mr21 +mr

2
2

��
dt; (24)

where r1;r2 > 0.

In Figures 6 and 7 the nature of pdfs (23) and (24) is illustrated for some arbitrary parameters.

Figure 6 Pdf (23) with contourplots for m = 5 and a = 0:25; 0:5; 0:75 (�tr)
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Figure 7 Pdf (24) with contourplots for m = 5; v = 5 and a = 0:25; 0:5; 0:75 (�tr)

As before, it is observed from Figure 6 that when a approaches one, the pdf becomes more dense.

3 MIMO Applications

In this section, possible applications are proposed of the newly developed models in section 2.

3.1 Application in Rayleigh type fading environment

Let H be the matrix for MIMO system with two transmit antennas, where H � CEm;2(0; Im
�; h) and
is subject to Rayleigh type fading (see Proposition 1). Based on our notation, the outage probability at
a certain threshold xth is obtained as (see Simon and Alouini (2005))

F̂ (xth) = F

�
xth
1� a2

�
where

F (z) = P fmax(Z1; Z2) < zg :

Thus, we need to compute F (�), the cumulative distribution function (cdf) of max(Z1; Z2). To this end,
using (10) and Gradshteyn and Ryzhik (2007), p. 346, eq. 3.381.1 we obtain

P (z1 < z; z2 < z; y) =

zZ
0

zZ
0

f(z1; z2; y)dz1dz2

=
2(1� a2)m

�(m)�(m� 1)

1X
k=0

a2k

(k!)2
y�(m+k)(y � 1)k

Z
R+

2(m+ k; tyz)S (t) dt
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where  (�; �) denotes the lower incomplete gamma function (see Gradshteyn and Ryzhik (2007), p. 899,
eq. 8.350.1). Subsequently

F (z) =

1Z
1

P (z1 < z; z2 < z; y)dy

=
2(1� a2)m

�(m)�(m� 1)

1X
k=0

a2k

(k!)2

1Z
1

Z
R+

y�(m+k)(y � 1)k2(m+ k; tyz)S (t) dtdy: (25)

Finally, for the underlying complex matrix variate normal- and t cases (see (12) and (14)), the cdf is
given by

Fnormal(z) =
2(1� a2)m

�(m)�(m� 1)

1X
k=0

a2k

(k!)2

1Z
1

y�(m+k)(y � 1)k2(m+ k; yz)dy (26)

and

Ft(z) =
2(1� a2)m

�
v
2

� v
2

�(m)�(m� 1)�
�
v
2

� 1X
k=0

a2k

(k!)2

1Z
1

y�(m+k)(y � 1)k
Z
R+

2(m+ k; tyz)t
v
2
�1e�

v
2
tdtdy (27)

respectively. These expressions are evaluated numerically next.

Remark 12 Di¤erent expressions and methods are available (see Gradshteyn and Ryzhik (2007) p. 347,
eq. 3.383.3 and p. 899, eq. 8.351.2) for simpli�ed expressions (26) and (27). However, due to cumber-
some computational execution, the authors utilize a direct integration of these expressions.

A simulation is conducted using Matlab to validate the analytical results. The results and accompanying
�gures are illustrated using Mathematica. Figure 8 illustrates the outage probability of the signal-to-noise
ratio (SNR) for MIMO systems with 2 transmitters and m = 3 receivers over correlated Rayleigh type
channels with underlying complex matrix variate t distribution. The analytical results (solid line) match
the simulated results (dashed line) closely, which can be observed by Table 1 indicating selected values
of the outage probability for the analytical- and simulation studies.

Figures 9a and 9b illustrate the results for the underlying complex matrix variate t distribution together
with underlying complex matrix variate normal distribution also for the case of 2 transmitters and 3
receivers for a = 0:5. The di¤erent behaviour for small and large outage thresholds is noteworthy, as
evident from Figures 9a and 9b. This observation provides signi�cant insight to the theoretical contribu-
tion of the candidacy of the complex matrix variate t distribution in comparison to the complex matrix
variate normal case. Note that Figure 9b is a magni�ed version of Figure 9a over a subset of the domain.

15



Figure 8 Analytical (27) and simulated outage probabilities, for a = 0:5, v = 10

Outage threshold Analytical Simulation
�4 0:0453594 0:04279

�2 0:108779 0:10027

0 0:231966 0:22034

2 0:426804 0:42380

4 0:656033 0:68335

6 0:84272 0:88991

8 0:944624 0:97745

10 0:98230 0:99725

Table 1 Analytical (27) and simulated outage probabilities, for a = 0:5, v = 10
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Figure 9a (left) and 9b (right) Analytical outage probabilities (27) against output threshold, for a = 0:5

Table 2 gives further insight by providing the value of the outage probability versus the outage threshold,
corresponding to Figure 9a. The values in bold indicate when the outage probability is lowest between
the three candidate �ttings.

Outage threshold
Outage probability
(t, v = 5)

Outage probability
(t, v = 15)

Outage probability
(normal)

�2 0:11684 0:105532 0:0980348

�1:5 0:140931 0:129676 0:121677

�1 0:168608 0:158206 0:150095

�0:5 0:199999 0:191543 0:183957

0 0:235115 0:230001 0:223877

0:5 0:273826 0:273717 0:270333

1 0:315843 0:32259 0:323553

1:5 0:360719 0:376215 0:383382

2 0:407851 0:433844 0:44914

2:5 0:456514 0:494379 0:519513

3 0:505894 0:556411 0:592509

Table 2 Analytical outage probabilities against the output threshold, for a = 0:5

3.2 Equal gain diversity

Based on the proposed bivariate Nakagami-m type fading distribution with pdf (22), the performance of
a 2-branch predetection equal gain combiner (EGC) over the bivariate Nakagami-m type fading channels
is investigated (see Karagiannidis (2004)). To this end, an expression is determined for the moments of
the EGC output signal-to-noise ratio (SNR) assuming a bivariate Nakagami-m type fading channel (see
(22)).
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Now, suppose that in a fading environment, a 2-branch predetection EGC diversity receiver is operating.
Then, the instantaneous output SNR per symbol (see Simon and Alouini (2005)) is given by

out =
Es
2No

(R1 +R2)
2

where Es is energy per symbol. Hence, the nth moment of the EGC output SNR is evaluated using (11),
(18), Gradshteyn and Ryzhik (2007), p. 315, eq. 3.191.2, and Gradshteyn and Ryzhik (2007), p. 25, eq.
1.111 as

�n = E (out)
n =

�
Es
2No

�n 2nX
s=0

�
2n

s

� Z
R+

Z
R+

rs1r
2n�s
2 f(r1; r2)dr1dr2:

It follows that

�n = 4m2

�
1

1� a2

�2� Es
2No

�n 2nX
s=0

�
2n

s

�
2(1� a2)m

�(m)�(m� 1)

1X
k=0

a2k

(k!)2

�
Z
R+

Z
R+

rs1r
2n�s
2

�
�1r

2
1

(1� a2) �
�2r

2
2

(1� a2)

�m+k�1 1Z
1

yr+k(y � 1)k

�
Z
R+

t2(m+k) exp

�
�ty

�
�1r

2
1

(1� a2) +
�2r

2
2

(1� a2)

��
S (t) r1r2dtdydr1dr2

= B(2n; s; k)

Z
R+

t2(m+k)
�Z 1

y=1
I3(t; y)y

m+k(y � 1)kdy
�
S (t) dt

where

B(2n; s; k) = 4m2

�
1

1� a2

�2� Es
2No

�n 2nX
s=0

�
2n

s

�
2(1� a2)r
�(r)�(r � 1)

1X
k=0

a2k

(k!)2

and

I3(t; y) =

Z
R+

Z
R+

rs+11 r2n�s+12

�
mr21

(1� a2) �
mr22

(1� a2)

�m+k�1

� exp
�
�ty

�
mr21

(1� a2) +
mr22

(1� a2)

��
dr1dr2

=
1

4
(1� a2)n+2

�
1

m

�n� s
2
+1� 1

m

� s
2
+1 1

(ty)n+2m+2k�1

��
�
n� s

2
+m+ k

�
�
�s
2
+m+ k

�
using Gradshteyn and Ryzhik (2007), p. 346, eq. 3.381.4. Consequently, using (18) and
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Gradshteyn and Ryzhik (2007), p. 315, eq. 3.191.2 we obtain

�n =
1

4
B(2n)(1� a2)n+2

�
1

m

�n� s
2
+1� 1

m

� s
2
+1

��
�
n� s

2
+m+ k

�
�
�s
2
+m+ k

�
�
Z
R+

t2(m+k)

0@ 1Z
1

ym+k(y � 1)k
(ty)n+m+k

dy

1AS (t) dt
=

1

4
B(2n)(1� a2)n+2

�
1

m

�n� s
2
+1� 1

m

� s
2
+1

�(n)

��
�
n� s

2
+m+ k

�
�
�s
2
+m+ k

�
B(n+m� 1; k + 1)

After some algebra a �nal expression for the EGD (assuming a bivariate Nakagami-m type distribution)
is given by

�n =
2(1� a2)m+n�(n)
�(m)�(m� 1)

�
Es
2No

�n 2nX
s=0

�
2n

s

� 1X
k=0

a2k

(k!)2

�
1

m

�n� s
2
�
1

m

� s
2

��
�
n� s

2
+m+ k

�
�
�s
2
+m+ k

�
B(n+m� 1; k + 1):

The expressions for EGD for the normal- and t case respectively are given by

�n;normal =
2(1� a2)m+n

�(m)�(m� 1)mn

�
Es
2No

�n 2nX
s=0

�
2n

s

� 1X
k=0

a2k

(k!)2

��
�
n� s

2
+m+ k

�
�
�s
2
+m+ k

�
B(n+m� 1; k + 1) (28)

and

�n;t =
2(1� a2)m+n

�
v
2

�n
�
�
v
2 � n

�
�(m)�(m� 1)�

�
v
2

�
mn

�
Es
2No

�n 2nX
s=0

�
2n

s

� 1X
k=0

a2k

(k!)2

��
�
n� s

2
+m+ k

�
�
�s
2
+m+ k

�
B(n+m� 1; k + 1): (29)

In Figures 10 and 11 the behaviour of the EGD ((28) and (29)) is illustrated for some arbitrary parameters.
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Figure 10 (28) and (29) against a; for di¤erent values of m, v = 5, n = 1

Figure 11 (28) and (29) against m; for di¤erent values of a, v = 5, n = 1

It is observed that correlation between transmitters decreases the EGD severely. Even so, for the under-
lying t distribution, the EGD is higher than that of the normal case. Furthermore for both cases, as the
number of receivers increase the EGD increases correspondingly.

4 Conclusion

In this paper new bivariate gamma- and bivariate Weibullised gamma type distributions have been
presented which originated from the diagonal elements of a complex inverse Wishart type distribution.
Speci�cally, the pdf, cdf, and product moments of the bivariate gamma type distribution have been
derived. Since the complex elliptical class constitutes a �exible- and broad class of distributions, this
paper provides some insight in the possible usefulness for engineering applications by this assumption.
The results have been applied to evaluate the outage probability of a MIMO system with two transmit
antennas with underlying models the complex matrix variate normal- and t case. In future, di¤erent
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members of the complex elliptical class may be explored as possible candidates versus the well-studied-
and assumed normal model in this MIMO �eld (Clavier (2017)).
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