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Summary

This thesis contributes to statistical distribution theory by developing bivariate- and matrix variate distribu-
tions with their origins in the complex elliptical class. These contributions are inspired by the communications
systems domain, where the underlying distribution is often assumed to be normal. By proposing the underly-
ing distribution to be from the complex elliptical class allows the practitioner to assume different underlying
distributions to alleviate the restriction of normality. The building blocks of the contributions in this thesis
are systematically described and motivated. Through these advances and contributions within statistical dis-
tribution theory, proposed application within the communications systems field is presented. Key performance
metrics are investigated under this complex elliptical assumption, and comparatively explored between two

members, namely the normal and t.
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Notation and abbreviations

For the convenience of the reader, this section contains a list of notation and abbreviation used throughout this

thesis.
Rt Positive real line
~ Distributed as
= Identical to
l Complex unitary, v/—1
€ Element of
|| Absolute value of scalar ¢

Summation operator

Integral operator

-

Factorial
log, lim Natural logarithm, limit

min, max  Minimum, maximum

exp (A) Euler’s constant e with complex square matrix A as argument
tr(A) Trace of the complex square matrix A

etr(A) exp(tr(A)) if A is a complex square matrix

CcT™? Space of all complex matrices of dimension n X p

ch*P Space of all Hermitian positive definite complex matrices of dimension p X p
f) Probability density function

frnormat (-)  Probability density function

fe () Probability density function

() Probability density function of noncentral variable

F() Cumulative distribution function

E () Expected value operator

L Laplace transform operator

v Degrees of freedom

det A Determinant of the complex square matrix A

Al Inverse of a complex square matrix A

AH Conjugate transpose of complex matrix A

A Square diagonal matrix with (Aq, ..., A,) on the diagonal, also indicated by diag (A1, ..., Ap)
A Noncentral matrix

I, Identity matrix of dimension p

® Kronecker product

{z}i; Matrix X with (4, j),, element ; ;

CVpn Stiefel manifold of orthonormal p-frames in an n-dimensional space
U (p) Unitary space of size p X p
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d(x) Dirac delta function

r() Gamma function

v () Lower incomplete gamma function

re,.) Upper incomplete gamma function

CT, (o) Complex p-dimensional multivariate gamma function

Cr'y (o, k) Complex p-dimensional multivariate gamma function pertaining to partition &

(a), Pochhammer coefficient

[, Generalised hypergeometric coefficient pertaining to partition s

B (a, ) Beta function

®;5 (a,b;z,y) Humbert hypergeometric series of two variables x and y with parameters a, b

e () Gegenbauer polynomial of degree n and parameter v

»Fy (1) Hypergeometric series with p upper parameters and ¢ lower parameters of real scalar argument

C. () Zonal polynomial of Hermitian matrix argument corresponding to partition x

+CFs (+) Hypergeometric series with r upper parameters and s lower parameters of Hermitian
matrix argument

TCE,@ ) () Hypergeometric series with r upper parameters and s lower parameters of double Hermitian
matrix arguments of dimension p

Gt () Meijer’s G-function

pdf Probability density function

cdf Cumulative distribution function

ecdf Empirical cumulative distribution function

ISCW  Integral series of complex Wishart type

ISSCW Integral series of singular complex Wishart type
MIMO  Multiple input, multiple output

LOS Line-of-sight

SNR Signal-to-noise ratio
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1.1 The realm of statistical distribution theory

The normal distribution forms the cornerstone of multivariate statistical methods. It exists in many forms -
univariate, multivariate, matrix variate - and in most cases, the theoretical results in literature relating thereto
are relatively simple; along with (mostly) straightforward computational implementation. Furthermore, in sev-
eral cases within multivariate statistical methods the limiting distribution of several statistics is approximately
normal. In essence, together with the central limit theorem, the normal distribution in general acts as a reason-
able approximation to the distribution of these statistics. If the approximation of the normal is not sufficient
for the practitioner, the exact distributions of these statistics in many cases remain known and implementable,
albeit generally with greater computational challenges than that of the normal counterpart. In the univariate,
multivariate, and matrix variate cases, the t- , beta-, gamma-, Wishart-, and Dirichlet distributions take up

important positions alongside the normal within the realm of statistical distribution theory.

However, many times data display characteristics that do not align with the notion of normality; such as
exhibiting heavier tails, whilst still maintaining other attractive characteristics; such as symmetry. To account
for such characteristic differences, elliptical distributions have been proposed as viable candidates that constitute
a broader class of distributions which still contains the normal distribution as a special case. Much research
has been done during recent decades to provide alternatives to the well-studied normal model in both real-
and complex contexts, and is elaborated on in subsequent sections in this chapter. It is this frame of mind of
elliptical distributions which motivates further study under this assumption, aiming to alleviate the restriction

of normality.

© University of Pretoria
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1. INTRODUCTION
1.2. Rationale for study

In this thesis, particular focus will be on the class of complex elliptical distributions. From this complex ellip-
tical origin, new distributions within the univariate-, bivariate-, and matrix variate domain are derived. The
statistical distribution theory literature is advanced with these contributions of complex elliptical results (with
emphasis on bivariate- and matrix variate distributions). These advances are inspired from a communications
systems point of view, where the assumption of underlying normality is known and well-studied. This assump-
tion however has been questioned, but little literature addresses a change from underlying normal to that of
another reasonable underlying distribution within this domain. This thesis aims to relieve the restriction of un-
derlying normality to that of any member of the complex elliptical class - specifically to allow for an underlying
t distribution. In this thesis, particular performance measures in the communications systems environment are
derived under a complex elliptical assumption, and comparatively investigated between the well-studied normal

case as well as for an underlying ¢ distribution.

1.2 Rationale for study

This section describes the overarching motivation and inspiration for this study in statistical distribution theory

that emanates from the communications systems domain.

In the communications systems discipline, fading channels are characterized as statistical distributions used
to model and describe the signal degradation from the transmitter to the receiver of wireless signals. Certain
assumptions such as geographical area, type of transmitters or receivers etc., give rise to certain distributions
being preferred to describe the fading of signals. Some of these include the Rayleigh and Rician distributions
(see Miller (1974)), Hoyt distribution (see Hoyt (1947)), and Nakagami (see Nakagami (1960)) distribution.
de Souza and Yacoub (2008) mentioned that the basis for assuming Rayleigh fading, for example, in commu-
nications systems, is derived based on the assumption that from the central limit theorem for large number
of partial waves, the resultant process can be decomposed into two orthogonal zero mean and equal standard
deviation normal random processes. This usual complex matrix variate normal assumption, say for some matrix
variable X € C7™?| is essential as it forms the basis of mathematical reasoning and structure in the design of
communications systems. Not only does this assumption link to the type of fading model assumed to be in
place, but this distributional assumption is vital for the mathematical derivation of performance measures of

communications systems. To quote Bury (1999):

Engineers face numerous uncertainties in the design and development of products and processes.
To deal with the uncertainties inherent in measured information, they make use of a variety of

statistical techniques.

These performance measures are derived via functions of X; such as S = X#X € C5*”, the complex Wishart
distribution, or their multivariate counterparts, such as the joint diagonal distribution of the elements of S
which is multivariate gamma distributed. However, it is crucial to note that this assumption of complex normal
is an approximation and the restriction of the complex normal distribution is unnecessary - it is not always a
large number of interfering signals. A more general assumption than normal may not be that far from reality
(see also Ollila et. al. (2011)).

The question thus arises of how to possibly alleviate this restriction of normality, and then, what other un-
derlying distribution would be a reasonable contender for the well known normal model? In mathematical
statistics, the ¢ distribution has since its inception been known to approximate the normal distribution within

reason. The t distribution, in principle, has particular relevance within multivariate statistical methods- and

© University of Pretoria
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1. INTRODUCTION
1.3. Statistical origins

other applications, even though results pertaining to its use is not as widely derived or available as the nor-
mal counterpart. Kotz and Nadarajah (2004) and Ahsanullah et. al. (2014) discusses the importance of the ¢
distribution as realistic alternative to that of the normal, due to its retention of attractive properties such as

symmetry but with tail behaviour suitable for modeling real-world data with improved precision.

Table 1.1 contrasts the percentiles of the standard normal distribution with that of the ¢ distribution for varying

degrees of freedom.

CDF t5 th t15 t30 N (07 1)

0.90 3.3649 2.7638 2.6025 2.4570 2.3263
0.95 2.0150 1.8125 1.7531 1.6970 1.6449
0.99 1.4759 1.3722 1.3406 1.3100 1.2816

Table 1.1 Percentiles of N (0,1) and ¢ distribution for varying degrees of freedom

Both the normal- and t distribution are members of a broader class of distributions that will be the focus
of this thesis as underlying model: the elliptical class of distributions (Arashi et. al. (2012)). To this end,
generalisation of the underlying complex normal distribution to that of the complex elliptical distribution may
prove powerful, as it provides an opportunity to the practitioner to change the underlying distribution to that
of any member of the complex elliptical class. To achieve this generalisation and subsequent proposition of
new models, the weighted representation of the complex elliptical distribution as introduced by Chu (1973) and
studied by Provost and Cheong (2002) is utilised. However, specific focus will be on the complex ¢ distribu-
tion, as reasonable and meaningful candidate versus the well-studied complex normal distribution. Notably,
Choi et. al. (2007) introduced the complex matrix variate ¢ distribution into the communications systems en-
vironment to model severely fading multiple input, multiple output (MIMO) channels. Thus, by considering

the ¢ distribution as underlying distribution in communications systems is of interest.

By this development, the generalisation of the known- and published complex normal results to the complex
elliptical distribution contributes to the discipline of statistical distribution theory, whilst proposing new results
under a complex ¢ distribution assists the development and stimulates further research within the communica-

tions systems domain.

1.3 Statistical origins

In this section, the main statistical tools- and distributions are described which act as fundamental building
blocks of this thesis. In addition, a brief review on select published literature within statistical distribution

theory and communications systems is given to provide a holistic overview of concepts in this thesis.

1.3.1 The elliptical class

Gupta et. al. (2013) describes the elliptical distributions as a suitable alternative to the usual normal model;
especially in the context of multivariate statistical analysis. The matrix variate component of the elliptical
distributions is particularly useful: to still have results within the matrix variate domain pertaining to studying
the sample covariance matrix; describing repeated measurements on multivariate variables, whilst having the

option to depart from the normal model’s comparatively stringent assumptions of tail behaviour.

© University of Pretoria
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1. INTRODUCTION
1.3. Statistical origins

Krishnaiah and Lin (1986) studied the complex elliptical class of distributions, with particular mention of the
normal- and ¢ distributions as members. Some important properties are studied; such as the characteristic func-
tion and the stochastic representation of a complex elliptical random variable. Sutradhar and Ali (1989) consid-
ered the real matrix variate elliptical distribution as a generalisation of its normal counterpart, together with the

t distribution as an important subclass. A useful reference and bibliographic overview of elliptical distributions’
early development and research can be found in Chmielewski (1981). Diaz-Garcia and Gutierrez-Jaimez (2011)
focussed on compound and scale mixtures from an elliptical viewpoint with particular focus on vector- and
spherical distributions of hypergeometric type. Furthermore, Diaz-Garcia et. al. (2002),

Diaz-Garcia and Leiva-Sanchez (2005), Diaz-Garcia and Gutierrez Jaimez (2006), and Caro-Lopera et. al. (2010)
contributed to the theory of matrix variate elliptical models, although the computational use many of their

proposed models remain limited.

Chu (1973) provided a representation of an elliptical probability density function (pdf) as an integral series
of normal pdfs. What is especially useful of this representation is that the elliptical pdf can be viewed as a
weighted representation with a scale change in variance of the normal pdf. Provost and Cheong (2002) studied
the same but in particular for the complex matrix variate case with specific focus on Hermitian quadratic forms.
The advantage of this representation of a distribution with its origin in the elliptical class, is the convenience
for the practitioner to change the underlying distribution to any member of the elliptical class via a weight
function, denoted by W (t).

This thesis focus on the complex matrix variate elliptical class, represented as a scale mixture of complex matrix
variate normal pdfs (analogous to Chu (1973), and similarly to Provost and Cheong (2002)). Specific attention
is given to the complex matrix variate normal distribution, and the complex matrix variate t distribution. To
assist with the description of the complex matrix variate elliptical class, the complex matrix variate normal

distribution and the complex matrix variate ¢ distribution is presented first.

Firstly, X € C}*" follows the complex matrix variate normal distribution, denoted by X ~ CN,,x, (M, ® ® X)
with matrix parameters M € C{*?, & € C5*", & € C5*?, if it has the following pdf (see James (1964)):

1

fX) = 7 dot (B det (T)” etr [ (27 HX -M)P="HX - M))] (1.1)

with mean F (X) = M and covariance cov (X) = PR3.

Secondly, X € C}*? follows the complex matrix variate ¢ distribution, denoted by X ~ Ctnxp(M, ® @ X, v),
with matrix parameters M € C1”?, & € C3*", X € C5*? and degrees of freedom v > 0, if it has the following
pdf (see Arashi et. al. (2012)):

v"PCT (np + v)

f(X) = 1+1t (X -MHEZ (X - M) o 1.2
(X) = 7Cl, (v) { v r ( ( )} (1.2)

where CT')(v) denotes the complex p-dimensional multivariate gamma function (see Result D.47).

Finally, X € C7*? follows the complex matrix variate elliptical distribution (whose distribution is absolutely
continuous), denoted by X ~ CE,,«,(M, ® ® ¥, h), with matrix parameters M € C1*?, & € C}*", ¥ € C5*?,
if it has the following pdf (see Arashi et. al. (2012)):

1
~ det (@) det (T)

f(X) Zh[—tr (@ (X -M)TEHX - M))] (1.3)

where h (+) is the corresponding generator function.

© University of Pretoria
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1. INTRODUCTION
1.3. Statistical origins

The following lemma is due to Provost and Cheong (2002) (resulting from Chu (1973)), and forms the corner-

stone of distributional representation of the complex matrix variate elliptical distribution in this thesis.

Lemma 1.3.1 If X ~ CE,x,(M, ® ® X, h) with pdf f(X) (see (1.8)), then there exists a scalar weight function
W(-) on R" such that:
f(X) = /fCNnXp(Mé@t—lE)(X“)W (t)dt (1.4)
R+

where

1

fCNnxp(M,*I>®t’12)(X|t) = 77 dot (‘I’)p dot (t—lE)" etr [— (t(I)_l(X — M)Hz—l(x — M))}

is the pdf of X|t ~ CNyxp(M, ®@t™13) (see (1.1)), and the weight function W(-) is given by:
W(t) =rx"Pt L b [—tr (@TH(X =M= 1 (X -M))]}
where L is the Laplace transform operator.
Proof. Let s = tr (@~ 1(X — M)#X~!(X — M)). Using (1.3) we have

F(X) = det (®) P det ()" h[—s]
= det (®) P det ()" L [W (t) 7 "Pt"P]
= det (®) " det (X)™" / TP exp (—ts) W (t) dt
R+
_ / 7 det (@) 7 det (115) " exp (—ts) W (1) d

R+

and the result follows. ™

Remark 1.1 Under the assumptions of Lemma 1.3.1, using Fubbini’s Theorem (see Arashi et. al. (2012)), it
follows that:

1= / f(X)dX :R[W(t) yl JeN, a5 (X[t)dX | dt :R[W(t)dt.

nXxp
(Cl

Thus for a non-negative weight function W (-), the function W (-) is a pdf of a non-negative random variable.
Therefore Lemma 1.3.1 can only be interpreted as a representation of a scale mizture of complexr matriz vari-
ate normal distributions. However, W (-) is not always positive and can be negative on some domains (see
Provost and Cheong (2002) for some examples). The only limitation of Lemma 1.5.1 is that it defines those
complex matriz variate elliptical distributions whose inverse Laplace transform exist. There are some mild suf-
ficient conditions that ensure the inverse Laplace transform exists for most of the well-known complex matriz
variate elliptical distributions (see Chu (1973)).

Remark 1.2 Complexr matriz variate normal distribution (Arashi et. al. (2012))
If X ~ CNpxp(M, ® ® ) with pdf (1.1), the weight function W(-) in Lemma 1.3.1 is given by:

W (t) =6 (t—1) (1.5)
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where 6(-) is the dirac delta or impulse function having the property [ f(x)é(x)dz = f(0), for every Borel-
R+
measurable function f(-).

Remark 1.3 Complex matriz variate t distribution (Arashi et. al. (2012))
If X ~ Clyxp(M, ® @ X, v) with pdf (1.2), the weight function W(-) in Lemma 1.3.1 is given by:

(V)

W(t) = (3) 3 Lexp (ﬂf%) (1.6)

(3)

where v > 0 denotes the degrees of freedom and T (-) denotes the gamma function (see Result C.5).

—

For some select results, the univariate real elliptical distribution is also of interest. The result here is analogous

to the main result from Chu (1973). If X follows an elliptical distribution with mean m, variance o and with

o= (-2)

then there exists a scalar weight function W(-) on R* such that:

_ I (¢~ m)’
f@) = Zmexp <—W> W(t)dt

generator function h, and has pdf:

I
—
~
)
Nt
=
=
IS
~

(1.7)

where fx(m,o2¢-1) (2[t) is the pdf of a normal distribution with mean m and variance o?t~1. In this case, the
distribution of X is denoted by E(m, o2, h).

1.3.2 Bivariate- and matrix variate distributions

In statistics, particularly multivariate analysis, the majority of results rely on the assumption of underlying
normality. Some of these examples includes the derivation of the Wishart distribution which plays a vital role
in inference regarding the sample covariance matrix in multivariate normal settings (Gupta and Nagar (2000));
the study of the behaviour of the joint eigenvalues of such Wishart distributed matrix random variables
(James (1964)); repeated measurements on multivariate variables (Gupta and Nagar (2000) and references
therein); amongst others. A brief review on literature that is needed as background for this study within

statistical distribution theory and communications systems is now discussed.

Bivariate distributions have been extensively explored in the literature (see for example,

Balakrishnan and Lai (2009), Chen et. al. (2014), and Mahdavi et. al. (2017)). Within the context of commu-
nications systems, bivariate distributions have received significant attention (see for example, Nakagami (1960),
Reig et. al. (2002), Pibongungon (2005), Mendes and Yacoub (2007), de Souza and Yacoub (2008),

de Souza et. al. (2012), Lopez-Martinez et. al. (2013), Reig et. al. (2014), Ermelova and Tirkkonen (2014), and
Villavicencio et. al. (2016)). In particular, Nakagami (1960) is considered a benchmark paper within the com-
munications systems discipline as it provided a platform for a multitude of research regarding fading- and
shadowing distributions emanating from it. The bivariate Nakagami distribution is particularly useful as fading
distribution in a wireless environment (Tan and Beaulieu (1997)). Importantly, the bivariate Nakagami distrib-
ution is related to the bivariate gamma distribution - this is illustrated later on in this chapter. Bivariate gamma
distributions have also been of special interest due to their pliable- and computable mathematical nature, ex-

hibiting satisfactory fits to measured data subjected to multipath/shadowing fading (Pibongungon (2005)). The
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bivariate noncentral gamma distribution has also been investigated, see for example Knusel and Bablok (1996),
Chen (2005), and de Oliveira and Ferreira (2013).

In the past few decades, various monographs have been published which aims to report on the vast amount
of literature available in the 20" and 21°¢ century on matrix variate distributions. In particular, published
works by Gupta and Nagar (2000) and Gupta et. al. (2013) provide a comprehensive survey of literature and
results useful within the matrix variate statistical domain. Gupta and Nagar (2000) covers, amongst oth-
ers, matrix variate normal distribution and development from a real perspective; and Gupta et. al. (2013)
approaches the elliptically contoured matrix variate distribution. However, groundbreaking work in multi-
variate analysis, and subsequently matrix variate distribution theory has been undertaken by pioneers in-
cluding, but not limited to: Constantine (1963), James (1964), Hayakawa (1969), Khatri (1969), Hsu (1981),
Muirhead (1982), Gross and Richards (1989), Gupta and Varga (1995), Anderson (2003), Ratnarajah (2005),
Koev and Edelman (2006), and Dubbs and Edelman (2014). Most of this body of work focuses on the cen-
tral real or complex Wishart distribution and studies properties thereof. The noncentral Wishart distribu-
tion is studied by James (1964), Jayaweera and Poor (2003), McKay and Collings (2005), McKay (2006), and
Ordonez et. al. (2009), amongst others.

Much of this literature also focuses on the distribution of the eigenvalues of the Wishart distributed random
variables under consideration; in some cases also the distributions of the smallest- and largest eigenvalues. The
stochastic behaviour of the eigenvalues from a random matrix almost surely represents the stochastic nature
of the entire matrix, based on a relatively smaller number of random variables as compared to the ensemble
of a large number of the random variables. James (1964) provided the genesis of the study of eigenvalues
from Wishart distributions for both real- and complex cases; the proposed methodology has been widely used
and applied in multivariate statistical theory, see for example Muirhead (1982). In a communications systems
context, Ordonez et. al. (2009) states that the distributions of the eigenvalues of the adopted channel model is
necessary in order to derive and evaluate expressions for performance measures. Several papers have investigated
the distribution of the joint eigenvalues of Wishart matrices, including Ratnarajah and Vaillancourt (2003),
Ratnarajah (2005), Ratnarajah and Vaillancourt (2005), Jin et. al. (2006), Rui et. al. (2007), and

Zhou et. al. (2015).

Of further interest, are the distributions of quadratic forms of real- and complex matrix variates. James (1964),
Gupta and Varga (1995), Ratnarajah (2005), and McKay and Collings (2005) have been productive in the re-
search of such quadratic forms, with Al-Naffouri et. al. (2016) having a relatively recent refreshing contribution
on the topic. Al-Naffouri et. al. (2016) discussed the importance to determine the distributions of quantities
relating to normal random variables, particularly that of the quadratic form. The quadratic form pertaining
to normal random variables is indispensable in many applications of multivariate statistical methods, com-
munications systems, and signal processing. Therefore, the study of quadratic forms originating from the
complex elliptical class is vital for the advancement of not only statistical distribution theory, but also to that
of other fields, such as communications systems. A challenge within distributions of quadratic forms remains
the Hayakawa polynomial component when the underlying distribution of the quadratic form is noncentral,

which to this day eludes convenient computation and tractable analytic solutions.

1.4 Communications systems

In the following section, a brief overview of the MIMO model specification is given relevant to this thesis.
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1.4.1 Rician- and Rayleigh type fading

In this thesis, particular interest lies in Rician- and Rayleigh fading models. These models are inherently statisti-
cal distributions in nature, where the behaviour of signals and their degradation can be described by the Rician-
and Rayleigh distributions respectively - in a communications system setting, this behaviour is called fading.
By substituting the underlying normal assumption to that of elliptical implies that both Rician- and Rayleigh
distributions have to be reconsidered from the elliptical viewpoint as well. Rician fading is of interest when there
is a direct line-of-sight (LOS) component between transmitters and receivers (see Figure 1.1); mathematically
this translates to assuming a nonzero mean for the underlying process; with Rayleigh fading corresponding to
a zero mean for the underlying process (see Kang and Alouini (2006)a and Kang and Alouini (2006)b). Figure
1.1 visualises typical signal paths between transmitters and receivers. The assumed type of fading is dependent

on the expected path of a signal.

Transmitter Receiver

Figure 1.1 MIMO antenna system

The following lemma states the Rician distribution, and is due to Miller (1974). The subsequent results defines
these fading distributions with their origin in the complex elliptical class, and is called Rician- and Rayleigh

type fading respectively.

Lemma 1.4.1 Consider R = VX2 +Y?2 where X, Y are independent normally distributed random variables

with mean m1 and my respectively and common covariance t~ 2. The pdf of R is given by:

T r? + 52 TS
Frlt) = Segr =@ (W) b () (18)

where 7 > 0, s =m? +m3, 02 > 0, and Iy (-) denotes the modified Bessel function of the first kind (see Result
C.17). This distribution is called a Rician distribution, or just Rician fading with pdf (1.8).

Corollary 1.1 Consider R =+ X? +Y?2 where X,Y are independent elliptically distributed random variables

with mean m1 and my respectively, common covariance o2, and with generator function h with pdf (1.7). The
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pdf of R is given by:

2 2
10 = [ e (~gars ) 1o (o) Wi (1.9

where T > 0, 2 =m?+m3, 02 > 0, and f(r|t) denotes the Rician distribution with pdf (1.8). This distribution
is called a Rician type distribution, or just Rician type fading with pdf (1.9).

Remark 1.4 When my = mo =0, (1.9) simplifies to:

2 0
fr)y = / # exp <— 202751) Iy (;;;1) W(t)dt

R+

r r?

R+

where r > 0. This distribution is called a Rayleigh type distribution, or just Rayleigh type fading with pdf (1.10).

Remark 1.5 By choosing W (t) as the dirac delta function (1.5), (1.9) simplifies to:

r r? 4 52 rs
R+
Letx =t—1, thent=x+ 1 and dx = dt:
2 2
/%exp SN LS [y (L R, Y
A a2 (x+1) 202 (z+1) o2 (x+1)
r r? 4 52 rs

forr > 0. This distribution is known as the Rician distribution (see Shankar (2012), p. 201).

fr)

Remark 1.6 By choosing W (t) as the dirac delta function (1.5), (1.10) simplifies to:

2
fr) = / #QXP (—#) 5 (t—1)dt.

R+
Letx =t—1, thent =x + 1 and dx = dt:

r

2
r) = ———exp|———— | (x)dx
fr) /02(x+1)‘1 p( 202(x+1)_1> (@)
R+
T r?
forr > 0. This distribution is known as the Rayleigh distribution (see Shankar (2012), p. 198).

1.4.2 Model specification

If a MIMO system is designed with n; number of transmitters and n,, number of receivers, the MIMO channel

is characterised mathematically by an n, x n; channel matrix, H. The (i, j)th entry of H, denotes by {h}, ;

© University of Pretoria



4

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

1. INTRODUCTION

1.4. Communications systems

describes the path between the j* transmitter and the i*” receiver. When H operates over some fading channel,
H is assumed to be a random matrix depending on a variety of factors describing these signal paths. H is
thus distributed according to some probability distribution, most often assumed to be complex matrix variate
normal distributed (Ordonez et. al. (2009)). The following table contrasts the usual statistical notation of
matrix dimensions with that of a random matrix H with the notation common in the communications system

domain.

L. . Communications systems .
Statistical notation . Interpretation
notation
n T, number of receivers
P Ny number of transmitters

Table 1.2 Notation of communications system, particular to MIMO

A communications system can be characterised by the following relation:
y=Hx+v (1.13)

where y,v € C/"*' x € C!**! and H € C}"*"™. In this case, x denotes the transmitted vector of signals, y
denotes the received vector of signals, H denotes the channel matrix, and v denotes a noise component vector.

In particular, the complex vector signal of y; € y is the complex j'" output signal given by:
Nt
Y; = Z hmi’z + v (114)
i=1

where {h} ., €H describes the complex channel coefficient between input ¢ and output j, x; € x is the complex
it" input signal, and v; € v is a complex noise component corresponding to the complex 4t output signal. The
following figures visualise (1.13) and (1.14):

-% B hH & %

multiple multiple propagation multiple multiple
antennas, n, inputs channel  outputs antennas, n,

vy = Hx + v
e I

receive matrix transmit noise
vector channel vector vector

Figure 1.2 MIMO communications system
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Usually, the n, x n; channel matrix H is assumed to follow complex matrix variate normal distribution, thus
H ~ CNy, xn, (M, I, ® %), and in certain scenarios with the assumption of M = 0. If the fading assumption is
challenged from Rician- or Rayleigh fading (see (1.11) and (1.12)) to a more general assumption, such as Rician-
or Rayleigh type fading (see (1.9) and (1.10)), this infers that the distribution of H has to be substituted with
that of H ~ CEy, xn, (M, I,,,®3.h) or H ~ CE,,, «»,(0,1, ®X%,h) respectively. Thus, the channel matrix H
and noise vector v are independently distributed according the complex matrix variate elliptical distributions,
respectively, in other words, H ~ CE,,, xn,(0,1,, ®%,h), and v ~ CE,, (0,021, ).

Remark 1.7 In practice, ¥ € C5**"* is often assumed to be ¥ =021, when the geographical- or physical spac-
ing of the transmit antennas is sufficiently far from each other to assume no correlation (and hence zero covari-
ance). This assumption is often referred to as "semi correlated” in the literature (Kang and Alouini (2006)a).
However, assuming nonzero covariance remains useful to study for correlated scenarios, especially when an-
tennas are not sufficiently spatially separated, or lack scattering (see Kang and Alowini (2006)a). Note that if
¥ =0°L,,€Cy ", then:

det (£)"" = det (0°1,,,)"" = g2 X", (1.15)

By considering the complex matrix variate elliptical representation as given in Lemma 1.3.1, some key results
pertaining to communications systems are derived under this complex matrix variate elliptical assumption for
H. In particular, the complex matrix variate normal distribution (see (1.5)) and the complex matrix variate ¢
distribution (see (1.6)) may then act as underlying distributions for H. Under this assumption, performance
measures relating to this complex matrix variate elliptical assumption for H can be evaluated between these
two candidate distributions. To this effect, key performance measures of communications systems are of interest

in this study, and are defined in the following section.

1.4.3 Elements of interest

In this section, some elements of interest relating to communications systems relevant in this thesis is described.

1.4.3.1 Construction of Weibullised gamma type (Nakagami type) distributions

The Nakagami distribution has many applications in wireless communications (see de Souza and Yacoub (2008)).
This distribution is derived from a gamma distribution: if U ~ Gamma (2,m) (see Result C.2), then W =
(%)% ~ Nakagami (). Note that, in mathematical statistics literature, a transformation such as (%)% can be
described as a Weibullised gamma distribution (see Malik (1967), McDonald and Xu (1995), Bekker et. al. (2000),
Gupta and Nadarajah (2004), Chen et. al. (2014)). Thus, the Nakagami distribution would be a special case
of such a Weibullised gamma distribution when 5 = 2. In this section, a systematic description of deriving such
a Weibullised gamma distribution with its foundation in the elliptical class is described and motivated. This
distribution is called a Weibullised gamma type distribution. From this Weibullised gamma type distribution,
a Nakagami type distribution follows as a special case. It is worthwhile to note that in the literature, the terms
power- and envelope distribution are used often. Within the context of this thesis, these would constitute the
gamma type models as power distributions, and the Weibullised gamma type models as envelope distributions
(see Simon and Alouini (2005), Shankar (2012)). The systematic construction of the Weibullised gamma type
distribution is described in Figure 1.3. The subsequent lemma is useful for gaining access to the exponential
distribution (and subsequently, gamma distribution) via the Rayleigh distribution (see (1.12)), from where the
construction of the Weibullised gamma type distribution follows when considering the Rayleigh type distribution

(see (1.10)).
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Under elliptical

X ~ Rayleigh X ~ Rayleigh type
Y ~ Exponential Y ~ Exponential type
U ~ Gamma U ~ Gamma type

ure ~ Noncentral gamma l l U ~ Noncentral gamma

W ~ Weibullised gamma W ~ Weibullised gamma type

Figure 1.3 Schematic diagram of the construction of Weibullised gamma type distributions

Note that the noncentral gamma type distribution is also of interest in this study, and is elaborated on in

Chapter 4, based on methodology proposed by Ferreira et. al. (2016).

Lemma 1.4.2 Suppose that X follows a Rayleigh distribution with pdf (1.12). The transformation Y = X°9

202

with j—f} = a\/g%y_% results in 'Y following an exponential distribution with parameter Q and pdf:

o) = f( Qi;’)dily

Il
2Dl
@]

o]

o]
/T\

2l
~

with y > 0, denoted Y ~ Exp (Q) where > 0.
By using Result C.22, consider the Laplace transform of Y
L(z) = E(exp(=2Y))

exp (—zy) f (y) dy

exp (—zy) é exp (—%) dy
o)

= . (1.16)
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This Laplace transform (1.16) acts as a useful thinking tool as part of this motivation to eventually arrive at a
Weibullised gamma type distribution. Consider now (1.10). As in Lemma 1.4.2; by applying the transformation

Y = )2( ¢ (1.10) leaves:

o

) = / (#exp (%y»wa)dt

/f (ylt) W (¢) dt (1.17)
0

where f (y[t) is the pdf of an Exp (Q¢t™!) distribution. This distribution with pdf (1.17) is called an exponential
type distribution and is denoted by Exp (Q, W (-)).

The following theorems and subsequent results are useful in deriving the point of departure for Weibullised

gamma type distributions.

Theorem 1.1 Suppose Y1,Ya,...,Y,, are i.i.d. random wvariables which is distributed as Exp (Qtil). Then
U=Y".Y; is distributed as Gamma (%=, m).
Proof. Consider from (1.16) the Laplace transform of U:

L(z) = E(exp(=zU))

ofo(2)

= FE(exp(— Yiz+ ... +Yy2)))

= FE(exp(-Y12))..E (exp (=Y;,2))
= {1£v.()

- 1

(1+Qt—12)"

which is the Laplace transform of a gamma random variable with parameters Qt=1 and m (see Result C.2). m

Corollary 1.2 Suppose Y1,Ys, ..., Y, are i.i.d. random variables which is distributed as Exp (Q,W (-)) with
pdf (1.17). Then U = Y1 Y; is distributed as a gamma type distribution, denoted as Gamma (2, m, W (-)),

with Laplace transform:

7m

L(2) W (¢) dt

I
0\8
_

+
=

|

/E@WW@Mt (1.18)

Corollary 1.3 Suppose U is distributed as gamma type distribution with Laplace transform (1.18). Then the
pdf of U is given by:

(W}”rm)“m_l exp (— Qtl_lu» W (t) dt

Fuly W (t)dt (1.19)

flu) =

0\8 0\8
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where u > 0, m, 2 > 0.

Remark 1.8 By choosing W (t) as the dirac delta function (1.5), (1.19) simplifies to:

m/(m () Py

Letx=t—1, thent =2+ 1 and dx = dt:

i L m=1 oy SN U z)dx
fw = / (Q(m+l)71>77l1"(m)u ep( Qa+1)7" > P

0
_ 1 m—1 _l
= onr (m)u exp ( Qu) (1.20)

foru > 0. Thus (1.20) is identified as the well known gamma distribution with parameters © and m (see Result
C.2).

1
Theorem 1.2 Suppose U is distributed as gamma type distribution with pdf (1.19). Let W = (%) ?. Then the
pdf of W is given by:

f(w) = %wﬁm_l /tm exp (—Q;n_lw’6> W (t)dt (1.21)
0

where w > 0 and m,Q,8 > 0. This distribution is called a Weibullised gamma type distribution with the

Nakagami type distribution as a special case when 3 = 2.
1
Proof. Let W = (%) 5 then U = mW? with 3—3, = BmwP~1. Then from (1.19) it follows that:

fwlt)y = f (mw5|t) Bmwﬁf1

1 m— 1 _
= gy ()" e (g s

m™ m
= —B w?™ L exp ( w5>

(Qt=1)"T (m) =
and thus:
fw = [rwnwed
0
7 fm™ wP™ exp (f ”3) W(t)dt
(Qt=1)™T (m) Q-1

0

which leaves the final result. [

Corollary 1.4 By choosing W (t) as the dirac delta function (1.5), (1.21) simplifies to:

o0
ﬁm"l

fw) = mwﬁm—l /tm exp (—%wﬁ) §(t—1)dt.
0
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Letx =t—1, thent =2z + 1 and dz = dt:

m' r m B
fw) = %ﬁn)wﬁml/(m-‘rl)me)(p <— g (x—|—1)>(5(x)da:
0
6(%)7% Bm—1

where w > 0 and m, 2, B > 0. This resembles the generalised gamma distribution of Patil et. al. (1984), p. 69.

Corollary 1.5 By choosing W (t) as (1.6), using Result C.22, (1.21) simplifies to:

Iy m_ oy B e (vt
fw) = er(m)w /t exp (_Qtflw )F(%)t exp ) dt
0
_ () smm Bmlj g 4m—1 (v
= F(%)Q”T(m)w t exp< t( q +2)>dt
0
B s T(em)
L m Z4+m

F(Q)Q T'(m) (mTwB"_%)
@i wem

QmB (m, §) (Bwf + %)2+m

(3)° pm™ wm—1

B (Q—mﬁ)m pAm—1
= 2 el (1.22)
B(m, %) 2 m
72 (1 + é”ﬁuﬁ)
2

where w > 0, m,Q, 8,0 >0, and B (-,-) denotes the beta function (see Result C.8). This distribution resembles
the generalised beta-prime distribution of Patil et. al. (1984), p. 26.

Remark 1.9 Consider (1.21) when = 2:

0= g [ (g i i
0

where w > 0 and m, Q). This distribution is called a Nakagami type distribution.

Remark 1.10 Consider the distributions with pdfs (1.19), (1.20), (1.21), (1.22), and (1.23). The parameter
m in these distributions is called the fading parameter, and within a statistical context acts as a shape parameter
within these distributions. Within the communications systems domain, this m determines the severity of fading

of the transmitted signal between transmitter and receiver (see Matthaiou and Laurenson (2007)).

1.4.3.2 Performance measures

By design, communications systems are constantly exposed to different external factors (for example, geograph-
ical area, architectural infrastructure) which may affect the optimal performance of such a system. Being able
to evaluate such a system for its performance is thus of interest, to ensure the system maintains an acceptable
level of communication between transmitters and receivers. In this thesis, three performance measures are of

interest, which are briefly described below.
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Capacity Teletar (1999) proposed channel capacity as a useful tool to measure the performance of MIMO
communications systems, and motivated the study of capacity in MIMO settings for many researchers thereafter
(see for example, Ratnarajah and Vaillancourt (2003), Ratnarajah (2005), Ratnarajah and Vaillancourt (2005),
McKay and Collings (2005)). The capacity of a system is directly related to the distribution of the channel

matrix H, and can be represented and analysed in terms of the eigenvalues of H via its spectral decomposition.
Formally, the ergodic capacity C of the random MIMO channel H is given by (see Teletar (1999)):

C = By <1og det (Int + ﬁHHH» (1.24)
N

where p denotes the signal-to-noise ratio (SNR). The SNR is the quantity relating to the channel fading
distribution used to describe the ratio of signal to noise evident in signal transmission between transmitters
and receivers. By the singular value decomposition, construct H = UAZVH U €U (nt), V €U (n,) (see Result
D.39), and where A =diag (A1, ..., \n,) and Ay > Ay > ... > \,, > 0 denotes the ordered eigenvalues of H H:

p 1 H H 1 H
C = Eg(logdet Int+—(UA2V ) UA3V
Ty
— . p
= Fu (logH <1+—)\1))
i=1 g
= EH<ilog<1+ ))
i=1 t
_ ¢ p
= > En (log(l—l——)\z))
i=1 t

= nFEy <log (1 + n%)q)) .

This latter expectation, and hence the capacity C, depends only on the distribution of one of the eigenvalues,

p)\i

n
n

and therefore leaves C' to be relatively simple to evaluate regardless of the assumed underlying model; given
tractable marginal eigenvalue pdfs. Note that, in (1.24) if log, is used then the measurement unit for capacity
is termed "nats" (Ratnarajah and Vaillancourt (2003)).

Outage probability The outage probability of a fading channel is defined by Simon and Alouini (2005) as:

Pout (21) = F (aun) = / f (@) da (1.25)

where x4, is termed the output threshold, and f () is the pdf of X, the SNR of the channel fading distribution.
In statistical terms, (1.25) acts as the cdf of the SNR of the channel fading distribution. Outage probability
relates to the probability of the SNR of the received signal of a fading channel performing below an acceptable,
specified threshold xg,. If the SNR of the signal falls below this threshold, the communications system does
not operate, which lends to the name of this performance measure - the probability of an outage. Note that xy,
is referred to as the threshold SNR, and in literature X denotes either the instantaneous SNR X = RJZV;ES, or
normalised power, X = R? where R denotes the channel envelope (see Simon and Alouini (2005)). Here, E,

denotes the energy per symbol and N, denotes the noise power.

For a fading channel subject to a bivariate distribution, say with variable (X7, X5), the outage probability in
(1.25) can be evaluated as:
F(zy,) = P (max(X1, X2) < )
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since, by MIMO design, the receiving antenna with the highest SNR is evaluated (Xu et. al. (2009),
Ermelova and Tirkkonen (2014)). Thus, the cdf of max(X7, X2) is of interest.

Equal gain combiner diversity Diversity combining is a well-known technique used to improve received
signal strength at receiver channels (Karagiannidis (2004)). A popular performance measure following this
technique is called equal gain combiner diversity (EGC diversity). In a multivariate fading channel with n,

receivers operating under a multivariate distribution with pdf f (r1,r2,...,r,.), the EGC diversity is given by:
E
Yout = nl\;o (Rl + RQ + ...+ RnT)Q

where F; denotes the energy per symbol of the fading channel, N, denotes the noise component of the channel,
and R; represents the random variables with joint pdf f(rq,r2,...,7,.). Note that v,,, denotes the EGC
diversity output SNR. In this thesis, the focus is on fading channels operating under a bivariate gamma type

distribution. Thus n, = 2, and:

E
Yout = W(Rl + R2)2 (126)

is of interest. Particularly, the d** moment of the EGC diversity output SNR receives special attention, and is

E ((2?\7 (Ru + 32)2>d>

given by:

Hq

The first moment, 1, represents an important performance measure of communications systems subject to (in
this thesis) bivariate gamma type distributions. This u; is usually easy to evaluate and serves as a suitable
indicator of the communications system’s reliability, and is derived and investigated for the bivariate gamma

type I distribution later in this thesis.

1.5 Objective and outline of study

Inspired by communications systems, the focus of this thesis is to advance the statistical distribution theory
literature with results emanating from the complex elliptical class, using the representation as in (1.4). In

particular, this thesis aims to:

e Propose the use of the complex elliptical class with motivation from practical problems emanating from

communications systems;

e Systematically derive distributions of complex Wishart type and its accompanied joint eigenvalues with

its origins in the complex elliptical class;

e Systematically derive bivariate gamma type distributions and subsequently bivariate Weibullised gamma
type distributions originating from the complex elliptical class, with bivariate noncentral contributions as

well; and

e Explore the candidacy of the ¢ distribution within the complex elliptical context as an assumed underlying

model within communications systems.
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This thesis is constructed in the following way.

In Chapter 2, the distribution of the quadratic form, S = X# AX where A € C3*™, when X is assumed to be
complex matrix variate elliptically distributed, is derived and studied, particular for the case when E (X) = 0.
Cases when X is nonsingular and singular are investigated. The distributions of the eigenvalues of S are also
studied. These results are applied in the communication systems domain for the performance measure of channel

capacity and comparatively investigated for different members of the complex elliptical class.

In Chapter 3, the complex matrix variate inverse Wishart type distribution, emanating from Chapter 2, is
proposed. This contribution is used as the platform to derive a bivariate gamma type I distribution from
the inverse of the diagonal elements of the complex matrix variate inverse Wishart type distribution. Key
characteristics of the new bivariate gamma type I distribution are studied. Subsequently, a bivariate Weibullised
gamma type I distribution emanating from the proposed bivariate gamma type I distribution is derived. The
obtained results are applied in the communications systems domain for the outage probability and the EGC
diversity of a MIMO communications system and investigated. The validity and accuracy of the derived

analytical results are illustrated with a simulation study.

Chapter 4 continues on a bivariate gamma type distribution path; however, the genesis of this bivariate gamma
type distribution is different from that of Chapter 3. The Rayleigh type distribution (see (1.10)) is used as
a foundation from which a bivariate gamma type II distribution is proposed. The systematic construction
of this bivariate gamma type II distribution is motivated and described, and key characteristics are studied.
In particular, a bivariate noncentral gamma type II distribution is also proposed and derived. Subsequently,
a bivariate Weibullised gamma type II distribution emanating from the proposed bivariate gamma type II
distribution is derived and some of its characteristics are studied. The obtained results are applied in the
communications systems domain for the outage probability of a MIMO communications system and investigated.
Also, certain percentiles of the derived results are calculated to illustrate the computational and tractable nature

of these models.

In Chapter 5, the distribution of the Wishart form, S = XX, when X is assumed to be complex matrix
variate elliptically distributed, is derived and studied, particular for the case when E (X) = M. The pdf of the
joint eigenvalues of S are studied, and special cases highlighted. Valuable results pertaining to the assumed
behaviour of the noncentrality matrix parameter are given and studied. In particular, the assumption of the
noncentrality matrix parameter having rank 1 is of practical (and hence theoretical) interest. The distribution
of the minimum eigenvalue of S is investigated for some special cases. The validity and accuracy of the derived

analytical results are illustrated with a simulation study.

Chapter 6 contains conclusions relating to this thesis, as well as future directions of areas where research

emanating from this thesis may take place.

Finally, the Appendices at the end of this thesis form a collection of fundamental results relevant to this study.
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Chapter 2

Complex central Wishart type

distributions

Contents
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2.4 Summary of results and conclusion . . . . . . . ... o L L Lo e e e 47

2.1 Introduction

In this chapter the distribution of S = X AX ¢ CH*? is investigated. This is commonly known as the
quadratic form of X € C1"? (A € C5*™), and in this case, X is assumed to follow the complex matrix variate
elliptical distribution with pdf (1.3). Specifically, cases when X is nonsingular and singular is of interest. The
distributions of the eigenvalues of S are also derived. These results are applied in the communication systems
domain for the performance measure of channel capacity (see (1.24)) and investigated comparatively for the

underlying complex matrix variate normal- and ¢ distributions.

2.2 Pdfs of quadratic forms and joint eigenvalues

In this section, the pdfs of the nonsingular- and singular quadratic forms of complex matrix variate elliptical
random matrices are derived and certain special cases of them are highlighted. In addition, the joint pdfs of

the eigenvalues of these quadratic forms are also derived.

2.2.1 Nonsingular case (n > p)
2.2.1.1 Pdf of the quadratic form
The following theorem gives the pdf of the quadratic form of the nonsingular complex matrix variate elliptical

distribution.
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2. COMPLEX CENTRAL WISHART TYPE DISTRIBUTIONS
2.2. Pdfs of quadratic forms and joint eigenvalues

Theorem 2.1 Suppose that n > p and X ~ CE,»,(0,® @ X h), ® € C;*", A € C3*", and £ € CY*P. The
quadratic form S = XH AX € C5*? has the integral series complex Wishart type (ISCW) distribution with pdf:

det (S)" 7 G(S)

fs(8) = CT,(n) det (BA) det (X)"

(2.1)

where
G(S) = / " (CEP (B, —t='S) W(t)dt
R+
with B = A7%*I>’1A7%, OCF(EP) (+,-) is the hypergeometric function of two Hermitian matriz arguments (see
Result D.54), and CT',(-) denotes the complex multivariate gamma function (see Result D.47). This distribution
is denoted as S ~ISCW, (n, ®,%,G(-)).

Proof. From Lemma 1.3.1, consider a matrix variate Y ~ CE, (0, ® ® 3, h) (see (1.4)) with pdf:

fY) = /w—”p det (®) P det (t7'%) "etr (—t® YR TIYH) W(t)dt

R+

/ " det (@) P det () "7 "Petr (—t@'YETIYH) W(t)dt

R+

since Y[t ~ CNpxp (0,8 @t71%) (see (1.1)). Let Y = A"3X, with Jacobian J(Y = X) = det (A)™" (see
Result D.43). Then:

fX) = / PP det (A) P det (®) P det () " etr (—ttI)‘lA_%XE_lXHA_%) W(t)dt
R+
- / PP det (BA) P det ()" etr (—tA—%quA—%Xz—le) W(t)dt
R+
= 7" det (BA) P det (2)*”/t”1’etr (—tBXZ'XH) W(t)dt
R+
= 77" det (BA) P det (2) " / " oCFy (—tBXE ™ XM) Wi(t)dt (2:2)

R+

where B = A=2® 'A~3. Consider now S = XX = Y#AY. The latter integral in (2.2) is invariant under
a unitary transformation. Using Result D.52, Result D.61, Result D.41, and Result D.62:

£(S) = 7P det (BA) P det ()" / oo / oCFy (—BXS XM dXW(#)dt

R+ XHX=S

np
= 77" det (BA) P det (X) " / £ det (S)" " (CF" (B, —t2 71X X) 017: ( )W(t)dt
n
R+ b
det (S)" 7" » (») _
= " (CFyP (B, -t XHX) Wit
CT,(n) det (BA) dot (%) / 1" oCE” (B, ) Wit)dt
R+
leaving the final result. [

Some special cases of the pdf (2.1) are discussed next.

Remark 2.1 1. If A =1, and ® = 1, then S € C5*” has the complex Wishart type distribution with the
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2. COMPLEX CENTRAL WISHART TYPE DISTRIBUTIONS
2.2. Pdfs of quadratic forms and joint eigenvalues

following pdf:
det (S)"" 7 G(S)

18 = er myan = (23)

Since B=A"2® 'A"2 =1, and using Result D.54 and Result D.52, it follows that:

g = /t”p oCE (L, —t=718) W(t)dt
R+
—t%7!'S)

- /t”p ZZ k:'C T W(t)dt

Bt k=0 &

- [y e

k=0 kK

tz 1S) W(t)dt

= /t”ﬁ oCFy (—t=7'S) W(t)dt
R+
= /t”p etr (—tX7S) W(t)dt. (2.4)

R+

2. IfA=1,, ®=1,, and ¥ = 021, then by using (1.15) S € C5*? has the following pdf:

det (S)" "7 G(S)

18 ==ar, o

and

_
=z
I

/t"p etr (¢ (o°L,) " S) W(t)dt

= /t"p etr (—to™?S) W(t)dt.

R+

Corollary 2.1 By choosing W(t) as the dirac delta function (1.5), see that (2.4) simplifies to:
G(S) =etr (-x7'S)

which leaves the pdf of the complex Wishart distribution (see James (1964)):

det (S)" Petr (—%7'S)

Frormar(8) = CT,(n) det (%)"

(2.5)

Corollary 2.2 By choosing W(t) as the t distribution weight (1.6) and using Result C.22, see that (2.4) in
(2.3) simplifies to:

e

" etr (—tX7'S) Ei() 2 exp (—t—) dt

= s [t o (a (j s o
(

e (np + g) (% +ir (2718

gs) =

T

v
2

~—

e

!

SN—
e N ,

SIS

))_(M)

—
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2. COMPLEX CENTRAL WISHART TYPE DISTRIBUTIONS
2.2. Pdfs of quadratic forms and joint eigenvalues

where T (-) denotes the gamma function (see Result C.5), which leaves the pdf of the complex Wishart distribution

emanating from the complex matriz variate t distribution:

%)% det (S)" T (np+ %) )
5) CT,(n) det (2)" (% +tr (E‘ls))_(nH%)

(2.6)

2.2.1.2 Pdf of the joint eigenvalues

Next, an expression for the pdf of the joint eigenvalues, A, of S = X AX is given where S € CH*" has pdf
(2.1).

Theorem 2.2 Suppose that n > p and S ~ISCW, (n,® ® X,G(-)), and let Ay > Ag > ... > X\, > 0 represent
the ordered eigenvalues of S € C5*P. The joint distribution of the eigenvalues of S, A = diag (A1, Az, ..., \p),

has pdf:

n— P 2
7P(P=1) det (A)" 7P <H e —N\)

k<l > np
JA) = o e, () det (@AY det (B)" / G (M) W(t)dt (2.7)

R+
oD ) (11 “’f”)> S C.(4)
T CT,(n)CT,(p) det (BA)” det ( ZZ k'C C.(1,)

X /t"P C,, (—tZ5 ) W(t)dt

R+

where G (A) = [ oCEP (B, ftzflEAEH> dE, and B = A~3® 1A%
EeU(p)

Proof. Using Result D.59 and substituting f (-) with pdf (2.1):

p(p=1) (ﬁ (A — Al)Q) / det (EAEH)n_p G(EAE™)

k<l
W= CTu(p) oy, Cho(m) det (BAY det (2)7 ®
aP(P—1) det (A" (kﬁ Ak — )\l)2)

l
- CT,(n)CTp(p) det (PA)P det (X)" / G(EAE™)dE
EeU(p)

1 2 2
7P(P=1) det (A) H (/\k — )\l) )
k<

— np (p) _ —1 H
I (S AT I / t / oCF (B, tS'EAE )dEW(t)dt
R+ EcU(p)

n— P 2
P(P=1) det (A)" P H(/\k—Al)>
k<

l
= CT,(n)CT,(p) det (BA)” det (B)" G(A)

where
G(A) = / £ / oCF” (B, 15 'EAE) dEW(t)dt. (2.8)

R+  E€U(p)
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2.2. Pdfs of quadratic forms and joint eigenvalues

By using Result D.54 and Result D.60, see that (2.8) can be written as:

(p) —1 H © Cli (B) CI{ (_tzilEAEH)
/ oCF (B, —t="'EAE )dE 3 e JE
EcU(p) EcU(p) "=

3 Cr (B) -1 H

= N (T ' | —tXT"EAE E
PI)Bvres @) O (-~ )d
=0 E€U(p)

_ iz Cx(B) Gy (—t=7") Cu(A)
== kO (In) C, (1)

which leaves the final result. -

Some special cases of the pdf in (2.7) are discussed next.

Remark 2.2 If A =1, and ® = 1,,, then the pdf (2.7) of the joint eigenvalues, A, of the complex Wishart
type distribution, simplifies to

n— P 2
aPP=1 det (A)" 7P [ 1T Ok — N0)

_ k<l np (p) -1
f(A) = CT, ()T, (p) det (5 / " oCEY" (A, =t 1) W(t)dt. (2.9)

R+

Using Result D.54 and Result D.52, see that (2.8) simplifies to:

g (A)

P / oCFP (In,—tE_lEAEH> dEW(t)dt

Rt EcU(p)

© _ C.(I,)C, (-t="EAE?
_ / . / % k!gﬁ T )dEW(t)dt

R+  EeU(p) PO~
~ _ C, (—tzflEAEH)
= /tp / >N o dEW(t)dt
R+ EcU(p) F=0 *
_ / o / oCFy (ftZ*lEAEH) dEW(t)dt
R+ EcU(p)
_ / 1m0 oCEP) (A, — £ W(t)dt. (2.10)
R+
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2.2. Pdfs of quadratic forms and joint eigenvalues

However, it can be observed that (2.10) depends on X only through the eigenvalues of X. Consider the
eigenvalue decomposition of B as & = FYF where F € U (p), and Y =diag (ay, . .. p), a1 > ... >ap >0,
where a; (i =1,...,p) denotes the eigenvalues of the matriz 3. Let B = F'EcU (p). Using Result D.62 and
Result D.52, see that:

CFP (A, —t271) = / oCFP) (ftE*IEAEH) dE

EeU(p)

- / etr( {FY~ 1FHEAEH)d
EeU(p)

- / etr( r 1FHEAEHF) dE
EeU(p)

_ / ( 1EAEH) B
EeU(p)

_ / oCFP) (ftr*EAEH) Fio)
EeU(p)

= oCEP (A, —tY7Y). (2.11)

Substituting (2.11) into (2.9) leaves:

o (1) ()

CT, (n)CT(p) det ()"

f(A)

x / 17 oCFP (A, — 1) Wit)dt. (2.12)

R+

Using Result D.58 and Result D.57, (2.12) simplifies to:

P01 det (A)"‘p(n wm) v CTp(p) det (exp (~taiy)

f(A) = L tnp > W(t)dt
CI',(n)CT ', (p) det (X) g JTEERY 1T O = M) H (tax — tar)
k<l k<l
p
P(P=1) det (A)"~ ”( A —N) )
- ;El o . CT, (p) det (exp (—ta:\;))
_ e ¢ e e W(t)dt
o g oot T (=) [T (ak —a)
k<l k<l
p—1 — Vi
725 et ()P ( (O — Az))
_ bl =25 et (exp (—tai\;)) W(t)dL. (2.13)
CTp(n)det ()" 1T (ar —ar) g+
k<l
Remark 2.3 IfA=1,, ® =1,, and £ = 01, then by using (1.15), (2.7) simplifies to:
p
7P(P=1) det (A)" P <H (A — )\5)2)
fA) = = (2.14)

CT'p(n)CLy(p)o2ne
P
X /t"p exp <t02 Z)\Z> W(t)dt
. i=1
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2. COMPLEX CENTRAL WISHART TYPE DISTRIBUTIONS
2.2. Pdfs of quadratic forms and joint eigenvalues

From (2.9) using Result D.54, Result D.56, Result D.52, and Result D.62:

oCEP (A, —t27) = CFO(p)( —ta_2I)
—to~ I)

- ZZ k'C L)

k=0 ~

( ) C (Ip)
- EE:EE: klcr 1,
)

k=0 kK

S -“Cﬁ

k=0 kK

- et

k=0 kK
= etr (ft(FQA)

P
= exp (—t02 Z )\i>
i=1

which leaves the final result.

Corollary 2.3 By choosing W(t) as the dirac delta function (1.5), from (2.9) see that:
G(A) = oCF” (A, -7

which leaves the pdf of the joint eigenvalues of S € C5*P having the complex Wishart distribution (see James (1964)):

A2G=1) det (A)"P (ﬁ (O — )\1)2)

k<l

CTp(n)CTp(p) det (X)"

fnormal(A) = OCFO(p) (A, —E_l) . (215)

Corollary 2.4 By choosing W(t) as the t distribution weight (1.6) and using Result C.22 and Result D.56,
from (2.9) see that:

— n, (p) -1 (%)% | v
G(A) = /tPOCFO (A3 {2yt exp (13 ) di
R+
= Ei()%)/tnpﬂ exp (5 ) oCF (A, 157" dt

B k=0
2)E N~ O (“E ) C(A) [ s s
- E()a)kz_o; (k!cn()) R[t e () de
- e e SRS M (i ) (5)

Il
—
—
e
S~—
—~|
e
SN—
3
3

which leaves the pdf of the joint eigenvalues of the complex Wishart distribution emanating from the complex
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2. COMPLEX CENTRAL WISHART TYPE DISTRIBUTIONS
2.2. Pdfs of quadratic forms and joint eigenvalues

matriz variate t distribution:

7P(P=1) det (A)" 7P ﬁ M=) ) o 1
<kfl v v\ P Z Z CK (7192 ) CR (A)F ('ﬂp + E + k)
CT,(n)CT,(p) det ()" T (&) (%) (2)" kCy (1) 2

k=0 ~

fi(A) = (2.16)

where v > 0 is the degrees of freedom.

2.2.2 Singular case (n < p)
2.2.2.1 Pdf of the quadratic form

In this section the singular case of the quadratic form of the matrix variate elliptical distribution is considered,
this is when n < p. The pdf of the quadratic form of the complex singular matrix variate elliptical distribution is

derived and some special cases illustrated, and subsequently the corresponding joint eigenvalue pdf is considered.

Theorem 2.3 Suppose thatn < p and X ~ CE,,x,(0,® ® X, h), and let A € CT*". Let A = diag (A1, A2, ..., \p),
where A1 > Ay > ... > A, > 0 represent the ordered eigenvalues of S € C5*P. The quadratic form S = X AX
has the integral series singular complex Wishart type (ISSCW) distribution with pdf:

=P det (A)" P G(S)
~ CTy,(n) det (RA)P det (X)"

f(8) (2.17)

where
g(8) = / " oCE™ (B, —t£7'S) W(t)dt
R+

withB=A"2®"1A"% and OCFO(n) (+,-) is the complex hypergeometric function of two matriz arguments (see

Result D.55). This distribution is denoted as S ~ISSCW,, (p, ®,%,G(+)).

Proof. From Lemma 1.3.1, consider a singular complex matrix variate Y ~ CE,,»,(0, ® ® 3, h) with pdf:

f(Y) = /w*’w det (®) P det (') "etr (—t@ YR T'Y ) W(t)dt
R+

= /f”l’t”p det (@) " det (£) " etr (—t® ' YETY ) Wi(t)dt
R+

since Y[t ~ CNyxp (0,8 @t71%) (see (1.1)). Let Y = A ?X, with Jacobian J(Y = X) = det (A)™" (see
Result D.43). Using Result D.52:

£(X) / PP det (A) P det (®) 7 det (2) " etr (—@—IA—%XE—le A—%) W(t)dt

R+
- /t”pw*’w det (BA) P det ()" etr (—tA*%<I>*1A*%XE_1XH) W(t)dt
R+
= 7 " det (®A) P det (2)*”/t"1’etr (—tBXE ' XT) W(t)dt
R+
= 7 det (BA) P det (2) " / " CFy (—tBXE ™' XT) Wi(t)dt

R+
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2.2. Pdfs of quadratic forms and joint eigenvalues

where B = A~2® 'A~%. Consider a spectral decomposition by letting X = E;YE, where E; € CV,,,
Y €C5*?, and E € CV,, ,,, and see that

S=YHAY = XX = E,YEEYEY = E, Y?El’= E,AEY
where Y2 = A. Using Result D.42:
f(S) =n"""det (PA) Pdet (X) "2 " det (A)"fp/ / t"? oCFy (—tBXE_le) dXW(t)dt
R+ XHX=S
The latter integral in (2.2) is invariant under a unitary transformation. Using Result D.61 and Result D.62:

f(S) = 7w "det(PA) "det(X) "2 " det (A)"P
x / / / P o CFy (ftEBEHX2’1XH> AEdXW(t)dt

Rt XHX =8 feU(n)

= 77" det (@A) P det (£) " 27" det (A)" P / / £ oCFS™ (B, —t£ 7 X X) dXW(t)dt.

Rt XHX=S
Finally, by using Result D.37:
F(S) = mPdet(®A) P det(X) "2 " det (A)" P / " oCFy" (B, —t=7'S) / AEW(t)dt
R+ U(n)

2nqan

= 77" det (‘I’A)fp det (2)*" 27" det (A)"*p / P OCF(gn) (B7 _tz—ls) W(ﬁ)dtr()
nn
R+
7t det (A)" P )
= " oCFS™ (B, —tZ718) W(t)dt
CT,,(n) det (@A) det (X)" / oCEy" (B, ) W(t)

R+

which leaves the final result. [ |

Some special cases of the pdf (2.17) are discussed next.

Remark 2.4 1. If A=1, and ® =1, then S € C5*? has the complex singular Wishart type distribution

with the following pdf:

(P det (A)" P G(S)
f(8) = CT (n) det ()" (2.18)

and using Result D.55 and Result D.52:

G(S) = / " oCF™ (L, —tS7'S) Wi(t)dt

— /t"p ZZ k'C t)z S)W(t)dt

k=0 K
> tZ 1S)
— /np ZZ W(t)dt
R+ =0 r
= / " oCFo (—t27'S) W(t)dt
R+
= /t”p etr (—tX7'S) W(t)dt. (2.19)
R+
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2. IfA=1,, ®=1,, and ¥ = 021, then by using (1.15), S € C5*? has the following pdf:

7 (=P) det (A)" 7P G(S)

f(s) = Crn(n)agnp

and

Gg(s) = /t”P etr (ft (aQIp)‘ls) W(t)dt

R+

= /t”p etr (—to™*S) W(t)dt.

R+

Corollary 2.5 By choosing W(t) as the dirac delta function (1.5), see that (2.19) in (2.18) simplifies to:
G(S) =etr (—x7'S)
which leaves the pdf of the complex singular Wishart distribution (see Ratnarajah and Vaillancourt (2005)):

7n=P) det (A)" P etr (—2718)
CTy(n)det (£)"

frormal(8) = (2.20)

Corollary 2.6 By choosing W(t) as the t distribution weight (1.6) and using Result C.22, see that (2.19) in
(2.18) simplifies to:

vl

—

Gg(s) = /t_"p etr (—tX7'S) (%8 t2 Lexp (—t2> dt

[ ][]
~—

H v\ [V o) (%)
= ))F(np+§>(§+trz S) i

which leaves the pdf of S € C5*P as:

(3)% 0 Pdet(A)" T (mp+g)

(2.21)

2.2.2.2 Pdf of the joint eigenvalues

Next, expressions for the joint pdf of the eigenvalues of the quadratic form S under the complex singular matrix

variate elliptical distribution are derived (see (2.17)).

Theorem 2.4 Suppose that n < p and S ~ISCW,, (p,® ® X,G(-)) (see (2.17)), and let Ay > Ay > ... >

An > 0 represent the ordered eigenvalues of S € Ch*P.

A =diag (M1, A2, ..., Ap), has pdf

Then the joint distribution of the eigenvalues of S,

w1 det (A)' " (H (A W)

. k<l

fA) = p) det (BA) det (%)
/ v / oCF" (B, ~t='BAE" ) dBW(1)dt (2.22)
R+ EcCV,,p
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where B = A~2® ' A~3 and where CV,,p denotes the Stiefel manifold (see Result D.37).

Proof. Consider a partial spectral decomposition where S = EAEY . The transformation from S to E, A

has Jacobian
n

J(S — E,A) = (2m) " det (A" 7) T O — M)?,
k<l

see Ratnarajah and Vaillancourt (2005). Therefore, by using (2.17) and Result D.37:

f(A) / FEAET)J (S = E,A) dEW(t)dt

R+  EeCVy,

An(n=p)

= @Ay da () det (A7) det (A)"7F (H (A — m)

k<l

y / 4w / oCFy"” (B, —t5~'EAE" ) ETdEW (1)t
R+ EeCVn,p

7’ =P =n det (A)PT" (ﬁ (A — /\l)>

k<l
n)det (BA)? det (X)" CTy(p)

/ ¢ / oCF ”> tz—lEAEH) dEW(t)dt

EeCVi

n 2
an=1) et (A)pin (H Ak — )\D)

_ k<l np (n) o —1 H
CT(n)CT o (p) dot (BAY dot (X" / t / oCEy" (B, ~t2 ' BAR! ) dBW(1)d

2n P

R+ EcCV p

leaving the final result. n

Some special cases of the pdf (2.22) are discussed next.

Remark 2.5 1. If A =1, and ® =1, the joint pdf of the eigenvalues of the complex singular Wishart
type distribution, f(A), simplifies to:

a(n=1) qet (A)n_p (ﬁ (M — )\l)2>

k<l
Cl,,(n)CT,(p) det (2)"

fA) = / " GCE™ (A, —tZ71) W(t)dt. (2.23)

R+
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Similarly to Ratnarajah and Vaillancourt (2005), from (2.22), using Result D.55 see that:

) Che (—tZ)*lEAEH )

dE

0o C. (I,
/ oCFén) (In, ,tgflEAEH> dE = / ZZ ElC, (

EeCV, EcCV,, k=0 r

L)

_ g; 7;5:2) / C. (-t 7'BAE") dB

EeCV,p

<_tz_1) Cx (A)

k=0 & Cis (In)

- szlcz
- z;k.ci

Ck (A)
- Lt

k=0 =k p)

C. (I,)

Substituting (2.24) into (2.22) and using Result D.55 leaves:

(=1 det (A)nip (ﬁ A\ — >\l)2>

k<l
fA) = CT,,(n)CT, (p) det ()"

n) C
) Cx <_tz_l) Cx (A)

(2.24)

X / e / oCE™ (I,—tz—lEAEH) AEW(t)dt

R+ EeCV,,,
771 det (A)" 7P (ﬁ N — Al)2>
k<l
- CT,(n )cr (» )det( "
c
/t"P ZZ k'C (A)W(t)dt
R+ k=0 kK
(=) det (A)" 7 (ﬁ (M — Az)2>
k<l
- CT . (n)CT,, (p) det (2)"
x / " (CE™ (A, —t=~ ) W(t)dt
R+

leaving the final result.

2. IfA=1,, ®=1,, and £ = 0’1, then by using (1.15), (2.22) simplifies to:

WW*H%MW”<fUM—MV>

k<l
) = CT (1)CT (P2

X /t”p exp <t022/\i> W(t)dt
Bt i=1
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From (2.23) and by using Result D.55, see that:
oCEy" (A, —t=7Y) = CFO(") ( —ta—21 »)

_ ZZ k'C —to~ I)

k=0 kK )
Cr (A) Cx (1)

:ZZ k'C’()

k=0 kK

_ ZZ to?) (A)

k=0 kK

-y etet

k=0 k
= etr(fta*QA)

= exp (—t02 2":>\1> .
i=1

—to~ A)

Corollary 2.7 By choosing W(t) as the dirac delta function (1.5), see that (2.24) in (2.23) simplifies to:
G(A) = oCF™ (A, —%71)

which leaves the pdf of the joint eigenvalues of the complex singular Wishart distribution
(see Ratnarajah and Vaillancourt (2005)):

(=1 det (A)nip <ﬁ (e — )\1)2>

_ k<l (n) R
fnormal(A) - CFn(n)CFn(p) det (E)n OCF() (A, by 1) . (226)

Corollary 2.8 By choosing W(t) as the t distribution weight (1.6) and by using Result C.22, Result D.55 and
Result D.56, see that (2.24) in (2.23) simplifies to:

/t"p oCFS™ (A, —t57) ) t2 Lexp (—t—) dt
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which leaves the joint pdf of the eigenvalues of S € CH*F as:

w1 det (A)" " (H (M — W)

k<l (*271) Cx (A)F (
2

oo Cﬁ‘/
fr(A) = Cln(n)Cly(p) det ()" T (%) (%)np ZZ ( )k KCs (L)

v
>3 np+ k + 5) . (2.27)

2.3 Illustrative application

The channel capacity (see (1.24)) for an n, X n; communications systems can be investigated, using the pdf of
the joint eigenvalues of the quadratic form of S € C3**™. Particularly, the case when A =1, and ® =1, is

of interest for both nonsingular (see (2.13)) and singular (see (2.23)) cases.

2.3.1 Nonsingular case (n, > n;)

In this section, the expressions for the capacity of a correlated- and uncorrelated Rayleigh-type n, x 2 channel
environment (see (1.10)) is derived when the underlying distribution is complex matrix variate elliptical. It is
specifically derived here for a two-input (n; = 2), n, output communication system to be able to graphically
illustrate the capacity of the system. This section investigates both cases when X has off-diagonal entries (i.e.
correlated) as well as when 3 =¢2I5, thus being uncorrelated. Both the correlated- and uncorrelated cases are

compared to the normal assumption as in Ratnarajah and Vaillancourt (2003).

Theorem 2.5 Consider a two-input, n, output matric H ~ CE,,_+2(0,I,, ® X, h) subject to a Rayleigh type
fading channel (see (1.10)), with n, > 2. The capacity C (see (1.24)) is given by:

o0
"

¢ - r(nr>r<ffi2)1><a1—a2>o/ o (1-+5) (225)

x {A?”F (e =1 [ exp (Ctann) Wi
R+
XTI (ny — 1) ] / £ exp (—tashy) W(t)dt
R+
N2 () 0y / £~ exp (—tar ) W(t)dt
R+

AT ) [0 e (tash) WO i

R+

where a1 > ag are the ordered eigenvalues of 3.

Proof. The expression for the capacity in (1.24) is in terms of the pdf of an unordered eigenvalue; whereas
(2.13) is the pdf of an ordered eigenvalue. Substituting p = n; = 2 and dividing by n;! = 2! = 2 to obtain the

pdf of the unordered eigenvalues:

(A A2)™ % (A1 — A2) (arag)™ /tgmf1 det (exp (—ta;);)) W(t)dt (2.29)

A1, A2) = 2I' (n,) T (ny — 1) (a2 — aq)
R+
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where (see Result D.47):

2(2—1 2

Cry2) = 752 [[T@-k+1) = (2T (1), and
k=1
22-1) 2

Cly(n,) = 7w =2z [T —k+1) = al'(n)T(n.—-1).
k=1

From (2.29), see that:

7t —
det (exp (—ta;A;)) = det [eXp( adi) - exp(—taiho)

exp (—tasA1) exp (—tazAq)
= exp(—t(a1A1 + azA2)) —exp (—t (a1 A2 + az2A1)).

By substituting (2.31) into (2.29), the capacity (see (1.24)) is obtained as:

c = 2/10g 1+”A /f)\l,)\gdAgd)\l
0

(nr—1)(az —ay)

0
_ /1 / /\1/\2 "2 (A = Ag) (arag)"™
0 0

X /ﬂ”r*l (exp (=t (a1 A1 + azA2)) — exp (=t (a1 X2 + azA1))) W(t)dtdAad)

R+

oo oo
= & flog(1+50) [ (o)
0 0
X /t2n7\_1 (exp (—t (a1>\1 + 0@)\2)) — exp (—t (a1 Ao + 0,2)\1)» W(t)dtd)\zd)\l
_ K/ log (1+2x1) /t%r—l/ (A=t a2 — pme=2pme 1y
0 R+ 0

x (exp (=t (a1 A1 + azA2)) — exp (—t (a1 A2 + a2\1))) dAW(t)dtdN\,

_ F(nr)r(((:;raf)lg(raf‘“)‘ From (2.32) and by using Result C.22, consider:

(AT NS T2 = AP 2AL ) (exp (<t (a1 M1 + a2)2)) — exp (=t (a1 hs + az)1))) dho

(AT 7N 2 exp (—t (a1 Ay + agXa)) — NP7 AT 2 exp (—t (a1 dg + ashy1))

0\8 0\8

AN exp (<t (a1 Ay + agh2)) + AT TEALT T exp (—t (a1 da + azAi)))dA

oo o0

)\?T_l exp (—tai A1) /)\gr exp (—tagA2) dAg — )\?T_l exp (—tag A1) /)\"T_Z exp (—tayA2) dAs
0

o0 o0

—/\?rf2 exp (—tai A1) /)\ T exp —tasAa) dAo —I—/\?ﬁ2 exp (—taz A1)
0
(

o\

AP texp (—taih) T (n, — 1) (taz) (nr_l)—/\"“_lexp(—tagx\l) T (n, — 1) (ta)” " Y
A2 exp (—taiA) T (ny) (ta2) ™" + N7~ 2 exp (—tagh) T (n,) (tag) ™" .

© University of Pretoria
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Substituting (2.33) into (2.32):
_ p 2n,—1yn.—1 —(np—1)
C = K log(1+§/\1 $2r =\ L e (—tagA) T (ny — 1) (taz) W(t)dt
R+

2= I\ L exp (—tagh) T (n, — 1) (tal)i(nril) W(t)dt

— T3

2 INT T exp (—tay M) T (ny) (tag) ™" W(t)dt

—_ 7

R+

+ [ 2= I 2 exp (—tagh ) T (ny) (tay) """ W(t)dt}

—

R+

=TT (Sj:a_z)l)r(@ ) /0 log (1+ 521)

x{x;"lr (ny —1)a; " / " exp (—tas A ) W(t)dt
R+
A (n, — 1) al_(n"_l) /t"r exp (—tas A1) W(t)dt
R+
SN () ag ™ / £~ oxp (—tarhy) W(t)dt
R+
FA T2 (ny) ay " / t" L exp (—tagA1) W(t)dt}dAl

R+

which leaves the final result. [ ]

Corollary 2.9 Consider a two-input, n, output matriz H ~ Ct, x2(0,I,, & 3, h) subject to a Rayleigh type
fading channel (see (1.10)) with weight function (1.6), with n, > 2. The capacity C (see (1.24)) is given by:

3 ne vy 7 —(nrt3
)* airal (nr + 2)/bg [+ 2] (an +5) ") o (2.34)

v>—("r+%)

/log [1 + g)\l} Anr=1 (a2A1 +5 dh
0

) 0
(5)° @a3'T (v, +3)
F(%) (a1 —ag)F(nT)

where v > 0 is the degrees of freedom.
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Proof. Consider from (2.28) the following integrals, by substituting the weight function for the ¢ distrib-
ution (see (1.6)), and by using Result C.22:

e

(8)" 5 exp (—tz) dt

(3)
= /t7lr+%_1 exp (—t (a1)\1 + g)) dt

R+

/ 177 exp (—tan ) W(t)dt =

R+

t"" exp (—tai A1)

—

=
e T~

~—
Nle

—

[NIS]
~—

—

ol

SN—
wle

A L I

- % : . (2.35)

—

~—

and

R+

/t”r exp (—tas\) W(t)dt = /t“r exp (—tag\;) <%<)%)t%1exp (_tg) dt
R+
(

- By (nr+35) (a2 + 3>_("T+%) (2.36)

and

v\
/tn'r_l exp (—tay A\ ) W(t)dt = /t""_l exp (—tai A1) (2)1) t2 Lexp (—t3> dt
(3) 2
R+
(3

- G [err e (oo 3)

R+

_ B (ne+5 = 1) (@A + o)~ (72 (237)

and

(5
(%)

- G [ (o )

B (mr+ 2= 1) (a2 + g)’("”%*l) , (2.38)

=
N
nfe
~
e
|
—
@
i
o
|
~+
|
N—
IS8
S

R+

/t"r_l exp (—tag A1) W(t)dt = /t”“l exp (—tag A1)
R+
(3
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Substituting (2.35), (2.36), (2.37), and (2.38) into (2.28), leaves the capacity as:

(%
2
) (ari +2) "

_)\?7‘711" (nr —1) a;(nrfl)l_‘ (nr " g
(21
_A"f’meF (nr) a;nrr (nr i % B 1) (CL1>\1 n E) (nr+3 )
- - v vy —(net+3-1)
A0 () 0T (e 4 5= 1) (a4 5) }dm
v)\E n- oy % s
= 2) ay " aol’ (nr + 2)) /log [1 n /57/\1} /\Tfril (a1)\1 " g) (nr+3) i

0
ayay’T (nr + %) 7 P N vy —(nrt3)
) b/lOg [1 + 5)\1] )\1 (CLQ/\1 + 5) d/\1

)7("’*%71) dn

log {1 + g)q] )\?riQ (a1)\1 + g

11) ~(nrtg-1)

log [1 + gxl] AT =2 (ag)\l +3 dh

0/
(o ]
0/
which leaves the final result. [ ]

In the next theorem, the capacity is derived under the assumption of no correlation between transmitters, or
b 20'212.

Theorem 2.6 Consider a two-input, n, output matrix H ~ CE,, 2(0,1,, ®02Ia, h) subject to a Rayleigh type
fading channel (see (1.10)), with n, > 2. The capacity C (see (1.24)) is given by:

oo

7 P APt exp (—to A1)
c = / log (1 + 2>\1) { / T o7 W(t)dt (2.39)
0 R+

AP exp (—to 2\
_/ 1 exp (~to 1)W(t)dt

I'(n, —1)
R+

+/ A2 1T (n, 4 1) exp (—toe™2\1)
2T (n, — 1) o2

W(t)dt}dAl.

R+

Proof. The expression for the capacity in (1.24) is in terms of the pdf of an unordered eigenvalue; whereas

(2.14) is the pdf of an ordered eigenvalue. Substituting p = n; = 2 and dividing by 2! to obtain the pdf of the
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unordered eigenvalues:

w2 (M) (M = M) o, IR
f(A,A2) = 3ICT5 (1, )CT> (2) 02" /t exp | —to ;/\i W(t)dt

R+

2 (MA)" 2 (M = A2 [ o B
- 2‘w?(Fl(nQ))F<n<—11)o—33ﬁ / £ exp (—to™* (A1 + Aa)) W(t)dt
R+

N g ;
- 7" exp (—to™" (A + A t)dt.  (2.40
2T (n,) T (n, — 1) g2nr exp (—to ™% (A1 + A2)) W(t) (2.40)

R+

From (2.40), the marginal pdf of A\; is given by:

f(A)

8 0\8 O\g

F(A1, A2)dAe

T T e O

9T (n,) T (1, — 1) 02nr —to ™% (A1 + A2)) W(t)dtdAs

R+

_ Al Ap 2 on. ,
B / 2T (n,) T (n, — 1) o2nr / 2" exp (—to ™2 (A1 + A2)) W(t)dtdg
0

R+

[ VR P
~Jar ol N (—to ™2 (A1 + A2)) W(t)dtdA,
0 Bt

n.) T (n, — 1)
+7 /\?"*QA;LT /thT exp (_tO_—Q ()\ +A )) W(t)dtd/\
T () T (ny — 1) 0% ey )
0 A

A" exp (—to?)\)

= )T (D)oo / t%r/ Ny exp (—to ™ Aa) dA (1)t
R+ 0

)\n,«fl exp tO’z)\ .
T (—1 o / t/ A exp (<t A ) dha W)t

N2 exp to?X) . .
0 >r<n(1 oo / a / A exp (—to™2h) Do W ()t

__ATew (—to®h) 2, (1)
= 3 (n)T (n, — 1) o2nr / 2T (n, — 1) (to™2) W(t)dt
R+

)\?T_lexp (—to’2)\1) 2n, \nr—1 —2\ " "r
_F(”r)r(nr*l)rﬂ""/ AT (ny) (b07) T V()
R+

+

A2 exp (—to? ) 2 _o\—(ne+1)

AT (4 1 " . 2.41
T )T (0, — 1) o2rr /t AT (ny +1) (t02) W(t)d (2.41)
R+
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By subsituting (2.41) into (1.24), the capacity is given by:

C 2 ].Og 1+ )\1 f()\l)d)q

\8

2T (n,.) o2

Il
0\8 =)

T gy t1 2
log (1+£>\1) {/Al t exp (o Al)W(t)dt
2
R+

)\;Lr_ltnr exp (—t0’2/\1)

— t)dt
[y
R+
AP (ny, + 1) exp (—to~2\)
+/ o (ny — 1) 2 W(t)dt}d/\l
R+
leaving the final result. n

Corollary 2.10 Consider a two-input, n, output matric H ~ Ct, «2(0,1, ® oIy, h) subject to a Rayleigh
type fading channel (see (1.10)) with weight function (1.6), with n,. > 2. The capacity C (see (1.24)) is given

by:

A (2.42)

)("r+%+1)

N <

0
FoT(n.+3) [ ~(nr+3)
(e +%) /log [+ 20 (%JFE) d)
0

2
7(nr+%71)
) dX\

(%)% F(”T+2 _1 I'(n,+1) p ne—2 (A1 |V
T (%) o 2T (ny — 1) /log 1 + )\1 A (; + 5
0

where v > 0 is the degrees of freedom.

Proof. By substituting the weight function for the ¢ distribution (see (1.6)), and by Result C.22, the
integrals from (2.39) simplifies to:

)

Aprgne Tt 9 B APt texp (—to2A) (%) 2 v v
/ W exp (—to? X)) W(t)dt = / 3T () o7 T (%)t exp (fti) dt
+ R+
_ (%)% )\?r ne+% 92 v
= 7 6 T (n) o /t exp (—t (O’ AL+ 5)) dt

G i T (ne+5+1) (072 + 3)_(7“%“) (2.43)

L(3) 20 () 2 2
and
AL ) B AP exp (—to2\1) (%)% 1 v

/F(nT —y e (o) Wit = / T (n.—1) ri 7 (13

R+ R+
_ B T s 2540
= F(%)F(nr—l)/t exp(—t(a /\1+§>)dt

R+

B O\ [ ay L v\ (tE)
= T r(nrfl)r("ﬁi) (o A1+§) (2.44)
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and

ny—2 nrflr - 1
/>\1 t (n, + )exp (7t02/\1) W(t)dt

' (n, —1)o—2
R+
N2 =1 (. 41 —to—2\) (8)7 .
N / : (n, + Deoxp (~te™h) (3) ﬁ_lexp(_t2>dt
o (n, — 1) o2 T (%) 2
R+

(%)% )‘;LT_QF (nr + 1) ny+%—2 _9 v
T (%) 2l (n, — L)o 2 /t o (<t (o 3)) e

(2)7 /\?7\_21—\ (n.+1) v 9 vy —(nrt+3-1)
FQ(g) T (m — 1o 2 (g -1) (N +3) : (2.45)

Substituting (2.43), (2.44), and (2.45) into (2.39), the capacity as in (1.24) is given by:

c = QZIOg (1+§A1) FOW M
)

TS £} /Oolog (1+20) A (o720 + g)_("”%“) A
0

DO |

’r (nr +3) i p ne—1( _—2 vy~ (mts)
T s /log (14 2x) a0 (072 + 5) Xy
0

(O T+ )T (e +3-1) [ oy~ (nr+3-1)
2) T r 14 np— ( —2 )
1 1 /\ AT A - d\
TE T 2 1o O/Og +5h) 7 Mty !
which leaves the final result. [ ]

These expressions for the capacity under a complex matrix variate ¢ distribution is coded in SAS; this code is

contained in the Appendix. Figure 2.1 illustrates the channel capacity (2.34) versus n, for different values of p
1 09

(the signal to noise ratio), and for 3 = lo 0 1 1 and v = 10. Table 2.1 shows the capacity (2.34) in nats for

different values of n,.. Figure 2.2 illustrates the channel capacity (2.42) versus n, for different values of p , and

for ¥ =

0
11 and v = 10. Table 2.2 shows the capacity (2.42) in nats for different values of n,..
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Capacity (in nats)

Capacity (in nats)
|

Figure 2.2 (2.42) against n, for different values of p

T

Capacity (in nats)
() =

&)

Legend Normal =t
Figure 2.3 (2.42) and eq. 32 of Ratnarajah and Vaillancourt (2003) against n,., for p = 20
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|n. [0dB [5dB |10dB [15dB [20dB |[25dB |30dB | 35dB

1.2916 | 2.0609 | 3.3057 | 4.8558 | 6.6852 | 8.7821 10.9059 | 13.1656
1.9816 | 2.9984 | 4.5956 | 6.5129 | 8.6450 | 10.8836 | 13.1643 | 15.4598
2.4582 | 3.6126 | 5.3811 | 7.4294 | 9.6327 | 11.9010 | 14.1924 | 16.4914
8 | 2.8266 | 4.0737 | 5.9455 | 8.0592 | 10.2922 | 12.5715 | 14.8665 | 17.1666
10 | 3.1289 | 4.4445 | 6.3856 | 8.5381 | 10.7872 | 13.0721 | 15.368 | 17.6696
12 | 3.3862 | 4.7550 | 6.7460 | 8.9240 | 11.1831 | 13.4713 | 15.7691 | 18.0700
14 | 3.6105 | 5.0222 | 7.0506 | 9.2467 | 11.5125 | 13.8028 | 16.1012 | 18.4021
16 | 3.8095 | 5.2564 | 7.3141 | 9.5234 | 11.7939 | 14.0856 | 16.3842 | 18.6850
18 | 3.9882 | 5.4646 | 7.5456 | 9.7650 | 12.0988 | 14.3313 | 16.6298 | 18.9303
20 | 4.1502 | 5.6515 | 7.7414 | 9.9786 | 12.2547 | 14.5476 | 16.8458 | 19.1458

Table 2.1 Capacity (2.34) for a n, x 2 system for different values of p and v = 10

|n. |0dB [5dB |10dB [ 15dB |20dB [25dB |30dB [35dB |

2 1.4843 | 2.4498 | 4.0298 | 5.9281 | 8.0291 10.2403 | 12.5045 | 14.7941
4 | 2.4402 | 3.7860 | 5.7830 | 7.9676 10.2292 | 12.5184 | 14.8167 | 17.1179
6 | 3.1083 | 4.6148 | 6.7334 | 8.9714 | 11.2528 | 13.5486 | 15.8490 | 18.1509
8 | 3.6156 | 5.2064 | 7.3788 | 9.6373 11.9256 | 14.2237 | 16.5284 | 18.8269
10 | 4.0228 | 5.6647 | 7.8668 | 10.1360 | 12.4279 | 14.7270 | 17.0285 | 19.3307
12 | 4.3622 | 6.0382 | 8.2591 | 10.5948 | 12.8287 | 15.1285 | 17.4302 | 19.7325
14 | 4.6583 | 6.3532 | 8.5869 | 10.8670 | 13.1623 | 15.4625 | 17.7643 | 20.0668
16 | 4.9069 | 6.6253 | 8.8684 | 11.1516 | 13.4479 | 14.7484 | 18.0503 | 20.3525
18 | 5.1324 | 6.8648 | 9.1149 | 11.4004 | 13.6974 | 15.9981 | 18.3000 | 20.6022
20 | 5.3350 | 7.0785 | 9.3342 | 11.6214 | 13.9189 | 16.2197 | 18.5215 | 20.8237

Table 2.2 Capacity (2.42) in nats for a n, x 2 system for different values of p and v = 10

From Table 2.1 and Table 2.2 it can be observed that the existence of nonzero correlation between the re-
ceiving antennas degrade the system capacity as the capacity is lower than the case of zero correlation.
This same phenomenon has been observed under the complex matrix variate normal assumption as well (see
Ratnarajah and Vaillancourt (2003)). However, the capacity under the assumption of an underlying complex
matrix variate ¢ distribution is seen to be higher (see Table 2.1 and Table 2.2) than that under the complex

matrix variate normal assumption (see Ratnarajah and Vaillancourt (2003), Table 1 and Table 2).

2.3.2 Singular case (n; > n,)

For the singular case, the correlated Rayleigh 2 x n; channel is considered next, and its capacity derived.
Subsequently the uncorrelated Rayleigh 2 x n; channel’s capacity is derived and studied. As in the previous
section, this thesis examines both cases when 3 has off diagonal entries (i.e. correlated) as well as when
3 =021, thus being uncorrelated. The investigation of the complex matrix variate ¢ distribution is approached

in this thesis similar to the approach of Ratnarajah and Vaillancourt (2005).

Theorem 2.7 Consider a two output, ny input matric H ~ CEaxp, (0,12 ® 3,h) subject to a Rayleigh type
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fading channel (see (1.10)), with ny > 2. The capacity C (see (1.24)) is given by:

0o A1
C = K// <10g <1 + ﬁ)\l) + log (1 + ﬁ)\g)) ()\1)\2)'%72 ()\1 — )\2) (246)
T T
0 0

X /tntﬂdet (exp (—ta;;)) W(t)dtdrsd

R+

K2

n ¢ -1
where K = (F (n) T'(ng — 1) ﬁ a? ]—1 (ar — al)> ,and ay > az > ... > an, > 0 are the eigenvalues of X.
=1 k<l

Proof. Note that (2.23) is the pdf of an ordered eigenvalue:

() (H Af”) (H (e — w)

_ i=1 k<l np (n) -1
f(A) = CT..(7)CT.. () det () " oCFy™ (A, —t=~ 1) W(t)dt.
R+
Thus, for the 2 x n; case:
2 2
o () (fro- )
i=1 k<l ne -
Fh2) = CF2(2)CP2(nt)d:t(E)2 / 2 oCEy (A, 137 W(t)dt. (247)

R+

Using Result D.58 and Result D.57 the complex hypergeometric function of two Hermitian matrix arguments

in (2.47) can be simplified as:

(12[ (j— 1)!) det (exp (—ta;A;))

R (A -2 = A m
IT (A = X0 I1 (tar — tar)
k<l k<l
_ det (exp (?mg\j)) ' (2.48)
(A= 22) 5 ] (an — )
k<l

ne 2 ne
Note that det (£)* = (H ai) = [1 a?. Substituting (2.48) into (2.47) leaves:

i=1 =1
nti? — ng(ng—1
i) = Qa7 O =2e) 2= et (exp (—taih,) Wit
L (ny) T (ng — 1) det () ] (ax — ay) gr
k<l
nyg—2 _ 2 n
_ Audo) © (= 2) 2005 = et (exp (—tas;)) W(E)dt
()T (e — 1) I] af T] (arx — ar) g+
i=1 k<l
ny—2 - " n2
_ (A1A2) m(>‘1 ntAQ) £735 = det (exp (—ta;Aj)) W(t)dt. (2.49)
()T (e — 1) I] af T] (arx — ar)gs
i=1 k<l
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Substituting (2.49) into (1.24):

oo )\1
C = // <log (1 + ﬁ)\l) +log (1 + ﬁA2>) F(, Ao)dAady
n n
J t t
i AA)™ 2 (Mg — A
- // <log <1+nﬁxl) +log <1+nﬁA2>> Gk m( - 2)
00 ! ‘ ()T (ne — 1) I af I] (ar — )
i=1 k<l
x/t - det (exp (—ta;A;)) W(t)dtdadA
R+
oo A
= K// (log (1 + —)\1> + log (1 + nﬁ)\g)) ()\1)\2)"”2 (M — A2)
0 0 ¢
x/t - det (exp (—ta;A;)) W(t)dtdadA
where .
K= (et - e i - w) (2.50)
z:l k:<l
which leaves the final result. ]

Corollary 2.11 Consider a two output, ny input matric H ~ Ctayn, (0,1 ® 3, v) subject to a Rayleigh type
fading channel (see (1.10)) with weight function (1.6), with ny > 2. The capacity C (see (1.24)) is given by:

C %)5_) 070] (log (1 + n%/\l) +log (1 + n%&)) o)™ 2 (A1 — Ao) (2.51)

y / 1% oxp (_t%) det (exp (—ta;\;)) dtdAadhy

R+

where K is as in (2.50), v > 0 is the degrees of freedom and a1 > az > ... > an, > 0 are the eigenvalues of .

Proof. Consider from (2.46) the following by substituting the weight function for the ¢ distribution (see

(1.6)):
ne+1 ne+1 (%)% -1 v
t"t T det (exp (—ta;\j)) W(t)dt = t" " det (exp (—ta;Aj)) T (v)t2 exp (—t§> dt
R+ R+ 2
% /t"t+% exp (—tg) det (exp (—ta;\;)) dt. (2.52)
r'(3) 2
R+
Using (2.46) and (2.52) the capacity (1.24) is then given by:
(1)% T o ,
C = K 21) // (log<1+—)\)+log<1+—>\2)>()\)\)t (A1 — A2)
ey
ni+%5 v
x [ ™72 exp (_ti) det (exp (—ta;\;)) dtdhadXy
R+
which leaves the final result. n
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In the next theorem, the capacity is derived under the assumption of no correlation between transmitters, or
3y =01, .

Theorem 2.8 Consider a two output, ny input matriz H ~ CEaxp, (0,12 ® 01, h) subject to a Rayleigh type
fading channel (see (1.10)), with ny > 2. The capacity C (see (1.24)) is given by:

oo

c = Ty Ly Y +2r ) / log [1+—>\ } A / " Hexp (—to ™2 A1) W(t)dtdA (2.53)

0 R+
00

—1 ng -2
ey Joe £ [y s

0 R+

oo

I (nt + ]. ny—9 ne—1 _9
+O'2"t QF nt nt 1 /10g|: :| )\1t /t —to )\1W(t>dtd>\1.

0 R+

Proof. The expression for the capacity in (1.24) is in terms of the pdf of an unordered eigenvalue; whereas
(2.25) is the pdf of an ordered eigenvalue. Substituting n = n, = 2 and dividing by n,! = 2! = 2 to obtain the
pdf of the unordered eigenvalues:

2 2
w21 (H A;“_2> (H (A — Al)) 2
o i=1 k<l 2n;: ) ]
fasA2) = 91CT5(2)C 5 (1, o / E e ( to X?) Wi
R+ =
_ w2 ()\1)\2)%—2 (A1 — /\2)2 /tznt exp (_

22T (ng) T (ny — 1) o4m
R+

APAZTE -2 IR A / 20 exp (
9T (ny) T (g — 1) odne P

to (A1 + X)) W(t)dt

—to 2 (/\1 + )\2)) W(t)dt

R+
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The marginal pdf of \; is given by:

f(A1) FO, A2)dAs
/

)\nt>\nt—2 o 2)\nt—1)\nt—1 + )\nt—Q)\'th . B
- / — 2F(nt)1r(nt2_1)g4m1 : /tQ texp (—tom? (A1 + Ao)) W(t)dtdXs

R+
o

A N2 ) 2

2" exp (—to ™ (M + A £)dtd\

/2F (nt)F(nt — 1) oine / exp( o ( 1+ 2)) W( ) 9
0 Bt

i PPN 1)\nt 1
a / 2T ( Tl T / 7" exp (—to ™% (A1 + X)) W(t)dtdA,
R+

nt)F(nt—l)
n )\'{Lt 2)\;% ) ,
¥ exp (—to ™% (A1 + A t)dtd\
Sy | e (107 O ) Wi,

A exp —t0'2)\ . o} . )
Coor (;t) I (7(115 —1) (17)4"t /t2 t />\2t ? exp (—to 2/\2) dXoWV(t)dt
R+ 0

/ 2’ﬂt/>\nt 1exp( to™ 2>\2)d/\2W()

A?t—l exp ( t0'2>\1
F (Tlt) F (nt — 1 g4nt

A2 exp (—to?\1) 2
T ¢ d
+2F (ng) T (ng — 1) o4 / //\ exp( to >\2) AW (t)dt

)\?t €xXp (_t0'2>\1) 2ny oy —(ne—1)
20 (ng) T (ng — 1) odne /t ['(ng—1) (ta ) W(t)dt
R+

M e (4020) .
- ne A -2 t

T () T (g — 1) odme / NG T () (to™%) T W(t)dt
R+

A?‘_Qexp (7t02/\1) - on—(net1)
2T (n) T (ng — 1) o / G (e + 1) (t077) W(t)dt.
R+

The capacity (see (1.24)) for an uncorrelated Rayleigh fading model of dimension 2 x n; under the singular

complex elliptical class is given by:

c = 2/log (1+—)\1> /f /\1,)\2 d/\gd)\l
0

0

oo p ATt exp (—to?Ar) / ) o —(ne—1)
/ Og( +ntA1>{P(nt>r<nt—1)a4m £ (= 1) (b0=2) " W)t
0 Bt

2)\71%—1 exp (*t(j2/\1) oy \1—1 P
T ()T (ne — 1) ot / NG () (to %) W) dt
R+

A2 exp (—to?\) ) (ret1)
ng ntF 1

O ) T (g — 1) o /t AT (ne +1) (to %) W(t)dt}

R+

leaving the final result. n

Corollary 2.12 Consider a two output, n; input matrivc H ~ CEayxy, (0,1 ® 0%1,,,h) subject to a Rayleigh
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type fading channel (see (1.10)) with weight function (1.6), with ny > 2. The capacity C' (see (1.24)) is given
by:

2)2 v i) T ~(netg+1)
3) D(ts+1) /log [1 + nﬁAl} A (% + g) )\ (2.54)
t
0

)
2 i v x° 7(nt+%)
) (nt + 2) /log |:1 + ﬁ/\1:| )\7llt—1 <>\_; + B) d)\l
o o 2
0

(2)® F(nt+§1)F(nt+1)7 { 0 ] , </\1 u)("t+%1)
log |1+ —MX | ATt — + = d\
r (%) o221 (ny) T (ny — 1) ) & ng |1 o !

where v > 0 is the degrees of freedom.

Proof. By substituting the weight function for the ¢ distribution (see (1.6)), and by Result C.22, the
integrals from (2.53) simplifies to:

[MS

t" L exp (—tO'_Q/\l) <§) t2 L exp (—t—) dt

(3
= /t"i+% exp (—t (0_2)\1 + g)) dt

R+

—

/t"”‘1 exp (—to2A) W(t)dt =

R+

~—

=
o T~

~—
wle

—

[N
~—

—~

SIS

SN—
nle

= F(nt+%+1> (0—2/\1 +g)*(m+%+1)

5 5 (2.55)

—

and

B (n+2) (520 + E)‘(’”%) (2.56)

and

/tntfl exp (—t072)\1) W(t)ydt = /tntfl exp (—tg*Q)\l) 1(“5)11 31 exp (—t%) dt
J B
(

_BP (ne+2-1) (072x + g)_("t%_l) (2.57)
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Substituting (2.55), (2.56), and (2.57) into (2.53), leaves the capacity (see (1.24)) as

2 710g (1 + g)\l) FOL)dM

C =
0
v o0
(3)* T (n+ 2 +1) v\ —(net3+1)
2) t T3 P n _9
= log (14 A1) AT AL+ = dA
T (3) 2F(nt)02”t_2/0g( Fgh) A (oh 5 !
0
v)3 vy 7 —(nt+2
(2) (nt+2) / P ni—1 [ _—2 v\ —(nt+%)
— log (1 —)\ AT A+ o dA
T ()T (n; — 1) 0% og (1+5) (e n+3) !
v % v ® v
(3)° T +1C (n+35-1) / ne—1( _—2 vy~ (nts-1)
1 )\ e A+ = dA
+F (%) 2T (ng) T (nr — 1) 027“+ ©8 (U L 2) !
0
which leaves the final result. ]
1 09
Figure 2.4 illustrates the channel capacity (2.51) and (2.54) versus p for n; = 4, for ¥ = 09 1 ] and

10
3= [0 11 respectively, and v = 10.

Capacity (in nats)

SNR (5)

Legend = correlated case = uncorrelated case

Figure 2.4 (2.51) and (2.54) against p, for n, =4

As in the nonsingular case (see Figure 2.1 and Figure 2.2), it is observed that existence of nonzero correlation

between transmitters degrades the system capacity.

2.4 Summary of results and conclusion

A summary of theoretical results in this chapter is provided for the convenience of the reader in Table 2.3.
Specifically, the results relating to the special cases of the quadratic form, S, under consideration in this

chapter are mentioned.
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| Distribution of X | Pdfof S | Pdf of A |
‘ Nonsingular ‘ ‘ ‘
Elliptical (2.1) (2.7)
Elliptical when A, ® = 1I,, | (2.3) (2.9)
Normal when A, ® =1, (2.5) (2.15)
t when A, ® =1, (2.6) (2.16)
Singular
Elliptical 217) | (2.22)
Elliptical when A, ® =1, | (2.18) (2.23)
Normal when A, ® =1, (2.20) (2.26)
t when A, ® =1, (2.21) (2.27)

Table 2.3 Pdfs of nonsingular- and singular complex matrix variate distributions derived in this chapter

In this chapter the distribution of the quadratic form and its corresponding joint eigenvalues with an underlying
complex matrix variate elliptical distribution was derived. Using (1.4), the form of the expressions for the
pdfs of the quadratic form and its corresponding eigenvalues are computable and circumvents cumbersome
computations. Some special cases were highlighted and shows the well-known Wishart distribution as a special
case when the complex matrix variate normal distribution is under consideration. Another special case that is
illustrated is the case of no correlation, when the covariance matrix only has nonzero entries on the diagonal and
0 entries on the off-diagonal elements. This case is of specific interest in the performance measure of channel

capacity in the MIMO environment.

Specifically, the complex matrix variate ¢ distribution was applied and the literature is enriched with its rep-
resentation in this chapter. As an illustration of the obtained results the channel capacity within a MIMO
environment is derived and studied. The channel capacity and is investigated for correlated and uncorrelated

scenarios in the nonsingular and singular cases. It is observed that:

1. Correlation between transmitters/receivers degrade system capacity; and

2. The capacity of the system is higher in the case of underlying complex matrix variate complex ¢ distribution

than that compared to an underlying complex matrix variate normal distribution.

It is worthwhile to discuss the candidacy of the complex matrix variate ¢ distribution as underlying choice
for the practitioner for H. When no correlation exists between receivers (i.e. independent observations), the
well-known central limit theorem can be applied which results in H ~ CN,,, «n, (0,1, ® X). However, if the
receivers- and transmitters are correlated simultaneously, i.e. H ~ CN,, xn, (0,3, ®3%,,), then the well-known
central limit theorem does not apply. In that case the complex matrix variate elliptical model may provide

greater flexibility in this regard.

Although the results in this chapter are presented for the I,,, ® ¥ and related cases, in the case of X, ® X,
the covariance structure can be simplified to I,,, ® ¥ via a transformation. Even though the complex matrix
variate normal distribution can then still be applied, these numerical examples of the capacity illustrate that
the derived expressions under the complex matrix variate t distribution provide significant insights on the
behaviour of performance measures when the assumption of the complex matrix variate normal distribution is

challenged.
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Chapter 3

Bivariate gamma type I distributions
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3.1 Introduction

In this chapter, the main contribution is the derivation of the joint distribution of the diagonal elements of
(H"H)™", where H ~ CE,2(0,1,03,h) (see (1.3)); this distribution is called a bivariate gamma type I
distribution. This bivariate gamma type I distribution is studied via its pdf, c¢df, and product moment. As a
particular contribution, the underlying complex matrix variate ¢ distribution is studied, alongside the studied
complex matrix variate normal model. From this bivariate gamma type I distribution, a bivariate Weibullised
gamma type I distribution is derived which emanates from the bivariate gamma type I distribution. The
derivation of these and subsequent bivariate distributions (see Chapter 4) provides a platform to gain valuable
insight into the construction of such bivariate distributions, and also expands the knowledge base of candidates
for modeling within the wireless communications domain. Application of the derived results are investigated
with regards to the outage probability (see (1.25)) and the EGC diversity (see (1.26)) of a MIMO system
operating under a bivariate gamma type I distribution; which is analyzed in a broad generality from an elliptical

viewpoint, and comparatively investigated for the underlying complex matrix variate normal- and ¢ cases.

The figure below visualises the main gist of theoretical derivations in this chapter.
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3.2. Bivariate gamma type I distribution

H ~ CE,2(0, 1,®Z, h)

H"H (from Chapter 2)

!

diagonals of (H"'H)™ : (X1, X>) as bivariate gamma type |

!

(R1,R2) as bivariate Weibullised gamma type |

Figure 3.1 Outline of theoretical derivations in this chapter

3.2 Bivariate gamma type I distribution

In this section, a bivariate gamma type I distribution (extending the work of Xu et. al. (2009)) emanating from
the complex matrix variate elliptical class is proposed. Xu et. al. (2009) considered the joint distribution of the
diagonal elements of W = [wy; wia; w}y wo], where W = (HH) ™', with H eC7*? distributed according to
a complex matrix variate normal distribution C'N,, 2(0,L,®3) (see (1.1)) with X = [1 §; £* 1] as the covariance
matrix. Consider now H ~ CFE,, »(0,1,8%, h) (with pdf (1.3)). Then S = H”H €C2*? is complex Wishart
type distributed, and the pdf is given by (see (2.3)):

~ det(S)"*G(S)

T8 = ermyder

where CI'3(n) denotes the complex multivariate gamma function (see Result D.47), and where

G(S) = /tZ” etr (—tZ'S) W (t) dt.

R+

3.2.1 Pdf

The following lemma derives a complex matrix variate inverse Wishart type distribution. Subsequently, a
bivariate gamma type I emanating from the diagonal elements of this complex matrix variate inverse Wishart

type distribution is derived.

Lemma 3.2.1 Suppose S G(ng follows a complex matriz variate Wishart type distribution with pdf (2.3).

Then W = 871€C§X2 follows a complex matrixz variate inverse Wishart type distribution with pdf:

t2n
R[ Cly(n) det (W)™ det ()

fW) = —etr (—tET'WTH) W (t) dt (3.1)

/f(W|t)W(t) dt.
R+
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3.2. Bivariate gamma type I distribution

Proof. Consider W = S™*eC2*2, with Jacobian J(S — W) = det (W) >" (see Result D.44). From
(2.3), the complex inverse Wishart pdf follows as:

fW) = f(W \J(S — W
det (W)™~ o N .
T Clha(n)det (3)" /t etr (—13 W) W (1) dt |det (W)
R+
t2n
- / = =otr (ST W Y W (0) de
CT5(n) det (W)™ det (%)
= [ rwiow @y i
R+
where
fWt) = ik etr (—tE*IWﬂ)
CTy(n) det (W) det (2)"
t2n 1 n+2 1 n
B CI'a(n) <w11w22 — 'UJ12’UJT2) (1 _ &“*)
t o
e <_ wW11W22 — w12wf2(1 — 55*) [wi1 + w2z + w12€" + wuf]) (3.2)
which concludes the proof. .

Theorem 3.1 Suppose W E(C%X2 follows a complex matrix variate inverse Wishart type distribution with pdf
(8.1). Then the pdf of (X1, X3), the inverse of the diagonal elements W11 and Was of W, is given by:

21—a o a® \" i
flx1,22) = n—l k;' (1_ ) (z122) B
0

XZ() "

X /t”*’HHF <n+k+p+ 1,

R+

I_LGQ(;M + m)) W (#) dt, (3.3)

where x1,29 > 0, n >0, 0 < a? < 1, T'(-) denotes the gamma function (see Result C.5) and T (-,-) denotes
the upper incomplete gamma function (see Result C.7). The distribution is called a bivariate gamma type I

distribution.

Proof. Letting:
E=ae® a= €], b=arg(§) and 0 < a? <1,we = s/UJ11’lU22p€7w, 0<h<2m, 0<p<1,
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3. BIVARIATE GAMMA TYPE I DISTRIBUTIONS
3.2. Bivariate gamma type I distribution

where 12 = —1 is the complex unitary, then J = 2pwii1wae. It follows from (3.2) that:

n+2 1 n
olt) = T2
flwis, wzs, . 6]t) CTz (n <w11w22( /)2)) (1 —a2>

)
1(0—b) 71(971;))}
X €xp ( o was(l p2)(1 ey [wu + wa2 + ap\/wi1W22 (e +e > x |J|

- crz(n) <w11w22(1 - p2)>”“ (1_1(12)”

t

To obtain the joint pdf of the inverted diagonal elements of W, the transformations X1 = Wﬁl and Xo = W251

with Jacobian:

J(Ihl’Q - wl,wz)

da;1 dwl
dw1 d’wz
det dl‘g dCEQ
dw1 d’wg

= ($1ZL’2)72.

Using (2.30) arrives at:

2t2n(x1$2)n—1p(1 _ p2)—(n+2)
(1 —a?)"I'(n)I'(n — 1)

t
X eXp (m [x1 + T2 + 2ap\/T172 cos(0 — b)]) .

f(xh X2, p, 0|t)

The pdf of (X1, Xa,p,0) is given by:
flaroapd) = [ fonanp oW @) d
R+

o 2(mmy) T lp(l = pH) D
T Al @)rTm)Tm =1 /t W)
R+

t

X €xp <—m [z1 + 22 + 2ap\/T125 cos(0 — b)]) dt

o 2(mym)" (1 — p?) (D) .
= (1 — a®)"T(n)I(n — 1) /t2 W(t)
R+

X exp (—umﬂ) exp (-uzt‘”’—wl_xiﬁ) cos(6 — b)) dt. (3.4)

A ) =) -

Next, 0 is eliminated by integrating f(X1, Xo, p,0) over 8 on the domain (0,27). Let A(t) = ﬁ% ij;f). By

© University of Pretoria



&
0%
<

NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA

u
u
YUNIBESITHI YA PRETORIA

3. BIVARIATE GAMMA TYPE I DISTRIBUTIONS
3.2. Bivariate gamma type I distribution

using Result C.11, see from (8.4):

I(A(t))

and fo% cos?*t10dh = 0 Y k. Substituting (3.5)

4(.731:132)"—1/)(1 _ [)2)_("""2)
(1-=a®)"T(n)T'(n—1)

f(ﬂ?l,mzaﬂ)

t($1 + ZCQ)

2T

exp (A(t) cos (0 — b)) d

into (3.4) leaves:

/ "W (t)

+
o0

1 [ A%

X exXp (_ (1 _ ,02)(1 — a2)
4(1"1%2)"71/)(1 _ pQ)*(n+2)
(1— ) T(n)(n - 1)

t($1 + ZCQ)

)2

HP( 4ﬂ>k“

/ "W (t)

o0

1 t2a2p2x1x2

X“p(‘up%ua%
Azr9)"p(1 — p?) (2
(1-=a®)"T(n)T'(n—1)

)2

R[ £27W (t) exp (—t ((1 — p;)j(ll —

( )

B \[T= 21— 7

(1=p*(1 —a?)

))

=1 t2a2p2x1$2 §
X dt. 3.6
ggﬂﬂ2<ﬂa%%lﬁﬁ) (36)
To obtain the pdf of (X1, Xs), let Z; = %, 1=1,2, and Y = (1*—1/32)’ with Jacobian:
dzy  dzy  dzmy
dzy dzo dy
J(w1,22,y — 21,22,y) = det Z—ﬁf Z—Z %f
dy  dy dy
dxq dza dy
(1 — a2) 0 0
= det| O (1 — a2) 0
0 0 1
— (1-a%)”. (3.7)
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3.2. Bivariate gamma type I distribution

Performing this transformation and Jacobian in (3.7) on (8.6) leads to:

_ CL2 n & a2k:
f(z1,22,y) = F?T%F(n 2 1) g (z122)" Tty oy — 1)*
k=0 \

X /tz("+k) exp (—t(z1 + 22)y) W (t) dt. (3.8)
R+

To obtain the pdf of (Z1,Z2) and using Result C.26 and Result C.29, it follows that:

fz1,22) = [ f(z1,22,9)dy
/

< 21 — a2 n oo a2k 3
— / ( ) : (le2>n+k 1yn+k(y _ l)k

X /tQ(”Jrk) exp (—t(z1 + z2)y) W (t) dtdy

_ 2i—a?) — a?* ntk—1 [ 12(n
~ T'(n)l(n—1) ];] (k!)g(zwz) +k /t (n+k)

R+
oo

X/y"““(y — D exp (—t(z1 + 22)y) dyW (t) dt
1

21 —a?)" N sk —1)kte
-~ TI'(n)I(n— 1) Z (k:l) (2122) k- Z ( ) (21 + 2g)thtptl

« /tn%*p*lr (n+k+p+ L t(z1 + 22)) W (8) dt. (3.9)
R+

The pdf of (X1, X2) is given by:

1 2 T T2
—(—— 2 ) 1
f(xlva) (1_a2> f(l_a2’1_a2> (3 O)
Therefore from (3.10) and (3.9), (X1, X2) has the following bivariate gamma type I pdf:
1 —a?) & a® \" nk—1
f(wy,22) = n—l Z;) k:' <1_ ) (z122)

xz( ) Y fx;ﬁ);pﬂ

X /t”*’HHF <n+k+p+ 1,

R+

1_#&(@1 +x2)> W (t) dt

where x1,x9 > 0. [ ]

Two special cases of the pdf for the bivariate gamma type I distribution (3.3) from the complex matrix variate
elliptical distribution is of interest, namely the complex matrix variate normal (1.5) and the complex matrix

variate ¢ (1.6) distributions as underlying models for H.
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3.2. Bivariate gamma type I distribution

Corollary 3.1 By choosing W (t) as the dirac delta function (1.5), (8.8) simplifies to:

21-a) X1 a® \"* 1
fno’r‘mal($17$2) - F(’I’L)F(’I’L — 1) Z (k')Q (1 — CL2) (x1$2) T
N A e

1
xT' (n—i—k-ﬁ-p—kl,l_—aQ(xl +x2)> (3.11)

where x1, 2 > 0, which reflects the result of Xu et. al. (2009).

Corollary 3.2 By choosing W (t) as the t distribution weight (1.6), by using Result C.28, (3.3) simplifies to:

t 5 s
/t"+k_p_1F (n + k +p+ ]_7 m(xl + LL'Q)) (2) t5_1 exp (_t%> dt
R+
D '
= i [t () (w ke o+
R+

n+k
i (522) R (5 4 oan 4 2k)

1—a?

N T ont2k
(§+n+k—p=1) (552 +34)

><2F1<1§+2n+2k—+n+k: p,ﬁ). (3.12)
1—a? 2
where o F (+) denotes the Gauss hypergeometric function (see Result C.15). Substituting (3.12) into (3.3) leaves:
21 —a?) < 1 a2 \" k1
Jlene) = Form -1 g e (1 —2 ) (@)
k
k k+p (1 — a2)p
X Z ( D ) (=1) (21 4 @) th+pF1

n+k 1
0t () T (% 4 2m 4 2k)

1—a?

Liont2k
(5+n+k-p—1) (5355 +5)]

X o (1 §+2n+2k D btk p,ﬁ)

a® T (% + 2n + 2k)

) S
~ T(n)(n—1)T (25) — a2)n—2k Z
ok
X (z122)" Z ( ) (—1)F*r

oF <1 s+2n+2k 5 +m+k—p; I””-l— )
(3.13)

X
£ +2n+2k
(5 +ntk-p-1) (555 +5)’

1/

where x1,x2 > 0 and < 1.

zl+172
T ts

In the figures below pdfs (3.11) and (3.13) are illustrated for arbitrary parameters.
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3.2. Bivariate gamma type I distribution

Figure 3.2 Pdf (3.11) with contourplots for n =5 and a = 0.25,0.5,0.75 (fltr)

Figure 3.3 Pdf (3.11) with contourplots for a = 0.5 and n = 4,5,6 (fltr)

Figure 3.4 Pdf (3.13) with contourplots for n = 5,v = 10 and a = 0.25,0.5,0.75 (fltr)
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3.2. Bivariate gamma type I distribution

Figure 3.5 Pdf (3.13) with contourplots for a = 0.5,v = 10 and n = 4,5,6 (fltr)

From these figures, the following observations are made:

e It is observed from Figures 3.2 and 3.4 that when a approaches 1, the pdf becomes more dense; i.e. the

variables become more concentrated.
e From Figure 3.3 and Figure 3.5, see that the underlying ¢ case, in comparison to the normal distribution,
exhibits fatter tails as expected.

3.2.2 Marginal distribution

The following theorem presents the pdf of the marginal distribution of X; and X5 when (X7, X3) has pdf (3.3).

Theorem 3.2 Suppose (X1, X2) follows a bivariate gamma type I distribution with pdf (3.3). The marginal
distribution of X1 is given by:

re) = e S () X ()t -er

k=0 p=0

o0 n+k—1
n+k—p—1 (.’511'2) ¢
<[ [ (r ke a1

R+ 0

where x1 >0 andn >0, 0 < a? < 1.
Proof. Since

f(z1) = 7f($1,$2)d$2
0

the expression (3.14) follows immediately. [

Remark 3.1 A similar expression as in (3.14) holds for X,.

3.2.3 Product moment

In this section the product moment of the bivariate gamma type I distribution with pdf (3.3) is derived.
Subsequently the expression of the product moment is obtained for both underlying complex matrix variate

normal- and ¢ cases, and the correlation coefficient is investigated.
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Remark 3.2 The product moment of (X1, Xa) with pdf (3.3) is given by:
E(X{X9) = (1-a®) " B (7]2¢) (3.15)

since from (3.9):

E(Z{Zg) = //z{zgf(zl,zg)dzldzz

RtR+
T2 d
= // <1 — a2) < a2> fXLXQ(ZI,'l,I'Q)dZEleEQ
—(r+d r
= (1 — (J,2) (r+d) xlngxl,xz (Qﬁl,xg)d(lﬁld(lﬁg

RtR+

= (1-a) """ E(xxY).

From (8.8) and using Result C.22, see that:

E(Z{Z§) = ///Z{ng(zlaZQay)dZ1d22dy

R+R+ 1

n 20 42k
[ [t S e

0

x/tQ("““) exp {—ty(z1 + 22)} W (1) dtdz1dzady

R+
21 —a®)" X a? /// ko1
= T exp {—tyz1}dz
I'(n)I'(n—1) é s
x [ 23R axp { —tyze } dzgy™ R (y — DEEOEOW (1) dtdy
R+
o 21—a?)n °° // r4+n+ k)T (d+n+k)
- I'(n)'(n—1) (ty) 7”+n+k (ty)d—s-n—s-k
xy"*k(y -1 t“"*’“)vv( t) dtdy
_ 2(1 —a? OO //t—7 —n—k—d—n—k+2n+2k
I'(n)['(n — 1
F(r+n+k) (d+n+k) etk &
X gtk ydrntk (y = 1)"W (t) didy

2(1—a®)" < o
= T Z Tk C(r+n+k)T(d+n+ k)
k=0

X/tf(r+d)w (t) dt/yf(rerJrnJrk) (y _ 1)kdy.
1

R+
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3.2. Bivariate gamma type I distribution

Further using Result C.27 and the definition of the Pochhammer symbol (see Result C.9), see that:

— a2\)" e a2k
B(z{Z5) = F?SF(H 2 5 kz:% Gl BT+ E)

x/ t= DWW () dtB (r+d+n—1,k+1)
R+

_ 26(r+d)(1—a?)" o 2k . )
- I'(n)'(n—1) kzzo(k!)QF( +n+k)(d+n+k)

I'r+d+n—-1)T'(k+1)
F(r+d+n+k)
_ 26(r+d)(1—a®)"T (r+n)T (d+n) o= a?*
I'(n)I'(n—1) kZ:O k!
Fr+n+k)I(d+n+k) I'(r+d+n)k!
T(r+n)T'(d+n) (7’+d+n71) (r+d+n+k)
 26(r+d)(1—=a*)"T (r+n)T(d+n)
N 'm)I'(n—1)(r+d+n—-1) Z k!
Fr+n+k)I(d+n+k) T(r +d+n)
L(r+n)T(d+n) (T+d+n+k)
26(r +d)(1 —a®)™T (r +n)T(d+n) io: (r+n)k(d+n)k
P(n)I'(n—1)(r+d+n—-1) El (r+d+n),
)

2k +d)(1—a?)" T(n+1)0(n + d) | |
= TTWrm—n) o hdredemed) (3.16)

where B (+,-) is the beta function (see Result C.8), and (provided it exists):

() = / W (8) dt. (3.17)

R+

Next, the product moment for the underlying normal- and ¢ cases are presented.

Corollary 3.3 The product moment of (X1, Xs) with pdf (3.11) is given by:

2(1 — a?)" T4+ T(n + r)T'(n + d)

B(XXS) = T(m)(n—1) (n+r+d—1)

oFy(r,d;7 + d +n;a?) (3.18)

since, using (1.5):

Kr+d) = /t*(”d)é(t—l)dt

R+

_ / (2 + 1)~ §(2)da

R+
= 1

Corollary 3.4 The product moment of (X1, Xz) with pdf (3.13) is given by:

. 20— )”*‘”” (2)T+d1" (2= (r+d))L(n+rI(n+d)
B(XIXE) = T(n)I(n— 1T (%) (n+r+d—1) (3:.19)

X 2F1(7“,d,7‘+d—|—n,a )
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since using (1.6) and Result C.22:

wle

K(r+mn) = /t(Ter)—l(F()z t2 Lexp (—t%) dt
R+

By using the expression for the product moment in (3.18) and (3.19), the correlation coefficient can now be
evaluated using Result C.30. In Figure 3.6 this correlation coefficient is graphed for arbitrary parameter values
(n =3, v=15, v=30) against a? to illustrate the effect of a® on the correlation between X; and X,. It is

observed that the correlation under the ¢ model tends to that of the normal model when v increases.

02r

0.0 02 0.4 0.6 0.8 1.0

tLv=h ===== t.v=15 «-+-+-+ Normal

Figure 3.6 Correlation coefficient (C.30) for normal and ¢ cases, for increasing a?

Corollary 3.5 The moment generating function (mgf) of (X1, X2) with pdf (3.8) is given by:

= T3\ . ai26() (1 — @)™ D(n+i)D(n+j —i
M(%ﬂh)z;%;<‘Z>Q§Q%_121S€T)L();(n)1) A —En)f;—i_lg )2F1(i7j—i;j+n;a2)

where n > 0, 0 < a? < 1, and with k(j) as defined in (3.17).
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3.3. Bivariate Weibullised gamma type I distribution

Proof. Substituting (3.15) and (3.16) into the definition of the mgf, together with Result C.29, yield:

M(q1,q2) = E(exp(q1 X1+ qX2))
= B ZF(Q1X1+Q2X2V
j=0""

o~ L (Y i it i g
= ij@)qlq% E(X1X37)
T i=0

j:(]'7 7
SN i+(j—1) i i
= S (N)dd (- B (21247
j=0"" i=0
21 <]) e  26(5) (1 — a2)"
i j—i 2\J J
= D 2 (;)dd T (=) To—r
jzoj!izo i F'(n)I'(n—1)
Pn+)T(n+j—1) o 2
F .
(n+]_1) 2 1(Za] Z,]-’-TL,G)
L (7Y ei260) (1 — a?)m
- ZTZ(z‘)qH T(n)C(n— 1)
=07 =0
Pn+)T(n+j7—1) .
F;
(ETE 1(6,§ — 4§ +n;a”)
which concludes the proof. [ |

3.3 Bivariate Weibullised gamma type I distribution

The bivariate Nakagami distribution has been widely studied and has several applications in wireless communi-
cations (see de Souza and Yacoub (2008) and references therein). A bivariate Nakagami type I distribution that
emanates from this bivariate gamma type I distribution is thus of particular interest. A bivariate Weibullised
gamma type I distribution (see also Chen et. al. (2014)) is proposed, which originates from the bivariate gamma

type I distribution (see (3.3)), of which the bivariate Nakagami type I distribution is a special case.

Theorem 3.3 Suppose that (X1, X2) is bivariate gamma type I distributed with pdf (3.8). The pdf of (R1, Rs),
where R; = ( )ﬁ_l is given by:

k  Bin+B1k—1 Bynt+kBy—1

k+ a2)rt1
fri,re) = 26 62 ZZ = 1’(1 i prth-p—l o L1 5
7 k 0p=0 1—a? (rfl + ,}n§2>n+k+p+1
t
X /tn+k*P71F <TL +k +p+ 17 = (nrfl + nrgz)) W (t) dt (320)

R+

forri,re >0, m, 1,85 >0 and 0 < a® < 1. This distribution is called a bivariate Weibullised gamma type I

distribution.
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|H

1

U and Ry = (32)72 with Jacobian (see Result C.1):

o

Proof. Consider the transformations Ry = (XT)

= J($1,$2 - 7"177"2)

dz,  dzy
_ d d
= detl
drq drg
ﬂlnrﬁl Yo
- det ﬁ 1
0 Bonry?

= ﬂIBanrfl_lrgrl.

The pdf of (R1, R2) is obtained from (3.3):

1—a s a2 \* ntk—1
flrur) = n—l Z k' (1—a2> (nritnr?)

O

« Z ( ) k+p (1- a2)p

(m"l —|—m" 2)nthktpt+l

t
X/t’ﬂJrk*Ple <n+k‘+p+1,l_—a2(nr1 +TL7’ )) ()dtﬂ B ’fl2 B1—-1 52 1

R+
2/31 8, 1 a? Bin+B,k—1 BontkBy—1 k ftp ke
= -1 p,,n+k—p—1
I'(n)T'(n—1) Z (k)2 \1—a? ™ 2 Z » (=1)""Pn
k=0 =
1 _ A2\p+1 "
X ( a®) /tn+k—p—1F n+k+p+1, (nrl +nry?) | W(t)dt
T S
R+
which leaves the final result. .

Corollary 3.6 By choosing W (t) as the dirac delta function (1.5), (8.20) simplifies to:

k+p a2)P+1 2 \*k
2ﬁ1ﬁ2 ( ¥ —a®) ntk—p—1 [ _@
fnormal(rlvr2> = TL _ 1 Z Z ) " ! 1-— G,2
k 0p=0
Bin+p1k—1, Bon+Bsk—1
(P 4 P2 yntktp l1-a

where r1,19 > 0.
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3. BIVARIATE GAMMA TYPE I DISTRIBUTIONS
3.3. Bivariate Weibullised gamma type I distribution

Corollary 3.7 By choosing W (t) as the t distribution weight (1.6), and by using Result C.28, (3.20) simplifies

to:

(g + m@?)) Y

t
/tn-i-k—]?—ll—\ (n 4 k +p+ 17 >
1—a
R+

e o, t
= (2) /t5+n+k*p*2 exp (—t%) r (n +k+p+1, ﬁ(nrfl +nr22)) dt
—a

n+k+p+1
) P(¥+n+k—p—1+n+k+p+1)

3 (nrfl +n7‘§2 )
v ) 2 1—a?
2
(nr{tnr?)

g4+n+k—p—14+nt+k+p+1
(5+n+k-—p—1) <T+§)

14 v
F(1,s k—p—1 k 1= k—p—141——2——
X 2P (Lgtnth—pldnthtptliotnth-—p-1+L 5 ts—

1—a?

B1 B2 ntktptl
(ﬂliz—)) T (% +2n + 2k)

- ¥ +42n+2k
nrPl fnel? 2
(5 +n+h-p—1) (Lt 1 4)
v v 5
1—a? + 2
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3.3. Bivariate Weibullised gamma type I distribution

Substituting (3.22) into (3.20) leaves:

fi (r1,72) 2818, (%)% iz (2)(*1)k+p(1 —a?)Ptt nk—p—1 < a? >k
t 1,72 = D)
L(n)l(n—1)T (%) == (k!)2 1—a?
N rﬂ2 n+k+p+1
POk, BontkB; 1 <%) T (¥ + 2n + 2k)
B1 Ba\ntk 1 5 +2n+2k
+ +k+p+ r o
(i + %) (§+n+k—p—1)<7( At e >
% o [ 1,2 4 2n 4+ 2k; 2 +n+k P ————
2 (n nry4nr, ) v
1—a? + 2
28,5, (%)% ii (l;)(,l)kﬂa(l _ a2)p+1nn+k7p71 ( a2 >k
L(n)l(n—1)T (%) == (k!)? 1—a?

bl n+k+p+1
P oty <1 S (n ) T (% + 2n + 2)

B1 Bo\ntk 1 5 +2n+2k
T+ FhApt nrfl 2
(i +m2) (%+n+k—p—1)((—111%2—)+§>
X oF 1,z+2n+2k;z+n+k—p;#
2 2 (nr]1+n7‘22) + v
1—a? 2
v\ 5 k k\(_1\k+
2818, (5)2 iz (p)( _1) pn2n+2k (az)k
D(n)l(n—1)(1—a2)"T (%) == (k!)2
BBk Ban k1 I (§ +2n + 2k)
7"1 T2 L 2+2n+2k
(X +n+k-—p—1) ((—lﬁ%Z—)Jr )
x oF) [ 1,2 4 20+ 2%; = +n+k P ——2—— (3.23)
2 (nr 1+nr22)+v
1 a?
where r1,19 > 0 and e %32 < 1.
(nrl +nr2 )+E
1—a? 2

Remark 3.3 When 8, = 85 = 2, then (3.20) has the pdf of a bivariate Nakagami type I distribution:

(=1)ktP /g2 NP +h—p—1 2ypi1_(rra)
— n —p— _ p
flrire) = ];);) k:')2 (1 _az) n (1-a) (2 4 r2)n kel
t
X /thrkfp*lF (n +k4+p+1, T (nrg + nr%)) W (t)dt (3.24)

R+
forri,m9 >0, n>0,0<a? <1. For the special cases under consideration, observe the following:

i) Substituting (1.5) into (3.24), a bivariate Nakagami distribution has pdf:

1)k+p a2 k
fnormal(ThTQ) = n — 1 Z Z k")2 <1 — a2) TLnJrkipil(l — a2)p+1
k 0 p=0
(T1T2)2n+2k 1 1 ) )
s (7‘% + r%)n-&-k-ﬁ-p-ﬁ-lr n+k+ptl, 1 — g2 (nrl + TLTQ) (3'25)

where r1,19 > 0.
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3.3. Bivariate Weibullised gamma type I distribution

i) Substituting (1.6) into (3.24), see from (8.23) follows a bivariate Nakagami t distribution with pdf:
—1)ktp
)Y (a2)" 022D (2 + 20 + 2k)

S
fe(ri,me) = = e
T - D (- T (§) 22" (k)2
2n+2k—1
x (r172) (2 r2) Tiontok
(5+n+k-p-1) (#Jf%)
B, vong ok k- p; 2 3.26
Xof | Lg Tt 2n o rnt k=P oy, (3.26)
1—a? + 2
2 <1.

3

r2)
+3

(nr2+
2

1—a

where 1,79 > 0 and
In the following figures the natures of pdfs (3.25) and (3.26) are illustrated for arbitrary parameters.

Figure 3.8 Pdf (3.21) with contourplots for n =5, 5; =2, a = 0.5, and 8, = 2,2.5,3 (fltr)
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3.4. Illustrative application
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Figure 3.9 Pdf (3.26) with contourplots for n =5, v =5, and a = 0.25,0.5,0.75 (fltr)

Figure 3.10 Pdf (3.23) with contourplots for n =5, v =5, 8; =2, a = 0.5, and 8, = 2,2.5,3 (fltr)

From these figures, the following observations are made:

e It is observed from Figures 3.7 and 3.9 that when a approaches 1, the pdf becomes more dense; i.e. the

variables become more concentrated.

e From Figure 3.8 and Figure 3.10, see that as 8, increase, the corresponding variable Rs becomes more

dense.

e From Figures 3.7 and 3.9, the effect of the underlying ¢ distribution is evident as the corresponding pdf
(3.26) exhibits fatter tails than that of its normal counterpart (3.25).
3.4 Illustrative application

In this section, applications of results in this chapter are discussed. Let H be the matrix for MIMO system
with two transmit antennas, where H ~ CE,, 5(0,1,®3, h) (see (1.3)) and is subject to Rayleigh type fading
(see (1.10)).
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3. BIVARIATE GAMMA TYPE I DISTRIBUTIONS
3.4. Illustrative application

3.4.1 Outage probability

To investigate the outage probability of a fading channel subject to the bivariate gamma type I distribution
(3.3), the cdf of the maximum of (X7, X5) is of interest (see (1.25)). The cdf of max(X;, X32) is given by:

F(z) F(lza2)

P (max(z1,22) < 2).

Using (3.8) and Result C.23, it follows that:

P(z < z,20<z,y) = //f(zlvz%y)dzldz2

-l e

0

% /tQ("-‘rk) exp (_ﬁy<z1 + 2'2)) w (t) dt}dzldz2
R+

l—a = a?
_ n+/€ _
- nflzkmy Ok
=0

z

X/tz("'*k)/z{”k*l exp (—tyz1) dzl/zgwrk*l exp (—tyza) dzoWV (t) dt
0

X / t2<n+k)(ty)_2("+k)72(n + ks ty2)W (t) dt

R+
1 - (1 e a
= (n+k) .
I'(n— 1 Z (k)2 -1 / (n+ k;tyz)W (1) dt. (3.27)
o A
Subsequently, F' (z) can be obtained from (3.27) as
F(Z) = /P(Zl < 2,29 < Z7y)dy
1
- 2-d) OO (k) (y — 1)kA2

~ T(n)T'(n—1) //y 1)y (n + ks tyz)W (t) dtdy. (3.28)

1 R+

Remark 3.4 By choosing W (t) as the dirac delta function (1.5), (5.28) simplifies to:

_a2y 2 g2k F
F(z)= F?T(L:;F(n) ) ];) (k!)Q/y_(n+k) (y — 1)*y%(n + k; yz)dy. (3.29)

1
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3. BIVARIATE GAMMA TYPE I DISTRIBUTIONS
3.4. Illustrative application

Remark 3.5 By choosing W (t) as the t distribution weight (1.6), (3.28) simplifies to:

= 2(1 _ (J,Q)" S a®* i —(n+k 02 . (%)% z—1 v
F(z) = I'(n)[(n—1) kZ:o (k!)Ql/R[y ( +k)(y —1)ky2(n + k:,tyz)F (%)t exp (—t§> dtdy
_ 2(1—@2)n <%)% 0 a2k i : ) . v
" R DEE eV [ ke (<o) a0

Remark 3.6 Different expressions and methods are available (see Gradshteyn and Rhyzik (2007), eq. 3.383.8
and 8.851.2) for simplified expressions (3.29) and (3.30). However, due to cumbersome computational execu-

tion, the approach in this thesis is to utilise a direct integration of above expressions.

For arbitrary parameters n = 3 and a = 0.5, a simulation is conducted to validate the analytical results.
The results and accompanying figures are illustrated using Mathematica. Figure 3.11 illustrates the outage
probability of the SNR for MIMO communications systems with 2 transmitters and n = 3 receivers with
underlying complex matrix variate ¢ distribution (see (3.30)). The code for this simulation can be found in the
Appendix. The analytical results match the simulated results closely in Figure 3.11; this is supported by Table
3.1 indicating selected values of the outage probability for the analytical- and simulation cases. Particularly,
n =>5and a = 0.5.

Outage t,v=15 Normal

threshold || Analytical | Simulation || Analytical | Simulation
—4 0.0432226 0.0434 0.0432296 0.0473

-2 0.105532 0.1003 0.102573 0.1045

0 0.230001 0.2247 0.228415 0.2271

2 0.433844 0.4381 0.453678 0.4395

4 0.678336 0.7035 0.740119 0.725

6 0.870862 0.9056 0.939678 0.937

8 0.963193 0.9881 0.994855 0.9955

Table 3.1 Analytical ((3.30) and (3.29)) for v = 15 and simulated values

t, v=15 Normal

Figure 3.11 Analytical ((3.30) and (3.29)) for v = 15, and simulated values
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3.4. Illustrative application

Figures 3.12 and 3.13 illustrate the outage probability results for the underlying complex matrix variate ¢
distribution together with underlying complex matrix variate normal distribution for the case of 2 transmitters
and 3 receivers with a = 0.5. The different behaviour for small and large outage thresholds is noteworthy. This
observation provides significant insight to the theoretical contribution of the candidacy of the complex matrix
variate ¢ distribution in comparison to the complex matrix variate normal case. Note that Figure 3.13 is a

magnified version of Figure 3.12 over a subset of the domain.

0.100¢
0.050 F

0.010¢

t,wsh eeeeeen t,v=18 ===-- MNarmal

Figure 3.13 (3.30) and (3.29) against the output threshold, for v = 5,15, for a subset of z

3.4.2 EGC diversity

The EGC diversity (see (1.26)) is a useful performance measure as well; in particular, that of the mean of the
EGC diversity. In this section, an expression for the EGC diversity is derived for a communications system
subject to a bivariate fading model with pdf (3.24). The d** moment of the EGC diversity output SNR is
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3.4. Illustrative application

evaluated using (3.9), (3.17), Result C.27, and Result C.29 as:
)d
d
) R1 + R2)2d]

/—\

Hg =

(&
-G
<

Es
2N,

O

)

(r1 + 7”2)2d f(ri,ra)dridry

[\]
2|

R+R+

B, \? 2d 9
5 ) ( )//rir%d *f(r1,m2)dridrs. (3.31)
R+R+

&

s
Using (3.10), (3.9), and (3.8), (3.31) is solved using the following:

f(ThTQ) = f('nﬂ"%,nT%)|J(LE1,.§C2~>T1,T‘2)|
1) nr? nra
- o\1-a f (1—a?)" (1-a?) [ J (@1, 29 — 71,72))|
nri nr3
e 7

- 4n2r1T2< >2/f< 1722 T% ),y>d (3.32)

Substituting (3.32) into (3.31) leaves:

B, \¢ 2 og
<2N> Z( s )//7"17”2d *fRy Ry (T1,72)dr1dro

Hag =
5=0 R+R+
YA ? [ E, di 24\ 2(1—a?)" i a2k
- 1—a2) \2N,) &\ s )T —1) & &)
2d— nr? nr3 L +k k
s T —1
// ((1—a2> : <1—a2>> /y =1
R+R+ 1
2 2
t2(n+k) —t I nrs t dtdryd
XR[ exp Yy i—a?) + ) W (t) riradtdridre
= B(2d;s,k) / t2(ntk) / I(t,y)y" ™ (y — )rdy | W(t)dt (3.33)
R+ 1
where o o
1 \°/E 2d \ 2(1-a?)" X a2
. _ 2 s
B(2d; s, k) = 4n (1_a2) <2N0) 2 s r(n)r(n_1)z(m)2 (3:34)
s=0 k=0
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3.4. Illustrative application

and, using Result C.22:

I(t,y)

2 2 n+k—1
s+1,2d—s+1 nry % nray
R 1-a) (1-a)

RtR+

nr? nr2
X exp (ty <(1 — 22) + {a _22))> dridry

nr2 k=l tynra
2d—s+1 2 2
- r exp | ——>—=~ | dry
R[? ((1—a2>> ( <1—a2>)

41 nr? kel tynri
S

— d
/ ((1—a2>) eXp( <1—a2>> "
1/ (1-a?
4 n
3

—a?)\ 2! s
€ >) (ty)l r(3+n+k)

d—S+1+ntk—1 2

S+n+k D)

d—%+1 41
1(1 _ a2)d+2 1 ’ Iy 1
4 n n (ty)d+2n+2k—1

< (a= S bt k)0 (S ath).

n

Substituting (3.34) and (3.35) into (3.33), and using (3.17) and Result C.27:

Ha

n n

33(261)(1—@2)#2 (1)‘1%“ (lfﬂ

xr(d—§+n+k)r(§+n+k>

x /t“”*’“) (/éz’);%dy) W (t) dt

R+ 1

iB(Qd)(l_CLQ)d'i'Q (l>d—§+1 (%>%+1

n

xF(d—§+n+kz)F<§+n+k>

—d (?J—l)k
x/t W(t)dtx/yd+n+kdy
R+ 1
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3.4. Illustrative application

Finally, substituting (3.34) into (3.36) leaves:

il ) () SV ) dmn () () e

o0

Z S(1-a?) d”F(d—§+n+k)F(§+n+k)B(d+nfl,k+l)

1 9 E. d 2d 2d 2(1 _a2)n > a2k
= n%k(d) <m> <2No> Z( s ) L(n)I'(n—1) ,;) (k!)2

=0

1\ 45+ 1\ 5!
><(1 _ (L2)d+2 (_) (_)
n n

xr(d—§+n+k>r( +n+k: B(d+n—1,k+1)

2
2(1—a2)n+d/€(n> E, d2d 9 o dfg . 5
S5 5 00

0

F(d—§+n+k)r( +n+k)B(d+n 1,E+1)

which is the final result for pu,.

Remark 3.7 By choosing W (t) as the dirac delta function (1.5), (5.87) simplifies to:

e = s e () 55 (2) S

s=0 k=0

xr(d—§+n+k)r(§+n+k)B(d+n—1,k+1).

Remark 3.8 By choosing W (t) as the t distribution weight (3.87), (3.37) simplifies to:

21— a) ()T (8 —d) [ B\ A (20 & a2
e RN O (2N>Z<)¥W

s=0

—+n+k> Bld+n—1,k+1)

since from (3.17) and (1.6):

(3.37)

(3.38)

(3.39)

In the following figures the behaviour of the EGC diversity ((3.38) and (3.39)) is illustrated for arbitrary

parameters. In particular, the case d = 1, the mean EGC diversity, is of interest (see (1.26)).
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Average output SNR
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o e
Al e
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normal, a=0.2 ----- normal, a=0.5
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Figure 3.14 (3.38) and (3.39) against a, for different values of n, v =5

Average output SNR
151

Figure 3.15 (3.38) and (3.39) against n, for different values of a, v =5

Average output SNR

B L
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af PR L
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s

! n
2 3 4 5
normal, a=02 =-=-- normal, a=0.5
-------- t,a=02 «=-=-= t a=05

Figure 3.16 (3.38) and (3.39) against a, for different values of n, v =15
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3.5. Summary of results and conclusion

Average output SNR

104,

[~

@
T

Figure 3.17 (3.38) and (3.39) against n, for different values of a, v = 15

It is observed that correlation between transmitters decreases the mean EGC diversity severely. Even so, for
the underlying ¢ distribution, the EGC diversity is higher than that of the normal case. Furthermore for both

cases, as the number of receivers increase the mean EGC diversity increases correspondingly.

3.5 Summary of results and conclusion

In this section, a summary of theoretical results in this chapter is provided for the convenience of the reader.
(X1, X2) denotes the bivariate gamma type I distribution which originates from the elliptical class (see (3.3)),

and (Ry, Ry) denotes the corresponding bivariate Weibullised gamma type distribution emanating from (R, R2).

Pdf

| Elliptical ‘ Normal | t ‘
(X1, X2) (3.3) (3.11) (3.13)
(R1, R2) (3.20) (3.21) (3.23)
(R1,Rs) for B, = 5, =2 (3.24) (3.25) (3.26)

Other results

Outage probability of (X7, Xs) | (3.28) (3.29) (3.30)
EGC diversity under (Ry, R2) | (3.37) (3.38) (3.39)

Table 3.2 Summary of derived results relating to this chapter

In addition, the product moment of (X7, X3) with pdf (3.3) is also derived, see (3.15).

In this chapter new bivariate gamma- and bivariate Weibullised gamma type distributions have been presented
which originated from the diagonal elements of a complex inverse Wishart type distribution. Specifically, the
pdf, cdf, and product moments of the bivariate gamma type distribution have been derived. Since the complex
elliptical class constitutes a flexible- and broad class of distributions, this chapter provides some insight in the
possible usefulness for engineering applications by this assumption. The results have been applied to evaluate
the outage probability of a MIMO system with two transmit antennas with underlying models the complex

matrix variate normal- and ¢ case.
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Chapter 4

Bivariate gamma type 1I distributions
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4.1 Introduction

In this chapter, a generalisation of a bivariate gamma distribution proposed by Nakagami (1960) is presented;
this generalised bivariate gamma distribution emanates from exponential type random variables which in turn
emanates from the complex elliptical class (see (1.4)). This generalised bivariate gamma distribution is called
a bivariate gamma type II distribution, and contains the bivariate gamma distribution of Reig et. al. (2002)
as a special case. This bivariate gamma type II distribution is studied via its pdf, product moment, and cdf.
The normal- and ¢ distribution are investigated as underlying models for this proposed bivariate gamma type
I distribution. Notably, this bivariate gamma type II distribution has gamma type marginals, of which the
gamma distribution is a special case of (see Result C.2). A bivariate noncentral gamma type II distribution
is also proposed, stemming from this bivariate gamma type II distribution and based on the methodology
of Ferreira et. al. (2016). From this bivariate gamma type II distribution, a bivariate Weibullised gamma

type II distribution is proposed and studied. The pdf, Laplace transform, product moment, and cdf receives
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4.2. Bivariate gamma type II distribution

attention. Notably, under the normal assumption and for the case §; = [y = 2, this bivariate Weibullised
gamma type II distribution reduces to the bivariate Nakagami distribution as studied by Reig et. al. (2002)
and Pibongungon (2005). The bivariate Nakagami distribution is well known in the communiations systems
domain and is popular to describe the signal behaviour of fading channels. Thus, to consider a bivariate
Weibullised gamma type distribution which acts as an encompassive generalisation of this bivariate Nakagami
distribution may prove useful within the communications systems framework. In particular, the bivariate
gamma type II distribution is considered in an application context where outage probability (see (1.25)) of a

fading channel operating under such a bivariate gamma type II distribution is evaluated.

This chapter’s contributions can be summarised as follows:

1. A bivariate gamma type II distribution with gamma type marginals, and some of its statistical properties;
2. A bivariate noncentral gamma type IT distribution, based on methodology proposed by Ferreira et. al. (2016);

3. A bivariate Weibullised gamma type II distribution and some of its statistical properties (containing the

bivariate Nakagami distribution of Reig et. al. (2002) as a special case); and

4. Comparison of the new models in terms of the performance measure, outage probability.

The figure below visualise the main gist of theoretical derivations in this chapter.

Yk, Yh exponential type variables

(U1, U,) built from sums of exponential type
variables: bivariate gamma type Il

(U, Up)" : bivariate noncentral gamma type 11

(W1, W>) : bivariate Weibullised gamma type 1l

Figure 4.1 Outline of theoretical derivations in this chapter

4.2 Bivariate gamma type II distribution

In this section, a bivariate gamma type II distribution is constructed and studied, following the univariate

description in Chapter 1. Following a similar approach as in Reig et. al. (2002), suppose:

mi
U = Y Y
k=1
ma mao
Uy = Uxp+Uyp = Y YV+ Y Y,
h:]. h:m1+1
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4.2. Bivariate gamma type II distribution

where Yy, (k=1,....,mq) and Y, (h=1,...,mz) (ma > m;y) are independent exponential type random variables

(see (1.17)). Within the context of communications systems, m; and my act as parameters describing the fading

of the transmitted signal between transmitter and receiver (see Reig et. al. (2002), Pibongungon (2005), and

references therein). Thus:

Yy

Exp (Q1,W ()

~ with Y|t
Y, ~ Ezp(Q2,W()) with Y3 |t
Ur ~ Gamma(Q,mi,W()) with Upt
Uy ~ Gamma(Q,me, W(-)) with Uslt

The distribution of (Uy, Us) is of particular interest.

4.2.1 Pdf

The Laplace transform of (Uy, Us) is given by:

E (81, 82)

,C (81, 82|t>

since Uy and Us, is independent of Usy,.

Luy, (s2]t)

£U11U2a (317 82|t> 'CUzb

From (1.18), see that:

1

~  Exp();

~  Exp(Qa);

~  Gamma (21, m1) ; and
~  Gamma (2, m2) .

(4.1)

(1 + QQt_lsg)mz_ml

(Qot—1)memm™ (52 + 921_71)

and the Laplace transform of (Uy, Us,|t) is given by (see Result C.16):

Lo (rslt) = (@)™ (7)™ (1

X [<S1 + —(Qlt*1 P

)—m1

—p
1

(s2]t) (4.2)
! — (4.3)

1 B p —m

T p>) @ a2 Y

- >> ( G
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4. BIVARIATE GAMMA TYPE II DISTRIBUTIONS
4.2. Bivariate gamma type II distribution

where p represents the correlation coefficient between variables Uy and Us, (see Result C.30). Substituting
(4.3) and (4.4) into (4.2) results in:

—m1 —mo - 1 —(m2—ma1)
L(s1,820t) = (Ut (Qat™) (1—p)™ {52 + m} (4.5)
1 1 p o
x {(51 N m) (52 T —p)) S (@) () (A —p2>} '
Substituting (4.5) in (4.1) leaves:
S —(ma2—ma)
L(s1,s2) = /0 (Qlt—l)*ml (QQt—1)7m2 (1-p)~™ [52 + #} (4.6)

: [(Sl " m> <82 - (Qgt—1)1(1 - p)> O (Q;_l) = pg)] w (t) dt.

This Laplace transform (4.6) resembles a bivariate gamma type II distribution with parameters my, ma, 21, Qg >
0, -1 <p <1, and my > m;j.

Remark 4.1 By choosing W (t) as the dirac delta function (1.5), (4.6) reflects the result of Reig et. al. (2002):

—(ma—my)
—mi —m —m 1
Llows) = @)™ @) 0™ st 7]

X KSl ' m) <82 e (11— p)> RS (q —p?) E

where m1,ms, 01,09 >0, =1 < p <1, and mg > my.

The following lemma is useful for simplifying (4.6), in order to derive the pdf of (U, Us).

Lemma 4.2.1 In order to obtain the pdf of (Uy,Us), consider the following term from (4.5) by using Result
C.29:

[(81 ' m> <52 " (9215*1)1(1 - p)) C(ut ) (Q;*) (1- pQ)] E

®
_ - (ml)k P ' :
];) k! ((Qltl)(QQtl)(102)> [(31+m) (32+m)r

where (a), denotes the Pochhammer symbol (see Result C.9). Thus, the Laplace transform in (4.5) can be

written in series form as:

- - B 1 —(m2—ma1)
Llsrsalt) = ()™ () ™ (1 -p) ™ {+W]
1 1 o
) [( " m) ( T - p>> () (925—9 (1=p?)
—(m2—ma1)
= (™) () T A-p)™ { + W]
1 1 T (ma)
|+ mema=) (@) 2w
k 1
) ((mrl)(@ﬁ-l)(l—pz)) [(s1+ o

k
1 1
—(ﬂlt—l)(l—m) (52 - —(ta—l)(l—mﬂ
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4.2. Bivariate gamma type II distribution

By substituting (4.7) into (4.1), the pdf of the bivariate gamma type II distribution can be derived via an

inverse Laplace approach. This is done in the next theorem.

Theorem 4.1 If (Uy,Us) is distributed as bivariate gamma type IT with Laplace transform (4.6), then the pdf
of (U,Us) is given by:

mi1+k—1 mo+k—1
Uy 2 Uy Ug
F(m1+k)1“(m2+k)0 Q(1-p) Q01-p

— __tp ma+ma+2k
x 1Fy (mg my,mg + k; o (1p)UQ)t W(t) dt (48)

for uy,uz > 0, where my,ma, Q1,0 > 0, =1 < p < 1, ma > mq, and where 1F (-) denotes the confluent

hypergeometric function (see Result C.14). This distribution is called a bivariate gamma type II distribution.

Proof. From (4.1), see that by applying an inverse Laplace transform results in:

f(ul,u2)

0\8 0\8

//exp (s1ua + saug) L (s1, s2|t) durdus WV (t) dt
0 0
f (U1, (%) ‘t) w (t) dt. (49)

By considering (4.7), the pdf of (Uy,Us|t) is obtained as:

c+loo c+loo

1 1
f(ul,u2|t) = % / % / exp (51u1 + SgU2)£(81752|t) ds1dss
c—loo c—loo
= > e ) (@) . k
= (271 (Qat=1) (1= p?)
c+loo
ST AR (R B
omi ) TPV T 1 ) 51
c—loo
c+loo 1 —mi1—k 1 —(ma—my)
% exp (52u2) (SQ + —(Qgtfl) (1 — p)> |:82 + —92t1:| dsa
c—loo
— i (ml)k (Qlt_l)_ml (QQt_l)—mg (1 _ p)iml p k
= (t71) (Qa2t71) (1= p?)
xVi - Va. (4.10)
Consider from (4.10):
1 etloo 1 —mq—k
i = 5 exp (s1uy) <81 + m) dsy
c—loo
c+loo
- T [ eI (st e T
= T (ml T k) Dy exXp (S1u1 mi S1 (Qltfl) (1 — p) S1.
c—loo
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4.2. Bivariate gamma type II distribution

Using Result C.33 and letting y1 = s1 + W thus Z—gi =1, V§ can be solved as:

1—p)’
c+loo
Vv S / (s1un) T (ma +K) {51+ - Y
= —_—— X B ———————————
L T(my+k)2m J P \rtrRm T (1 p) o
c—loo
c+loo
-1 / exp (y1u1) ex —;u L(my +k)y ™ *d
~ T(mit k) 2mi P (Y1u1) €xp (1 —p) 1 1 Y Y1
c—loo
1 1 c+loo
= — - - _— r k)y M kg
w5 (CmEn ) STy
c—loo
1 1
= - - matk—1 4.11
rom o e ) v A
Also, consider from (4.10):
c+loo —mi—k —(ma—m1)
V; L / (s2u2) ( s2 + ! + ! d
= —_— X —eeeeeeeee
2 omi ) O PVREI 2T T (1 - p) 2T Oyt %2
c—loo
1 1 c+loo 1 —mq—k 1 —(ma2—m1)
= =—— r k — — dss.
Mo | oot (ot gy ) [ ] "
c—loo
Using Result C.34 and letting yo = so + m, thus %;LZ =1, V5 can be solved as:
1 1 c+loo 1 —mi—k 1 —(mg—my)
Vo = ——— r k —_ d
D = T | oo )<82+ <92t1><1—p>> [52+ WJ >
c—loo
1 1 c+loo 1 . p —(ma—my)
= —_— . T k) gy S d
T (matk) 27 l/ exp (y2u2) eXp( (Qut1) (1p)u2> (ma+k) ys I:y2 (Qat 1) (1p):| Y2
C—1L0O
1 1 LT k p S
- - - - T k) yTme— R d
T (et ) eXp( (Qgt_l)(lp)u2) 5 / exp (yau2) I' (ma+k) y3 [yz (Qgt_l)(lp):| Y2
c—loo
— 1 exp (+u2> u;nrl-k—l Fy <m2 —mq,mo + k; +u2) . (4.12)
I (ma+k) (Qat=1) (1-p) (Qa2t71) (1-p)
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4. BIVARIATE GAMMA TYPE II DISTRIBUTIONS
4.2. Bivariate gamma type II distribution

Substituting (4.11) and (4.12) into (4.10) leaves the pdf of (U1, Uslt) as

9] k
_ 1\~ 1 o my P
) = S @)™ @) -0 ()
1 m1+]€ 1
“T(my + ) m1+k eXp( (Qit71) (1 P)u1> “
1 mo+k—1 _ . P
XeT— T8 T (mas 1 F) exp < (ot 1) (1= p) U2> U 1F1 <m2 mi, ma + k; —(Qgtfl) (1 —_p) U2>
— a-p" Z(m e 1 ( 1 )"“*’“( ! >’"2+’“
(=) (1=p) (Q2t=1) (1 -p)
u;m-&-k 1 ugnz—&-k 1 { uy U ]
X exp |— — — —
L'(my+ k) T (m2 + k) (ut=) (1 —p)  (Qt1)(1-p)
_ Y
X 11 <m2 mi, ma + k; (@t D (1 p)uz>
” [ee] m 1 mi1+k 1 mo+k
— (l—p) 22( 1')kpk( > ( )
=0 k! Ql (1 — p) QQ (1 — p)
X T 72"2+k 1 exp {—t < el + U2 )}
I'(m1 + k) I (ma + k) Q(l-p) Q(l-p
t
X 1F1 <m2 — mi, My + ]ﬂ, ﬁ’ll&) tm1+m2+2k. (413)

Finally, because of the uniqueness of the inverse Laplace transform, substituting (4.13) into (4.9) leaves the
final result. [

Remark 4.2 By choosing W (t) as the dirac delta function (1.5), (4.8) simplifies to:

Frormar (U1, u2) = (1 —p)™? i (Wllgl!)kpk (Ql (11_ p))m1+k <m>mg+k

k=0

u71711+k*1 u;anrk*l

T AW (mat k) 7 {‘M} P [‘m}

_ Y
X 1F1 <m2 my, Mo +k‘, QQ (1 p)’LLQ) (414)

for ui,ug > 0 and where my, ma, 21,02 > 0, =1 < p < 1, and my > my. This result reflects the result by
Reig et. al. (2002).
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4.2. Bivariate gamma type II distribution

Remark 4.3 By choosing W (t) as (1.6) and using Result C.32, (4.8) simplifies to:

f (u u) B (%)% (1 m2 00 ml . k( 1 )m1+k( 1 >m2+k u;m-‘rk—l
. T (%) i 0 (1-p) 0y (1—p) T (m; + k)
m2+k 1 o0
tm1+m2+2k+2 o U1 U2 E
mg—i—k/ P o n-ptoma_p 2
0

t
X 1F1 <m2 —my, Mo + ki; Wp—)U2> dt

_ (%)% _yme o (M) 4, 1 Ttk 1 Mtk math—t
- r(3) (=n™ 2 C <Ql(1—P)> (92(1—/))) I'(m1 + k)

k=0
— —(mi+m k+3)
ekl w s o\ ~(mtmat2k+s
r( mg 4 2%k 4+ 2 ) +o
T(mg+ k) \H0 ™2 L1-p) m-p 2
X o [ mo—mq,my +m2+2k+g;m2+k; P ug | (4.15)
% (1-p) (et ot )

for uy,us > 0 and where my,ma, Q1,02 >0, —1 < p <1, and ma > my. 2F; () denotes the Gauss hypergeo-

metric function (see Result C.15), with restriction £ —~uz( <1.

QQ(l_p)(ﬂlﬁl—m +92(ulzfp) +7)

Remark 4.4 Note that (4.15) can be rewritten as follows:

(g 5 00 1 mi+k 1 ma+k um1+k—1
U1, u _ 2) 1= p)™2 (ml)k k( ) ( ) 1
i) F(%)( ¢ kzo H7\ Qi) Qs (1 p) T (m1 + k)
m2+k 1 ®
gmatme+2k+E—1 o {t ( Uy 4 U2 n E)}
m2+’f0/ P Q(l-p) Ql-p 2
0
F; k dt
X1 1(m2 mi,ma + %= p) )
_ (%)7 (1 B p)m2 i (ml)kpk ( 1 >m1+k < 1 )m2+k u’inl-i-k—l u72n2+k—1
' (3) = K 0 (1—p) 0y (1-p) T (my + k)T (mz + k)
00 mi+ma+2k+3
T (my+mo+2k+ 3 Q1(1 » 92(1 R ) ma+ma+2k+3—1
Uy U2 v m1+m2+2k+2 ml + ma + Qk + %) !
(wlfp) T T 5)

0
Uy v tp
X exp |—t +— Filmg—mqy,mo+k;————us | dt
p[ (Ql(l PREY 1* 2)] ' 1( R DY Ty 2)

v 2 0o mi+k mo+k mi+k—1 mo+k—1
_ (2) (l_p)mzz:( )k k ( > < ) Uq Us
T (%) — k! O (1— —p) ['(m1 + k) I (ma + k)

I (my+mg+2k+ %)

tp

- F F —ma, ky ———

X( N +2)m1+m2+2k+§ T ( 141 <m2 my, My + 92(1_p)uQ>)
91(1 p) 92(1 p) 2

where T ~ Gamma (m1 +mo + 2k + 3, (Q G t oy )) (see Result C.2).

In the following figures the natures of pdfs (4.14) and (4.15) are illustrated for arbitrary choices of parameters.
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Figure 4.3 Pdf (4.15) for v =5, m; = 10, my = 12, Oy = 2.5, Q5 = 1.5, and varying p = 0.25,0.5,0.75 (fltr)

Figure 4.4 Pdf (4.15) for my = 10, mo = 12, Q; = 2.5, Q3 = 1.5, p = 0.5, and varying v = 5,15,30 (fltr)

From the above figures, the following can be observed:

e In Figures 4.2 and 4.3 the effect of increasing p is observable, particularly indicating increased concentra-

tion (or correlation) between the variables.
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4.2. Bivariate gamma type II distribution

e Figure 4.4 indicates the effect on the tails of (4.15) for increasing values of v. As v increases, (4.15) begins
to illustrate the characteristics of (4.14) in Figure 4.2 (middle figure).
4.2.2 Marginal distributions
In this section the marginal distributions of the bivariate gamma type II distribution with pdf (4.8) are derived.

Theorem 4.2 Suppose (U, Us) is distributed with pdf (4.8). Then the marginal pdf of Uy is given by

oo

F(ur) = an; ;Ll / t"“exp{ <gll>]W(t)dt (4.16)

0

where uy > 0 for my,7 > 0.
Proof. From (4.8) the marginal distribution of Uy is given by:

f(ul) = f(u1,’LL2) dus
[ (ug, uz|t) W (t) dtdus

I (u1, uslt) dusW (¢) dt. (4.17)

I
St — g O —g °—3
St— g S —3
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4.2. Bivariate gamma type II distribution

By using Result C.32, consider from (4.17):

k=0
m1 +k—1

t t
ma+k—1 v F k W d
XO/U GXP[ 92(1_p)u2] 1 1(m2 mi, Mo + 792(1_/))102) U2
o0

k=0
mi+k—1
Uy Uy :| tm1+77z2+2k

Tl + R (g + ) 0 {‘tﬂl =)

t _(m2+k) ﬁ
XF(’ITQ—F]{J) <—) 2F1 mg—ml,m2+k;m2+k; %pp

U1 ] tm1+m2+2k

exp |-t

2 (1 -p) Q2(1-p)
- [eS) m 1 mi+k um1+k—1
SRV Cr ) B ey
= k! 1(1—p) (m1 + k)
XGXP[ th (1p)} 1Fo (me —ma;p)t
- [eS) m 1 mi+k um1+k—1
= (1=p) Z(kﬁ)kp%(z 1— ) TR
= k! 1(1—p) (m1 + k)
1l—=p
Cmy e (), k( 1 )Mﬁk up [ Uy } +k
= (1- ! exp | —t——| t"™ 4.18
=2 S ) T ™ fea ) (4.18)

Substituting (4.18) into (4.17) leaves:

f(ul) = f(ul,U2|t) dUQW (t) dt

I
S g O g g T — g O —
7 N
=
=l
I
>

o (1) k( 1 )”“*k up T { uy ] T
1-— ! _— —t— | "W () dt
=2 55 aa ) Tem | Maa g )

U
0 (1-p)]

)
oo g (! )’“W“A(Lﬂ)‘“ww
)

(1—p) ™ exp |t

N (1-p)]

_mlex __ Uq
1=7) Pl (Ql(l—p)

- (1_;;:;;(%) Zexp (5w (=) wor
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4.2. Bivariate gamma type II distribution

Finally setting p = 0:

mi—1 x° mi
_ M (2 L
flu) = 1_‘(ml)o/exp{ t<91)] <91> W (t)dt
u;ru—l 70 . |: (Ul >:|
= — ™ oexp |—t (= || W (t) dt
Q7T (my) / Xp Q (t)
which leaves the final result. [

Theorem 4.3 Suppose (Uy,Us) is distributed with pdf (4.8). Then the marginal pdf of Us is given by

F(us) = er o 7tm2exp{ (gi)]W(t)dt (4.19)
0

where us > 0 for mgy, Qs > 0.

Proof. From (4.8) the marginal distribution of Us is given by:
flug) =

[ (ur, ua|t) W (1) diduy

[ (w1, ug|t) dugy W (t) dt. (4.20)

By using Result C.22, consider from (4.20):

oo ) (ml)k . 1 mi+k 1 mo+k u;anrkfl
[l = =gy (m(lp)) (92(1p>> T+ BT (g 7 1)
0

k=0
Xtm1+m2+2k exXp |:¥U2:| 1F1 <m2 —mi, Mo + k: tip’LLQ)
Qo (1-p) ’ Q2 (1-p)
T t
x [ a™F Tl ex {— U } du
0/ 1 p (1 p) 1 1
) 1 mi+k 1 ma+k mo+k—1
= (1-p™ Z (mll)kpk ( ) ( ) Ua
= k! Oy (1 — p) Qs (1 — p) T (m1 + ki) I (mg + k)
xgmitmat2k oy [—;ug] 1Fi (mg —mq,ma + k; t—qu>
Q2 (1—p) Qa(1—p)
% F (m1 =+ k)

_ (1 - p)m2 0o (ml)kpk ¢ >m2+k u;YLQJrkfl
! =) T (ma + &)

tp
X exp {—muz} 1F1 <m2 —my,mg +k; mug) (4.21)
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4.2. Bivariate gamma type II distribution

Substituting (4.21) into (4.20):

flu2) =

—

S

3
NE
=3

)k A u;nz-i—k—l < 1 )m2+k
D Tma+ k) \ Q2 (1—p)

o0 t
w [ gtk oy {——u} F (m —my,me + k; ———u >W t)dt.
/ P Qg(l—p)2 141 2 1, M2 92(1—,0)2 (t)

flug) = O/Oougnz‘l (Q%)mz ™2 exp [Q%UQ] F(:@) :0 ksr(nnlz);;k <tg:2)kw(t) dt

which leaves the final result. [ |

Remark 4.5 By choosing W (t) as the dirac delta function (1.5), (4.16) and (4.19) simplifies to:

foru; >0 and m;,Q; > 0 wherei = 1,2. This distribution with pdf (4.22) is the gamma distribution (see Result
C.2).

Remark 4.6 By choosing W (t) as (1.6) and using Result C.22, (4.16) and (4.19) simplifies to:

— u;(niil oomi Ui (E)% v vt
flu) = m/t e"p[‘t(ﬁiﬂ FQ(%)t 1exp(—§)dt
0

- ' : i (4.23)

foru; >0 and m;,Q2;,v >0 wherei =1,2.
Remark 4.7 It is observed that (4.16) and (4.19) are gamma type distributions, with the gamma distribution
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(see Result C.2) as special cases (see (4.22)). By this motivation it supports that (4.8) is called a bivariate

gamma type I distribution with gamma type marginals.

4.2.3 Product moment

In this section an expression for the product moment of this bivariate gamma type II distribution with pdf
(4.8) is derived.

Theorem 4.4 The product moment of (U, Us) with pdf (4.8) is given by:

> L (r+my+k)T(d+mg+k)
E rrrd — Qer 1— r+d+mse (ml)k k
X oF) (mg —my,d +ma + k;ma + k; p) /t*(”‘”w () dt (4.24)
0

where r;d > 0, and ma,m1,21,Q5 >0, =1 < p <1, and mg > m;.
Proof. Consider from (4.8):

o0

E(UTU4) //u’lugf (u1, ug) dugdus

0 0
[ee)

i / £ (g, ult) W (8) didusy duy
0

/u{ugf (u1, up|t) durduxV (t) dt

0

E(UTUSI) W (t) dt. (4.25)
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From (4.25) and (4.13):

E (UTUS) wiud f (uy, uglt) duydusy

) 1 mi1+k 1 mo+k
rud (1 — p)™2 (m1)g 4
ujug (1=p)"™ > =t 0t (1 p) Qo1 (1— p)

k=0

Uy ] { Us ] uvlnl-i-k—l ’U.gﬂz-i_k_l
Pt (T =p)| T(mi+ k)T (ma + k)

e {E?ZE:TTZTTTES .

X 1F1 (77?,2 —my, Mo + k‘; duldu2

p
<mtwu—mw)

- . 0o (ml) 1 mi+k 1 ma+k 1
= (l—p) Z:: o kpk <Qlt1 (1_p)> <m> F(m1+k)I‘(m2+k)

k=0
r4mi+k—1 _ U1 d d4+matk—1 _ Uz
/” eW[(%twum}“/@2 “p[«m1wlpﬂ
0 0
. P
X 1F1 (m2 — mi,mo + k), mﬂg) d’U,Q

— Cyme - (M) g 1 o _ e !

Vi Va. (4.26)

Using Result C.22, consider from (4.26):

oo

. 1
V- _ r4+mi+k—1 _ d
1 !% e

L(r+m+k)

r+mi+k
(—mlt—ll)(l—p))

= T(r+my+k) (Ut ) (1—p)
=MD (0 my + k) (Qq (1= p)) T (4.27)
and using Result C.82:
Vo = /OC udtme =l oxp —;u Fy [ mg—my,mo+k;——L ) du
2 0 2 (Q2t_1) (1 . p) 2 141 2 1, 2 b (Q2t_1) (1 _ p) 2 2
1 ~(d+matk) © t*ll)(l— )
= F(d+m2+k) (_1—> 2F1 mg—ml,d—l—mg—l—k;mg—i—k;%pp
(Q2t71) (1 - p) 0=

1 —(d+ma+k)
) o (mg —my,d+mao + k;ma + k; p) . (4.28)

= ti(d+m2+k)1—\ (d + mo + k) <m
9 _

© University of Pretoria



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
0%
<

4. BIVARIATE GAMMA TYPE II DISTRIBUTIONS
4.2. Bivariate gamma type II distribution

Substituting (4.27) and (4.28) into (4.26) leaves:

r _ ma = (ma) 1 itk 1 math 1
E(Ul U2d|t) = (1*0) g) kll kpk <Qlt_1 (1—[))) <92t—1 (1—p)> F(m1+k)r(m2+k)

st~ (rtmitk) (7" +my 4+ k) (4 (1— p>)r+m1+k
1 —(d+ma+k)
Q2 (1 P))
my = (1), w T (r4+my + k)T (d+mg + k)
= 1 — 2
L=p)™ > e T (my + k)T (ma + k)

xt =MD (4 4 omy + k) ( oFy (mg — my,d + ma + k;ma + k; p)

k=0
Xtml+m2+2kt7(r+m1+k)t7(d+m2+k) (Ql (1 o p))r (QQ (1 n p))d

X oF) (mg —my,d+ mg + k;me + k; p)

e e . = (my), (Tr+mi+k)T(d+my+Ek)
= =)™ (- p) (92(1_”))d§ T T o T T b

X oFy (ma —my,d+ mo + k;mo + k; p). (4.29)

Substituting (4.29) into (4.25) leaves the final result. ]

Corollary 4.1 By choosing W (t) as the dirac delta function (1.5), (4.24) simplifies to:

= L(r+my+ k) (d+mg+k)
E rpgd) = QrQd (] — o) TAtme Z (m1)g
normal (Ul U2) 1°92 ( p) - k! P T (ml + k) T (m2 T ]{))
X oF1 (Mo —my,d+ mo + k;ma + k; p) (4.30)

where r,d > 0, and ma,m1,21,Q5 >0, =1 < p <1, and ma > my.

Corollary 4.2 By choosing W (t) as (1.6) and using Result C.22, (4.24) simplifies to:

mi), L (r+mi+k)T(d+me+k)
K7 T T (my+ k)T (mat k)

B, Uivg) = oeia -ty
k=0

v t
X oF (m2—m1,d+m2+k‘;m2+k‘m)/t (r+d) E() )t2 exp <—%> dt
2
0

%)% rod _ r4+d+ms - (ml)k kr(r+m1+k)r(d+m2+k)
—p(%)Qﬁ?(l p) kzzo BT Tt BT (ma t k)

v t
X oF) (mg —my,d+mo + k;ma + k; p) /tf_(r"’d)_l exp (—%) dt
0

(%)% d r+d+m - (ml)k kf(r+m1+k)F(d+m2+k)
- ol (1 — 2
r T L R T R

—(%—(r+d)
><2F1(m2—ml,d+m2+k;m2+k;p)F(g—(rer)) (g) (3 )

@G-+, vt o (1) T (r+my+ k)T (d+ms + k)
G e Q709 (1-p) kZ:O P o T )T (2 1 B)

X 2F1 (mg—ml,d+m2+k;m2+k;p) (431)

and where r,d > 0, ma,mq,Q1,Q0,0 >0, —1 < p <1, mg > mq, and v > 2(r +d) in order for the product

moment to exist.
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4.2. Bivariate gamma type II distribution

In the following figure the correlation coefficient of (Uy,Us) with pdf (4.8) is illustrated using Result C.30 via
(4.30) and (4.31) for arbitrary parameters. Note that p is defined as the correlation of (Uy, Ua,) (see (4.4)).

nOU1 Un

-05 05 1.0

Figure 4.5 Correlation using (4.30) and (4.31) against p for m; = 10, mg = 12, Q; = 2.5, Q9 = 1.5, and
v =10, 30

Figure 4.5 illustrates a higher correlation coefficient for (4.31) when compared to (4.30). In particular it is
observed that the correlation under the t distribution assumption approaches the correlation under the normal
assumption for increased values of v. The same observation was made for the correlation of the bivariate gamma

type I distribution (see Figure 3.6).

4.2.4 Cdf

In this section the cdf of the bivariate gamma type II distribution with pdf (4.8) is derived. This cdf is useful

in evaluating the outage probability of a fading model subject to a bivariate gamma type II fading distribution
(see (1.25)).

Theorem 4.5 Suppose that (Uy,Us) is distributed with pdf (4.8). Then the cdf of (U1, Us) is given by:

_ ma o= o= (111) (mg —my) prt!
Fluu) = (1=p) ;}; (mkg—&-k:)lk!l! lF(m1+k)F(m2+k)
7 t t
X O/’y (m1 + k}, mm) Y (mz + k + l, mUQ) W(t) dt (432)

where my,ma, Q1,02 > 0, =1 < p < 1, my > my and where v (-,-) denotes the lower incomplete gamma
function (see Result C.6).
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4.2. Bivariate gamma type II distribution

Proof. Consider from (4.8):

F(ul,uQ) = //f(cl,CQ)dCldCQ
0 0
= ///f(01,02|t)W(t) dtdcldCQ
000
= ///f(01,02|t) dCldCQW (t) dt
000
0
From (4.33) and (4.13):
F(ul,u2|t) = /f(01,02|t) dCldCQ
0 0
- u172(1 - >m2 i (ml)k k ( 1 )mﬁ»k < 1 )m2+k
P P\ 2 (1-p)
00 =
B | t( )] | (i)
xp |-t | =———— xp |-t | =————
T+ BT (mat k) 0 |\ —p) )] P\ 20—
x 1F (mg —mq,mo + k ( p) ) prmatmet2kge de,
- in my kp < )mﬁk( >m2+k gmatma+2k
et Ql 1—p QQ 1—p) F(m1+k)F(m2+k)
X /c{"”"c_1 exp {—t ( )} dey
0
U2
X /cmﬁ'k_1 exp {—t ( )} <m2 —mq,mo + k; tipq) dea
0 2 b) bl Q ( p)
_ m2§: ml kp < )m1+k< >m2+k' tm1+m2+2k
et Ql 1—p p) F(m1+k)F(m2+k)
X Vi - Va. (4.34)
Using Result C.23, consider from (4.34):
Vi = /cmﬁ]C Lexp [—cl (;ﬂ dey
! Q1 (1-p)
0
gl (ml + k, mm)
= mi+k
t
(91(1*13))
( +k) 1 7(m1+k) t
= t—m —_— my+k, ——u 4.35
(aa=s)  (mregam) (43
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4.2. Bivariate gamma type II distribution

and

. t t
‘/2 = Coy ath—l exp |:—CQ (m)} 1F1 (m —mi, Mo + k, Wp)CQ) dCQ

U2

- SR ts) ool

( tp >l7(m2+k+la Qz({*P)’L@)
m2—|—/<: (l—p)

8 0\5

|
ng

+ mo+k+1
(92(1,,3))
—(ma+k) oo
_ 1 (mg —my), p t
—  (math) (—> 2T T g+ kA ], —————uy | 4.36
Q2 (1-p) prd (mo + k), I! T\ Qs (1—p) 2 (4.36)
Substituting (4.35) and (4.86) into (4.34) leaves:
ma o= (M), pF < 1 )““““( 1 )mz”f gma+tmat2k
Flup,uslt) = (1—p)™ b
(1, uzlt) A=p)™ > Q. (1-p) Qs (1—p) T (my + k)T (ma + k)

( +k;) 1 (m1+k) t
X\ —_— mip+k, ———u
<ﬂm1—m) ”( R ) O

Xt*(m2+k) 1 )(MQ+k) i (m2 ml)l p (m Lkl t w )
(1= p) o R\ Ty 1)
[o SINe ) _ k+1
= (1—p™ Z Z (m1),, (ma T'n'l)l P
= (mo + k), k! T (mi+ k)T (ma + k)
4 t
—_— _— . 4.
><’y(ml—l—k,Ql(l_p)ul)’y(mg—i—k—l—l,QQ(l_p)uQ) (4.37)
Substituting (4.37) into (4.33) leaves the final result. ]

Remark 4.8 By choosing W (t) as the dirac delta function (1.5), (4.52) simplifies to:

—my), it

FnOTmal <u17u2) = (1 - p) I{;Z:: Z:; m2 + k k'l' T (ml 4 k) T (m2 4 k)

1 1
—_— —_— 4.
><’y<m1+k,91(1_p)u1>’y<m2+k+l,92(1_p)u2> (4.38)

where my, ma, Q1,09 >0, =1 < p <1, and mg > my.

Remark 4.9 By choosing W (t) as (1.6), (4.32) simplifies to:

_ s o (1), (ma —ma) -
Fi(uus) = (1=p)™ > 3 (1m2+/i)lkm1lr(m1+k)F(m2+’f)

fetL
) (M2 —ma), Pt

= 7 ) ZZZ m2+k K'Y T (my+ k)T (ma + k)
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4. BIVARIATE GAMMA TYPE II DISTRIBUTIONS
4.2. Bivariate gamma type II distribution

where my, ma, Q1,00 >0, =1 < p <1, and mg > my.

Remark 4.10 Note that (4.39) can be rewritten as follows:

k+1

_ ma NN (1) (m2 — ma) d
Fi(uus) = (1=p)™ > 3 s+ )R T 0 ¥ RIT (s 7 )

k+1

s ) m)
= (1=9"™> > 1m2+/z)lk!l!1lr(m1+k)F(m2+’f)

t
x E my+ k, ————— mo+ k41, ———
T(”( ' m(l—p)“l)”( ? 92<1—p>“2)>

where T ~ Gamma (4, %) (see Result C.2).

4.2.5 Pdf of noncentral counterpart

In this section, a bivariate noncentral gamma type II is proposed. This methodology emanates from
Ferreira et. al. (2016), and is described below. In the univariate setting, Chen (2005) describes the noncentral

gamma distribution as an infinite sum of a weighted central gamma distribution with Poisson weights:

o ot oxp () exp (-9) (§)"

(@) = g Qm+kr(m+k) - (4.40)
= if (x|k) g x>0
k=0

where f (z|k) denotes a conditional central gamma pdf with shape and scale parameters m, ) > 0 respectively

. e . . 6
(see Result C.2), g (k) denotes the Poisson probability mass function (pmf) with expected value § > 0 as

weights (see Result C.3), and f"¢ (z) represents a noncentral gamma pdf with shape and scale parameters
m, 2 > 0 respectively and noncentrality parameter 6§ > 0. Using Result C.11, the Laplace transform of the

noncentral gamma distribution (see (4.40)) with noncentrality parameter 6 > 0 is given by:

o0 o0 merk 1 ex 1 ex AW k
rne (t) — /exp (—tac) Z AT (fn(+ k) ) p ( k') (2)
0

dz
k=0

k
_ () P (=3) (3)
= Sy TR

(oo

o oxp (~8) (e

= (1+o)™y -

k=0

(14 Q) ™ exp (—g) exp <ﬁ>

where L (t|k) = (1 + Qt)~ (m*+k) Jenotes the Laplace transform of a conditional central gamma distribution with

shape and scale parameters m, Q) > 0 respectively (see Result C.2). This representation of weighted conditional

Laplace transforms with Poisson weights is used to define a bivariate noncentral gamma type II distribution,
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stemming from the approach of Ferreira et. al. (2016).

Lemma 4.2.2 A bivariate noncentral gamma type II pdf can be obtained from a conditional bivariate central

gamma type II distribution with pdf f(u1,uslki, k) in the following manner:

[ (ur, ug) = Z Z f(u, uzlky, k2)g(k1)g(k2) (4.41)
k}1:O ]CQZO
¥ ()"
where g(k;) = kif,z = 1,2 are compounding factors - in this case, Poisson probabilities where 0,

denotes the noncentrality parameters, and f(u1,uz|k1, ka) the pdf of a bivariate gamma type II distribution. In

this regard, the Laplace transform of (U1, Us) in the noncentral case can be written as:

[’nc ul,uQ Z Z E U17U2|k’1,k2) ( )g(kg) (442)

k1=0 ko=0

Note that in this section, the methodology of Ferreira et. al. (2016) is employed, in conjunction with Lemma
4.2.2.

Consider (4.13). By conditioning on the shape parameters, m; and mo:

00 + kl) 1 mi+k+k1 1 mo+k+ko
k — 1- ma+ka (ml k k o
flualthk) = @=p)™" Tt g %0 )

u71ﬂ1+k+k171 u;anrkﬁLkz*l

Ttk k)T (my + kot ko) 0 [_t (Ql (1;1— DR (11&— P))]

t
x 1Fy (mg + ko —mq — ki,ma + k + ko; WPP)UQ) tm1+m2+2k+k1+k2_ (443)

This means that the pdf of a bivariate noncentral gamma type II distribution can be constructed as:

£, ) / SO flur, st by, ka)g(hn)g (k)W (2) dt. (4.44)

k1=0k2=0

where f(u1,uz|t, k1, k2) is given as in (4.43), and g(k;) denotes the Poisson pmf (see Result C.3) with expected

value %‘L > 0. Consider now the Laplace transform of (4.43).
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By calculating the Laplace transform, the noncentral aspect of this bivariate gamma type II distribution

(4.8) becomes clear:

ﬁ (51 82|t kl, kg)

oL R 00 ml + kl 1 mi+k+k1 1 ma+k+ko
= ex (s1ug + sau m2+k2 kk( ) - -

0/0/ p 1U2 22)] Z;) 91(1*,0) Qg(lfp)

y u71n1+k+k1 1 u;n2+k+k2fl o { < >}

T(my +k+ k)T (ma +k+ k) P Q1(1—p) ( 2)

x 1Fy <m2 +ky —my — k17m2 +k4+ k27 Q ) tm1+m2+2k+k1+k2duldu2

_ (1 et fﬁ it e ( t )’” ( )’“2*’“”2 !
Ql(l— Qg F(m1+k+k‘1)F(m2+k+k2)

=0

t t
mi+k+ki—1 _ d mo+k+ka—1 _
/“ exp{ (@ 0)] “/“ o[ ()

t
X 1Fy m2+k2—m1—k1,m2+k+k2;—p uy | dus
Q2 (1= p)

= _ m2+k2§: my +k1 )k k( t )m1+’f+’f1 ( " >m2+k+k2 1
k=0 Q1 (1—p) Qs (1 —p) L (my+k+k)T (mg 4k + ky)

xVi - Va. (4.45)

From (4.45) and using Result C.22, see that:

o0

t
Vi = /u?’b1+k+k171 exp |:—U1 (m + 81):| duy (446)

0
I'(my+k+ k)

' m1+k+k1
(91(1*/3) ™ Sl)

and by using Result C.10 and Result C.22:

)
_ t
‘/2 = u;nz-l-k-‘rkz 1 exp [UQ (QQ 1_ ):| (mQ + k’g —my — kl, mo + k + kg; Wp—p)qm) dUQ
0
=~ (ma2 + k2 —ma — k1), LT ma+ktkaHl—1 t
- Y (. E— d
; (s + & o), (Qg 1=, ) /u exp |—us Qg(l—p)+$2 U2
- 0
_ i 777,2—|-]€2—m1 kl)[( tp >l F(m2+k+k2+l) (447)
= mg + k4 k2)l ! Qs (1 — p) ( ¢ n )m2+k+k2+l ) ’
- Oa(1—p) ' 52
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Substituting (4.46) and (4.47) into (4.45):

L (s1, 82|t k1, k2)

oo

— (1 _ p)m2+k2 Z (ml + kl)kpk < t )m1+k+k1 <¥>m2+k+k2 1
k=0 k! O (1-p) Qs (1-p) T (my+k+ k)T (ma+ k + ka)

T'(mi+k+k) i(m2+k2m1k1)l< tp )l T'(me+k—+ks+1)
1=0 2 ( ) (

: mi+k+ki (m2 + k+ kQ)l I 1— p mo+k+ko+l
(W + 31) )
1 p)

t mi+ky t matka L t k
= (1 pymethe [ RO B 3 (M1 + k1), [ oa=p)
w0 Tt R \amsy o

t
W(i=p) T 52

k=0
- k-t
XZ (ma + ko —my — lp) F(mi+k+k)T(me+k+ka+1)
=0 m2+k+k2 Q(l ) —|—82 F(m1+k+k1)l—‘(m2+k+k2)
mi+kq matks o t k
= (1- p)mz+kz 91(1 ) 92(1 ) Z (m1 + k1), Q0 (1—p)
ma=p T8 ma—p T 52 S o) o
- k-t
XZ (ma + ks —my — ( i) ) T (mao+k+ ko +1)
T(mat+h+ha+l)
prd I(‘(722+k+?c2) il o (1 oy + 2 T (mg +k+ ko)
mi+k1 mo—+ko t k t k
_ (1 o p)m2+k2 Q1(1 p) 92(1 o) i (m1 + kl)k 01(1—p) _Lﬂz(lfp)
1p)+51 921 D(—p) T 52 k=0 k! ersl m+82
> k k
Z (ma + k2 l|m1 1), < Qtz(l r) ) _ (4.48)
1= : T(—p) T 52

Using Result C.12, consider the first summation in (4.48):

[e%¢) t tp
> Lk K—Ql(l_p) ) <—Qz(1_p) )
7 7
k=0 ! o= T 51 D(i—p) T 52
(t ) (tp )
Ql 1—p Qg 1—p
1Fo | ma + kg
( (Ql(;—P) +Sl> (Qz(;—P) +82>>
t tp —(mi+k1)
(1 _ ( fil(l_p) ) ( %2(1—0) )) (4.49)
o, T51) \ma—p T 52

and consider the second summation in (4.48):

k

oo

: l
Z (mo + kay —my — k), ( Qz(lpfp) )
[T i

1=0 Qz(l ») T 52

OAg]
1Fo | me + ks —my — kh%
D(—p) T 52

tp —(ma+ka—mi—ki)
(1 _ M) . (4.50)

t
Q2(1—p) T 82

© Universityf of Pretoria



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
e
-

4. BIVARIATE GAMMA TYPE II DISTRIBUTIONS
4.2. Bivariate gamma type II distribution

Substituting (4.49) and (4.50) into (4.48):

L (s1, 82|t k1, k2)

t mi1+k1 t mao—+ko
mao+k Q1(1— Qo (1—
= (1= pymette [ 202 507
o T @—p) T 52
t tp —(mi+ki) tp —(mo+ko—mi—kq)
«[1= 1 (1-p) Q(1—p) 1- Q2(1—p)
oo +5 o S —t 1t
Q(d—p) "1 Q(—p) 72 Q(i—p) 72

1 —mi 1 —ma 1 —k1 1 ks
= (1—p)m2th (M) (tal(l—p) + SQ) (Qltl(l_p) + Sl) (QQtl(—l—p) + 52>
1 1 1 1
Qit=1(1-p) Q2671 (1—p) =1 (1-p) Qt=1(1—p)

—(T)’M-‘rktl)

1 —1 1 -1 p 7(m +ko—m1—k )
1 Gl 51 Do i(-p) 52 1 ot 1(1p) B
O (R N — R — [ S
Qt-1(1—p) Qat—1(1—p) Qot—1(1—p) 2
—mi —m2 —kl —kiz
m S S S S
e (o) (e =) (=) )
Q1t=1(1-p) Qat=1(1-p) Dt~ (1-p) Qat=1(1-p)
-1 1 1\ —(matki) —(mo+ko—mi—k1)
O F—1(1—) +82 _Lil
S1 Qot=1(1—p) Qat=1(1—p)
x| 1- <1+ i ) < — ) <1—:’1—+8> . (4.51)
it 1(1—p) Qat—L(1—p) Qot—1(1—p) 2

See that (4.51) can be seperated as follows:

—Mm —ma
S1 52

(1- P)m2 (1 + T > (1 + 1 )

Qit=1(1-p) Qat=1(1—p)

1 —m 1— —(mz2—m1)
x|1— t~1(1-p) taflp(lfp) 1 ta*(’i*p) T 52

1 1 1
G = T8 \mria—p T 52 Wt 11—y T 52

= (]_ — p)m2 (1 + Slglt_l (]. — p))iml (]. + SQQQt_l (]. - p>)fm2

_ 1 ___p —m —ma+my mo—m1
TR Ot 1(1—p) l—p ) ( 1 >
x[1- — 1+ — — +5
( ( T T 51) (Wllu—p) ™ 52)) (92“ i-p) ™ QT (1—p)
_ 1 -m _
— (- (Ut 1-p)) " Qut=1(1—p)) ™
- @ a-o) " (g te) @t =)

1 P —m —mao+m —m
x| 1-— @it~ t(1-p) Qat—1(1—p) ( (1-p) — 4+ 82) o (71 + 82) 1
w5 ) \ w2 Gt™t (1 =p) 271 (1=p)

= ) () T (@)

- ((m;up) o) (o) - <Qlt-m£1 i _pf))ml (amrs) e
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and

—kq —ko
S S
1—pF (14 —2— 14 —2—
Qqit— 1(1 p) Qot— 1(1 p)
—k 1—p —(k2—F1)
(1o Qltll ) 92t11 ) o 1(1 oy T 52
Ty T i Ay T Ty T2

—k
= (1 ) (1 + SlQlt p) (1 + SQQQt ! (1 - p)) 2
—k _ _
x[1— Qlf oy g (1—p) ta 1(1-p) 1 ( L—p _ +32) e <71 +82>k2 "
Ot 1(1 0) +81 Qot— 1(1 0) +82 ta_l (1 - p) Q2t_1 (1 - p)
—k
= 1-p (7t 1-p . +51 1 (Qgt—l(l—p))””
2t (1-p)
—ka —katk —k
x|1-— 91“1 ) talpl p) ( (1—0)_4—52) 2+1<—1 +52> 1
Ot 1(1 ) + s1 Qgt 1(1 2) +32 Qot—1 (1 _p) Qyt~! (1 - P)
1

= (1-p) kl(Qtl)

) ((W“l) (mm) (e p>>> ()

By using Result C.11, and by substituting (4.52) into (4.42), it can be observed that:

_kl
1 1 P
Hii—p) 81) (ta1 a-p 82) - (Qlt—ngt—l (1— p)2>>

[~
_
|
o)
y
)
I
—
=
/N
/N
2

k1=0
1 “ e (-9) ()"
x <QQt1 +82> kll
0 > _
= exp (—?1) Z (1—p) ™ (Q til) M

—k1 .
X ! + > < 1 + > p ( 1 n )kl (%l)k
—— 1+ S ——— + S2 | — s
-t (1—p) )\t (1—p) Q1001 (1 — p)? Q=1 77 Jor!

<
<
<

_ - S S 1 - p
k=0 \ (1 —p) (ut™1) ((Qltflu—p) + 51) (Qgtflu—p) +52) Qltflszztfl(kp)?)

0 <1 (Qt1+82)01
)X —

! B _ o
fr=0 (1=p)(ut™1) ((erl(pp) + 51) (szl(kp) + 52) Qlt—lﬁzt—l(l—p)z)

) i 004 (4549)
2) P\ 0= 0 @) (et + 1) (et +52) — mrereterey) -
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and
o ko 0 05\ 2
Ly (1 e () (%)
kQZ::o mQt ) (Q2t1 " 82) ko!

. (_92_2> i (2((92t1>(9%+32))>k2

ot k!
0 0
= exp <—?2> exp 5 ((Q2t_1) (% N 52)) . (4.55)

Substituting (4.52), (4.54), and (4.55) into (4.51), leaves:

L(si,slt) = (T—p) ™ (7)™ (Qut™1) ™™

61
X exp (_E> exp (1—p) (Qltfl)((%l_p)JrSl) ( 1

1 .
i) 52) erlﬂztfl(l—p)"‘)

0 0
X exp (—;) exp 5 ((QQtfl) (% N 32>) . (4.56)

Finally, substituting (4.56) into (4.1) leaves:

L (81,82) = ,C(Sl,SQ|t)W(t) dt

0\8 0\8

(1—p) ™™ ()™ (e 1) ™™

y < 1 +S>< 1 +s> P ""1( - )<m2m1>
— — - s
Dt (1-p) ) \Qat T (1=p) Q=101 (1—p)° Qut—1 72
(-2) (= +2) 1
Xexp | —— ) exp

_ - .
2 (1—=p) (Ut 1)((911‘/*11(17/))—"_81) (Q2t711(17p)+52) Qlt—lﬂgt—l(l—p)2>

0> 02
X eXp (—?) exp 2((ta—1)( - +32>) W (t)dt (4.57)

Qot—1

which acts as the Laplace transform of a bivariate noncentral gamma type II distribution with pdf (4.44).

Remark 4.11 When 0; = 03 = 0, see that (4.57) simplifies to the Laplace transform of the bivariate gamma
type II distribution (see (4.6)).
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Remark 4.12 By choosing W (t) as the dirac delta function (1.5), (4.44) simplifies to:

00 mi+k+k1 ma+k+ka
ne . m2+k2 (ml + kl)k k 1 ;
fnormal Ui, u2 Z Z Z k! P Ql (1 — p) QQ (1 - p)

k1=0ko=0 k=0

mi1+k+k1—1 mo+k+ka—1
e o (e )
F(m1+k+kz1)F(m2+kJ+k2) Ql(l—p) Qs 1—/))

(

01

exp (—%&
x 1Fy (m2+k2—m1—k1,m2+k+k2; N (1/)7 p)u2) ( )’

Remark 4.13 By choosing W (t) as (1.6) and using Result C.32, (4.44) simplifies to:

0 0 oo oo m1+k+kq mo+k+ko
ne _ m2+k2 (ml + kl)k k 1 + #
ft (u1,’LL2 = 0/ Z Z_ Z k! P o0, (170) Q, (1710)

k1=0 ko= k=0

mi+k+ki1—1 mo—+k+ko—1 Uy U
Ttk k)T (ma + k1 ka) P [_t<Q1(1p) +Qz(lp)>:|
x 1Fy <m2 + ko —mq — k1, mo + k + ko3 ﬁw) gratmat2hthitke
) ()" exp (%) (5)" (%)%tv_l ( vt> ”

: k! T (3)
)

U ma k kl
= 5 ZZ Z m2+k2 (m1+k1 kpk< 1 > e ( 1
) W a7 %17

2 k=0 k1=0 k2=0

><exp (—

71
k1

ol ekl o () (5" exp (<) ()
' '

2
m1+k+k1) (m2+k+k2) kq!

I'(
s« [ pratmat2ktkibho -1 o {—t ( ! + u2 + 2)]
0/ P Q(1-p) Ql-p 2

t
X 1Fy m2+k2—m1—k1,m2+k+kz2;—p ug | dt
Q2 (1-p)

2 3
2

_ mg ) (ml +k‘1) L 1 m1+k+k1 1
- By e b () (G

2 k=0 k1=0 k2=0

>m2+k+k2

L el o () (§)" e () (4)"

X
F(m1+k+k1)F(m2+k+k2) k! ko!

Ul + U2 +E
Q(l-p) Dl-p 2

—(matma+2k+ki+ha+3)
XT (1 +ma + 2k + by + ky + 3 )< >

v
X 2F1<m2+k2—ml—kl,m1+m2+2k+k1+k2+§;

Mo + k + ko - p —— u2> . (4.59)
Qy (1-p) (—Qld_p‘) - +§)

Remark 4.14 This method of compounding a bivariate gamma distribution on the shape parameter (in this
case, my and mg) with Poisson weights has been proposed and investigated by Ferreira et. al. (2016). In that
paper, the authors paid close attention to a special case of a bivariate noncentral gamma distribution in the form
of a bivariate noncentral chi-square distribution. In this thesis, the method is further generalised to include the
derived bivariate gamma type II distribution (with pdf (4.8)). The methodology Ferreira et. al. (2016) provided
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acts thus as genesis to the body of work contained in this chapter.

In the following figures the natures of pdfs (4.58) and (4.59) are illustrated for arbitrary choices of parameters.

Figure 4.6 Pdf (4.58) for my = 10, mg = 12, p = 0.5, Q; = 2.5, Qs = 1.5, 3 = 0, and varying 6, = 0, 20,40
(fitr)

Figure 4.7 Pdf (4.59) for v =5, my =10, ma = 12, p = 0.5, Q1 = 2.5, s = 1.5, 62 = 0, and varying
61 =0,20,40 (fltr)

From the above figures, the following can be observed:

o In Figures 4.6 and 4.7 the effect of increasing 6; is observable, indicating a shift in the direction of variable
U;.

4.3 Bivariate Weibullised gamma type II distribution

In this section a bivariate Weibullised gamma type II distribution which emanates from (4.8) is proposed and
some statistical properties studied. A special case of this bivariate Weibullised gamma type II distribution is
of particular interest: when 8, = 3, = 2, the distribution is called a bivariate Nakagami type II distribution,
which may act as a fading distribution within a communications system environment. Thus, the bivariate
Weibullised gamma type II distribution is a generalisation of the bivariate gamma type II distribution which

contains the bivariate Nakagami type distribution as a special case.
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4.3.1 Pdf

In this section a bivariate Weibullised gamma type II distribution is introduced.

Theorem 4.6 Suppose that (Uy, Us) is bivariate gamma type 11 distributed with pdf (4.8). The pdf of (W1, Wa),
where W; = (m ) ' is given by:

oo

_ ms o~ (M) P m ek ma et
flwi,wy) = BBy (1—p)™ > k,k <Q1 1= p)) (m) (4.60)

k=0
mlwfl
- <Q1 (1- P))]

Bimi1+B1k—1 52m2+,82k 1
wy
mopt
1F <m2 —my,ma + k; iwﬁz) W (t)dt

X
F(m1+k) m2+k

m2w§2
X exp [t <m>

for w1, wy > 0 and where my,ma,Q1,Q2,8,,8, > 0, =1 < p < 1, and mg > my. This joint distribution is

oo
/ i +ma+2k exp
0

Qe (1—p) ?

called a bivariate Weibullised gamma type II distribution.
1

1
Proof. Consider the transformations Wy = (%) " and Wy = (%) "2 with Jacobian (see Result C.1):

J = J(u1,ug — wi,ws)

duy  duy
det dwq dwo

duy  dug

dw1 dwz

-1
~ det B1ma w’fl 0
- € 0 52 -1
Bamowy

-1 -1
= /516277117”2“151 w§2 .

The pdf of (W1, Ws) is obtained from (4.8) by:

f (wy,w2) f (mlwfl,mzwf) |

/f v maw ) W (o) de 1]
f (mlwf ,m2w22|t> [JIW (t)dt

F (wr, walt) W (t) dt. (4.61)

‘3\8 0\8
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The pdf of (Wy, Wa|t) in (4.61) is obtained from (4.13):

fwiwlt) = f (mw maw?|t) 1]

= @=a" i (mlk)-!k . <(Qlt1)1(1 — p))ml+k (myﬂﬁk

k=0
mi+k—1 mo+k—1
(mlw?l> (m2w§2> e mlw? o m2w§2
Xp |- 7= | &XP |7
T (m1 + ) Tma+k) 0| @t )(1=p) | P @t ) (1=p)

. B1—1 By—1
x 15 (m2 —my, ma + k; MWy ) B1Boymymowyt w22

___r
(Qat=1) (1 —p)
_ s o= (M), pF my math ma etk
- mm-an o T () ()

k=0
my+k—1 _1 8 mo+k—1 1
y (wfl) wlﬁ1 (w22) w§2 oxp |t mlwfl exp | —t mgwgz
T (m; + k) T (my + k) P Gu(-p )| s (1)

“Lth B mi1+mo+2k
X 1Fi {mo—mqy,mo+k; ———w 2>t 1rm2
( Q2 (1-p) °

k=0
mlwfl mzw§2
a1—p /| Qs (1 p)

w,lﬁlml—i-ﬁlk—l w§2m2+62k—1

“Tim k) T(msth)

exp

m2pt B mi1+mao+2k
F - ky ————wy? | TR 4.62
X1 1(m2 mi,ma + 792(1_p)w2> (4.62)
Substituting (4.62) into (4.61) leaves the final result. ]

Remark 4.15 By choosing W (t) as the dirac delta function (1.5), (4.60) simplifies to:

s L my+k matk
fnormal (wl?wQ) - 6162 (1 a p)m2 kX:(:) (mlk)'k ’ (Ql gll_ )> < (711 )

k—1 k—1
wflml+[31 U)gzm2+/62 m1w1 ] m2w2 ]

“Tom+ k) T (msth) (-,

exp

map B
F; — k; —————ws? 4.63
X1 1(m2 m15m2+ aQQ(l_p)wQ ) ( )

where m1,ms, 21,09 >0, =1 < p <1, and mg > my.
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Remark 4.16 By choosing W (t) as (1.6), (4.60) simplifies to:

oo

k=0
mlwf m2w§2
<91<1— PR ))]

wf177l1+/61k—1 w§2m2+,82k—1 7
X exp

mapt mi+mat2k (%) vy
X 1By [ mag —myp,me + ky ————wsy? | 7T t2 e 2 dt
! 1( ° b Q(1—p) ? ) I'(3)
v\ % 00 m1+k mao+k
= 8 ss0-p mi=)  (5=)
I (%) kZ:O k! o (1 -

ﬁ1m1+ﬁ1k*1 62m2+ﬁ2k*1 s
wy Wa
exp

mlw?l mgng v
X —t + + 5
L(mi+k) T(me2+k) Q(l-p) Q(l-p 2

B2
Mo pw
x 1y <m2 —mq, ma + k; Mm2pts” )t> grtmat 25—l gy

(1=
k k
_ (%) B ,6 ( )mzi (ml)k pk < mq )m1+ < Mo >m2+
r(g) 2 S 2 (1-p) Q2 (1-p)
wf’lmr‘rﬁlk—l w§2m2+[32k—1 mlwfl m2w2,82 v

M- m(i-p 2

—(mit+ma+2k+3)
“Tmt+k) T(msth) r( )

mi +mo + 2k + = )(

mawh?
X 2F1 mo — My, My —l—m2+2k—|—g,m2+k, 22(1-p) P (464)
2 maw?! maw}? v
- T -p) T2

m2u72ﬂ2
Q(1-p)

where my, ma, Q1,Q,v >0, =1 < p <1, mg >my, and < 5 2 < 1.
miwy mowo )

o a-m Toa-mn T3
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Remark 4.17 Note that (4.64) can be rewritten as follows:

o ® ma o (M) pF my \™ 0 m math
ft (wl’w2) - 1—‘2(%)5152 (1_p) Z 1k|k <Ql (1—p)> (m)

k=0

Bimi+B1k—1  Boma+Bok—1 % B B
xwll T wyr /tm1+m2+2k+%71 exp | —t myw; ! T mows’ 42
[(mi+k) T (me+k) Q(l-p) Q(l-p 2

B2
o <m i %wz)t) "

’ QQ (1 —pP
vy 2 k k
) R Lo iy Lk < T >W+ <L>m2+
T (%) =0 k! Ql (1 - p) QQ (1 — p)
S T S L (my +ms +2k + %)
T (m1 + k‘) T (m2 + k‘) mlwfl m2w§2 ., mi+ma+2k+3
n-p T - T2
51 mi+mo+2k+5
mlw_l + m2w_2 + E)
/ (Ql(l Py~ 2(lmp) 2 gmatma+2kt§—1
J I‘(m1+m2+2k+§)
B1 Ba B2
miwy MoWq v mapwy
—t — F — k; ———=—t | dt
“Xpl (m(l—p) - *2) o (m T (=) >

_ @ e e (ma) pF my math ma math
- F(%)W?(1 " <91<1—p>> <92<1—p>)

k=0
" wirm PRy famat Bk T (my +mg +2k+ %)
I (ml =+ k) I (TTLQ =+ k) mlwfl m2w§2 ., my+ma+2k+%
L T m-p T2

Ba
M pw
xEr < 1B <m2 —my,ma + k; ﬁjpf))

mlwfl

s
where T' ~ Gamma <m1 +mao + 2k + 3, (Ql(l—p) + 5:?71”"_2;) + %)) (see Result C.2).

In the following figures the natures of pdfs (4.63) and (4.64) are illustrated for arbitrary parameters.

Figure 4.8 Pdf (4.63) for m; = 10,my = 12,8, = 85, =2, = 2.5,Q = 1.5, and varying p = 0.25,0.5,0.75
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Figure 4.9

Figure 4.10 Pdf (4.64) for v =5, m; = 10, mg = 12,8, = 85 = 2,21 = 2.5,Qy = 1.5, and varying
p=0.25,0.5,0.75

Figure 4.11 Pdf (4.64) for v = 5my = 10,my = 12,8, = 2,Q; = 2.5,Q = 1.5, p = 0.5, and B, = 2,2.5,3
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Figure 4.12 Pdf (4.64) for m; = 10,me = 12,5, = 5 = 2,01 = 2.5,Q9 = 1.5, p = 0.5, and varying
v =>5,15,30

From the above figures, the following can be observed:

e In Figures 4.8 and 4.10, the effect of increasing p is observable, particularly indicating increased concen-

tration (or correlation) between the variables.

o In Figures 4.9 and 4.11, the effect of increasing (3, is observed. When 3, increases, it renders the variable
W5 more "squashed" from the way W5 has been defined; and this effect is observed in both the normal-

and the ¢ case.

e Figure 4.12 indicates the effect on the tails of (4.64) for increasing values of v. As v increases, (4.64)
begins to illustrate the characteristics of (4.63) in Figure 4.8 (middle figure). For larger v, this should
illustrate the shape of (4.63).

4.3.2 Laplace transform

In this section an expression for the Laplace transform of the bivariate Weibullised gamma type II distribution
with pdf (4.60) is derived. The Laplace transform of the distribution under which a fading channel is operating
is useful as it can be used to evaluate certain attributes of a communications system, particularly the average
bit error rate (see Shankar (2012), Simon and Alouini (2005)).

Theorem 4.7 Suppose that (W1, Ws) is bivariate Weibullised gamma type II distributed with pdf (4.60). The
Laplace transform of (Wy, Wa) is given by:

ﬁ (81, 82)

10— ms o= e (M) " m math m _(%) r'{m —I—k-I—L2
= (27?)2(1 ﬁl)(l—p) ZZ( )k/’ < 1 p)) <Q2(12_p)> F(mg—sk)r(mizk)

1 Bimi— !
X ’flmﬁﬁlk RN L P L 3 <m2 —ma,ma+k+ 6—,m2 + k;p)
2
o0 5,81 O
mat+k—== 1,8 1ty
X /t ! P2 G,817i ( BlQ 1 | 1-8;mi1—B1k 1-Bymi—Bk+1 1-Bymi—B k+B8,—1 )W(t) dt
" s1'{h (1 - p) CPR A g2
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where my,ma, 1,2, 81,8, >0, =1 < p <1, mg >mi, and GJj" (z ( |3t ) denotes Meijer’s G function
(see Result C.20).
Proof. From (4.60) and (4.61), the Laplace transform of (W1, Ws) is given by:

L(s1,82) = /exp [—s1wa — saws] f (w1, wa) dwidws
0

o0 o0

/exp —S1Wy — S9Wa /f (wy, wa|t) W (t) dtdw dwy
0 0

oo
0/

/exp —s1wg — saws) f (w1, wst) dwidws W (t) dt
0

L (s, salt) W (t) dt. (4.66)

0\8 0\8 0\8 0\8

From (4.66) and using (4.62):
E (81,82|t)

ex (s1wa + saws)] f (w1, wa|t) dwidws

o mi+k ma+k
m2 m m m
exp [— (s1w2 + s2w2)] B1 82 (1 — p Z 1 kp (Ql(ll—p)> (WZO)

k=0

61 BZ
miw; TMawy
—t| ———— exp |-t | —————
(szl(l—p))] pl (Qz(l— >>1
mgpt WP | gratmat2k
—_— g2 dwd
792 (17 ) 2 ) wl 'U)Q

k=0

0\8 0\8

[
[

wflmﬁﬁlk 1 w§2m2+62k71

“Tm+k) T (mstk)

exp

X 1F1 <m2 ml,m2+k

oo

— tm1 B
wy Prma+Bk Lexp {—710 1] exp [—s1w1] dw
0/ 0 (1 [Pl

Bama+Bk—1 tmg By meopt Bs
X B D — F — ki —— _ d
0/w2 exp[ Q2(1_10)11)2 ] 1 1(m2 mi, Mo + ron (1_p>w2 >exp[ Sows] dwsy

tm1+m2+2k

“T(m1 + k)T (mg 1 k)

tm +ma+2k

_ ma = (M), P m Tt m math
= A1) ,;) iy (Ql(fp)) (92(12/))> T T ety Ve (467)
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Using Result C.31 and Result C.21, consider V;:

o0
_ t
Vv, = /w’flml—i—ﬁlk Yexp {—ﬁw’fl} exp [—s1wy | dwy
0
Bymi+Bik—1 ~1,0 tmy 8 - 1,0 -
— /w11 14681 G0,1 <mw11 | 0 >G0,1 <31w1 | 0 )duu
0

ST BrmHBE) (0 F1-81) gh BBk L L M| A(1,0)

= 1
o sy A (B 1= Byma = Bik)
_ 81*51m1*51k (2 )%(1 B1 )ﬁllmﬁ-ﬂlk—%
B
5 1tm1 0
GLo A . (4.68)
B1,1 1-8 —B.ik 1-8 —Bk+1 1- —B1k+B,—1
1 Sf191 (1 _ P) 17211 1 , 1”’%1 1 ey 1M1 Bll 1

1 1
To obtain an expression for Va, consider the transformation z = ws>. Then we = 2P2, and —dé’f = —ﬁl zP2 7
2

along with Result C.11 and Result C.32:

_ t t
Vy = w§2m2+ﬁ2k 1 oxXp [_QLz)wer] 1P (m2 —mq,mg + k; %w?) exp [—saws| dwsy
2

(1—p Q, (1—p)

0\8 0\8

1\ Bama+pok—1 tmo mopt 2711 1y
zﬁz) exp {—z} 1 <m2 —mi,mo +k; ———2 ) exp [752,2/32} —zB2 dz
( 0 (1 - p) D (1—p) B

1 b ot k1 tma mapt > (—SQZ%)Z
= ﬂ_QO z"2 exp {—92(1_@2] 1B (mQ my, Mo + k; 92(1_/))2); T dz
= i i )l 7027"2+k+%1 exp |:_t7n722:| wa <m2 my, ma + k; %Z> dz
B 2 % (01— ) 50— p)
_ L mapt
= ég(ZQ)lI‘(mz—ﬁ-k-l-ﬁlQ) < ETip)> <m2+k+62> o Fy (mz—mhmz-l-k—l-é,mz-ﬁ-k;%)
_ L
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Substituting (4.68) and (4.69) into (4.67) leaves:

E (81, 82|t)
= B 6 1-— m2 i ml k p < my )m1+k ( s >m2+k pmitma+2k S*ﬂlmlfﬁlk
2 — 2 (1-p) 2 (1-p) T (my + k)T (mo + k)
81
1(1-B,) gBimi+B1k—% 1.8 Bittmi 0
x (2m) 207 g g i(i Bk 1-Bym By Bk,
) ] 1-Bymi—B1k 1-Bymi—B1k+1 1-Bym1—Bk+8,—1
1 81191 (l_p) 161 1 , 1 Bl 1 e 1 Bll 1
l
1 X (—s9) l tmo = (matht5) l
— r k _— F - E+ — k;
X62; i ma + +5 B—p) 241 { m2 —my,ma + +52,m2+ P
(1 )mz i i (ml)k pk ( my >M1+k < mao )( ) t e B2 F (m2 + k + ﬁL?> (2 )%(1*ﬁ1)
_ _ R T
P\ (1) Qs (1—p) T (m1 + k)T (ma + k)
m -1 —Bymi— l
Xﬁfl 1+B8,k 581 Bimi—p1k (_SQ)Z 2F1 <m2 —my,ma + k4 — mg 4 k,p)
B
s, (B | 0 , (4.70)
B1,1 8?191 (1 _ p) 1_617211_51k’ 1_61mé1_61k+17 e 1_/617”1—/?1]“’/31_1
Substituting (4.70) into (4.66) leaves the final result. ]

Remark 4.18 By choosing W (t) as the dirac delta function (1.5), (4.65) simplifies to:

»Cnormal (515 32)

ma 2 (my my mi+k ™Mo 7(131_2) r'(m +I<;+L2 I
—p) kzz kllklp <Q1 (l—p)) <m) F(mg —:k)r(m:—zk) (27T)2( By)

kel B e !
Xﬂflmﬁ_ﬁl 281 Bima—Bik (—82)1 2F1 (mg —ml,mg—l-k—l-ﬂ—,mg—l-k;p)
2

B

Bitmy 0

GLA 1 | B B B B B _ (4.71)
Frd sflgh (I—-p) - ﬁlrgll ﬁlkv - ﬁlmél ﬁlk“a---, S LoR LA

1

where m1,ms, 01,0 >0 =1 < p <1, and mg > my.
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Remark 4.19 By choosing W (t) as (1.6), (4.65) simplifies to:

_ e o () (o NPy () T(merkrg) L
= a-m S TR (o) (mis)  renserms e

o0
1 _ l _ L
X flmﬁﬁlk SCH =Bk (—82)l 2 Fy <m2 —myi,mg +k+ 5_,m2 + k;p> /tMﬁk h
2

61 v %
1,8 Br'tma 0 (3)” .4 vt
xGy 1 | Bk 1— B k+1 1— B k+B;—1 t2 exp | —— | dt

Bi,1 (Sflgl (1_p> ,317211 By , ﬂ1m2{1 [1k+ s, Bim1 5B11 +8; T (%) 5

B (2)% N SRS (ml)kl)k - my+k Mo *(Bl—2> T (mg—&—k—i—é) 1(1-8))
RO LR 2D <Ql (l—p)) <92(1_p)> T T BT e+ ) )

o0
_1 _ l _ L _
x5f1m1+ﬁlk ’s, Prmi= ik (*82)1 o <m2ml,m2+k+—,m2+k;p>/tml+k+2 EE

By
5
vt 1,8 Bittmg 0
x exp (‘3) G i (m— | 1ogmi-gk 1-gmi-pikr1  1-gmi-pkes -1 | O (4.72)
S 0 (1*[7) B ) B, Yo B,

where my, ma, 01, Qa,v >0, =1 < p <1, and ma > my. By using Result C.31 and Result C.21, (4.72) can be
simplified further as:

= (%)% — ma X (M) P my math ma _(ﬁl_z) F(m2+k+l¥%)
= F(%) (1-p) ZZ k! <Ql(1p)) (92(1/))) T (my + k)T (ms + k)

o0

X

11— i _3g.m— l m vl
(271—)%(1 51) 5f1m1+ﬂlk 281 Bumi=bik (_SQ)l 2F1 <m2 —m1,m2+k+ﬁ—,m2+k;p> /t 1+k+2 612 1
2

B1
v — 1.8 B1tmy 0
xGYY [ =t G| —L— ¢ dt
01(2 | 0 ) 61’1<8f191 (1-p) | M”Zlfﬁlk’Mlméfﬁlkﬂv“’kﬁlml}ﬁfwrl )

1

LB e m (v @) Tk
B CI == AN Qy (1 - p) T (m1+ k)T (ma + k)

11— -1 - l
X (Qﬁ)é(l B1) 6f1m1+51k 281 Bymi—pBk (*Sg)l o Fy <m2 — My, me + k+ B_;mQ + k,p)
2
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Therefore, (4.73) leaves:

=)™ e () o my math ma (%) F(m2+k+gi2)
Llum) = e 22 <ﬂl<1—p>) <92<1—p>) s TR T (g + B)

v)(’”l*’“%)

11— 1 B l
X(zﬂ.)é(l ﬁl)ﬂfﬂnri-ﬁﬂf 28151 1—B1k <_32)l o Fy (mg—ml,m2+k+—7m2+k;p) (_

Ba 2
16, +1 B ma | 0
B1+1,1 slel (17/)) % 1*517511*51]67 1*5177113:511@4’17. ., 1*ﬁ1m1*18ﬁ11k‘+51*17 1— (mﬁ—k—i—%—é) .
(4.74)

Specific values are evaluated for (4.71) and (4.74), and the machine runtime is listed as well. Furthermore, the
integral representation of the Laplace transform (4.67) was also calculated numerically for the normal- and ¢
case, together with its machine runtime. Similar as in Saboor et. al. (2012), the calculated values of (4.71),
(4.74), and (4.67) for both normal- and ¢ cases for select values of s; and sp are provided. The runtime is
computed using Mathematica 11 on an Intel i7 processor. Whilst the runtime is affected by various factors of
an individual processor, it gives some indication about the speed with which these expressions may be evaluated.
The parameters for which these values are calculated are m; = 10, my = 12, 1 = 2.5, Q5 = 1.5, p = 0.5,
v=>5,and B, = [y = 2.

Normal t
Value Runtime (seconds) | Value Runtime (seconds)
£(0.5,0.5) | (4.71), (4.74) | 0.125162 | 153.0130 0.113083 | 12.6415
Integral (4.67) | 0.126973 | 77.5169 0.121326 | 576.86
£(0.5,1) (4.71), (4.74) | 0.0695437 | 153.153 0.0665175 | 12.2351
Integral (4.67) | 0.0704006 | 77.8445 0.0612938 | 475.085
£(1,1) (4.71), (4.74) | 0.0320823 | 156.377 0.0320912 | 12.7365
Integral (4.67) | 0.0332989 | 75.3485 0.0269502 | 380.268

Table 4.1 Comparison between Laplace integral- and derived expressions for normal and ¢ models

The following observations can be made from Table 4.1:

e The calculated values using expressions (4.71) and (4.74) illustrate the accuracy of computation when
compared to (4.67);

e Upon comparing the calculated values of (4.71) and (4.74), it is observed that the values of (4.74) are

consistently lower than the counterparts under ((4.71));

e Using (4.74) versus numerically integrating (4.67) indicates significant shortening of required runtime.

4.3.3 Product moment

In this section an expression for the product moment of the bivariate Weibullised gamma type II distribution
with pdf (4.60) is derived.
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Theorem 4.8 The product moment of (Wy, Wa) with pdf (4.60) is given by:

r

ey m1 me \"F) 0 my () T (Ftmutk) T (4 +metk
g = oo SR (g O (g O T A

=0

d
x oIy <m2 —mi, 5=

3 +mo +k,mg + k;p) / t_(’;l *ﬂ_i)w (t)dt (4.75)
2 0

where r;d > 0, and ma,m1,21,Q2 >0, =1 < p <1, and my > m;.

Proof. Consider from (4.60):

E(W{WS) = //wfwgfwl,wz (w1, w2) dwidws
00
= //w ws /f (w1, wa|t) W (t) dtdw dwsy
00 0
= ///w{wgf(wl,w2|t)dw1dw2W(t)dt
00 0
= / E (W{Wgt) W (t) dt. (4.76)
0
From (4.76) and (4.62):
E(WfW2d|t) = //w{wgf(wl,wﬂt)dwldwg

0 0

mz = ml kp ma math m2 math
[ i)

k=0
mlwé31 m2w§2
Q0 1-p )| Qs (1-p)

w?lml—&-,@lk 1 w§2m2+62k—1

“Tum+k) D(math) P
met 153 mi1+mo+2k
F — by —————=wh? | t"™ T2 dw d
X1 1<m2 mi,ma + 792(1_/))1112 ) w1dws
= )z i my k/’ < my >m1+k( ma >m2+k trtme+2k
M (1-p) Q(1-p) I'(m1 + k)T (m2 + k)

k=0

tm1

r+Bymi+pk—1 _ 51 d
/ eXp[ La-p" ] o

o (1

= BBy(1—p mzi mi kP < m >m1+k( Mo >m2+k tmitma+2k
o pur 2 (1=p) 0 (1-p) T (m1+ k)T (ma + k)

xVi - Va. (4.77)

o ]
tm. meopt
X /w +Bamatfak— 1exp [—ngz] 1 F1 (mg —my,mo + k; ;p)wéﬁ) dws
P
0
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Using Result C.2/, consider from (4.77):

T m — tml B
Vi o= +Bymi+B k-1 | g
il /wl exp L =7 wi ' | dwy
0
B8 mi+ B,k
R G )
= ETES
1
A (91(1 P))
1 tmy —(F+ma+k)
= —T +my + k:) <—> . 4.78
B1 <51 Q1 (1-p) ( )
To obtain an expression for Vo, consider the transformation z = wﬁ?. Then wy = zﬁ_lz, and % = ﬁ—lgzﬁ_lz_l,
and using Result C.32:
oo
d+-Byma+Bak—1 tma B . Mmept 5
Vo = /w2 2m2+0, exp [mw22:| 1 Fy (mgml,m2+k,mw22> dwsy

|
0\8 S

1\ d+Bayma+Brk—1 t t 1 1
(2512) 2M2+f5 exp [_ﬁz} 1 Fi <m2 —my,ma + k; %z) —Z512 1dZ

1 Fmotk—1 [ tma ] < mapt )
= — zﬁz 2 exp |———z| 1Fi|mo—my,mo+k;——mm—2)dz
620/ Pl T T T g )

_ (4 mapt
d tm (ﬁ2+m2+k) d SO
- ﬁQF(52+m2+k> (m) oy [ me —my, — +mo+k,mao+ k; QQt(risz)

Ba Q2(1-p)
d tmo — (& +ma-+h)
= F k _—
B (52+m2+ ) (92(1P)>

Substituting (4.78) and (4.79) into (4.77) leaves:

oo mi1+k ma+k mi1+mo+2k
ryxsd _ B mz ml ]gp mi mo t
BWIWE) = 25 (19" (o) (wis)  tomenreeTm

d
oI <m2 —my, -

3 +m2+k,m2+k;p). (4.79)
2

(e +k)( oyt
il m v
B, \p 0 (1-p)

1 d tmy O\~ (Frtmatk) ( d )
X—IL|—+ma+k By (mo —my, — +ma +k,mo + ki
B (52 ? >(92<1—P)> 2 2 ! Ba ? ? P

S N mg e T (Frmatk) D (i maetk)
- AT < p>) (af)

P k! 0 (1 — (1 —p) F(m1 +l€)r(m2 +/€)
g tmat 2k, — (A rmath)  — (g5 tmatk) ( m >(ﬁ_rl+ml+k) ( ma >(%+m2+k>
2 (1-p) Q(1-p)

d
x oF <m2 —my, =

—|—m2—|—/<:,m2—|-/<:;p>
B

=0 ]ﬂ' (1 — (]. — F (m1 —|— k) F (mg + ]ﬂ)
(= d
Xt ( 1+d2> 2F1 <m2 ml,/B +m2+k m2+k p> (480)
2
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Finally, substituting (4.80) into (4.76) leaves the final result. [

Remark 4.20 By choosing W (t) as the dirac delta function (1.5), (4.76) simplifies to:

) *(BL> 7(/31)
ryrsd _ m2 ml kp mi ! # ’
Enormal (Wl WQ) - Z[) <Ql (1 — p)) (QQ (1 - p)>
T (F+mi+k) T (E+matk

(51 ) (52 ) 2F1 <

T T+ BT (ma + R

d
me —mi, — +mao + k, ma +k;p> (4.81)
2

forr.d,;my,mo, 21,09 >0, =1 < p <1, and mg > my.

Remark 4.21 By choosing W (t) as (1.6) and by using Result C.22, (4.76) simplifies to:

L (WfWQd) = (1-p)" i (m1),, " (Ql my )>_(ﬁ1) ( mo p)>_(%) r (ﬂLﬁ‘mﬂ-k) r (%+m2+k>

— Kk (1—p L'(mi+ k)T (me2+ k)

d
x oy <m2 —my, 5_2

— <%)% in mi kﬂ < my p)>(_1) (ﬁ)(%) F(ng+m1+k>F(5—(12+m2+k)

F(%) b F(ml —|—]<J)F(’I7?,2—|—k;)

2

- (%)% mzi mi kﬂ( mi )>(f‘1) (ﬁ)(ﬁ)r(ﬁﬁ‘ﬂm-&-k) (B%—&-mg—i-k)

rp "
ek mz+k-p> r (3 - (L +i>) (2)(%(#%)
P et ) \E TR )

v (ﬁ %) v r >, (m my ~\Pr mo B
%P(r%*%»“‘”mzi( i (o) ( )<m> |

r (ﬁLl+m1+k) r (%—Fmg—kk)
T(mi+ k)T (ma+ k)

x ok <m2 —my,

|
m|g~
N—

d
o <m2 —mi, 5>

3 +ma + k,ma + k; p) (4.82)
2

forr,d,my,mo, Q1,000 >0, =1 <p <1, mg>mq, andv > 2 (ﬁLl + 512) in order for the product moment to
exist.

In the following figure the correlation coefficient of (W5, Ws) with pdf (4.60) is illustrated using Result C.30
via (4.81) and (4.82) for arbltrary parameters Note that p is defined as the correlation of (U1, Us,) (see (4.4)),

now where Wy = (U—11> r and Wy = (—) 7 .

m mo
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Pwy W
1.0

08t

06¢f

04}

0.2t

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.13 Correlation using (4.81) and (4.82) against p for m; = 10, mq = 12, Q1 = 2.5, Qp = 1.5,
81 =Py =2, and v =10, 30

Figure 4.13 illustrates a higher correlation coefficient for (4.81) when compared to (4.82). In particular it is
observed that the correlation under the t distribution assumption approaches the correlation under the normal
assumption for increased values of v. The same observation was made for the correlation of the bivariate gamma

type II distribution (see Figure 4.5).

4.3.4 Cdf

In this section the cdf of the bivariate Weibullised gamma type II distribution with pdf (4.60) is derived.

Theorem 4.9 Suppose that (W1, Ws) is distributed as bivariate Weibullised gamma type IT with pdf (4.60).
The cdf of (W1, Ws) is given by:

k+1

- . 00 00 (m1), (ma —my) P
Fwyws) = (1=p)"™ ) > (m];+k)lk!l! lr(m1+k)F(mz+k)

tm1 B) ( th B)
x mi 4k, —— P ) oy (g kL, —— 2 w2 ) W (t) dt 4.83
0/v(1 St} (mat kLl ) Waa (48)

where ma,my, Q1,Qa, 81,65 >0, =1 < p < 1, mg > mq, and where v (+,-) denotes the lower incomplete gamma
function (see Result C.6).
Proof. Consider from (4.60):

F(wl,wg) = f(Cl,CQ) dCldCQ

f (Clv C2|t) W (t) dtdcldCQ

f (Cl, 62|t) dCldCQW (t) dt

o\§ C\S c\g
o\g 0\8

0\8 0\8 c\§ c\§

F (wl, ’wg‘t) w (t) dt. (484)
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From (4.84) and (4.62):

w1 w2
F(w1,w2\t) = /f(61,02|t) dC1dCQ
wi w2 k mi+k mo+k
_ //5 B mgz (ml)kp ( my > ( mo >
1z pr 0 (1-p) Q2 (1—p)
chlmlJrBlk ' C§2m2+62k71 exp | —t mlcfl m20262
mept
x 1Fy (mg —my, Mo + k‘; ﬁpp)cz’éa) tm1+m2+2kdc1dc2
_ 5 B (1 B p)m2 i (ml)k pk ( my >m1+k < ms )m2+k tmatme+2k
172 — K 0 (1-p) Qy (1-p) T (my + k)T (ma + k)
w1
Bymai+pByk—1 tmy 8,
x [ c exp | ———ci'| de
/1 p[ Ql(l—p)l] '
0
'’ ¢ ¢
Boma+Byk—1 ma B map B
X/c22m2 2 exp [—m022:| 1F1 (mg—ml,mg—l-k; m(;zZ) dCz
0
= B0y T ( & )mﬁk ( T )w o
172 L 0 (1-p) Qy (1-p) T (my + k)T (ma + k)
xVi - Va (4.85)
Using Result C.23, consider from (4.85):
wi t
_ Bimi+Bk—1 7# B1
i = J ch exp[ 91(1—/))61 ]dcl
k m B
Y (Blméj_ﬁl ) Qlt(lip)wll)
= 51"”é+ﬁlk
m 1
61 (Qlt(llp)
t*(m1+k) mi —(m1+k) tml 3
= k, ——————w;*' 4.86
i (ensy) o (mremae) (450
and
F t t
Bama+Bak—1 m2 B map 8
Vo, = Co? 2 exp | ————c5%| 1Fi [ mes—my,m —|—k;;—c2)dc
Y |ty | o () 0
0o 1 w2
ma —ma), [ mapt / BamatBaktByl-1 { tmy ,@2}
= c exp | —————cy?%| de
lzmﬁk <92<1— >)0 ’ Plraa—
0o Boma+Bok+B851 &
B Z m2 _ml < ’ITLth )l ,.Y( 2™Mm2 ,622 2 ’ta(r{wp)ubz)
— (ma+ k), I \Q2(1—p) Byt Fakt Aol
/62 (Qz 1-p)
1 & (mg —my), pl tmo 8 ma (ma+k)
= — gmmeth) 2 T (o 4 k4], ———2 b2 4.87
2 s+ ), ™ ni-p" ) \ma-p (487)
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Substituting (4.86) and (4.87) into (4.85) leaves:

- oo (ml)k pk my mi1+k Mo mao—+k tm1+m2+2k
B1B2 (1= p) ];] k! <Q1 (1—P)> <QQ(1—p)) T (my + k)T (mg + k)

t—(ml-‘rk) my )—(m1+k) tmy 3
X my + k, ———— w7’
B, (lem ”( TR - 1)

o0

1 _ (mg —my), p tmo 3 mo ~(matk)
) S g tmae W2 TP (g T2 ) (T2
oy AR RN A

K+l

F(w1,w2\t)

s o (171)y (1> — 1) p
(=)™ > > (m,;+k)lk!l!lF(m1+k)F(m2+k)

tmq ,@) ( tmo ,@)
X mi+k, ————w;?t mo+ k41, —————w5?
”( TR o a—p )™ Q1-p) "2

from where the result follows. [

Remark 4.22 By choosing W (t) as the dirac delta function (1.5), (4.83) simplifies to:

ma = e (1), (ma —ma), P!
F, = (1- 2
normal ('lUl; ’11)2) ( p) I;) ; (m2 + k)l k! T (m1 + ]ﬂ) I (mQ + k)
mi B8 mo B8
Xy | my + k, —————wi? mo+k+ 1, —————ws? 4.88
(ke (o ma) U

fOTml,mg,Ql,Qg > O; -1< p < 1, and mo 2 mi.

Remark 4.23 By choosing W (t) as (1.6), (4.83) simplifies to:

. 0o 00 (ml)k (m2 _ml)l karl
F; - (1— 2
i (w1, wa) (1—p) ;}; (ma + k), KU T (my + k)T (mg + k)
X/OOFY <m1+k m—lwﬁl)’Y(mQJrkle by w”BQ) (%)%tgflexp <v_t) dt
) u(-p) L9 )T () 2
(%)% mo e (ml)k <m2 _ml)l pk+l
= 1

F(%) =) ;); (mo + k), kY T (mi+ k)T (ma + k)

T t t v t
x/v(ml—i-k,ﬁwfl)’y<m2+k+l,ﬁw§2) t7 texp (—%) dt  (4.89)
0

formy,ma, Q1,0 >0, =1 < p <1, and mg > ms.

Remark 4.24 Note that (4.83), (4.88), and (4.89) are similar to (4.32), (4.38), and (4.39). This is a logical
consequence due to the fact that for some variable X with cdf F (x), a transformation g(X) will have cdf
F (g (X)).
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Remark 4.25 Note that (4.89) can be rewritten as follows:

_ mz o m27m1)l pk+l
Fy (w1, w2) = kZ:ozZ:: m2+k KUl T'(my + k)T (mo + k)
Vi ) tms g)(@%a_l (%)
X my + k, s———wy! me +k+1, wy” B2 exp | = ) dt
!Q< hoa=pt )T\ Q(1-p) )T (3) e
. [SSINeS) m2_m1)l pk—l-l
= 1_
(1=p) kZ:O; m2+k K T(my+ k)T (me + k)

tmq ,@) < tmo g))
X FE my +k, —————wi*? meo+k + 1, —————w5?
T(”( TR a—p )™ Q(1-p) "

where T ~ Gamma (%, %)

4.4 Illustrative application

4.4.1 Outage probability

To investigate the outage probability of a fading channel subject to the bivariate gamma type II distribution
(4.8), the cdf of the maximum of (Uy,Us) is of interest (see (1.25)). Using (4.32), the cdf of max(Uy, Us) is:

F(u) = PU <u,U;<u)
k41

- D p
kZ:ME; m2+k RN T (ma + k)T (ma2 + k)

X 77 (m1 +k, mu> ¥ <m2 +k+1, mu) W (t)dt. (4.90)
0

Remark 4.26 By choosing W (t) as the dirac delta function (1.5), (4.90) simplifies to:

. co oo m2_ml)l karl
F = (1-p™
norma (1) (1=r) ;; mg—i—kz ), K T (my+ k)T (ma + k)
1 1
sy (ma + k= )y (Mo + k1, ———u ) . 491
7( ' 2 (1-p) )7( ’ Qz(l—p)) (490

Remark 4.27 By choosing W (t) as the t distribution weight (1.6), (4.90) simplifies to:

k+l1

_ B e () (g — ) P
=gty ,;; lims 1, R Ty 7 )T (s 7 )

In the following figures the nature of cdf (4.92) and (4.91) is illustrated for arbitrary parameters m; = 10, mg =
12,p=0.5,Q; = 2.5,Q5 = 1.5, and v = 5,15 to investigate the effect of the assumed ¢ distribution in a fading

channel environment subject to a bivariate gamma type II distribution with pdf (4.8).
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1075 |

10710
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Figure 4.14 Analytical outage probabilities (4.91) and (4.92)

F(u)

Figure 4.15 Analytical outage probabilities (4.91) and (4.92), for a subset of u

Figures 4.14 and 4.15 illustrates that (4.91) exhibits a lower outage probability for small outage thresholds than
(4.92). However, for the scenario where the outage threshold is large, (4.92) exhibits a lower outage probability.
This observation provides significant insight to the theoretical contribution of the candidacy of the underlying ¢

distribution in comparison to the usual underlying normal case. The same behaviour of the outage probability

12.5 13.0

is observed here that is observed in Figure 3.12 and Figure 3.13.

4.4.2 Percentiles of F'(u)

Certain percentiles of the distribution of F (u) in (4.90) are obtained numerically by solving the equation
F (u) = . In particular, lower percentiles are computed for arbitrary parameters for (4.91) and (4.92). These

values highlight the computational use of (4.90) as they act as possible critical values for testing hypothesis

when a test statistic should follow a distribution with cdf (4.90).

14.5 15.0

Normal

lp Ja=o001]0025 [o0s [ou1
0.25 || 11.0903 | 115503 | 11.9421 | 12.3004
0.75 || 105411 | 11.089 | 11.5543 | 12.0017

Table 4.2 Percentiles for (4.91), for my = 10,my = 12,01 =2.5,Qs = 1.5
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| my | a=001 0025 [o05 o1

12 10.8320 | 11.3295 | 11.7530 | 12.2367
14 11.2527 | 11.7092 | 12.0965 | 12.5376
16 11.6927 | 12.1188 | 12.4794 | 12.8889

Table 4.3 Percentiles for (4.91), for m; =10,p = 0.5, =2.5,Q5 = 1.5

lp |a=001]0025 |005 |o01 |

0.25 || 6.9280 8.4101 | 10.1090 | 12.4440
0.75 || 6.6550 8.3351 | 10.5085 | 14.0959

Table 4.4 Percentiles for (4.92), for m; = 10,my =12, =2.5,Qs =15and v =5

| ms || a=001]0025 |005 [o01

12 6.6450 8.1501 | 9.8099 12.1590
14 7.0955 8.6605 | 10.3805 | 12.801
16 7.6765 9.3050 | 11.0842 | 13.6288

Table 4.5 Percentiles for (4.92), for m; =10,p = 0.5, =2.5,Qy =1.5and v =5

lv a=001]002 [005 |01

5 6.9450 8.4001 10.1119 | 12.4590
15 || 9.5450 11.0721 | 12.6399 | 14.7690
30 || 10.8095 | 12.2616 | 13.8418 | 15.8477

Table 4.6 Percentiles for (4.92), for m; = 10, mg = 12,p =0.25,0 = 2.5,Q5 = 1.5

The above tables of percentiles provides additional insight into (4.91) and (4.92). Particularly, it is interesting
to note the percentiles under the ¢ assumption in general are much lower than that of the normal assumption

- this is in line with the commonly used z- and ¢ scores in hypothesis testing (see Chapter 1).

4.5 Summary of results and conclusion

A summary of theoretical results in this chapter is provided for the convenience of the reader. (Uy,Usy) denotes
the bivariate gamma type II distribution which originates from the elliptical class (see (4.8)), and (W7y, W)

denotes the corresponding bivariate Weibullised gamma type II distribution emanating from (Uy, Us).

Pdf Moments Cdf

Elliptical | Normal | t Elliptical | Normal | t Elliptical | Normal
(U1, Us) (4.8) (4.14) (4.15) | (4.24) (4.30) (4.31) | (4.32) (4.38) (4.39)
(W, Ws) | (4.60) (4.63) (4.64) | (4.75) (4.81) (4.82) | (4.83) (4.88) (4.89)

Table 4.7 Summary of derived results relating to this chapter

In addition, the pdf of a bivariate noncentral gamma type II distribution with pdf (4.44) was also derived, and
the Laplace transform of (W7, Ws) with pdf (4.60) is also derived, see (4.65).

This chapter proposes a bivariate gamma type II distribution with its origins in the elliptical class. In particular,

a new bivariate gamma type II distribution has been derived, along with its pdf, cdf, and product moment. A
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bivariate noncentral gamma type II distribution stemming from this bivariate gamma type II distribution, is
also proposed and derived. In addition, a bivariate Weibullised gamma type II distribution has also been derived
and studied. This bivariate Weibullised gamma type II distribution contains the bivariate Nakagami type as
a special case; of which the bivariate Nakagami distribution of Reig et. al. (2002) and Pibongungon (2005) is
also a special case. Therefore, this bivariate Weibullised gamma type II distribution enriches the statistical
distribution theory literature with its representation and origin from the elliptical class, and also provides a
platform within the communications systems domain to assume underlying models othen than the normal for
the bivariate Nakagami type distribution. Application has been discussed in terms of utilising the newly derived
bivariate gamma type II distribution as a versatile bivariate gamma type distribution in the communications
systems domain. In particular, the outage probability of a fading channel subject to such a bivariate gamma
type II distribution under models other than the normal (in this case, t), provides significant insight into the

behaviour of the bivariate gamma type distribution in such scenarios.
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Chapter 5

Complex noncentral Wishart type

distributions

Contents
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5.2 Distributions of complex noncentral Wishart type and joint eigenvalues . ... .. ... .. 125
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5.4 Illustrative application . . . . . . ¢ v i i i i i i i i e e e e e e e e e e e e e e e e e e e e e e e 143
5.5 Summary of results and conclusion . . . . . . . . . i s e e e e e e e e e e 146

5.1 Introduction

This chapter investigates the distribution of 8 = XX €C5*? assuming X €C}*? to follow the complex ma-
trix variate elliptical distribution with E (X) = M. In certain practical scenarios, F(X) = 0 (as consid-
ered in Chapter 2), which reflects the Rayleigh fading assumption (see (1.12)). However, in practice MIMO
channels don’t always exhibit this, stemming from a LOS connection between transmitters and receivers
(Kang and Alouini (2006)b, Zhou et. al. (2015)). Jayaweera and Poor (2003) motivates the channel matrix
X to be modelled having non-zero mean, to account for environments with strong LOS paths between trans-
mitters and receivers. In order to encompass all channel characteristics, Taricco and Riegler (2011) suggests
employing correlated Rician fading models - which directly pertains to modeling X with a non-zero mean. It
is with these thoughts in mind that this chapter focus on assuming F (X) = M # 0 (see (1.11)). The resulting

distribution of S is called a complex noncentral Wishart type distribution.

Particular interest lies with the distribution of the minimum eigenvalue of this complex noncentral Wishart type
distribution. However, assuming F (X) = M leaves a number of challenges analytically as well as computation-
ally. In this chapter, the noncentral matrix parameter is assumed to have rank one. This low rank assumption
is reportedly well modelled in practice (see Hansen and Bolcskei (2004)) and has been studied previously by
Dharmawansa and McKay (2011).
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5.2 Distributions of complex noncentral Wishart type and joint

eigenvalues

In this section the distribution of S = XX is of interest, where X is distributed according to the complex
matrix variate elliptical distribution (see (1.3)). The case where ® =1, is of interest (in Lemma 1.3.1), as
considered by McKay and Collings (2005) and Dharmawansa and McKay (2011).

5.2.1 Pdf of the complex noncentral Wishart type

In this section the pdf of the complex noncentral Wishart type distribution is derived.

Theorem 5.1 Suppose that n > p and that X € C1*? is distributed as CEyxp(M, 1,03, h). ThenS = X7X ¢

C5*? has a complex noncentral Wishart type distribution with pdf:

e gy et (8)"”

= W /tnp etr (ft (2*18 + A)) oCFy (n; tQAE*ls) W (t)dt (5.1)

R+

where A= X 'MHM denotes the noncentral matriz parameter and oCFy () denotes the complex hypergeometric
function of Hermitian matriz argument (see Result D.51). This distribution is denoted by S ~ISCW,, (n, M, I,,@%).

Proof. The pdf of X|t is given by (see James (1964)):

FX[t) = 7 Pdet (t71%) "etr (— (X-M) (') (X - M)H)

= a7 det (1718) "etr (- (1271 (X - M) (X~ M)

= 7 "det (t7'%) "etr (— (t27) XIX) etr (— (¢(=71) MIM) etr (2 (t2 1) MPX)

Let X = ET, where E : n x p € CV), , the Stiefel manifold (see Result D.37) such that EFE =1, and T is an

upper triangular matrix with real and positive diagonal elements. Consider the Cholesky decomposition of S:
S = XX =(ET)” ET = T"EYET =TT
Using Result D.41) leaves:

fr(S,Elt) =27Pn " det (t ') "etr (— (t=71) S) det (S)" Petr (— (tX 1) MIM) etr (2 (t=7') MYET) .
(5.2)
Subsequently the marginal pdf of S|t can be obtained from (5.2) as:

st = [ fS.El (B E)
CVp.n
_ / 9P det (1718) " etr (— (£271) S) det (S)" 7
CVp.n
xetr (— (=) MPM)etr (2 (t=~') MPET) (E”dE)
= 27P7 " det (t7'8) "etr (— (t27) S) det (S)" P etr (—tA)
x / etr (2 (t=7') M"ET) (E"dE) . (5.3)

CVp.n
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Using Result D.40, see that the integral in (5.3) can be written as:

etr (2 (t=7!') M7ET) (E”dE) = / etr 2T (t=') M”E) (EdE)

CVp.n CVp,n
- 02;::; oCFy <n; i (T (262Y) MH) (T (24271 MH)H>
- 6211:::;) oCF (n;tQTE_lMHM (zfl)HTH)
- 02;::; oCFy (n; E MY MEITHT)
- CQIZ::::) oCFy (n; ?AX'S) . (5.4)

Substituting (5.4) into (5.3) leaves:
FreSl) = 2 Pr P det (%) " et (- (tE_l)S)det(S)"petr(—ﬁA)%OCFl (n;2AS'S)
- %mm (—t(S7'S+ A)) oCF; (nPATS) (5.5)

Finally, substituting (5.5) into (1.4) leaves the final result:

/s = / £7 (S W (t) dt

R+
det (S)"7 1 2 A1
= ———— [ t"Petr (—t(X'S+ A Fy (n;t°AX™"S t)dt
G e e (1578 8) o0 (P AR TS WO
R+
which leaves the final result. [

Remark 5.1 Suppose that M = 0. Then A = X" "MYM = 0, and the pdf in (5.1) simplifies to:

[ det(S)" Petr (—tX7'S)
18 = CT,(n)det (t—1%)"

W (t) dt (5.6)
R+

where S €CE*P, which is the distribution in (2.53) and (2.4).

Remark 5.2 The complex noncentral Wishart type distribution (see (5.1)) can be written in terms of the

complex central Wishart type distribution:

det (S)" " 1 2 -1
R+

N / crp(i(;té(i)(t—lz)n otr (=t (E7'S+ A)) oCFi (n; 2 AZTIS) W (1) dt
R+

B det (S)" P etr (—tZ]*lS) 0 1
- CF, () det (°1%)" etr (—tA) oCFy (n;t?AXT'S) W (¢) dt

R+

= /f(S)etr(ftA) oCFy (n;t? AZTIS) W (1) dt.
R+
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where S €CE*?, and where f (S) denotes the pdf of the complex central Wishart type distribution (see (5.6)).

Special cases of the distribution in (5.1) are highlighted next.

Corollary 5.1 By choosing W (t) as the dirac delta function (1.5), (5.1) simplifies to:

det (S)" 7

ormal (S) = CT,(n) det ()"

normal

etr (— (Z7'S+ A)) oCF (n; AZT'S) (5.7)

where S €CE*P | which is the distribution as reported by James (1964).

Corollary 5.2 By choosing W (t) as the t distribution weight (1.6), (5.1) simplifies to:

ne = w np _ -1 42 -1 (%)5 L1 v
7e(8) = CFp(n)det(E)"RZt etr (4 (2718 + 4)) oCF (s AZTS) st exp (—t5 ) dt
NG S CTC Ry g gy ALY At

T(3) T (n)det(z)n/t exp |—ttr (SIS + A+3)| oCF (mt?ADT'S) dt

R+

Ezpanding the hypergeometric function oCFy () using Result D.51, see that:
") -1 _ 2 1
oCF; (n; P AXT'S) = sz, (PAZT'S)
K

- ZZ kl (A7)

and together with Result C.22 leaves:

nc _ (%)% det (S)W*P np+%*1 —1 1
e - p@mrp(n)det(zwkf it s (5154 2] 3 e (am sy
_ (%)% det AZ IS) np+%+2k—1 -1 v
= T(Z) CT, det kzz /t exp {—ttr (2 S+ A—l—i)} dt
0k B
(3)* det AE 1s) T (np+ % + 2k)
= v 5.8
I'(3) €Ty det kzo; (tr (218 + A4L))PHate %

where S € CH*P.

5.2.2 Pdf of the joint eigenvalues

In this section, expressions for the joint pdf of the eigenvalues of S € C5*? (see (5.1)) and some special cases

are derived. The eigenvalues of the noncentral matrix parameter A is denoted by iy > pg > ... > p, > 0.

Theorem 5.2 Suppose that S € C5*P is distributed with pdf (5.1), and let A\; > Ay > ... > Ap > 0 represent
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the ordered eigenvalues of S. Then the eigenvalues of S, A = diag (A1, A2, ..., Ap), has joint pdf:

mP(P=1) (ﬁ (e — )\l)2> det (A)"P

k<l np .
f(A) = crp<<p) OF () dot (57 / "7 etr (—tA) (5.9)

R+
x / etr (—tzflEAEH) oCF (n;tQAE_lEAEH) dEW (1) dt
EcU(p)

where A denotes the noncentral matriz parameter and U (p) denotes the unitary space (see Result D.58).

Proof. Using (5.1) and Result D.59, the joint pdf of the eigenvalues A1 > Aa > ... > A, > 0 of S is given

by:
P 2
7P~ (1T O — \)
A) = bl EAE™) dE
o T, ) / (maE”)
E€eU(p)
p
ap(p—1) <H (M — /\z)2>
_ k<l
Crp(p)
det (EAEH> B 1 H 2 1 H
np _ - . -
x / T () el 5" / e etr (<t (S'EAE"+A)) oCF: (n; AR EAET ) W (¢) didE
EeU(p) R+
po-1) [ T — )2 n—p
T H ()\k )\l) det (A)
k<l
= £ ety (—tA
CT, (p)CT,(n) det (2)" / etr (—tA)
R+
X / etr (—tz—lEAEH) oCF (n;t2Az—1EAEH) dEW (t) dt
EeU(p)
which completes the proof. ]

Remark 5.3 By choosing W (t) as the dirac delta function (1.5), (5.9) simplifies to:

p(p=1) (ﬁ ()\k—)\l)2> det (A)"7

_ k<l _ -1 H AL H
Frormat(A) = T AT etr (—A) / etr( > EAE ) oCF (n,Az EAE )dE.

E€cU(p)
(5.10)
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Remark 5.4 By choosing W (t) as the t distribution weight (1.6), (5.9) simplifies to:

mP(e=1) < kﬁl (A — /\l)2> det (A)" P
H(A) = CT, ()CT, (n) det (Z)" / £ etr (—tA)

R+
x / ctr (~=7'EAE") (CFy (n;t2AE_1EAEH)dE—(§)2
EcU(p) 2

(3)* Y (ﬁ (A = Az)2> det (A)"P

k<l
I'(%) CT,(p)CLp(n) det ()™

t"PT2 ety (—tA)
R+

X / etr (—t (z—lEAEH T g)) oCF (n;tQAZ}_lEAEH) dEdt. (5.11)

EeU(p)

In the following corollary, the special case of ¥ =021, in (5.9) is presented.

Corollary 5.3 Suppose that S € C5*7 is distributed with pdf (5.1), and let A1 > Xg > ... > A, > 0
represent the ordered eigenvalues of S. Furthermore suppose that ¥ =0?1,. Then the eigenvalues of S,
A = diag (M1, A2, ..., Ap), has joint pdf:

k<l

(g, — m)) g2nppitl

X /t"p*p2+1 etr (—t (A—I—U*2A)) det ( o (n —-p+1; t2072,uj)\i)) W (t)dt (5.12)
R+
where A denotes the noncentral matrixz parameter and oFy denotes the hypergeometric function of scalar argu-
ment (see Result C.10).
Proof. Substituting :021p into (5.9) and using Result D.62, observe that:

=) (ﬁ (i — Al)Q) det (A)" "

k<l np
8 = e | i)

R+
21\~ 1 H 2 21\~ 1 H
x / etr (<t (o°I) " EAE") (CFy (n; A (o°1) " EAE™) dEW () dt
EeU(p)
po-1) [ T _ )2 n—p
YIS (H ()\k )\l) )det (A)
k<l n -2
= t"P etr (—tA) etr (—t A
CT,(p)CT,(n)o2m» / etr ( )e r( o )
R+
X / oCFy (n; t%*?AEAEH) dEW (t) dt
EeU(p)
po-1) [ ] )2 n—p
s H (/\k )\l) det (A)
_ k<l
Cl,(p)CT'y(n)o?mP
X / £ etr (—tA) etr (—to2A) oCFP) (n;t20 28, A) W (t) dt (5.13)
R+
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where OCFl(p) (+,+) denotes the complex hypergeometric function of double Hermitian matriz argument (see Result
D.58). Using Result D.66 and D.57, see that:

PP (s A2e-2n) = —Sct(of (nopt Lo Fuh)) CTy(p)CTy(n)

I (o2~ 2023 11 o) (7P
k<l k<l

det (oFy (n —p+ 1,820 %p;0i)) CT,(p)CTp(n)
[T (202 O — M) 1T (g — ) (7P

k<l k<l
det ( o (n —-p+1; t20'72‘LLj)\i)) CT'y(p)CTy(n)

p(p—1 p(p—1) P P — | p
225 T v = M) 1T (g — ) ((n=p)})
k<l k<l
B det ( oFy (n—p+ 1820 2p,;Mi))  CT,H(p)CT,(n) (5.14)
o p p — NP .
=052 [T v =) 1T oy —p) 7P
k<l k<l

where oFy (+) represents the hypergeometric function of scalar argument (see Result C.10). Substituting (5.14)
into (5.13) results in:

mP(=1) (ﬁ (ke — AZ)Q) det (A)" 7P

A) = bl / P oty (—tA) etr (—to2A
f(A) CT(p)CT, ()02 w7 " etr (—tA) etr (—to?A)

R+
y CT,(p)CTy(n) det ( oF1 (n—p+ 132072 ;);))

W (t) dt
— )P P P
(=207 -0 T (= 20) 1T (e~ )
k<l k<l
p
_ n—p
o mpled <k1_<[l - Al)) der
 ((n—p? [ )
((n=p)}) (H (g — Ul)) gnp—pitl
k<l
X /t”p*p2+1 etr (—t (A+072A)) det (oFy (n—p+1; tQU*Q,uj)\l-)) W (t)dt
R+
leaving the final result. [

Corollary 5.4 By choosing W (t) as the dirac delta function (1.5), (5.12) simplifies to:

(1) (ﬁ (Ar — )\l)) det (A)" 7

k<l

((n—p)? (ﬁ (i — M)) p2np—p 1

k<l

frormat(A) = etr (— (A—I—J*QA)) det ( oF1 (n —p+1; J*Quj)\i)) )

(5.15)
When o2 = 1, this result simplifies to p. 41, eq. 2.52 of McKay (2006).
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5. COMPLEX NONCENTRAL WISHART TYPE DISTRIBUTIONS
5.2. Distributions of complex noncentral Wishart type and joint eigenvalues

Corollary 5.5 By choosing W (t) as the t distribution weight (1.6), (5.12) simplifies to:

p(p—1) <ﬁ (A — Az)) det (A)" P
= T k<l
ft(A) - ((’I”L*p)')p D
. (H (1 — ul)) g2np—p+1
k<l

—~

e

SN—
(V)

x [ =P’ oty (ft (A+0'72A)) det ( oF1 (n —-p+1 t2072uj)\i))
R+

o)
_rwe (Lo w)aar
L(3) ((n=p))" (lg[ (i — W) p2np—pP 1

k<l

x /t”p—p2+%1 etr (—t (A+a—2A+§)) det (oFy (n—p+1;t207;\i)) dt.
R+

(5.16)
Suppose now the noncentral matrix A has L < p non-zero eigenvalues, thus, rank (A) = L < p. For the case
¥ =021, the joint pdf of eigenvalues of S, A = diag (M1, A2, ..., Ap), is presented in the following theorem.

Theorem 5.3 Suppose that S € C5*? is distributed with pdf (5.1), and let Ay > Xg > ... > X\, > 0 represent

the ordered eigenvalues of S € C5*P. Furthermore suppose that ¥ =021, and that A has arbitrary rank L < p
with eigenvalues (1 > g > ... > i, > 0. Then the eigenvalues of S, A = diag (A1, A2,

s Ap), has joint pdf:

(1) (ﬁ (O — )\l)) det (A)" 7

1) = :
(= (11

L
(1 — Mz)) <H uf_L) CT,_1(p — L)o2np—p*+1
k<l i=1
X /t"ﬂ’—pz+1 etr (—t (A+o?A)) det (T) W () dt
R+

(5.17)
where A denotes the noncentral matriz parameter, and where T is a p X p matriz with (i, j

oF1 (n —-p+ 1;t20_2ui)\j) i=1,..,p j=1,...,L
{T}i,j = (tzki)k(n—p)!
T (R

Proof. Consider from (5.12):

) entry

i=1,.p j=L+1,..p

p(p—1) (kli[l (Ae — Az)) det (A)" P
e (=2}’ (ﬁ (g, — Mz)) o2np—p2+1
k<l

X /t"p*pul etr (ft (A+072A)) det ( oF1 (n -p+1; t2072,uj>\i)) W (t)dt
R+

/ aP(P=1) det (A)" 7P ( p
A
R+

A — \) ) PP+
(n — p))P g2np—p2+1 k1_<[l (A& l))

det ( oF1 (n —-p+1; t20_2uj/\i)) W (t) d.
(ﬁ (1 ﬂl))
k<l

© University'of Pretoria
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5. COMPLEX NONCENTRAL WISHART TYPE DISTRIBUTIONS
5.2. Distributions of complex noncentral Wishart type and joint eigenvalues

From (5.18), consider:

det ( oF1 (n —-p+1; tQU_QMj/\i))

J = lim o m
HLg1sslp = (
P — 1)
det (f (). . )
= lim Tl (5.19)
e ()

k<l

where f; (pj) = oF} (n—p—l— 1;t20’2,ui)\j), Applying Lemma 5, p. 840 of Chiani et. al. (2010) (see also
McKay (2006)) to (5.19) leaves:

film) - fuy) 20 - 72(0)

det :
o (p—L-1) . (0)
g LA o b SN0 o 570 (5.20)
Cly—r(p—L) <k1_<[l (g, — Mz)) <¢1:I1 /J’]z?_L>

where .
(t2072X;)" (n —p)!
(n—p+k)! '

2 0) =

Substituting (5.20) into (5.18) leaves:

[ AT () e s (- (A 2) 0

(n—p))¥ o2re=r* 1 i

(n _ p)!)P o2np—p3+1

= / (Wp(pl) det (A)" (ﬁ (Ak — )\l)) =P L oy (—t (A+072A))
R+

k<l
fp) o A KPEP0) 0 /200
det : :
e LD v Bl) B0 o RO,
erysto=0) (f1,0 =0 ) (17

aP(P—1) ﬁ (A\r — )\l)) det (A)"7P
. =P+ oy (=t (A+o72A)) det (T) W (t) dt

((n—p))” (ﬁ (e — /:;) (f[l I L) CTp—r(p — L)o?mp—r*+lg

k<l

where T is a p X p matriz with (i,j)th entry

o { oF1 (n —p+ 1;t20_2uiAj) i=1,..,p j=1,...,L
J = (tzg*QAi)k(n—p)! - -
W t1=1...,p ]—L+1,,p

which leaves the final result. [
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5. COMPLEX NONCENTRAL WISHART TYPE DISTRIBUTIONS
5.3. Minimum eigenvalue cdf under rank one assumption

Remark 5.5 By choosing W (t) as the dirac delta function (1.5), (5.17) simplifies to:

PP (ﬁ (A — Al)) det (A)"77

k<l

frormal(A) = (=1 <ﬁ (i Nl)) (lﬁl Mf_L) CT,y 1 (p — L)o2mp—v*+1

k<l
xetr (— (A+o?A)) det (T). (5.21)

Remark 5.6 By choosing W (t) as the t distribution weight (1.6), (5.17) simplifies to:

(1) (ﬁ i — )\l)) det (A)"

ft(A) = _ k<l _
((n—p)1)" <kl;[l (ko — Mz)) <Zl:[1 N?L) CT,_r(p— L)o2mw—p*+1

x /t”p*f“ etr (—t (A+o2A)) det (T) (3) 3L exp (—t—) dt

R+

(1) (ﬁ (i — )\l)) det (A)"7 (2)*

k<l

(=0 (11 0= 0) (1 87) €Cslp—~ D20

k<l

x /t“p—p2+% etr (—t (A+a—2A + %)) det (T) dt. (5.22)

R+

5.3 Minimum eigenvalue cdf under rank one assumption

In this section, the cdf of the minimum eigenvalue of S € C5*” with pdf (5.1) is derived. Under the assumption

of rank one matrices, AX ! € CP”? has rank one and is represented via its eigendecomposition as
AX ! =yt (5.23)

where v € C2*! and v~ =1. In (5.23),  denotes the single eigenvalue of AX™!. To derive the cdf of the

minimum eigenvalue of S € C5*? under this assumption, the following approach is employed:

Fmin (y) = P <)‘min (S) < y)
= 1—=PAmin(S)>y).

Knowing that
P (Amin (S) >y) =P (S > yl,)

the cdf of the minimum eigenvalue can be found using (5.1) directly, therefore avoiding cumbersome derivations

and computations of deriving the marginal distributions of random variables with pdfs like (5.9).

5.3.1 Cdf of minimum eigenvalue of S € C5*” where X € C}™”

For the complex noncentral Wishart type distribution with pdf (5.1), the cdf for the minimum eigenvalue of S

is derived next.
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5. COMPLEX NONCENTRAL WISHART TYPE DISTRIBUTIONS
5.3. Minimum eigenvalue cdf under rank one assumption

Theorem 5.4 Suppose that X € C}*? is distributed as CEpx,(M, 1,3, h), where M € C7™ has rank one,
and S = X*X ~ISCW,, (n, M, 1,2%) with pdf (5.1). The cdf of Amin (S) is given by:

-1 oo k np k
Fonin () =1 = / oot Rl L) > AR (]:> Q. () W (t) dt (5.24)
R+

n |
CT'p(n) det (X0) P (n),
where y > 0, A denotes the noncentral matriz parameter, and

QW) = / det (L,+Y)" Petr (—ty='Y) tr" (v77Y) dY (5.25)
Y
where Y € CH*P.

Proof. See that S—ylL, € C5*?, and consider from (5.1):

POun()>y) = [ £(8)a8
S—yl,
np etr (—tA)
/ P, () det (2)”
R+
X / det (S)" Petr (—t=7'S) oCFy (n;t?AXT'S) dSW (t) dt (5.26)

S—yl,

where S—yI, € C*P. Consider the transformation S = y (I,+Y), thus Y € C5*P. Using Result D./5, from
(5.26) it follows that:

. — np__ €T (—tA) /(n—p)p n—p
POwin(8)>) = [ ¢ G qa gy | Y e ()
Y

x etr (=271 (y (1,4Y))) oCF1 (n; 2AS  y (L,4Y)) y? dYW (t) dt

- etr (—tA) etr (—tyX 1)
/ VT, () det (B

R+
X / det (I,+Y)" Petr (—tyX'Y) oCF (n; yt? AD ™" (L,+Y)) YW (¢) dt.(5.27)
Y

By using Result D.51 and applying the assumption of rank one for the noncentral matriz parameter (see Result
5.23) to (5.27), the following is obtained:

o mp €T (—EA) et ( tyE >
Plwa(®>0) = [enr G TS S
R+ k=0 kK K
X / det (I,+Y)" Petr (—ty= 1Y) C,. (yt?AZ" (I,+Y)) dYW (t) dt
Y
_ np npetr(—tA) etr tyE i
/ P o )y det (3 ;Z .,
R+ =0 r
X /det (L+Y)" Petr (—ty=~'Y) C, (y2uy™ (I,+Y)v) YW (t)dt.  (5.28)
Y

Since having only one eigenvalue results in the partition k to reduce to a single partition, per definition of zonal
polynomials it follows that [n],, = (n), and Cy (A) = tr (A)* (see Result D.51). Thus, by using Result C.29,

© University*of Pretoria
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5.3. Minimum eigenvalue cdf under rank one assumption

the fact that the trace of a scalar value is the scalar value itself, and Result D.56, from (5.28) it follows that:

Cr. (yPuy™ (I,+Y) )

k AN
= (thu) E (r) tr” (vy7Y). (5.29)
Substituting (5.29) into (5.28) leaves:

P(/\min (S) > y) =

- np ST (A etr ( tyE >
/ 4 CT,(n) det (2

o k=0 =0

X /det L+Y)" Petr (—ty=~'Y) (yt°u ) (fj) tr” (yy"Y) dYW (t) dt
Y

oy T (A ety (—tyE 1) S 2k (y)* (k
:/ye etr (—ty )Zzw(>

CTp(n)det (8)" &= kl(n), r

X / det (I,+Y)" Petr (—tyS~'Y) tr" (vv7Y) dYW (t) dt
Y

_ "petr(—tA)etr(—tyE—l) ook tnp+2k(yu)k .
a / CTp(n) det (X)" kZ:OrZ:O k! (n), <T>Qn,p,t(y)w(t)dt

which leaves the final result. [ |

Corollary 5.6 By choosing W (t) as the dirac delta function (1.5), (5.24) simplifies to:

_ np O (—tA) etr (—ty=1) & b g2k (y)* (kY .
P (>\min (S) > y) - /y CI‘p(n) det (E)n ;) ; Tn)k (’F) Qn,p,t (y) 5(t - 1)dt
R+ T

Letx =t—1, thent =2+ 1 and dx = dt:

P(/\rnin (S) > y) =

R+

wpltr (= (@ +1) A)etr (= (= + 1yt Z Z 1)"etek (y,u)k (k

Tt ot (D) ) Qs () 301

k=0 r=0

with
Qi1 (¥) = /det (L+Y)" Petr (— (z+1) nylY) tr” (’y’yHY) dyY.
Y
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5.3. Minimum eigenvalue cdf under rank one assumption

This leaves

' _apetr (—A)etr (—yX71) S k (y,u)k kN .,
P (umin (8) > y) =y CTp(n) det (2)" kX:(:] ; k! (n), <7“) . W)

with

9, (y) = /det (I,+Y)" Petr (—nylY) tr” ('y’yHY) dyY,

Y
and finally
"Petr (—A) etr
Fun ) =1 - LI () Sh g W (B gy (5:0)

k=0 r=0

which reflects the result by Dharmawansa and McKay (2011).

Corollary 5.7 By choosing W (t) as the t distribution weight (1.6), (5.24) simplifies to:

_ [t (A et (—tyS ) SN e ) (R o, (5)* s v
POwn®)>0) = [ G S S (1) Q00 et ()
R+ =0r=

(B)F [ petr (- (A + ) etr (~tyB1) S ma2s )t k|,
3 / Y CTp(n) det (X)" ,;)Z%W< )Qn,p,t (y)dt

Fain(y) = 1= P Anin (S) >y)

/ np 1T (=t (A+2))etr (—ty=~1)

CTp(n)det ()"

© k np+2k+35 k
Y e (F)en (5.31)

k! (n), T

5.3.2 Cdf of minimum eigenvalue of S € C;*" where X € C}*"

For the complex noncentral Wishart type distribution with pdf (5.1), particularly when n = p, the cdf for the

minimum eigenvalue of S is derived next.

Theorem 5.5 Suppose that X € C}*" is distributed as CEpx,,(M, 1,3, h), where M € C}*" has rank one,
and S = XX ~ISCW,, (n,M,1,®X) with pdf (5.1). The cdf of Amin (S) is given by:

Fon () = 1 — / otr (—tA) et (—tyS ! i (yf%)i VFy (st tir A)W (£) di (5.32)

R+ J=

where 1Fy () denotes the confluent hypergeometric function (see Result C.10).
Proof. Let n =p. See from (5.24) and (5.25) by using Result D.63 and Result D.49 that:

aetr (—tA) etr (—tyST) S o 2k MR L,
PO () > 9) = [yt AL E S );ZW(;/:)O P W (5.39)
R+ e
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5.3. Minimum eigenvalue cdf under rank one assumption

where
ot (W) = det (I,+Y)" "etr (—ty= 1Y) 1" (v77Y) dY

etr (—tyE_lY) C, ('yfyHY) dyY

M K

= CIy (n,r) (det (tyE_l))ﬂl C, (‘y‘yH (tyz—l)*l)

= Chatnn) (e den (7)) 0 (2

ty

2 2 A
= CI(n,m)t ™™y ™ (det )" C, (—)
(o) 17y (@t 5y 0, (B

_ CDy (n,r) (det )" 1 "
o tnzynz (M@) C, (A)
_ Chy (n) (n), (det )" (i

tn*yn® pity

)T (tr" A) (5.34)

using the fact that with a single eigenvalue the partition of k falls away. Substituting (5.84) into (5.33) leaves:

2etr (—tA) etr (—tyX—1)
Cl,(n)det (2)"

o ZZ t” B (yu) (i) CTy (n) (n), (det 3)" <L)r (6" A)W (1) dt

k=07=0 tn2y’ﬂ2 pity

P(Mmin (S) >y) = /y"

= [etr(—ta)etr (~y=! ZZ yt2 () (n), (i>r(trm)w<t)dt.(5.35)

R+ k=0r=0 'uty

Consider the double summation component in (5.35). Using Result C.10, this component can be rewritten as

© University/of Pretoria
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5.3. Minimum eigenvalue cdf under rank one assumption

follows:

o~y O (ytu)”’“
;;0 (5 +7)!(n)

> >
r=0 j=0
=t (ytp)

F'(n+r)
I'(n)

o

titr (ytu J
I'(ntr4j

)
)

T'(n)
I'(n) (n),

tr" A

gir!

(5.36)

(j +1)! 1\ .
S () o

(ttrA)"

1l
=0 7 (n)]

F(ﬂﬂ)fz(nﬂ)r

1F1 (nsn+ 4, ttr A).

Substituting (5.37) into (5.35) leaves the final result.

Remark 5.7 See that (5.36) can also be expressed as:

r=0 j=0

r!

(5.37)

T (yt r
(ytu)’ (n+7")trrA

T'(n+r+
T T(n) Hogrtd) T (’I’L)

T'(n+r)

(yt? ,u) (ttr A)"

Z Z I‘(n-&-?-l—])

jlr!

th,u) (ttr A)"

7,

T"'r] jlr!

Dy (n, n,ttr Ayt u)

where @3 (+) denotes the Humbert confluent hypergeometric function of two variables (see Result C.35). Thus

(5.32) can be written as:

Foin (y) =1— /etr(ftA)etr (—ty=~") @3 (n,n, ttr Ayt>p) W (t) dt.

R+

Remark 5.8 By choosing W (t) as the dirac delta function (1.5), (5.52) simplifies to:

=34

Jj=0

Fain (y) = 1 —etr (—A) etr (

© UniversityPof Pretoria
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5.3. Minimum eigenvalue cdf under rank one assumption

which reflects the result by Dharmawansa and McKay (2011).

Remark 5.9 By choosing W (t) as the t distribution weight (1.6) and using Result C.32, (5.32) simplifies to:

00 2. \J v\ 3
Foin(y) = 1-— /etr (—tA)etr (—tyZ_l) Z (y't(:)) VB (min 4 ttr A) 5_‘2()2) 3L exp (—t%) di
Bt j=o I*\; 2
= 1- (%): /etr (_t (y}]_l +A+B)> i S () 1Fy(nyn+ g, ttr A) dt
F(E)RJr 2 = L(n),
= 1- (%F i -(y,u)j /t%”j*letr (ft (yEfl +A+B>) 1By (nsm 4+ g, ttr A) dt
M &3, 2
- 1- (%F f: (yﬂ)j /t%“j_l exp (—ttr (yE_1 + A—l—E)) 1F1(nyn+ g, ttr A)dt
NP SO 2
(B S Tw+2) . ua
= 1- - — o , 0+27; n+7, 5.39
I'(3) ;]! (n); (tr <y2—1+A+%))§+2j b myvt2gintg, = (Y= 1+A+D) (5.39)

tr A
tr(yS—14+A+3)

matrix is a scalar.

where < 1, and noting that the diagonal entries of a complex matriz is real, and the trace of a

5.3.3 Cdf of minimum eigenvalue of S € C3*? where X ¢ C}*?

For the complex noncentral Wishart type distribution with pdf (5.1), particularly when p = 2, the cdf for the
minimum eigenvalue of S is derived next. Thus, this result gives the cdf of the minimum eigenvalue of a 2 x 2

complex noncentral Wishart type matrix with n arbitrary degrees of freedom.

Theorem 5.6 Suppose that X € C}*? is distributed as CEy,x2(M,1,2%,h), where M € C}*? has rank one,
and S = XHX ~ISCW, (n, M,1,0%) with pdf (5.1). Thus, S is a 2 x 2 complex noncentral Wishart type
matriz with arbitrary degrees of freedom n. The cdf of Amin (S) s given by:

_ etr > k 2 \k r r
Fopn () =1 [ S04 tyz ZZW ) (f) (ﬂ) p(ry, )W (H)dt  (5.40)
R+

CTy(n) det = = kl(n), ytp

with
n—2 i; min(ia,r) 9 il ,
plryt) = > > > ( > <22> <h>i2! (iy — ip +2), CT (i1 — iz +2)
11=0142=0 h=0

h
1 i1 +L i1 —i2+2+T 1 -1 2n+iz—2i1—4
det X 3% @iz —tr (X det (X2) | (¢ 41
(o) CemtF e (Ju(e) Vaam) @) (541

where €2 () denotes the Gegenbauer polynomial (see Result C.36).
Proof. Substituting p =2 into (5.24) and (5.25), see that:

o €T (—tA) etr (—tyX~!) & M2k (g <k) r

P Oun (8) >0 = [ S S () G w52
R+ e
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5.3. Minimum eigenvalue cdf under rank one assumption

where
n o (y) = / det (I+Y)" ?etr (~ty=~'Y) tr" (vv7Y) dY (5.43)
Y

noting the dimensions of Y is 2 x 2. Consider the determinant in (5.43) using Result D.65:

n—2 11

_ —2\ (11 ) g
det (I,+Y)" 2 = <" )()thth“ 2 5.44
= 305 () (1) e v v (544
Substituting (5.44) into (5.43):
mot(y) = /det (Ig—i-Y)Tk2 etr (—tyE_lY) tr” (’Y’YHY) dY

- /S i (”Z_l 2) (Z) tr’2 (Y) det (Y)* 2 etr (—ty= 1Y) tr” (y97Y) dY

11 =0 izZO

n—2 i

»> (”Z‘l 2) (Z) / tr'2 (Y) det (Y)" " etr (~tyS'Y) t1" (vv7Y) dY. (5.45)
Y

11=012=0

By using Result D.6} and setting p = is,a = iy —is +2,t = r, A = ty=~1 and R = vy, see that (5.45)
simplifies as:

/tri2 (Y)det (Y)" " etr (—ty= 1Y) tr" (yv7Y) dY
Y
ig! (i1 —ig +2), Cly (i1 — iz + 2) ) (_l)h (2)
. i L
et (=) =2 % 5 (det(ym1))]

B . .- tr (ty=~")
tr" " (D) telt (yH) @it [ AT A0
x " (yy Ty R et (yy) €T (2 det(tyEl)) .
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5.3. Minimum eigenvalue cdf under rank one assumption

Noting that vH~ =1 (see (5.28)) and substituting (5.46) into (5.45), it follows that:

n—2 11
" n—2 (1*22+2) CF2(1712+2)
Qn,Q,t (y) = Z Z < ) ( ) i1 —1 +2+_
i1=01i2=0 (det (tyz_ )) T 2
min(iz,r) h (r -1
-1 _ tr (tyX
X —( ) (h) trh (’Y’YH (tyE’l) 1) tr’ (‘YH’Y) QZ Zﬁzw g ( 4 )
= (det (tyS— ))5 2y/det (tyX—1)
_ HZQ @Zlmlrfa < 2> (21> (7”) ig!(il —i2+2)TCI’2 (il —i2+2)
=00 h=0 ig h (det (ty271))i17i2+2+122+%
1, —1\"—h h 2 1 tytr (27
x (T ty™h) T T (e )QZ;; AR
(ty)* det (Z-1)
_ ”f Z i < 2> (zl> (r> io! (i1 — in +2), CT (i1 — in + 2)
— i h i1—ig+24+ 244
1120490 h—0 2 ((ty)2 det (2_1)) 1—12 5 T2
L yh (AT e (] - i
X (t ly 1)7 L < p ) i;_h2+2+ §tr (2 1) det (2)2
e )\ (det (ot TR E A
tr(A)\ " g (1 —1 3\ 2(h—iat2t 2+ Er—h), —2(i1—iz+2+ B+ B trh)
X ¢ 5tr(z ) det (£)2 ) ¢ 22254 y \mmrerE e
1
n—2 4; min(iz,r) w(n— 9 7:1 r ip—24hyo
- Z = ( ' )( )(h>i2!(i1 — iz +2),CT2 (i1 — iz +2) (det )" F 72
i1=0i5=0 h=0 “ b2
tI'A zz r]' — —2i14+i2—4—h—r —2i1+i2—4—h—r

S o oE (

11=012=0
r—h
X (tr (A)) Q:ll io+2+4+1r
‘LL 12— h

Substituting (5.47) into (5.42) leaves:

etr (—tA)etr (—tyX!) &

-2\ [1 ii—i2.4h
> (Z1> (2) 1o! (il — 10+ 2)TCF2 (il — 19 + 2) (det 2)“ 3 t2t2

12
1 . L
(5 tr (2_1) det (E)) t’2_2“_4_ry”_2“_4_r. (5.47)

t2n+2k n—2 i; min(iz,r)

P (Amin (S) > y)

/ y2n
R+

x (”Z_l 2) (Z) (;)z’Q! (iy — in +2), CTy (iy — iy + 2) (det X)"*~

CT5(n) det (£)"

>y

k=0 r=0

()

zzg

7,1_0 22_0

r—h
y (tr LA)> q;zﬁzw (% tr (2—1) Tot (E)) pia—2i—d=ryia=2i—A=Tyy) (1) gy
_ /etr(—tA)e tyE ii (yt?p) ( ) ( (A))’"
A CTy(n) det == k! (n T ytu

n—2 Zl m1n17‘

D3 INC

21_0 22_0

) (tr )

( 2) () (h> ia! (i1 — iz +2), CTs (iy — i +2)
(1

Q:“ io+241r

no tr (271 y/det (E)) (ty)?" T2 (1) di

[\V]

© University'of Pretoria



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
e
-

5. COMPLEX NONCENTRAL WISHART TYPE DISTRIBUTIONS
5.3. Minimum eigenvalue cdf under rank one assumption

which leaves the final result. [ |

Corollary 5.8 By choosing W (t) as the dirac delta function (1.5), (5.40) and (5.41) simplifies to:

Fan(y) = 1- SR 1] &g zj!yfbn);k (+) <ﬂ>

CFQ( )det k—0 r=0 Yyp
n—2 i; min(iz,r) .
n—2\ /(1 \., . . . .
X Z Z Z ( )(Z;) (h>12!(11—22+2)TCT2 (11—22+2)
’Ll 07,2 0 =

[\V]

h
X(tr?A)) (det )+ F @i izt (lu«(z—l) det(E)) y2rreTied o (5.48)

which reflects the result by Dharmawansa and McKay (2011).

Corollary 5.9 By choosing W (t) as the t distribution weight (1.6) and using Result C.22, (5.40) and (5.41)

simplifies to:
_ etr (—tA)etr ( tyE L (yt2u tr (A)\"
Foin (y) = I—RZ CTo(n) det (3 ZZ k' (n), (r)( vt )

x i‘j Z mi‘i{jﬂ (—1)" (n“ : <Zil) (:L)zg! (i1 =2 +2), CTs (i1 — iz +2) (tr (ﬂm)h

11=01i2=0 h=0 2
i+g - +otr (1 —1 ontis—2i—4 (3)° 54 v
x (det )" T2 Qjﬁ; 22 T (5 tr (271) \/det (E)) (ty) 2—2i1 FZ(%)tz exp (—t§> dt
_ o, B /etr( (A+yz L+ ii (yt°n)" ( ) (tr(A))T
F(%)R+ CT'y(n) det (X o k' (n), \r Yyt
n—2 i; min(ia,r) . n_9 il ,
X Z ’ (1) ( i )(w) <h>z‘2! (i1 — g +2), CTy (iy — iz + 2)
i1=012=0 h=0
h
1Y % -‘r——— i1 —i2+2+71 1 —1 IMntin—2i]—A+ L1 Infip—2iy—4
X<t1"(A)> (det &) +3-F gii—iz <§tf(2 ) det(z))t” A
v\35 k: r
_ ) ZZ (k:) <tr(A)>
I'(3) cr ()det )2 = R ( )k r) \ ytp
n—2 i in(iz,r) n_9 ; ,
XZ Z (_1)h( , )(1)< >i2!(i1—i2+2)
i1=0i=0 h=0 @l i2) \h r
h
i1 — 1 ‘ 1 - ntin—2i1—
XCT2 (i — iz +2) (JM) (det )+ 4% @yt (5tr (=) det<z>) y2ntia=2i =
X/ t%“kﬂ’“%?"“‘*%‘lexp( ttr (A+y2 + ))dt
R+

b E“%()%) Cly(n )det )2 ZZ Kl (n < > <try(ti)>r§ vil mij{jw)(—l)h (n,_2>

k=0 r=0

. h )
DY (MY igt i1 — i i) [ -
X <22> <h> 29! (21 19 + 2)TCF2 (Zl 19 + 2) <tr (A)) (det 2)

1 - oiy T(2n+2k—r+iy—2i—4+3%)
i1 —ia+2+r [ 1 2n+io—2i1—4 2
xCo ) <2 tr (271) \/det (Z})) yPntiz=2i (o (Arym i+ %>)2n+2k77~+i272i1*4+%

(5.49)

which concludes the proof.
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5. COMPLEX NONCENTRAL WISHART TYPE DISTRIBUTIONS
5.4. Illustrative application

5.4 Illustrative application

In this section, simulation results are presented to illustrate the accuracy of the derived results. For the cdfs

(5.32) and (5.40), the covariance matrix X is assumed to be given by:

where 1 < 4,5 < p. The mean matrix M is constructed as:
M = a’b

where a € C1*" and b € C}*? is given by:

{a},
{b};

exp (2 (i — 1) lm cos (9))
exp (2 (7 — 1) lmcos (6))

where | = /—1, 6 = 4, and ¢ = 1,..,n and j = 1,..,p. These specific constructions of the covari-
ance and mean matrices are meaningful when modeling practical MIMO channels with a nonzero mean (see
McKay and Collings (2005) and Dharmawansa and McKay (2011)). The simulation is done in a similar fashion
as that of Dharmawansa and McKay (2011) and the code can be found in the Appendix. Table 5.1 compares
the analytical values of the cdf of Ay, (S) where X € C2*? for the underlying ¢ distribution (see (5.39)) and

the underlying normal distribution (see (5.38)).

Y | t,v=15 Normal
Analytical ‘ Simulation || Analytical | Simulation
0 0 0 0 0
0.5 || 0.542821 0.47118 0.559005 0.53030
1 0.782587 0.74190 0.808532 0.83326
1.5 || 0.892376 0.86648 0.918016 0.92842
2 0.94458 0.92544 0.965325 0.96836

Table 5.1 Analytical ((5.38) and (5.39)) and simulated values of cdf of Apin (S)

The following figures illustrate the cdfs (5.32) and (5.40) for various dimension combinations.
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Figure 5.1 Cdf (5.38) and (5.39) for v = 15 and simulated values
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Figure 5.7 Cdf (5.48) and (5.49) for different values of v = 5,15,30 when n = 3

From these figures, the following observations are made:

e Figure 5.2 and 5.5 reflect the same results of (5.38) and (5.48) as reported by Dharmawansa and McKay (2011).
e Figure 5.3 and 5.6 reflects similar behaviour of (5.39) and (5.49) to that of (5.38) and (5.48) respectively.

e In Figure 5.4, it is observed that (5.39) tends to (5.38) as the value of v increases - the same behaviour
is observed in Figure 5.7 for (5.48) and (5.49).

5.5 Summary of results and conclusion

A summary of theoretical results in this chapter is provided for the convenience of the reader.

Distribution of X | Pdf of S | Pdf of A for £ | Pdf of A for £ = 0°I, | Pdf of A for arbitrary rank of A

Elliptical (5.1) (5.9) (5.12) (5.17)
Normal (5.7) (5.10) (5.15) (5.21)
t (5.8) (5.11) (5.16) (5.22)

Table 5.2 Pdfs of complex noncentral matrix variate Wishart type distributions in this chapter

Distribution of X

Cdf of Awn (S)
where X € C}"P

Cdf of Apn (S)
where X € C7*"

Cdf of Amin (S)
where X € C}*?

Elliptical (5.24) (5.32) (5.40)
Normal (5.30) (5.38) (5.48)
¢ (5.31) (5.39) (5.49)

Table 5.3 Cdfs of minimum eigenvalue of complex noncentral matrix variate Wishart type distributions in

this chapter
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5. COMPLEX NONCENTRAL WISHART TYPE DISTRIBUTIONS
5.5. Summary of results and conclusion

In this chapter, results were derived and presented for characteristics pertaining to a complex noncentral
Wishart type distribution. In particular, the pdf of a complex noncentral Wishart type matrix S = X7 X,
where X € C1™? ~ CE,xp(M,I® X, h) and the joint pdf of its associated ordered eigenvalues have been
derived. Some special cases were investigated, of which the pdf of the eigenvalues when X =¢2I and the
noncentral matrix has rank L < p, is a noteworthy contribution. Subsequently, the cdf of the minimum
eigenvalue of S was derived for the case when X € C7*P, X € C'*", and X € C7*2. These cdfs were derived
under the assumption that the noncentral matrix has rank one, which is a practical assumption. This theoretical
investigation has proposed impact in communications systems to allow the user a flexible choice of underlying

model for X, and thus S; thereby alleviating the restricted assumption of normality available in literature.
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Chapter 6

Conclusions

This thesis made significant contributions to the advancement of statistical distribution theory, being inspired
from communications systems. Broadly speaking, the assumption of normality as an underlying distribution
within communications systems is questioned. From a statistical viewpoint, the ¢t distribution is known par-
ticularly for its meaningful connection to the normal distribution. As both these distributions are members of
the class of elliptical distributions, this thesis investigates the candidacy of the ¢ distribution as an underlying
model within the communications systems framework. Particular results relating to the field of communications
systems which has their origin stemming from the normal assumption, are used as a point of departure for their
generalisation into the complex elliptical class of distributions. Therefore, by using the representation of the
complex elliptical class in (1.4) as basis for this generalisation, this thesis paves the way to investigate the

candidacy of the ¢ distribution as viable alternative to that of the well-studied normal.

In Chapter 2 the distribution of S = X?AX € C§*? is investigated, where X € C;*? and A € Cy*".
This is commonly known as the quadratic form of X, and in this case, X is assumed to follow the complex
matrix variate elliptical distribution. The central case is of interest, meaning F (X) = 0. In particular, both
cases when X is nonsingular and singular is investigated. The joint distribution of the eigenvalues of S is
also studied. These new results are used to evaluate the capacity of multiple input, multiple output (MIMO)
communications systems subject to Rayleigh type fading of wireless signals (see (1.10)). In particular, the
complex matrix variate ¢ distribution is comparatively investigated as underlying distribution for X against the
well-studied complex matrix variate normal distribution. It is observed that, under the complex matrix variate
t distribution, the existence of correlation between signal transmitters degrades the system capacity. However,
under this ¢ assumption, the capacity of the system is higher than that of a system with an underlying complex

matrix variate normal distribution.

In Chapter 3, the complex matrix variate inverse Wishart type distribution, emanating from Chapter 2, is
proposed. This contribution is used as the platform to derive a bivariate gamma type I distribution stemming
from the inverse of the diagonal elements of the complex matrix variate inverse Wishart type distribution. Key
characteristics of the new bivariate gamma type I distribution are studied. A bivariate Weibullised gamma
type I distribution emanating from the proposed bivariate gamma type I distribution is also introduced. This
contribution contains a bivariate Nakagami distribution as a special case, which is a well documented fading
model within communications systems. Therefore, this bivariate Weibullised gamma type I distribution is
a contribution within the statistical distribution theory domain, and may also act as a generalisation of a
bivariate Nakagami distribution to employ within communications systems. Application of the derived results
are proposed with regards to the outage probability and the EGC diversity of an n x 2 MIMO system; which is

analyzed in a broad generality from an elliptical viewpoint, and comparatively investigated for the underlying
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complex matrix variate normal- and ¢ cases. Simulation results confirm the validity of the derived analytic
expressions. In particular, it is observed that the outage probability is lower for certain subsets of the outage
threshold for a fading channel subject to the bivariate gamma type I distribution when the complex matrix
variate ¢ distribution is assumed; and the mean EGC diversity is higher under the complex matrix variate ¢

assumption, compared to the usual underlying complex matrix variate normal distribution.

Chapter 4 continues on a bivariate gamma type distribution path, although the point of origin is different from
that of Chapter 3. In this chapter, the systematic construction of a bivariate gamma type II distribution from
an exponential type distribution is motivated and described. This exponential type distribution emanates from
the Rayleigh type distribution (see (1.10)). Key characteristics of this bivariate gamma type II distribution
are studied. In addition, a bivariate noncentral gamma type II distribution is also proposed and derived. The
bivariate Weibullised gamma type II distribution which emanates from this bivariate gamma type II distribution
is also proposed. Corresponding characteristics of this bivariate Weibullised gamma type II distribution are
studied. The outage probability of a fading channel operating under this proposed bivariate gamma type II
distribution is investigated, and comparatively investigated for the underlying complex matrix variate normal-
and t cases. As before, it is observed that outage probability is lower for certain subsets of the outage threshold
under the complex matrix variate ¢ assumption. Certain percentiles for the outage probability under this
assumption is also calculated to illustrate the statistical contribution of this distribution. Together with the
observations in Chapter 3, significant insight is gained into the behaviour of communications systems when
subject to a bivariate gamma type I or type II distribution with an underlying complex matrix variate ¢

distribution.

Chapter 5 investigates the distribution of S = XX € C5*? assuming X € C}*? to follow the complex matrix
variate elliptical distribution with £ (X) = M. This assumption of noncentrality is useful when the fading
channel is of Rician type, which stems from a direct LOS component between transmitters and receivers. The
pdf of the joint eigenvalues of S are studied, and special cases highlighted. Valuable results pertaining to the
assumed behaviour of the noncentrality matrix parameter are given and studied. In particular, the assumption
of the noncentrality matrix parameter having rank one is of practical (and hence theoretical) interest. The
distribution of the minimum eigenvalue of S is investigated for some special cases. The chapter concludes with

simulation results to confirm the validity of the derived analytic expressions.

The contribution of this thesis to the realm of statistical distribution theory and its advances is significant and
useful. Furthermore, the proposal of the complex elliptical class within the communications systems domain
paves the way for future innovation and research to be able to consider alternative fading models- and their
related engineering tools under an assumption other than that of normality. In future, different members of
the complex elliptical class may be explored as possible candidates versus the well-studied-and assumed normal
model in this MIMO field (Clavier (2017)).

Several avenues remain which may be worthwhile pursuing for future research which emanates from this thesis.
Weight functions alternative to that of the t distribution may be considered such as the generalised slash, Pearson
type VII, and mixture normal, which are all contained within the class of complex elliptical distributions. The
candidacy of these distribution may provide further insight into the behaviour of communications systems and
the statistical modeling thereof. Different correlation assumptions in the analysis of channel capacity may be
considered to account for negative correlation between transmitters and receivers (see Chapter 2). The bivariate
noncentral gamma type II distribution in Chapter 4 can provide further significant insight into the theory of
fading channels, as the noncentrality component sets the platform for investigation of Rician type fading subject

to such a bivariate noncentral gamma type II distribution. Within a broad spectrum, the bivariate gamma type
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distributions in Chapters 3 and 4 can be investigated more closely to consider further physical interpretations
of the parameters; along with statistical inference regarding the parameters in question. Investigating the
behaviour of condition numbers of complex Wishart type distributions when subject to an underlying complex
matrix variate ¢ distribution (see Ratnarajah and Vaillancourt (2003)) may be of interest. In addition, the work
of Dharmawansa et. al. (2009) may be generalised to random variables with origins in the complex elliptical

class.
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C. Scalar special functions and theory
Result 1 (Bain and Engelhardt (1992), p. 206).

For a transformation of k variables y = u(x) with a unique solution = (z1,x2, ..., 2%), the Jacobian is the
determinant of the k£ x k& matrix of partial derivatives:

Oz Om . Om
dy1  Oya Oyk
dxo '.’ .
J=J(x1,22, ..., Tk — Y1,Y2, .-, Yr) = mod det | O . (C.1)
oz oz
oY1 Yk

Result 2 (Bain and Engelhardt (1992), p. 111).

A random variable X is said to follow a gamma distribution, denoted by X ~ Gamma (Q,m), if X has pdf:

1 1 T
_ m _z C.2
1) = Grr o exp (—5) (C.2)
where z > 0 and 2, m > 0. When m = 1, then X is said to an exponential distribution with parameter €2 > 0,
denoted by X ~ Fxzp(Q2). The Laplace transform of X is given by:

1

LB =TT
Result 3 (Bain and Engelhardt (1992), p. 104).

A random variable K is said to follow a Poisson distribution, denoted by K ~ Poi(0), if K has pmf:

—0) 0"
g(k) = %, k=0,1,2,3.. (C.3)
where 6 > 0, and with F (K) = 6.
Result 4 (Arashi et. al. (2012)).

The dirac delta function is the function ¢ (x) with the property such that:

/ﬂw&mmzfm> (C.4)

for every Borel-measurable function f (x).
Result 5 (Gradshteyn and Rhyzik (2007), p. 892, eq. 8.310.1).

The gamma function, denoted T" (), is defined as:

o0

I (a) = / exp (—t) 12~ Lt (C.5)

0
where Re (a) > 0.

Result 6 (Gradshteyn and Rhyzik (2007), p. 899, eq. 8.350.1).

The lower incomplete gamma function, denoted ~ (z, ), is defined as:

x

v (z,a) = /exp (—t)t>tdt (C.6)

where Re () > 0.
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Result 7 (Gradshteyn and Rhyzik (2007), p. 899, eq. 8.350.2).
The upper incomplete gamma function, denoted I' (z, ), is defined as:
o0
T (z,0) = / exp (—t) 12~ Lt .7
where Re () > 0.
Result 8 (Gradshteyn and Rhyzik (2007), p. 908; p. 909).
The beta function, denoted B (a, 3), is defined as:
L(a)I'(B)
B(a,f) = =—= C.38
(@.8) = i) (©8)
where Re (o) ,Re (8) > 0, and I' () denotes the gamma function (see C.5).
Result 9 (Mathai (1993), p. 96).
The Pochhammer coefficient, denoted (c);, is defined as:
(@), —a(a+1).. (atj—1)=@td) (C.9)
! I'(a)

where j = 1,2,..., (a)y = 1, @« # 0, Re(a) > 0, Re(a+j) > 0 and I' («) denotes the gamma function (see
C.5).

Result 10 (Mathai (1993), p. 96).

The hypergeometric series with p upper parameters and g lower parameters of scalar argument is defined as:

°© (041) S (Ozp),. zJ
qu IR 7‘7/87767 = #_ C.10
(OKl « 1 q x) =~ (61)] - (ﬂq)j ]| ( )

where (), is the Pochhammer coefficient (see C.9).
The following holds for the series:
(i) if any «;, ¢ = 1,...p, is a negative integer or zero the series terminates and ,F, becomes a polynomial in
x provided none of 8, k=1,...,q, is zero or a negative integer;

(i) if any By, k = 1,...q, is zero or a negative integer then the series is not defined unless there is an a,
i =1,...p, such that («;); becomes zero first. That is, suppose «; and 3, are two negative integers such
that (a;), =0 for £ > j and (8,), = 0 for £ > n. Then in order for ,F;, to be defined j must be less than
n;

(iii) the series converges for all x if p <g¢ and for |z| <1if p=¢+1;

(iv) the series diverges for all x, x # 0 for p > g+ 1;

P q
(v) if p=¢q+ 1 and |z| = 1, the series is absolutely convergent if Re () < 0 where v = Zlaj — Zlﬂj;
j= j=
divergent if Re(y) > 1; and if p = ¢ + 1 and |z| = 1,  # 1, the series is conditionally convergent if
0<Re(y) <1.

Some special cases of the hypergeometric series:

e The exponential function:
oo

.
oo (x Z—, =exp (z (C.11)
e
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e The binomial series:
1Fo(a; x) Z =1-2)% | |z| <1 (C.12)
Jj=
[ ]
F (3 = 5 (©13)
ol'1 (P T) = .
=0 (B)j J!
e The confluent hypergeometric series or Kummer’s hypergeometric series:
(@) 27
1 Fy(os i) =) =L (C.149)
jgo (B)] J!
e The Gauss hypergeometric function:
2 F) (o, B56;2) j , |zl < 1. (C.15)

Result 11 (Nakagami (1960), p. 30, eq. 123).

Suppose that (Uy,Us) follows a bivariate gamma distribution as proposed in Nakagami (1960). The Laplace
transform of (Uy,Us) is given by:

L(s1,s2) = ()™ () ™ @A-p) ™ (C.16)

<[+ =) (mra) - i)

for ml,mg,Ql,Qg >0and —1< p < 1.

Result 12 (Gradshteyn and Rhyzik (2007), p. 919, eq. 8.445).

The modified Bessel function of the first kind, denoted by I, (x), is defined as:

1 v+2k
L ( < kD (v+Ek+1) ( ) (C17)

for v > 0.
Result 13 (Mathai (1993), p. 87).

If f(z) is a real function which is single valued almost everywhere for = > 0 and if the integral:
oo
J exp (tz) |f ()| dz
0
converges for some value of ¢ then the Laplace transform of f () is defined as follows:
Ly (s)= [exp(—sz)f(z)dx (C.18)
0

where L (s) is the Laplace transform of f with respect to the parameter s. The inverse Laplace transform is

given by the inverse integral:
1 w+loo
f(s)=57 [ Lys(s)exp(sz)dh (C.19)

w—loo

where [ = y/—1 and w is a real number in the strip of analyticity of L (h).

© University/of Pretoria



&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

APPENDICES
Result 14 (Mathai (1993), p. 60).
Meijer’s G-function with the parameters oy, ..., o, and 3,,..., 3, is defined as:
G (alghgr) = 24 /L g (h)a~"dh (C20)
where [ =+/—1, L is a suitable contour, x # 0, and:
HF(B]-—l—h)HF(l—aj—h)
g(h) = ——
H r(1-g;-h) H D(aj+h)
j=m+1 j=n+1
where m, n, r and s are integers with 0 < n <r and 0 < m < s. The parameters a1,...,a, and 8q,..., [,

are complex numbers such that no pole of T’ (ﬁj + h) ,j=1,...,m coincides with any pole of T (1 — ax, — h),
k=1,...,n. The empty product is interpreted as 0. A special case of C.20 is:

exp (—0z") = Gé:? (ka| O> . (C.21)

Result 15 (Gradshteyn and Rhyzik (2007), p. 337).

oo

/:EO‘*1 exp (—fz)dx = 7T () (C.22)

0
for Re(a),Re(B) >0 and T (a) denotes the gamma function (see C.5).

Result 16 (Gradshteyn and Rhyzik (2007), p. 846, eq. 3.381.8).

u

/acm exp (—fz") dxzr”q;’—gvun) (C.23)

0

where v = %, v (+,-) denotes the lower incomplete gamma function (see C.6), and u,v,n,3 > 0.

Result 17 (Gradshteyn and Rhyzik (2007), p. 347, eq. 3.581.11).

o0

T
/:EQm exp (fﬂz%) dz= 2?1(22 (C.24)
0
where v = %, I («) denotes the gamma function (see C.5), and u,v,n, 5 > 0.
Result 18 (Gradshteyn and Rhyzik (2007), p. 846, eq. 3.381.1).
/ata_l exp (—fz) de= p~ v (a, fu) (C.25)
0
for Re(a) ,Re(B) > 0 and v (-,-) denotes the lower incomplete gamma function (see C.6).
Result 19 (Gradshteyn and Rhyzik (2007), p. 346, eq. 3.581.3).
[ee]
/:E’)“1 exp (—fz)de= p T (o, fu) (C.26)

u

where T (-, ) denotes the upper incomplete gamma function (see C.7), and u,v,p > 0.
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Result 20 (Gradshteyn and Rhyzik (2007), p. 315, eq. 3.191.2).
[y
y—
1
where B (-,-) is the beta function (see C.8) and n,m,k > 0.
Result 21 (Gradshteyn and Rhyzik (2007), p. 657, eq. 6.455.1).
T _ 0T (a + v) B
z* Lexp (—=p2) T (v, 0z) dv=———"-———- L F <1 a+uv;a+1; C.28
0/ p( B) ( ) a(9 ﬁ)a+v2 1 9_,_5 ( )
where o Fy (+) is the Gauss hypergeometric function (see C.15), and «, 3, u,v > 0.
Result 22 (Gradshteyn and Rhyzik (2007), p. 25, eq. 1.111).
(a+z)" = Z (Z) zFa"k, (C.29)
k=0
Result 23 (Bain and Engelhardt (1992), p. 178, eq. 5.3.1).
The correlation coefficient between two variables X; and Xs is denoted by p, and is given by:
E(X1 X F (X X
(X1 Xp) - E(Xy) E ( 2) (C.30)

p:\/E( E(X1) \/E ~E(X )2'

Result 24 (Mathai (1993), p. 80, eq. 3.2.2).

oc—1m,n A1,0A2, -5 Ap o,B k C1,C2,...,Cy
) k d
/x Gp’q <W$| b17b27...,bq) 7,9 <77:Ij |d1,d2,...,d5) v
0
= w° (QW)C*(lkab*(l*p) kUJro’(qu)flpV
A(p,cr), o A(pycg) Ak, 1 —by — ), A(p,cgs1) sy A(p,cy)

pa+kn,pB+km 3y C1) 5 eeey s CB) s ) q 3 y €0+ y Gy 1

XGo b hq potkp <W|A(p, di), . A(p,do) Ak, 1 —ap, —0),A(p,dat1) s, A (p,ds) (C.31)

where k, p are positive integers, ¢* =m+n—5§ -1, b*—oz—i—ﬁ———— U= Z Zf 10+ 5 -2 41,
pp(w

V= Zj‘:1 dj =3 j_1¢i+3— $+1, and W= ﬂ—km Particularly, note that A (b q) denotes the set of b

total values {%, ng—17 e g%},

Result 25 (Gradshteyn and Rhyzik (2007), p. 815, eq. 7.522.9, eq. 7.525.1).

o0

A
/m"*l exp (—px) pFy(ai,...,ap;b1,....bg;  x)de =T (o) p™7 p1Fy (al, ey G,y 03 b1, 1y by p> (C.32)
0

where p < q, o, > 0, ,F, (-) denotes the hypergeometric function (see C.10) and I'(a) denotes the gamma
function (see C.5).

Result 26 (Erdelyi et. al. (1954), p. 137, eq. 4.3.1, p. 217, eq. 4.23.1).

c+loo
1
o) / exp(ps)T (v+1)p " ldp = s* (C.33)
™
c—loo
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where v > 0 and I' (-) denotes the gamma function (see C.5). Furthermore:
1 c+loco
2rl / exp (ps) T () p* Y (p=A) " dp=""" 1F1 (a,7; Xs) (C.34)
c—loo

where 1 F1 () denotes the confluent hypergeometric function (see C.14), and where c,y, A > 0.
Result 27 (Gradshteyn and Rhyzik (2007), p. 1031, eq. 9.261.3).

The Humbert hypergeometric series of two variables  and y is given by:

@3 (CL, bv x,y) = Z Z LIJUT (035)

== (0),.y;3'r!
where (), is the Pochhammer coefficient (see C.9).
Result 28 (Gradshteyn and Rhyzik (2007), p. 991, eq. 8.952.1).

The Gegenbauer polynomial of degree n can be expressed in terms of the Gauss hypergeometric function o F; (+)
(see C.15) as:
(2
e (1) = 20t
T(n+1)T (2
where I' () denotes the gamma function (see C.5) and 2 F} (+) denotes the Gauss hypergeometric function (see
C.15).

1 1-¢
U) QFl <2’U+TL, —n,v + 5, T) y (C36)
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D. Matrix special functions and theory

Let C7*? denote the space of n x p complex matrices, and C5*? denote the space of p x p Hermitian positive
definite matrices.

Jacobians of transformations

Result 29 (Ratnarajah (2003), Ratnarajah et. al. (2004)).

The set of all n x p (n > p) matrices, E, with orthonormal columns is called the Stiefel manifold, denoted by
CVpn- Thus CV,, = {E (n x p); EFE =1,,}. The volume of this manifold is given by:

Vol (CV,p) = / (EHdE) = 2 (D.37)
p a CTp(n)’ .
CVpon
If n = p then a special case of the Stiefel manifold is obtained:
CVpp ={E(xp);E'E=1,} =U (p) (D-38)
where U (p) denotes the space of unitary p x p matrices. The volume of U (p) is given by:
Vol (U (p)) / (E7dE) i (D.39)
0 = = . .
P CTy(p)
U(p)
Furthermore: op iy )
H _ 2P L1 H
/ etr (XE) (BYdE) = o7 oCFy (n XX ) (D.40)

CVpon

where X €Cy*".
Result 30 (Ratnarajah (2003) (p. 41), Ratnarajah et. al. (2004), Ratnarajah (2005)).

Suppose that X €C}"? and S = X”XC5*. The Jacobian of the transformation from X to S, E with E € CV,,,
is given by:
J(X — S,E)=2"7det (S)" " (E”dE) (D.41)

In the singular case, the Jacobian is given by:
J(X —S,E)=2"det(A)" " (E"dE). (D.42)
Result 31 (Nagar and Gupta (2009)).
Suppose that Y, X €C!*? and A €C7*". If Y = A~ 7X, then the Jacobian is given by:
J(Y = X)=det(A)?. (D.43)
Result 32 (Maiwald and Kraus (1997)).
Suppose that S = HYH, with HeC?*? and thus S €C2*%. If W = S71eC2*?, then the Jacobian is given by:
J(S — W) = det (W) ", (D.44)
Result 33 (Dharmawansa and McKay (2011)).

Suppose that S €C5*P. Let y > 0 be some constant and I, is the identity matrix of dimension p. If S =
y (I,+Y), then the Jacobian is given by:

s =y’ dy. (D.45)
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Other results
Result 34 (Andersen et. al. (1995), p. 170).

Let A denote a complex matrix. If A = A¥ then A is called a Hermitian matrix, and denoted to be within
the space C5*P.

Result 35 (Gupta and Nagar (2000), p. 7).
If A €CH*? then there exists a Hermitian positive definite matrix B €C5*? such that A = B2. Furthermore,
the square root of A is defined as: .

A? =B. (D.46)
Result 36 (Diaz-Garcia (2009), eq. 2.3).

The complex multivariate gamma function, denoted CI', () , is defined as:

p(p—1)

CT, () = 7% i]f[ll“[a—(i—l)] (D.AT)

where Re (@) > p — 1 and T («) denotes the gamma function (see C.5). For p = 1 it simplifies to the gamma

function (see C.5).
Result 37 (Mathai (1997), p. 365, eq. 6.1.10, Diaz-Garcia (2009), eq. 2.4).

Let k = (k1,. .., kp) denote a partition of the nonnegative integer k such that ky > --- >k, > 0, k1+- - -+k, = k.
The generalised hypergeometric coefficient o], is defined as:

1 (= (= 1),
_ CTy (o, k)
- (D.48)

o],

where Re (a) > (p — 1) — k;,, (), is the Pochhammer coefficient (see C.9), CI', («) is the complex multivariate
gamma function (see D.47) and CT'), («, ) is the partitioned complex multivariate gamma function with weight
K, where:

p(p—1)

Cry(a,k) = w2

—

Il
—

Tla+ ki — (i —1)]

K2

= cry (o)

s

(ot ki = (i = 1))y, (D.49)

.
Il

For p = 1 it simplifies to the Pochhammer coefficient (see C.9).

A brief description of complex zonal polynomials and results involving complex zonal polynomials are given
next. For a more detailed discussion see James (1964) and Constantine (1963).

Result 38 (Diaz-Garcia (2009), Ratnarajah et. al. (2004)).

Let S €CH*" and let Vj, be the vector space of homogeneous polynomials ¢ (S) of degree k in the elements of S.
The space Vj, can be decomposed into a direct sum of irreducible invariant subspaces V,; where k = (k1,...,k,),
ki >--->k, >0,k +---+k, = k. The polynomial (tr S)k € Vi has a unique decomposition into polynomials
Cy. (S) € V, as:
(trS)" =3 C (S). (D.50)
K

The zonal polynomial Cy (S) is defined as the component of (tr S)k in the subspace V. It is a symmetric
homogeneous polynomial of degree k in the latent roots of S and holds for all p. If the partition & has
more than p parts, the corresponding zonal polynomial will be identically zero.
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Result 39 (Constantine (1963), , Ratnarajah et. al. (2004)). The hypergeometric function of Hermitian ma-
trix argument is defined as:

CFy (a1, ey @y by, ey by X ZZ “ [“”]”C"(X) (D.51)

k=0 =~ ” S]’f k!

where X € CH*P, [a],. = ] (a—7+ 1),C . & = (k1, ke, ....kp) is a partition of k such that kv > ko > ... >
kp >0, and >F_ k; = k, and (a), denotes the Pochhammer symbol. C,; (X) denotes the zonal polynomial of
X (see D.50) and (a), denotes the complex generalized hypergeometric coefficient (see D.48). Conditions for
convergence of the series in (D.51) are given below:

(i) the series converges for all X if r < s+ 1, otherwise the series may only converge for X = 0;

(ii) for r = s+1 the series converges for ||X]|| < 1 (where ||X]| denotes the maximum of the absolute values
of the characteristic roots of X);

(iii) for r < s the series converges for all X;
(iv) for 7> s+ 1 the series diverges for all X # 0 unless the series terminates;

(v) none of the 3 is zero, an integer or half integer < % (s — 1) (otherwise some of the denominators in (D.51)
will vanish);

(vi) if «; is a negative integer, say —w, then for ¢t > sw + 1, all coefficients in (D.51) vanish and the function
reduces to a finite polynomial of degree sw.

A special case of (D.51) is given by:

oCFy(X

tr (X) . (D.52)
k=0

The hypergeometric function of double Hermitian matrix argument is defined as (James (1964), eq. 88, p. 488):

CE®) (a1, ...;a,3by,...,b5; X, Y) = ZZ “ o], G X) G (Y) (D.53)

22 Bl ol B, ()R
where X,Y € C5*P.

A special case of (D.53) is given by:

oCFP) ZZ k'C ). (D.54)

k=0 ~

For X € C5”" and Y € C5*?, and n < p, then (see Ratnarajah (2005)):

(n)
oCFY(X,Y) Z; k'C . (D.55)
Furthermore:
Cr (—t27 ) =tFC (-271). (D.56)
p
For the Vandermonde determinant [] (A — A;), note that:
k<l
p P p(p n P
[T (eAr =) = I (e (A = A)) = IT (A =) (D.57)
k<l k<l k<l
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for some constant c¢. Khatri (1969) gives a result where the hypergeometric function of two Hermitian matrix
arguments (see D.54), OCFO(p) (A, —tY ') can be written as follows (using D.57):

Cly (p) det (exp (—ta;A;))

(p) -1
oCEP (A, — 1) — . (D.58)
72 [ (O —N) [T (tar — tag)
k<l k<l

CT', (p) det (exp (—ta;A;))

— - i .
= [YONSEY Y
k<l k<l

where A\ > ... > A\, > 0 denotes the eigenvalues of A, and a; > ... > a, denotes the eigenvalues of Y. Note
that det (exp (—ta;\;)) denotes the determinant of a matrix with entries exp (—ta;\;).

Result 40 (James (1964), eq. 93, p. 488).

The joint pdf of the eigenvalues A\; > Ay > ... > A, > 0 of S €eCH*” is given by:

aP(P—1) (ﬁ Ak — )\1)2)

A) = hel EAE") dE D.
F(a) e / (EAE™) (D.59)
EcU(p)
where U (p) denotes the unitary space (see D.38).
Result 41 (Diaz-Garcia (2009), eq. 3.11).
If Xq,X5 GC;‘Q)XP, then:
/ C.(X;HX,H”)dH :M. (D.60)
Cr(Ip)

HeU(p)
Result 42 (Analogous to Bekker et. al. (2011)).
Suppose Q € CH*" R € C5*P, and E €U (n),EyecU (p). Consider the transformations B — E;BE! and
B — E;BEZ . Define the following:
fQR)= [ C.-QXRX")iX
XHX=S

where C,; () denotes the complex zonal polynomial (see Result D.50). This function remains invariant under a
unitary transformation:

f(E1QE{1,E2RE§) = / C,.(~E1QE! XE,REZ X )dX

XHX=S

C.(—QEYXE;REY X7 E,)dX

XHX=S
= C.(—QURUY)dU. (D.61)
UHU=S
Result 43 (Diaz-Garcia (2009), eq. 4.8).
If X, Y €C5*?, then:
/ CFys (a1y ey ar; b, ooy by XHYH) dH =,CF® (ay, ...y ap; by, ooy b X, Y) (D.62)

HeU(p)

where TCFS(Z)) (a1, ...y ar; b1, ..., bs; X, Y) denotes the hypergeometric function of two Hermitian matrix arguments
(see D.54).
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Result 44 (McKay and Collings (2005), eq. 115).
For T = T Z, A cC"*", the following holds:
/det (T)° " etr (—ZT) ,CF, (a1, s ay; b1, s by, AT) T
= det (Z)_C CFn(C) p+1CFq (al, ceey Ap,y G bl; ceey bq, AZ_l) 5

where CI',,(¢) denotes the complex multivariate gamma function (see D.47).
Result 45 (Mathai (1997), p. 365, eq. 6.1.20).
Let Z= Z",S € C5*P. Then:

/etr (ZS)det (Z)*7F C,, (ZT) dZ = CT'p(ax, k) det (S) " C, (TS™) (D.63)

where CI') (o, k) denotes the complex multivariate gamma function pertaining to partition s (see D.49).
Result 46 (Dharmawansa and McKay (2011), eq. 17).

Suppose A € C53*?, let R € C7*? with unit rank. For p,t integers and a > 1, then:

/ etr (—AX) tr? (X) det (X)** tr* (RX) dX (D.64)
X>0

@ crz (@ "\ D) wrt [ tr(A)

= pdet atZ Z:: A)% “F(RAT ut (R) €F 2\ /det (A)

where €7 (-) denotes the Gegenbauer polynomial (see C.36).
Result 47 (Dharmawansa and McKay (2011), eq. 41).
Suppose Y € C2*2. Then:

n—2 1 n—29 o

det (I+Y)" 2 =) " ( ) ( )trﬂ (Y)det (Y)"7. (D.65)

=0 j=1
Result 48 (Gross and Richards (1989)).
Suppose that A, A € C5*? with eigenvalues i, > py > ... > pp > 0and Ap > A2 > ... > Ay > 0 respectively.
Then:

det (o3 (n — p+1 1iA3)) CTp(p)CTy ()
b A — )\ _ (( _p)!)p
IT (A% 1) H (1 — )

k<l k<l

OCFl(p) (n; A A) =

(D.66)

where o F7 (+) denotes the confluent hypergeometric function of scalar argument (see C.13) and CI',,(+) denotes
the complex multivariate gamma function (see D.47).
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E. Code

Chapter 2

Nonsingular case

Correlated case options nodate ps=5000 1ls=125;

proc iml;

sigmasq = 1;

corr = 0.9;

tune = 250;

step = 0.01;

v=5;

rho = do(0,35,5)¢;
rho[1] = 1;

xrho = exp(rho/10);

nr = do(2,50,2)°¢;

sigma = (sigmasq||corr) // (corr||sigmasq);
call eigen(gammval,gammvec,sigma);

gamma = diag(gammval);

gamminv = inv(gamma) ;

al = gamminv[1,1];

a2 = gamminv[2,2];

diff = a2 - al;

capacity_matrix = j(nrow(ar) ,nrow(rho),0);
do i = 1 to nrow(rho);

do j = 1 to nrow(ar);

nr_value = nr[jl;

rho_value = rho[i]; *rhol[il;

vall = O;
val2 = 0;
val3 = 0;
vald = 0;
do k = 0.001 to tune by step;

w = log(1+10**(rho_value/10)*k/2);
vall = vall + step*wxk**(nr_value-1)*(alxk+v)**(-(nr_value+v));

val2 = val2 + step*wxk+**(nr_value-1)*(a2%k+v)**(-(nr_value+v));
val3 = val3 + step*wkxk**(nr_value-2)*(alxk+v)**(-(nr_value+v-1));
vald = vald + step*wxk**(nr_value-2)*(a2*xk+v)**(-(nr_value+v-1));
end;

cap = al*xnr_value * a2 * vx*v * gamma(nr_value+v) / (diff*gamma(nr_value)*gamma(v)) * vall
- al x a2+xnr_value * v**v * gamma(nr_value+v) / (diff*gamma(nr_value)*gamma(v))
* val2
- al**nr_value * v**v * gamma(nr_value+v-1) / (diff*gamma(nr_value-1)*gamma(v)) *
val3
+ a2*x*nr_value * v*xv * gamma(nr_value+v-1) / (diffxgamma(nr_value-1)*gamma(v)) *
vald;
capacity_matrix[j,i] = cap;

end; *j;
end; *i;
capacity_matrix = nr || capacity_matrix;
coll = {"nr" "_0db" "_56db" "_10db" "_15db" "_20db" "_25db" "_30db" "_35db"};
print capacity_matrix[c=coll label=’Capacity matrix’];
create capacity from capacity_matrix[colname=coll];
append from capacity_matrix;
quit;
goptions reset=all i=join ;
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symboll w=2
symbol2 w=2
symbol3 w=2
symbold w=2;
symbol5 w=2
symbol6 w=2
symbol7 w=2

symbol8 w=2;

axisl label=(f="Times New Roman" h=2 a=90 ’Capacity (in nats)’) order=0 to 21 by 3

value=(f="Times New Roman" h=1.5) minor=none;

axis2 label=(f="Times New Roman" h=2 ’n’ h=1.1 ’ r’) order=0 to 35 by 5

value=(f="Times New Roman" h=1.5) minor=none;

proc gplot data=capacity;

*titlel f="Times New Roman" h=3 ’Capacity vs n’ h=1.4 ’r’ h=3 ’ for correlated channels’;

*title2 f="Times New Roman" h=1.5 ’for different SNR values’;

*title3 f="Times New Roman" h=1 ’for underlying complex matrix variate t distribution’;

plot _OdB*nr _5dB#nr _10dB#nr _15dB*nr _20dB*nr _25db*nr _30dB*nr _35dB*nr / overlay haxis=axis2
vaxis=axisl;

run;

quit;

Uncorrelated case options nodate ps=5000 1ls=125;

proc iml;

sigmasq = 1;

corr = 0;

tune = 250;

step = 0.01;

v=5;

rho = do(0,35,5)¢;
rho[1] = 1;

nr = do(2,50,2)°¢;

sigma = (sigmasq||corr) // (corr||sigmasq);
call eigen(gammval,gammvec,sigma) ;

gamma = diag(gammval) ;

capacity_matrix = j(nrow(ar),nrow(rho),0);
do i = 1 to nrow(rho);

do j = 1 to nrow(nr);

nr_value = nr[j];

rho_value = rho[i]; *rhol[il;

vall = 0;
val2 = 0;
val3 = 0;

do k = 0.001 to tune by step;

vall = vall + step*log(1+10**(rho_value/10)*k/2)*k**(nr_value)*(k/sigmasq+v)**(-(nr_value+v+1));
val2 = val2 + step*log(1+10**(rho_value/10)*k/2)*k**(nr_value-1)*(k/sigmasq+v)**(-(nr_-
value+v));

val3 = val3 + step*log(1+10**(rho_value/10)x*k/2)*k** (nr_value-2)*(k/sigmasq+v) ** (- (nr_-
value+v-1));
end;
cap = vx*v * gamma(nr_value+v+l) * vall / (sigmasqg+*gamma(nr_value)*gamma(v))
- 2% v¥xv * gamma(nr_value+v) * val2 / (gamma(nr_value-1)*gamma(v))
+ v¥*v * gamma(nr_value+v-1) * gamma(nr_value+l) * sigmasq * val3
/ (gamma(nr_value)*gamma(nr_value-1)*gamma(v)) ;
capacity_matrix[j,i] = cap;

end; *j;
end; *i;
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New

capacity_matrix = nr || capacity_matrix;

coll = {"nr" "OdB" "5dB" "10dB" "15dB" "20dB" "25dB" "30dB" "35dB" };
print capacity_matrix[c=coll label=’Capacity matrix’];

create capacity from capacity_matrix[colname=coll];

append from capacity_matrix;

quit;

goptions reset=all i=join ;

symboll w=2
symbol2 w=2
symbol3 w=2
symbold w=2;
symbolb w=2
symbol6 w=2
symbol7 w=2
symbol8 w=2;

axisl label=(f="Times New Roman" h=2 a=90 ’Capacity (in nats)’) order=0 to 24 by 3 value=(f="Times
Roman" h=1.5) minor=none;

axis2 label=(f="Times New Roman" h=2 ’n’ h=1.1 ’> r’) order=0 to 35 by 5 value=(f="Times New

Roman" h=1.5) minor=none;

proc gplot data=capacity;

*titlel f="Times New Roman" h=3 ’Capacity vs n’ h=1.4 ’r’ h=3 ’ for uncorrelated channels’;
*title2 f="Times New Roman" h=1.5 ’for different SNR values’;

*title3d f="Times New Roman" h=1 ’for underlying complex matrix variate t distribution’;

plot _OdB*nr _5dB#nr _10dB#nr _15dB*nr _20dB*nr _25dB*nr _30dB*nr _35dB*nr/ overlay haxis=axis2

vaxis=axisl;

For

run;

quit;

fixed p options nodate ps=5000 1ls=125;
proc iml;

sigmasq = 1;

corr = 0;

tune = 300;

step = 0.01;

v=5; *degrees of freedom for t distribution;
nr = do(2,30,2)¢;

*specify specific RHO value for t and normal comparison;
rho = 20;

sigma = (sigmasq||corr) // (corr||sigmasq);

call eigen(gammval,gammvec,sigma);

gamma = diag(gammval);

sofokkskokokokskskokokkskokokxk NORMAL DISTRIBUTION STARTS;
capacity_matrix_nor = j(nrow(nr),nrow(rho),0);
do i = 1 to nrow(rho);

do j = 1 to nrow(nr);

nr_value = nr[j];

rho_value = rho[i]; *rho[il;

vall = 0;
val2 = 0;
val3 = 0;
do k = 0.001 to tune by step;

w = log(1+10**(rho_value/10)*k/2);
vall = vall + step*wxk**(nr_value)*exp(-k/sigmasq) ;

val2 = val2 + step*wxk**(nr_value-1)*exp(-k/sigmasq) ;
val3d = val3 + step*wxk**(nr_value-2)*exp(-k/sigmasq) ;
end;

cap = sigmasq**(-nr_value-1) / gamma(nr_value) * vall
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- 2 x sigmasqg**(-nr_value) / gamma(nr_value-1) * val2
+ gamma (nr_value+1) * sigmasqg**(-nr_value+1)
/ (gamma(nr_value)*gamma(nr_value-1)) * val3;
capacity_matrix_nor[j,i] = cap;

end; *j;

end; *i;

$okskokkskokkkokkokkkkxkNORMAL DISTRIBUTION ENDS;
$okskokkskokkkokkokkkkkxkT DISTRIBUTION STARTS;
capacity_matrix_t = j(arow(ar) ,nrow(rho),0);
do i = 1 to nrow(rho);

do j = 1 to nrow(ar);

nr_value = nr[j];

rho_value = rho[il]; *rhol[il;

vall = 0;
val2 = 0;
val3 = 0;
do k = 0.001 to tune by step;

w = log(1+10**(rho_value/10)*k/2);
vall = vall + step*wkk**(nr_value)*(k/sigmasq+v)**(-(nr_value+v+1));

val2 = val2 + step*wxk+**(nr_value-1)*(k/sigmasq+v)**(-(nr_value+v));
val3 = val3 + step*w¥k+**(nr_value-2)*(k/sigmasq+v)**(-(nr_value+v-1));
end;

cap = vx*v * gamma(nr_value+v+l) * vall / (sigmasq*gamma(nr_value)*gamma(v))
- 2% v*x*v *x gamma(nr_value+v) * val2 / (gamma(nr_value-1)*gamma(v))
+ vx*v * gamma(nr_value+v-1) * gamma(nr_value+l) * sigmasq * val3
/ (gamma(nr_value)*gamma(nr_value-1)*gamma(v)) ;
capacity_matrix_t[j,i] = cap;

end; *j;
end; *i;
skkokok ook skokosk ok skskok ko kskok kR sk skskokkokkskokokokkokokok kT distribution ends;
capacity_matrix = nr || capacity_matrix_nor || capacity_matrix_t;
coll = {"nr" "_db_nor" "_db_t"};
create capacity from capacity_matrix[colname=coll];
append from capacity_matrix;
quit;
goptions reset=all i=join;
symboll color=black w=2 ;
symbol2 color=grey w=2 ;
axisl label=(f="Times New Roman" h=2 a=90 ’Capacity (in nats)’)
value=(f="Times New Roman" h=1.5) minor=none;
axis2 label=(f="Times New Roman" h=2 ’n’ h=1.1 ’ r’) order=0 to 30 by 5
value=(f="Times New Roman" h=1.5) minor=none;
legendl label=(f="Times New Roman" h=1.5 "Legend")
value=(f="Times New Roman" h=1.5 "Normal" "t");
proc gplot data=capacity;
*titlel f="Times New Roman" h=3 ’Capacity vs nr for uncorrelated channels’;
*title2 f="Times New Roman" h=1.5 ’for underlying normal and t distribution’;
*title3 f="Times New Roman" h=1 ’for fixed SNR value’;
plot _dB_nor*nr _dB_t*nr / overlay haxis=axis2 vaxis=axisl legend=legendl;
run;
quit;
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Singular case

options nodate ps=5000 1s=125;

proc iml;

sigmasq = 1;

corr = 0;

tune = 250;

step = 0.25 ;
v=5;

rho = do(0,25,5) ¢;
nt = 4;

sigma = (sigmasq||corr) // (corr||sigmasq);
call eigen(gammval,gammvec,sigma);
gamma = diag(gammval);

capacity_matrix = j(nrow(rho),nrow(nt),0);
do i = 1 to nrow(nt);

do j = 1 to nrow(rho);

nt_value = nt[i];

rho_value = rho[jl; *rholil;

vall = O;
val2 = 0;
val3 = 0;
do k = 0.001 to tune by step;

vall = vall + step*log(1+10%*(rho_value/10)*k/nt_value)*k**(nt_value)*(k/sigmasq+v)**(-(nt_-
value+v+1));

val2 = val2 + step*log(1+10**(rho_value/10)*k/nt_value)*k**(nt_value-1)*(k/sigmasq+v)**(-(nt_-
value+v)) ;

val3 = val3 + step*log(1+10**(rho_value/10)*k/nt_value)*k**(nt_value-2)*(k/sigmasq+v)**(-(nt_-
value+v-1));

end;

cap = vx*v * gamma(nt_value+v+1l) * vall / ( (sigmasq)**(nt_value+l) *gamma(nt_value)*gamma(v))

- 2% y*x*v * gamma(nt_valuet+v) * val2 / ( (sigmasq)**(nt_value)*gamma(nt_value-1)*gamma(v))

+ vx*v * gamma(nt_value+v-1) * gamma(nt_value+l) * (sigmasq)**(nt_value+1l) * val3
/ (gamma(nt_value)*gamma(nt_value-1)*gamma(v)) ;
capacity_matrix[j,i] = cap;

end; *j;
end; *i;
capacity_matrix = rho || capacity_matrix;
coll = {"rho" "nt4_uncor"};
print capacity_matrix[c=coll label=’Capacity matrix’];
create capacity_sing_ uncorr from capacity_matrix[colname=coll];
append from capacity_matrix;

quit;
goptions reset=all i=join ;
symboll w=2;

axisl label=(f=cmr10 h=2 a=90 ’Capacity (in nats)’) value=(f=cmr10 h=1.5) minor=none;

axis2 label=(f=cmr10 h=2 °SNR (’> f=greek ’r’ f=cmrl0 ’)’) order=0 to 25 by 5 value=(f=cmr10
h=1.5) minor=none;

proc gplot data=capacity_sing_uncorr;

titlel f=cmr10 h=3 ’Capacity vs SNR for uncorrelated channels’;

title2 f=cmr10 h=1.5 ’for n’ h=1 ’t’ h=1.5 ’=4’;

title3 f=cmrl0 h=1 ’for underlying singular t distribution’;

plot nt4_uncor*rho / overlay haxis=axis2 vaxis=axisl;

run;
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quit;

data mmerge;

merge capacity_sing_corr capacity_sing_uncorr;

run;

goptions reset=all i=join ;

symboll c=grey w=2;

symbol2 c=black w=2;

axisl label=(f="Times New Roman" h=2 a=90 ’Capacity (in nats)’) value=(f="Times New Roman"
h=1.5) minor=none;

axis2 label=(f="Times New Roman" h=2 ’SNR (’ f=greek ’r’ f="Times New Roman" ’)’) order=0
to 25 by 5 value=(f="Times New Roman" h=1.5) minor=none;

legendl label=(f="Times New Roman" h=1.5 "Legend") value=(f="Times New Roman" h=1.5 "correlated
case" "uncorrelated case");

proc gplot data=mmerge;

*titlel f="Times New Roman" h=3 ’Capacity vs SNR for correlated and uncorrelated channels’;
*title2 f="Times New Roman" h=1.5 ’for n’ h=1 ’t’ h=1.5 ’=4, v=5’;

*title3 f="Times New Roman" h=1 ’for underlying complex singular matrix variate t distribution’;
plot nt4_cor*rho nt4_uncor*rho / overlay haxis=axis2 vaxis=axisl legend=legendl;

run;

quit;

Chapter 3
Normal case

clear all
format short
m = 50000;
psi = 0.5;
mu = [0 O];
Sigma = [1 psi; psi 1];
n = 3;
x = zeros(m,1);
for j = 1:mm
X = mvnrnd (mu,Sigma,n);
Y = mvnrnd(mu,Sigma,n) ;
H = X+Y*1i;
W = H’*H;
W = inv(W);
w_ = diag(W);
x1 = 1/w_(1);
x2 = 1/w_(2);
x(j) = max(x1,x2);
wb = waitbar(j/m);
end
close(wb)
A
X

sqrt (mean(x));
x/A;

10*1logl10(x) ;
data = x;

[y1,x1] = ecdf(data);

X
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t case

clear all
format short

m = 10000;
psi = 0.5;
mu = [0 O];

Sigma = [1 psi; psi 1];
v = 15; Ydegrees of freedom

n = 3;
x = zeros(m,1);
for j = 1:m

X = mvtrnd(Sigma,v, n);
Y = mvtrnd(Sigma,v, n);
H = X+Y*1i;
W
W
W

= H’xH;

= inv(W);

_ = diag(W);
x1 = 1/w_(1D);
x2 = 1/w_(2);
x(j) = max(x1,x2);
wb = waitbar(j/m);
end
close(wb)
A = sqrt(mean(x));
x = x/A;
x = 10*logl0(x);
data = x;

[y1,x1] = ecdf(data);

Chapter 5
Normal case
clear all
format short
n=2;
p=n;
m = 50000;
a = zeros(n,1);
b = zeros(p,1);
sigma = zeros(p,p);
theta = pi/4;
for i = 1:n
a(i) = exp(2.*1i.*(i-1) .*pi.*cos(theta));
end
for i = 1:p
b(i) = exp(2.*1i.*(i-1).*pi.*cos(theta));
end
mu = axb’;
for i = 1:p
for j = 1:p
sigma(i,j) = exp(-1.%pi."3.x((i-j)."2)./32);
end
end

x = zeros(m,1);
muzero = zeros(n,p);
ident = eye(p);

for j = 1m
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(X+Y) + mu;

= H’xH;

(j) = min(eig(W));
wb = waitbar(j/m);
end

close (wb)

A = ((mean(x)));

X = x*A;

W= m o< >
I

data = x;
[y1,x1] = ecdf(data);
t case

clear all
format short

n = 2;
P =1
m = 50000;

a = zeros(n,1);
b = zeros(p,1);
sigma = zeros(p,p);

= mvnrnd (muzero,sigma/2,n) ;
mvnrnd (muzero,sigma/2,n) ;

.*cos(theta));

exp(2.*1i.x(i-1) .*pi.*cos(theta));

sigma(i,j) = exp(-1.*pi."3.x((i-j)."2)./32);

theta = pi/4;
for i = 1:n
a(i) = exp(2.*1i.*x(i-1).*pi
end

for i = 1:p
b(i) =

end

mu = a*xb’;
for i = 1:p
for j = 1:p
end

end

v = 15; Ydegrees of freedom

x = zeros(m,1);
muzero = zeros(n,p);
ident = eye(p);

for j = 1m

X = mvnrnd(muzero,sigma/2,n); %t matrikse;

Y
H

W = H *H;
x(j) = min(eig(W));
wb = waitbar(j/m);
end

close (wb)

A = ((mean(x)));

X = x*A;

data = x;

[y1,x1] = ecdf(data);

mvnrnd (muzero,sigma/2,n); %t matrikse;
((X+Y) + mu)/sqrt(chi2rnd(v)/v); %maak ’n komplekse O sigma matriks, voeg skuif by;
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