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Abstract

The digital age has significantly impacted our ability to sense our en-
vironment and infer the state or status of equipment in our environment
from the sensed information. Consequently inferring from a set of observa-
tions the causal factors that produced them is known as an inverse problem.
In this study the sensed information, a.k.a. sensor measurement variables, is
measurable while the inferred information, a.k.a. target variables, is not mea-
surable. The ability to solve an inverse problem depends on the quality of
the optimisation approach and the relevance of information used to solve the
inverse problem. In this study, we aim to improve the information available
to solve an inverse problem by considering the optimal selection of m sen-
sors from k options. This study introduces a heuristic approach to solve the
sensor placement optimisation problem which is not to be confused with the
required optimisation strategy to solve the inverse problem. The proposed
heuristic optimisation approach relies on the rank of the cross-covariance
matrix between the observations of the target variables and the observations
of the sensor measurement variables obtained from simulations using the
computational model of an experiment. In addition, the variance between
observations of the sensor measurements is considered. A new formulation,
namely the tolerance rank-variance formulation (TRVF) is introduced and
investigated numerically on a full field deterioration problem. The full field
deterioration is estimated for a plate by resolving a parametrisation of the
deterioration field for four scenarios. We demonstrate that the optimal sen-
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sor locations not only depend on the loading and boundary conditions of the
plate but also on the expected ranges for the deterioration parameters. Al-
though the sensor placements are not provably optimal the numerical results
clearly indicate computationally efficient near optimal sensor placements.

Keywords: optimal sensor placement, inverse problem, design of
experiments, variable reduction, linear algebraic rank, rank tolerance
maximisation

1. Introduction

Advancements in technology have made sensing accessible for numerous
applications that include detection of traffic congestion using GPS sensors
(D’Andrea and Marcelloni (2017)), environmental monitoring (Lan, Qilong
and Du (2008); Liu et al. (2010)) and human health monitoring (Asada and
Reisner (2006)). In structural engineering, experiments are often designed
with the aim to characterise a problem e.g. material characterisation (Beilina
(2015) or deterioration estimation (Yap (2013) and Mungla, Sharma, and
Trivedi (2016)).

This study proposes a new approach to optimise the sensor placements
for material characterisation which is an example of an inverse problem in
material science. For an inverse problem the sensed information, a.k.a. sensor
measurement variables X, is practical to measure while the inferred informa-
tion, a.k.a. target variables Y , is either impractical or impossible to measure.
In detail, when considering discrete sensor locations, the sensor variables X
can be expressed as Xn,k where n and k, respectively denote the I.D. num-
bers of observations and locations. Similarly, the target variables Y can be
expressed as Yn,p where n and p, respectively denote the I.D. numbers of
observations and target variables. Note that Xn,k is a function of Yn,p for the
same observation n.

The ability to solve an inverse problem depends on the quality of the
optimisation approach and the relevance of information used to solve the
inverse problem. In addition, should the inverse problem be ill-posed then
multiple solutions may result in the same response with the consequence of
small changes in the sensors resulting in significant changes in the inferred
information (Hadamard (1902)). The quality of the solution to an inverse
problem therefore depends on the following:

1. the relevance of the sensed information,
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2. the quality of the sensed information,

3. the amount of sensed information, and

4. the solution strategy employed to solve the inverse problem.

The relevance and quality of information depend on several factors such
as the amount of noise in the measurements and the correlation between
the sensor measurement variables X and the target variables Y . Lastly, a
strategy is employed to solve the inverse problem. Significant research has
been done to propose strategies to solve inverse problems (Yao, Sethares and
Kammer (1993); Fouladgar (1997)) or to formulate inverse problems for a
given arrangement of sensors (Lee and Song (2016)). Strategies to improve
the quality of the data being sensed only recently started to gain traction (Li
et al. (2007); (Krause et al. (2006)), with sensor placement optimisation
usually developed for specific applications.

Sensor placement optimisation is a research field that aims to improve the
quality and relevance of sensed information when multiple options of where
and what to sense are available. Therefore, sensor placement optimisation
problems are combinatorial optimisation problems that require m sensors to
be selected from k options that make the best data available for a specific
application or inverse problem (Korte and Vygen (2012)). Hence, given the
measurements of all k sensors, it becomes important to distinguish between
the relevance and quality of the various sensors.

In statistical parameter estimation, the relevance of the information is ex-
pressed by the estimator-variance (or similarly, mean square error) between
the observations of a parameter θ and its estimator θ̂. By minimising this
i.e. computing the maximum likelihood estimator (MLE) (Bishop (2013))
the better the estimator explains the observations. In optimal sensor place-
ment, the θ equates to the optimal sensor location X∗

k . However, reducing
the estimator-variance in statistics is a non-trivial task. The inverse relation
of the estimated variance is the Fisher information matrix (FIM) that ex-
presses the amount of information explained for an observation of Y ∗ at a
certain point (or equivalently, Yn,1,...,p). Hence, the maximisation of reduced
scalar representations of the FIM allows for the amount of information that
is expressed to be maximised. However, these scalar representations are not
unique and may weigh some aspects of the information more than others.
Examples include maximising the determinant of the FIM (Isaacs, Klein
and Hespanha (2009)) which minimises the estimated uncertainty volume
of unbiased θ̂ estimations (Van Trees (1968); Bishop et al. (2007)). The
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minimisation of the trace of the inverse of the FIM, which maximises the
independent information is also a popular approach (Achanta, Dasgupta and
Ding (2012)). FIM is defined as JTJ where J is the Jacobian matrix defined
as, dXn(Y ∗)/dXk (Frieden (2004); Bishop et al. (2007)), the derivative of
the measurement variables Xn with respect to the sensor location variables
Xk when assuming a continuous domain for the sensor locations. Conse-
quently, one of the main issues of relying on FIM is that its information
is localised around an observation of Y ∗ (Chisari et al. (2016)). These
approaches effectively find the sensor positions θ̂ that gives the highest sensi-
tivity towards the target variables at Y ∗. There has been a number of sensor
optimisation approaches proposed that are based on FIM (Li et al. (2007);
Isaacs, Klein and Hespanha (2009)) and Gaussian processes (GP) (Wu and
Liu (2012); Du et al. (2014, 2015)) to find optimal sensor locations.

The motivation for this study is to develop an alternative sensor opti-
misation approach that inherently considers spatially distributed variance in
a domain around Y ∗ as opposed to the localised variance at Y ∗. This al-
lows us to tailor sensor placement for a more general domain of application
as opposed to a specific application. For material characterisation experi-
ments this translates to instrumenting an experimental setup for a specific
material (localised) e.g. a steel or for more generally a class of materials (dis-
tributed variance) e.g. metals. It has been demonstrated recently that the
sensor placement optimisation problem can be expressed by the following
three criteria (Chae (2017)), which indicates that sensors should:

1. be correlated to what needs to be inferred,

2. be sensitive to what needs to be inferred, and

3. contribute unique information.

Consider the observations of the sensor measurement variables X and
their respective observations of the target variables Y around Y ∗. By in-
creasing the sampling domain around Y ∗ we effectively control the domain
of interest. The rank of the cross-covariance matrix XTY respectively indi-
cates the collinearity between the observations of X and Y . By standardising
the observations we avoid biases when variables have significantly different
ranges. The Z-score is a standard practice that transforms each variable to
the units of standard deviation over the observed sample set. The implica-
tion is that the covariance matrix computed using Z-scores is now equivalent
to the correlation matrix. Hence, for a given number of variables the larger
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the rank of the cross-correlation matrix the more independent the correla-
tion between the variables i.e. the more unique the information that is being
sensed. The consideration of rank has proven difficult as maximising rank
is a non-convex optimisation problem that has been optimised using genetic
algorithms (Wang, Liu and Liu (2014)). However, recent approaches have
been proposed to avoid this difficult problem by transforming the problem
to be convex. This is done by introducing a related objective function, or
a so-called proxy objective function (Joshi and Boyd (2009)). The nuclear
norm has proven to be a popular choice to convexify the rank maximisation
problem (Recht, Fazel and Parrilo (2010)), however, the validity of solving
this problem in relation to the original problem has been questioned (Dai
and Li (2014)). As will be discussed in the next section we can maximise
linear independence by considering the tolerance related to the definition of
rank which is the approach we follow in this study.

A second consideration is that noise in the sensor measurements is in-
evitable in reality. Thus, it is mandatory to maximise the signal to noise
ratio (SNR). This is done by maximising the measurement variance σ2

Xn
over

the observations ofX, which is not to be confused with the estimator-variance
mentioned earlier for FIM (or the variance in the sensor locations σ2

Xk
). This

study introduces a new formulation to solve the sensor placement optimisa-
tion problem, namely the tolerance rank-variance formulation (TRVF). This
approach maximises the bi-objective optimisation problem of maximising the
observation variance of the measurement variables σ2

Xn
and maximising the

tolerance of the linear algebraic rank of the cross-covariance matrix.
Lastly, a new heuristic approach for solving the optimisation problem is

proposed in Section 3, which we refer to as sequential sensor placement (SSP),
in which we add sensors sequentially as opposed to solving the intractable
exhaustive combinatorial optimisation problem. Although we present no
formal proof of optimality, numerical results do indicate that quality solutions
are obtained computationally efficiently.

To summarise, the contributions of this paper include:

1. a bi-objective formulation based of variance and rank tolerance to solve
the sensor placement optimisation problem is proposed,

2. for the bi-objective formulation the parameter choice of α = 0.5 is
shown to perform effectively and robustly on four inverse problems,

3. the formulation allows for a simplistic but efficient strategy to the define
domain of interest for the inverse problem for which the sensors are to

5



be placed,
4. a heuristic approach to solve the proposed sensor optimisation problem

is proposed that is demonstrated to result in quality solutions.

2. Tolerance Rank-Variance Formulation (TRVF)

The tolerance rank-variance formulation (TRVF) is defined as a bi-objective
optimisation problem. Numerous strategies are available to solve a bi-objective
optimisation problem that include determining the Pareto front using evo-
lutionary strategies designed to find the Pareto front even when it is not
convex e.g. multi-objective particle swarm optimisation (MOPSO) and multi-
objective genetic algorithm (MOGA) (Reyes-Sierra and Coello Coello (2006);
Konak, Coit and Smith (2006)). In this study to simplify the bi-objective
formulation, we write the bi-objective problem as a weighted sum that re-
quires a parameter α to be chosen. Although the weighted sum approach
simplifies the problem it has two shortcomings that need to be mentioned.
It can only recover a convex part of the Pareto front and the distribution of
design along the Pareto front may vary significantly. We show that a choice
of α = 0.5 performs well on all the problems considered in this study.

The first objective is to maximise the tolerance of the linear algebraic
rank of the covariance matrix XTY between the observations of the mea-
surement X and target variables Y . A large tolerance for a full rank system
indicates that the linear equations which represent the correlation between
the measurement and target variable observations are distinct and unique re-
sulting in less overlap between the explanatory domains. The rank tolerance
objective is to find the set of sensors XC that

max
XC

εr, (1)

such that
max
εr

rank((XT
C,ZYZ), εr) = min(n,C, p),

where εr, XC,Z and YZ respectively denote the rank tolerance parameter,
the sensor measurement variables at the chosen (indicated by subscript C)
locations XC and the resulting target variable observations Y . The observa-
tions of both variables are Z-scored (Kreyszig (1979)) as indicated by the
subscript Z. The Z-score standardises the observations of a variable X as
follows

XZ = [
Xn,1 − X̄n,1

σXn,1

, ...,
Xn,k − X̄n,k

σXn,k

], (2)
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where the superscript bar (̄·) and σ denote the mean and standard deviation
for the observations of variable X. By adjusting the rank tolerance given
by (1) we can control the required amount of the independence between the
variables.

A second objective is required to ensure that the most sensitive sensors
are selected i.e. sensors with high variance, as sensors that maximise the
uniqueness do not necessarily maximise their sensitivity. Sensors with higher
variance allows for larger signal to noise ratio (SNR) making the inverse
problem less susceptible to aleatory uncertainties, particularly in cases where
the aleatory uncertainties are common to all signals for a specific sensor
type referred to as class noise. In turn, when aleatory uncertainties can
predominately be expressed as a fraction of the measured variance of a single
sensor, point noise, the second objective is less important. In practice, the
aleatory uncertainties are the result of both class noise and point noise with
class noise requiring a minimum SNR to be satisfied (Chae (2017)). For a
chosen set of sensors XC the aim is to find the maximum of the product of
variances of the various sensors expressed by

σ2
Xn

=
Nsensor∏
i=1

σ2
XC,n,i

, (3)

where the product ensures that all sensors contribute variance towards the
cost function with similar order of magnitude, as any sensor with low or near
zero variance would penalise the product significantly even at the benefit of
three or four times higher variance in another sensor. The benefit of this
towards the SNR is that all sensors have similar variance, and consequently
have similar robustness towards noise in the signals.

The bi-objective optimisation problem consisting of (1) and (3) requires
us to find the set of sensors that maximises both the rank tolerance εr and
variance σ2

X . Although various strategies are available to solve for the general
case of non-convex Pareto fronts, we limit ourselves to the weighted sum
approach in this study that implies we restrict ourselves to only a convex part
of the Pareto front for the bi-objective optimisation problem. Given j options
to add sensors, we first compute Lεr(XC) and Lσ2

Xn
(XC) for each sensor

option to construct a rank tolerance and variance list. We then normalise
each list by its respective maximums. A parameter α between 0 and 1 is
introduced for the weighted sum approach as follows

max
XC

f(XC) = αLεr(XC) + (1− α)Lσ2
Xn

(XC), (4)
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where α = 1 recovers a rank only solution, and α = 0 a variance only
solution. Computing TRVF for the full combinatorial problem is computa-
tionally intractable and hence we require some tractable solution strategy to
solve TRVF.

3. Strategies to solve TRVF

A strategy, namely sequential sensor placement (SSP), to solve the toler-
ance rank-variance formulation (TRVF) is proposed in this study. SSP places
one sensor at a time up to the desired number of sensors Nm by optimising
Eq.(4) for each additionally placed sensor and keeping the placed sensors the
same. It does not guarantee optimal solutions but requires much less com-
putational time than the conventional exhaustive combinatorial approach,
which makes SSP computationally tractable for practical problems.

For example finding the optimum by considering all combinatorial solu-
tions exhaustively (Korte and Vygen (2012)) requires

(
Nk

Nm

)
=

Nk!

Nm!(Nk −Nm)!
, (5)

combinations to be checked, which for all practical purposes is intractable.

4. Structural health monitoring problem

Structural health monitoring (SHM) is becoming increasingly important
with ageing infrastructures as well the exposure to significant environmental
loading conditions to properly assess a structures life cycle. This allows for
the proper management and life extension that may have significant financial
implications. SHM is a challenging problem in which ideally the full deterio-
ration field of a structure needs to be recovered, which may require significant
sensing infrastructure to sense sufficiently. Consequently, allowing for the op-
timal placement of sensors may significantly alleviate the strain placed on a
sensing infrastructure. As a result, to investigate the performance of TRVF,
a recently proposed structural deterioration inverse problem by Lee and Song
(2016), is considered.

This inverse problem aims to recover the spatial parametrisation for
Young’s modulus, E(x, y). Lee and Song (2016) proposed an algorithm
that improves the quality of solving inverse problems by combining Bayesian
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networks (BN) and maximum likelihood estimation (MLE) instead of con-
ventional ordinary least squares (Lee and Song (2016)). In this study we
demonstrate that inverse problems can be improved by optimising the place-
ment of the sensors to improve the quality of the available information. We
obtained all required information to exactly reproduce the problem proposed
by Lee and Song (2016) by direct correspondence with the authors.

Figure 1: Diagram of the plate, loads and boundary conditions used in our deterioration
study (Lee and Song (2016)).

The structural model of the problem proposed by Lee and Song (2016)
is depicted in Figure 1. The model of 2.5m × 2.5m × 1m is constructed by
10 × 10 plane stress Q4 elements that are fully integrated. The material
parameters include Poison ratio of 0.3 and a spatial mean µE of 200 GPa
for the spatially varying E(x, y), with the real numbers x ∈ [0, 2.5] and
y ∈ [0, 2.5]. The variation in E(x, y) due to the deterioration of the plate as
expressed by

E(x, y;w) = µE(x, y)(1− fE(x, y;w)), (6)
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with the deterioration field function

fE(x, y;w) = ∆E · exp

(
− 1

2(1− ρ)

[
(x−mx)

2

s2x
+ ...

(y −my)
2

s2y
− 2r(x−mx)(y −my)

sxsy

]) (7)

where the six parameters

w = (mx,my, sx, sy, ρ,∆E), (8)

defines a specific deterioration field. The upper and lower bounds that define
the ranges for each of the six parameters of w when solving the inverse
problem are

1. centre in x given by mx ∈ [0.125, 2.375],

2. centre in y given by my ∈ [0.125, 2.375],

3. scaling parameter given by ρ ∈ [−0.95, 0.95],

4. variance in x given by sx ∈ [0, 1],

5. variance in y given by sy ∈ [0, 1], and

6. change in Young’s modulus given by ∆E ∈ [0, 0.9].

The inverse problem error function E(w) to be minimised computes the sum
of the absolute difference between the expected uy,e and measured uy,m dis-
placements in the y-direction and is given by

E(w) =
30∑
i=1

(|uy,e,i(w)− uy,m,i(w)|). (9)

In addition, the measured displacements uy,m are modelled to contain noise,
namely, 1%, 5%, 10% zero-mean normally distributed random point noise
that is relative to the magnitude of the measurements.

The plate is clamped at the bottom which reduces the free degrees of
freedom to 110 free DOFs (10 × 11). A static force of 10 GN is applied
downward as indicated by the nodes with arrows in Figure 1. A total number
of 30 sensors which only measure displacement in the y-direction uy are
originally placed at each node where a force is applied as shown in Figure 1.
In this study the placement of the sensors will be optimised for each of
the four scenarios using SSP to solve TRVF. The four deterioration fields

10



Table 1: Four deterioration fields defined by four choices for w presented as Scenario 1 to
4.

Scenarios mx my ρ sx sy ∆E

Scenario 1 1.125 1.125 0 0.9 0.9 0.85
Scenario 2 1.125 1.125 0.95 0.9 0.9 0.85
Scenario 3 0.125 0.125 0 0.7 0.7 0.85
Scenario 4 2.375 2.375 0 0.7 0.7 0.85

considered in this study, that resemble four deterioration scenarios, are listed
in Table 1. These four scenarios represent four spatial deterioration fields
that are spatially distinct and that may typically result in different parts of a
structure. Scenario 1 presents isotropic deterioration that is concentric to the
centre of the plate; Scenario 2 anisotropic deterioration across the diagonal
of the plate. Scenarios 3 and 4 present foundation or support deterioration
at respectively the lower left and upper right corners of the plate. All four
scenarios are considered in detail in Section 5.

4.1. Optimising the TRVF for Optimal Sensor Placement

To optimise the sensor placement by solving the TRVF, we first create
the finite element model as discussed in the previous section. As discussed
the deterioration field is determined by six parameters w. Sensors can be
placed to recover a specific deterioration field (specialised application) or a
set of deterioration fields (more general application). Since there is always
some uncertainty regarding the set of deterioration fields a sensor layout
should recover, we consider that each parameter has a confidence interval
of 15% of the defined range of a parameter i.e. a 30% variation around the
parameter values for a scenario when sampling the datasets. This subspace
was sampled using Latin Hypercube Sampling (LHS) (Tang (1993); Helton,
Davis, and Johnson (2005)) using n = 300 samples. Hence, the dimensions of
X are 300×110 and the dimensions of Y are 300×6 for the six parameters w.
Having constructed the datasets X and Y , we can proceed to consider solving
TRVF. For the bi-objective parameter α in Eq. 4, we consider α = 0, 0.5, 1.
This simple choice of α = 0.5 is made to demonstrate that the proposed
approach performs robustly and efficiently without requiring any tweaking
on four different problems. In addition, α is chosen as α = 0 and α = 1
to clearly demonstrate that both criteria in the multi-objective formulation
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indeed matter. As we only consider these three choices for α in this study, a
future study is warranted to properly investigate the effect of other choices
for α as well as other approaches to recover the full Pareto front as opposed
to only the convex part thereof.

Optimally selecting 30 sensors from 110 possible locations exhaustively
requires 8.3662×1026 combinations to be evaluated whereas SSP only requires
2865 sensors (= 110+109+...+81) to be tested. This only took 1.387 seconds
using a single core from ‘Intel(R) Core(TM) i7-4702MQ CPU @ 2.20GHz,
2195Mhz, 4 cores, 8 logical processors. Although SSP does not guarantee the
optimal sensor set it does offer quality solutions for the problems considered
in Section 5.

Once the optimal sensors have been selected they can be used to solve the
inverse problem in order to quantify their performance. The finite element-
updated inverse problem is solved using Matlab (2015)’s interior-point algo-
rithm with bound constraints to minimise Eq. 9. The measured displacement
uy,m contains normally distributed point noise for which its magnitude is rel-
ative to either 1%, 5% or 10% of the magnitude of the measurement. The
estimated parameters w were computed as the average values of results from
50 solutions to the inverse problem using different initial starting guesses.
The initial guesses for w were bound by the upper and lower limits defined
for every parameter, except for ρ which was bound between 0 and 0.1 in-
stead of -0.95 and 0.95. The optimised and original sensor layouts were all
subjected to the identical stochastic noise over all the runs as well as the
same initial starting points. The optimisation algorithms were run until con-
vergence but the results after 15 iterations are also reported to allow for an
intermediate comparison between the sensor layouts to identify the primary
drivers for initial progress.

5. Numerical Results

5.1. Scenario 1

The shape of the deterioration field for Scenario 1 is concentric around
the centre of the plate as shown in Figures 2(a)-(d). The optimised sensor
locations are indicated as red dots for choices of α = 1, 0.5, 0 respectively in
Figures 2(a)-(c), while the originally placed sensor locations by Lee and Song
(2016) are indicated in Figure 2(d). The results are for 1% noise added to
the sensor measurement and only after 15 iterations of solving the inverse
problem.
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It is evident from Figure 2(c) that maximising variance on its own does
not perform well with the sensors clustering around the edges of the top of the
plate. Ideally, all sensors would like to be at the same location of maximum
variance but since sensor locations are enforced to be distinct, they cluster
spatially at the domains of high variance in vertical displacement.

Considering only uniqueness of information in the bi-objective with α = 1
as depicted in Figure 2(a) resulted in the best initial performance (after 15
iterations) with a similar sensor layout to the α = 0.5 solution depicted in
Figure 2(b). It is evident that uniqueness of information results in placing
sensors that are more spatially distinct as information of each sensor is en-
forced to be distinct from previously added sensors. The sensors are placed
around the centre and bottom of the plate.

Solutions for α = 0.5 and α = 1 both outperform the originally placed
sensors by Lee and Song (2016) as quantified in Table 2. Note that Ta-
ble 2 reports the number of iterations (# iter.), function evaluations (# f.e.)
and difference norm (‖F(E)‖) computed between the predicted E(x, y) and
known E(x, y) on a 100× 100 spatial grid. This is estimated for the various
sensor placements using three levels of noise for Scenario 1. Considering the
converged optimisation results as opposed to only after 15 iterations it is ev-
ident that both uniqueness of information and variance (α = 0.5) is critical
to consider, outperforming all solutions for all levels of noise. The α = 0.5
solution outperforms the next best solution by more than a factor of 3 for 1%
noise. This also implies that both uniqueness of information and variance
drive the solution of the inverse problem towards the end of an optimisation
run. As expected the difference between optimised and originally placed sen-
sors decreases as the noise increases, as it is clear that all sensor layouts are
equal when only noise is present.

Figures 3 and 4 depict the E(x, y) contours for various amounts of noise
when solving TRVF using α = 0.5 and the original sensor layout (Lee and
Song (2016)) after 15 iterations and for the converged solutions, respectively.
When only 15 iterations are allowed for the inverse problems, Figure 3 shows
that the estimated solutions are far from the exact solutions for both the
TRVF sensor layout and the original sensor layout whereas the converged
optimised results, depicted in (Figure 4, clearly indicate that TRVF sensor
layout outperforms the original sensor placement of Lee and Song (2016).
We stress here that Lee and Song (2016) did not consider optimising the
sensor layout and we merely quantify in this study the improvements that
can be made when this is considered.
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Table 2: Scenario 1: inverse problem solutions using the sensor layouts for TRVF for
α = 1, 0.5 and 0 against the original sensor placement for different levels of stochastic
noise.

Initial optimisation performance (after 15 iter.) Converged optimisation performance

Noise Method # iter. # f.e. ‖F(E)‖ % f.v. diff. # iter. # f.e. ‖F(E)‖ % f.v. diff.

1%

α = 1 15 125.3 356.9 -92.6 72.2 700.3 60.1 -97.5
α = 0.5 15 134.1 496.9 -80.7 79 765.8 18.7 -95.8
α = 0 15 131.1 1667.8 -96 104.3 931.5 158.6 -97.8
Original 15 129.1 744.6 -78.1 80.1 773.3 60.7 -96

5%

α = 1 15 126.4 512.8 -84.5 86.2 825.7 261.8 -87.4
α = 0.5 15 133.7 841.1 -68.2 96.3 922.4 90.2 -80.1
α = 0 15 127.3 3768.5 -84.2 104.8 939 775.9 -88.6
Original 15 128.5 484.9 -72.5 85 812.9 253.2 -80.4

10%

α = 1 15 125.5 624.8 -72.7 82.5 790.8 455 -75.7
α = 0.5 15 132 788.5 -57.3 87 839.8 223.3 -64.1
α = 0 15 130.6 3300 -74 135.1 1172.8 1196.3 -76.3
Original 15 128.4 811.3 -57.7 95.9 905.7 378 -64

Table 3 quantifies the differences in the optimal parameter values w when
solving the inverse problem using the TRVF sensor layout and the original
sensor layout by Lee and Song (2016) to the actual parameter values for the
parametrisation of E(x, y) as tabulated in Table 1. This effectively quantifies
the uniqueness of the parametrisation of E(x, y) and allows for a comparison
between the different solutions. Ultimately, the errors as tabulated in Table 2
are of primary concern. Although the overall errors ‖F(E)‖ for TRVF (α =
0) are less than those for the original sensor layout, each individual parameter
error for TRVF can be sometimes greater than that for the original sensor
layout as shown in Table 3.

5.1.1. Scenario 2

The shape of the deterioration field for Scenario 2 is a diagonal shape as
shown in Figures 5(a)-(d). The optimised sensor locations are indicated as
red dots for choices of α = 1, 0.5, 0 respectively in Figures 5(a)-(c), while the
originally placed sensor locations by Lee and Song (2016) are indicated in
Figure 5(d). The results are for 1% noise added to the sensor measurement
only after 15 iterations of solving the inverse problem. It is evident from Fig-
ure 5(c) that maximising variance on its own does not perform well with the
sensors clustering around the edges of the top of the plate. Considering only
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(a) TRVF α = 1 (b) TRVF α = 0.5

(c) TRVF α = 0 (d) Original sensor placements

Figure 2: Scenario 1: optimal sensor locations obtained by solving TRVF (α = 1, 0.5, 0)
presented respectively in (a),(b) and (c). In addition, (d) the sensor placement used by
Lee and Song (2016). Depicted is the solution after 15 iterations of solving the inverse
problem to characterise the deterioration contours of E(x, y) with 1% of point noise on
the measurements.
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(a) Optimised sensors with 1% noise (b) Original sensors with 1% noise

(c) Optimised sensors with 5% noise (d) Original sensors with 5% noise

(e) Optimised sensors with 10% noise (f) Original sensors with 10% noise

Figure 3: Scenario 1: optimal deterioration contours of E(x, y) after solving the inverse
problem to convergence using the optimal sensor placement obtained by solving TRVF (α
= 0.5) versus the sensor placement used by Lee and Song (2016) with (a),(b) 1%, (c),(d)
5% and (e),(f) 10% point noise on the measurements.
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(a) Optimised sensors with 1% noise (b) Original sensors with 1% noise

(c) Optimised sensors with 5% noise (d) Original sensors with 5% noise

(e) Optimised sensors with 10% noise (f) Original sensors with 10% noise

Figure 4: Scenario 1: comparison between the deterioration contours of E(x, y) recovered
using TRVF (α = 0.5) versus the original sensor placements for the converged optimisation
results using various amounts of relative noise.
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Table 3: Scenario 1: parameter errors for TRVF (α = 0.5) and the original sensor place-
ment by Lee and Song (2016) against the known solution as tabulated in Table 1.

Scenario 1 mx my ρ sx sy ∆E

Exact solution 1.125 1.125 0 0.9 0.9 0.85

Relative error 1%

TRVF 1.1238 1.1251 -0.0007 0.8983 0.8966 0.8515
Error (%) -0.1 0.01 -0.07 -0.19 -0.38 0.18

Original 1.1192 1.1257 -0.0017 0.8937 0.8959 0.8523
Error (%) -0.51 0.06 -0.17 -0.7 -0.45 0.27

Relative error 5%

TRVF 1.1172 1.1246 -0.0013 0.8887 0.8853 0.859
Error (%) -0.7 -0.04 -0.13 -1.26 -1.63 1.06

Original 1.101 1.1284 -0.0076 0.873 0.8821 0.8623
Error (%) -2.13 0.3 -0.76 -3 -1.99 1.45

Relative error 10%

TRVF 1.1082 1.1237 -0.0041 0.8691 0.8806 0.8679
Error (%) -1.5 -0.11 -0.41 -3.44 -2.16 2.1

Original 1.0866 1.1347 -0.0029 0.862 0.8821 0.8678
Error (%) -3.41 0.86 -0.29 -4.22 -1.99 2.09

uniqueness of information in the bi-objective with α = 1 solution depicted
in Figure 5(a) resulted in the best initial performance (after 15 iterations)
with a similar sensor layout to the α = 0.5 solution depicted in Figure 5(b).
It is again evident that uniqueness of information predominantly drives the
solution to the inverse problem in the first 15 iterations.

Solutions for α = 0.5 and α = 1 both outperform the originally placed
sensors by Lee and Song (2016) as quantified in Table 4. Note that Table 4
reports the number of iterations (# iter.), function evaluations (# f.e.) and
difference norm ‖F(E)‖) for the various sensor placements using three levels
of noise for Scenario 2. Considering the converged Optimisation results as
opposed to only after 15 iterations it is evident that both uniqueness of
information and variance (α = 0.5) are critical to consider, outperforming all
solutions for all levels of noise. The α = 0.5 solution outperforms the original
sensor layout solution and the next best solution by more than a factor of 2
and 1.2, respectively, for 1% noise. This also implies that both uniqueness of
information and variance drive the solution of the inverse problem towards
the end of an optimisation run. As expected the difference between optimised
and originally placed sensors decreases as the noise increases, as it is clear
that all sensor layouts are equal when only noise is present.

Figure 6 depicts the E(x, y) contours for various amounts of noise when
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Table 4: Scenario 2: inverse problem solutions using the sensor layouts for TRVF for
α = 1, 0.5 and 0 against the original sensor placement for different levels of stochastic
noise.

Initial optimisation performance (after 15 iter.) Converged optimisation performance

Noise Method # iter. # f.e. ‖F(E)‖ % f.v. diff. # iter. # f.e. ‖F(E)‖ % f.v. diff.

1%

α = 1 15 136.2 627.2 -85.4 90 850.2 171.7 -94.2
α = 0.5 15 134.9 770.1 -85.2 91.3 859.4 142.8 -95.1
α = 0 15 137.7 1838.4 -91.7 128.4 1102.2 957.3 -94.2
Original 15 137.7 1064.2 -86 87.6 805.9 321 -93.8

5%

α = 1 15 134.3 738.6 -75 78.2 749.9 447.8 -78.6
α = 0.5 15 132.7 799 -75.3 85 812 415.9 -79.9
α = 0 15 138.3 2230.2 -72.2 138.1 1206.9 1732.3 -73.7
Original 15 134.8 1105.5 -73.8 95 886.9 611.3 -76.9

10%

α = 1 15 133.8 1018 -56 90 848.6 837.5 -59.2
α = 0.5 15 134.5 1023 -59.4 85.4 814.6 823.7 -62.6
α = 0 15 138.6 2204.3 -48 137.1 1239.5 2066.4 -49.3
Original 15 135.6 1287.8 -50.4 101.5 966 1108.1 -52.6

solving TRVF using α = 0.5 and the original sensor layout (Lee and Song
(2016)) for the converged solutions. The converged optimised results clearly
indicate that TRVF sensor layout outperforms the original sensor placement
of Lee and Song (2016).

Table 5 quantifies the differences in the optimal parameter values w when
solving the inverse problem using the TRVF sensor layout and the original
sensor layout by Lee and Song (2016) to the actual parameter values for the
parametrisation of E(x, y) as tabulated in Table 1. This effectively quantifies
the uniqueness of the parametrisation of E(x, y) and allows for a comparison
between the different solutions. Ultimately, the errors as tabulated in Table 4
are of primary concern.

5.1.2. Scenario 3

The deterioration field for Scenario 3 is at the lower left corner as shown
in Figures 7(a)-(d). The optimised sensor locations are indicated as red dots
for choices of α = 1, 0.5, 0 respectively in Figures 7(a)-(c), while the originally
placed sensor locations are indicated in Figure 7(d). The results are for 1%
noise added to the sensor measurement and only after 15 iterations of solving
the inverse problem. It is evident from Figure 7(c) that maximising variance
on its own does not perform well with the sensors clustering around the left
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(a) TRVF α = 1 (b) TRVF α = 0.5

(c) TRVF α = 0 (d) Original sensor placements

Figure 5: Scenario 2: optimal sensor locations obtained by solving TRVF (α = 1, 0.5, 0)
presented respectively in (a),(b) and (c). In addition, (d) the sensor placement used by
Lee and Song (2016). Depicted is the solution after 15 iterations of solving the inverse
problem to characterise the deterioration contours of E(x, y) with 1% of point noise on
the measurements.
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(a) Optimised sensors with 1% noise (b) Original sensors with 1% noise

(c) Optimised sensors with 5% noise (d) Original sensors with 5% noise

(e) Optimised sensors with 10% noise (f) Original sensors with 10% noise

Figure 6: Scenario 2: optimal deterioration contours of E(x, y) after solving the inverse
problem to convergence using the optimal sensor placement obtained by solving TRVF (α
= 0.5) versus the sensor placement used by Lee and Song (2016) with (a),(b) 1%, (c),(d)
5% and (e),(f) 10% relative point noise on the measurements.
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Table 5: Scenario 2: parameter errors for TRVF (α = 0.5) and the original sensor place-
ment by Lee and Song (2016) against the known solution as tabulated in Table 1.

Scenario 2 mx my ρ sx sy ∆E

Exact solution 1.125 1.125 0.95 0.9 0.9 0.85

Relative error 1%

TRVF 1.1071 1.1045 0.94 0.8614 0.8562 0.8456
Error (%) -1.59 -1.83 -1.06 -4.29 -4.87 -0.51

Original 1.1028 1.0983 0.9238 0.8422 0.8384 0.8117
Error (%) -1.98 -2.38 -2.76 -6.42 -6.85 -4.51

Relative error 5%

TRVF 1.0834 1.0714 0.9157 0.8034 0.7934 0.8403
Error (%) -3.69 -4.77 -3.61 -10.73 -11.84 -1.14

Original 1.0764 1.0705 0.8902 0.7895 0.7987 0.7843
Error (%) -4.32 -4.85 -6.3 -12.28 -11.26 -7.72

Relative error 10%

TRVF 1.079 1.0457 0.8831 0.7687 0.7611 0.8343
Error (%) -4.09 -7.05 -7.05 -14.58 -15.44 -1.85

Original 1.062 1.0314 0.832 0.7354 0.7803 0.765
Error (%) -5.6 -8.32 -12.42 -18.29 -13.3 -10

edge of the plate. However, interestingly, it outperformed the α = 1 solution
which looks almost identical to the α = 0.5 solution which outperformed
both α = 1 and 0 by more than a factor of 2 for 1% noise (see Table 6).
In fact, the original sensor layout outperforms the three α cases only after
15 iterations although it is evident that both α = 1 and 0.5 outperform the
original sensor solutions almost by a factor of 3 for 1% noise when consider-
ing the converged optimisation results. As expected the difference between
optimised and originally placed sensors decreases as the noise increases. Note
that the converged results of both α = 0.5 and 0 are very close to each other.
This illustrates that in some cases, the sensors chosen for maximising vari-
ance in sensor measurements may result in unique information as sensors
are spatially distinct by placement. Figure 8 compares the E(x, y) recovered
using TRVF versus the original sensor layout. It is observed that estimated
solution contour of the TRVF is much more accurate than that of the origi-
nal sensors. Note that the optimised sensors are closely located around the
deterioration area.

Table 7 quantifies the differences in the optimal parameter values w when
solving the inverse problem using the TRVF sensor layout and the original
sensor layout by Lee and Song (2016) to the actual parameter values for the
parametrisation of E(x, y) as tabulated in Table 1. This effectively quantifies
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Table 6: Scenario 3: inverse problem solutions using the sensor layouts for TRVF for
α = 1, 0.5 and 0 against the original sensor placement for different levels of stochastic
noise.

Initial optimisation performance (after 15 iter.) Converged optimisation performance

Noise Method # iter. # f.e. ‖F(E)‖ % f.v. diff. # iter. # f.e. ‖F(E)‖ % f.v. diff.

1%

α = 1 15 123 1797.2 -85.1 126.9 1112.2 111.9 -97.4
α = 0.5 15 128.2 678.8 -91.4 115.4 1024 103.8 -95.9
α = 0 15 137.4 1367 -93.4 213.3 1807.8 683 -94.9
Original 15 133.9 604.4 -90.2 121.9 1073.5 410.9 -93.5

5%

α = 1 15 125.9 1737.6 -80.6 149.1 1309.4 277.4 -88
α = 0.5 15 128.6 807.4 -78.4 142.2 1259.1 272.8 -81
α = 0 15 133.5 1388.3 -74.7 223.1 1975.5 943.7 -76.2
Original 15 132.4 692.6 -69.2 139.2 1250.3 544.1 -71.3

10%

α = 1 15 128.3 1579.6 -71.1 139 1230.5 517 -75.3
α = 0.5 15 132.6 958 -63.1 138.2 1238.5 505.2 -65.3
α = 0 15 133.6 1413.9 -50.6 176.7 1522.6 1101.5 -52.8
Original 15 133.8 783.6 -47.2 120.6 1076.9 624.6 -49.4

the uniqueness of the parametrisation of E(x, y) and allows for a comparison
between the different solutions. Ultimately, the errors as tabulated in Table 6
are of primary concern.

5.1.3. Scenario 4

Scenario 4 has its deterioration area around the top right corner of the
plate as shown in Figure 9. It is evident from the figure that the optimised
sensors with α = 1, 0.5 and 0 which are closely located to the deterioration
area outperform the original sensor layout result for 1% noise when only
15 iterations are considered. Table 8 shows that the results for α = 0.5,
which considers both the uniqueness of information and variance, produce the
lowest error ‖F(E)‖ after 15 optimisation iterations as well as the converged
optimisation solution for all the noise settings. Figure 10 again illustrates
that the optimised sensors recover the more accurate deterioration contours
compared to the original sensor layout. Although the overall errors ‖F(E)‖
of TRVF (α = 0) are less than those of the original sensor layout, each
individual parameter error can be sometimes greater as shown in Table 9.

The example study with the four scenarios clearly demonstrated that cali-
brating the contributions of rank tolerance εr and variance vx by changing the
α value affects the near optimal placement of sensors. This also illustrated
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(a) TRVF α = 1 (b) TRVF α = 0.5

(c) TRVF α = 0 (d) Original sensor placements

Figure 7: Scenario 3: optimal sensor locations obtained by solving TRVF (α = 1, 0.5, 0)
presented respectively in (a),(b) and (c). In addition, (d) the sensor placement used by
Lee and Song (2016). Depicted is the solution after 15 iterations of solving the inverse
problem to characterise the deterioration contours of E(x, y) with 1% of point noise on
the measurements.
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(a) Optimised sensors with 1% noise (b) Original sensors with 1% noise

(c) Optimised sensors with 5% noise (d) Original sensors with 5% noise

(e) Optimised sensors with 10% noise (f) Original sensors with 10% noise

Figure 8: Scenario 3: optimal deterioration contours of E(x, y) after solving the inverse
problem to convergence using the optimal sensor placement obtained by solving TRVF (α
= 0.5) versus the sensor placement used by Lee and Song (2016) with (a),(b) 1%, (c),(d)
5% and (e),(f) 10% point noise on the measurements.
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Table 7: Scenario 3: parameter errors for TRVF (α = 0.5) and the original sensor place-
ment by Lee and Song (2016) against the known solution as tabulated in Table 1.

Scenario 3 mx my ρ sx sy ∆E

Exact solution 0.125 0.125 0 0.7 0.7 0.85

Relative error 1%

TRVF 0.1463 0.1691 0.0373 0.6642 0.6628 0.8446
Error (%) 17.04 35.25 3.73 -5.11 -5.31 -0.64

Original 0.2539 0.1876 0.0745 0.5493 0.6586 0.8445
Error (%) 103.09 50.08 7.45 -21.52 -5.91 -0.64

Relative error 5%

TRVF 0.1747 0.2322 0.0765 0.6492 0.6195 0.8481
Error (%) 39.8 85.75 7.65 -7.25 -11.5 -0.23

Original 0.284 0.2223 0.1381 0.5175 0.6449 0.8573
Error (%) 127.2 77.84 13.81 -26.07 -7.87 0.86

Relative error 10%

TRVF 0.201 0.2743 0.1287 0.6469 0.6004 0.8515
Error (%) 60.81 119.43 12.87 -7.59 -14.23 0.18

Original 0.2969 0.2563 0.1785 0.532 0.6309 0.8618
Error (%) 137.51 105.06 17.85 -24 -9.88 1.38

Table 8: Scenario 4: inverse problem solutions using the sensor layouts for TRVF for
α = 1, 0.5 and 0 against the original sensor placement for different levels of stochastic
noise.

Initial optimisation performance (after 15 iter.) Converged optimisation performance

Noise Method # iter. # f.e. ‖F(E)‖ % f.v. diff. # iter. # f.e. ‖F(E)‖ % f.v. diff.

1%

α = 1 15 129.4 217.6 -90.2 98.7 897.2 264.4 -92.1
α = 0.5 15 127.3 162.8 -90 110.1 1011.1 225.9 -92.8
α = 0 15 125.4 214.3 -90.1 113.3 1024.8 243.6 -92.7
Original 15 132.1 608.6 -86.9 124.7 1129.2 296.1 -92.7

5%

α = 1 15 131.6 485.6 -66 132.7 1188.2 650.4 -69.1
α = 0.5 15 128.2 460.6 -64.2 118.4 1062 457.4 -67.9
α = 0 15 128.1 710.1 -65 139.5 1261.5 487.7 -68.8
Original 15 133 579.2 -65.9 129.6 1169.1 575 -69.6

10%

α = 1 15 133.5 916.1 -46.2 136.1 1207.3 939 -49.2
α = 0.5 15 130.7 798.2 -44.4 135.3 1205.2 780.7 -47.7
α = 0 15 128.1 1135.9 -44.8 137.7 1219.8 986.5 -48.5
Original 15 131.4 1064.4 -45.2 126.3 1125 1047.6 -48.7
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(a) TRVF α = 1 (b) TRVF α = 0.5

(c) TRVF α = 0 (d) Original sensor placements

Figure 9: Scenario 4: optimal sensor locations obtained by solving TRVF (α = 1, 0.5, 0)
presented respectively in (a),(b) and (c). In addition, (d) the sensor placement used by
Lee and Song (2016). Depicted is the solution after 15 iterations of solving the inverse
problem to characterise the deterioration contours of E(x, y) with 1% of point noise on
the measurements.
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(a) Optimised sensors with 1% noise (b) Original sensors with 1% noise

(c) Optimised sensors with 5% noise (d) Original sensors with 5% noise

(e) Optimised sensors with 10% noise (f) Original sensors with 10% noise

Figure 10: Scenario 4: optimal deterioration contours of E(x, y) after solving the inverse
problem to convergence using the optimal sensor placement obtained by solving TRVF (α
= 0.5) versus the sensor placement used by Lee and Song (2016) with (a),(b) 1%, (c),(d)
5% and (e),(f) 10% point noise on the measurements.
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Table 9: Scenario 4: parameter errors for TRVF (α = 0.5) and the original sensor place-
ment by Lee and Song (2016) against the known solution as tabulated in Table 1.

Scenario 4 mx my ρ sx sy ∆E

Exact solution 2.375 2.375 0 0.7 0.7 0.85

Relative error 1%

TRVF 2.3295 2.3278 0.0525 0.674 0.6232 0.8423
Error (%) -1.92 -1.99 5.25 -3.71 -10.97 -0.91

Original 2.3043 2.3155 0.1007 0.6499 0.6003 0.8488
Error (%) -2.98 -2.5 10.07 -7.16 -14.25 -0.15

Relative error 5%

TRVF 2.2207 2.2714 0.0998 0.6348 0.5517 0.8393
Error (%) -6.5 -4.36 9.98 -9.31 -21.18 -1.26

Original 2.1978 2.2562 0.1253 0.6132 0.5469 0.8588
Error (%) -7.46 -5 12.53 -12.41 -21.88 1.04

Relative error 10%

TRVF 2.1109 2.2252 0.0229 0.5941 0.5204 0.8455
Error (%) -11.12 -6.31 2.29 -15.12 -25.66 -0.53

Original 2.0981 2.201 0.0003 0.6287 0.5573 0.8454
Error (%) -11.66 -7.33 0.03 -10.19 -20.38 -0.55

that the near optimal placement of the sensors were highly dependent on the
spatial deterioration patterns in the plates for exactly the same loading and
boundary conditions. This clearly suggests that there is merit in considering
spatially distributed variance as opposed to localised variance. Practically
this also highlights the merits of instrumenting different parts of the structure
according to expected deterioration which would depend on the loading of a
component which differs between components in the same structure. It also
demonstrates the importance of considering both rank tolerance and variance
as opposed to only one of εr or vx (α = 1 or 0, respectively) which results
in poor sensor placements whereas the α = 0.5 seems to be a robust first
estimate. Even if the measurements obtained in a problem generally have
high variance and maximising the vr may be negligible, one cannot always
be certain whether that is true or not when facing the problem. Hence, the
α of 0.5 can be chosen as an approximate value and it still outperforms the
sensors placed simply with engineering intuition.
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6. Conclusion

A new sensor placement optimisation formulation, namely the tolerance
rank-variance formulation (TRVF), is proposed. The formulation simply con-
siders the rank of two covariance matrices and the variance information of
the sensor sets towards the aim of solving inverse problems. In addition, a
computationally efficient heuristic approach to solve both formulations are
proposed and investigated numerically. It is not tractable to solve the formu-
lations exhaustively as there are 8.3662×1026 combinations that need to be
evaluated for each of the four scenarios of material deterioration parametri-
sation problems considered in this study, in which the full spatial field dete-
rioration of a plate is resolved. Although, no proof of optimality is offered for
our proposed approach, the numerical results indicate quality solutions that
are computationally tractable considering four scenarios. The four scenarios
clearly demonstrated the that the near optimal positions of the sensors were
highly dependent on the various shapes of the spatial deterioration patterns
on the plates with exactly the same loading and boundary conditions. This
clearly suggests that there is merit in instrumenting different parts of the
structure according to expected deterioration which would depend on the
loading of a component which differs between components in the same struc-
ture. It also demonstrates the importance of considering both rank tolerance
and variance as opposed to only one of εr or vx (α = 1 or 0, respectively)
which results in poor sensor placements whereas the α = 0.5 seems to be a
robust first estimate.
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