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This thesis develops methods for reducing energy Measurement and Verification (M&V) costs through

the use of Bayesian statistics. M&V quantifies the savings of energy efficiency and demand side

projects by comparing the energy use in a given period to what that use would have been, had no

interventions taken place. The case of a large-scale lighting retrofit study, where incandescent lamps

are replaced by Compact Fluorescent Lamps (CFLs), is considered. These projects often need to be

monitored over a number of years with a predetermined level of statistical rigour, making M&V very

expensive.

M&V lighting retrofit projects have two interrelated uncertainty components that need to be addressed,

and which form the basis of this thesis. The first is the uncertainty in the annual energy use of the

average lamp, and the second the persistence of the savings over multiple years, determined by the

number of lamps that are still functioning in a given year. For longitudinal projects, the results from

these two aspects need to be obtained for multiple years.

This thesis addresses these problems by using the Bayesian statistical paradigm. Bayesian statistics is

still relatively unknown in M&V, and presents an opportunity for increasing the efficiency of statistical
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analyses, especially for such projects.

After a thorough literature review, especially of measurement uncertainty in M&V, and an introduction

to Bayesian statistics for M&V, three methods are developed. These methods address the three types

of uncertainty in M&V: measurement, sampling, and modelling. The first method is a low-cost energy

meter calibration technique. The second method is a Dynamic Linear Model (DLM) with Bayesian

Forecasting for determining the size of the metering sample that needs to be taken in a given year.

The third method is a Dynamic Generalised Linear Model (DGLM) for determining the size of the

population survival survey sample.

It is often required by law that M&V energy meters be calibrated periodically by accredited laboratories.

This can be expensive and inconvenient, especially if the facility needs to be shut down for meter

installation or removal. Some jurisdictions also require meters to be calibrated in-situ; in their operating

environments. However, it is shown that metering uncertainty makes a relatively small impact to

overall M&V uncertainty in the presence of sampling, and therefore the costs of such laboratory

calibration may outweigh the benefits. The proposed technique uses another commercial-grade meter

(which also measures with error) to achieve this calibration in-situ. This is done by accounting for the

mismeasurement effect through a mathematical technique called Simulation Extrapolation (SIMEX).

The SIMEX result is refined using Bayesian statistics, and achieves acceptably low error rates and

accurate parameter estimates.

The second technique uses a DLM with Bayesian forecasting to quantify the uncertainty in metering

only a sample of the total population of lighting circuits. A Genetic Algorithm (GA) is then applied

to determine an efficient sampling plan. Bayesian statistics is especially useful in this case because

it allows the results from previous years to inform the planning of future samples. It also allows for

exact uncertainty quantification, where current confidence interval techniques do not always do so.

Results show a cost reduction of up to 66%, but this depends on the costing scheme used. The study

then explores the robustness of the efficient sampling plans to forecast error, and finds a 50% chance

of undersampling for such plans, due to the standard M&V sampling formula which lacks statistical

power.

The third technique uses a DGLM in the same way as the DLM, except for population survival

survey samples and persistence studies, not metering samples. Convolving the binomial survey result
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distributions inside a GA is problematic, and instead of Monte Carlo simulation, a relatively new

technique called Mellin Transform Moment Calculation is applied to the problem. The technique is

then expanded to model stratified sampling designs for heterogeneous populations. Results show a

cost reduction of 17-40%, although this depends on the costing scheme used.

Finally the DLM and DGLM are combined into an efficient overall M&V plan where metering and

survey costs are traded off over multiple years, while still adhering to statistical precision constraints.

This is done for simple random sampling and stratified designs. Monitoring costs are reduced by

26-40% for the costing scheme assumed.

The results demonstrate the power and flexibility of Bayesian statistics for M&V applications, both in

terms of exact uncertainty quantification, and by increasing the efficiency of the study and reducing

monitoring costs.
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trapolering, masjienleer

Hierdie proefskrif ontwikkel metodes waarmee die koste van energiemonitering en verifieëring (M&V)

deur Bayesiese statistiek verlaag kan word. M&V bepaal die hoeveelheid besparings wat deur

energiedoeltreffendheid- en vraagkantbestuurprojekte behaal kan word. Dit word gedoen deur die

energieverbruik in ’n gegewe tydperk te vergelyk met wat dit sou wees indien geen ingryping plaas-

gevind het nie. ’n Grootskaalse beligtingsretrofitstudie, waar filamentgloeilampe met fluoresserende

spaarlampe vervang word, dien as ’n gevallestudie. Sulke projekte moet gewoonlik oor baie jare met

’n vasgestelde statistiese akkuuraatheid gemonitor word, wat M&V duur kan maak.

Twee verwante onsekerheidskomponente moet in M&V beligtingsprojekte aangespreek word, en vorm

die grondslag van hierdie proefskrif. Ten eerste is daar die onsekerheid in jaarlikse energieverbruik

van die gemiddelde lamp. Ten tweede is daar die volhoubaarheid van die besparings oor veelvoudige

jare, wat bepaal word deur die aantal lampe wat tot in ’n gegewe jaar behoue bly. Vir longitudinale

projekte moet hierdie twee komponente oor veelvoudige jare bepaal word.

Hierdie proefskrif spreek die probleem deur middel van ’n Bayesiese paradigma aan. Bayesiese

statistiek is nog relatief onbekend in M&V, en bied ’n geleentheid om die doeltreffendheid van
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statistiese analises te verhoog, veral vir bogenoemde projekte.

Die proefskrif begin met ’n deeglike literatuurstudie, veral met betrekking tot metingsonsekerheid

in M&V. Daarna word ’n inleiding tot Bayesiese statistiek vir M&V voorgehou, en drie metodes

word ontwikkel. Hierdie metodes spreek die drie hoofbronne van onsekerheid in M&V aan: metings,

opnames, en modellering. Die eerste metode is ’n laekoste energiemeterkalibrasietegniek. Die

tweede metode is ’n Dinamiese Linieêre Model (DLM) met Bayesiese vooruitskatting, waarmee meter

opnamegroottes bepaal kan word. Die derde metode is ’n Dinamiese Veralgemeende Linieêre Model

(DVLM), waarmee bevolkingsoorlewing opnamegroottes bepaal kan word.

Volgens wet moet M&V energiemeters gereeld deur erkende laboratoria gekalibreer word. Dit kan

duur en ongerieflik wees, veral as die aanleg tydens meterverwydering en -installering afgeskakel moet

word. Sommige regsgebiede vereis ook dat meters in-situ gekalibreer word; in hul bedryfsomgewings.

Tog word dit aangetoon dat metingsonsekerheid ’n klein deel van die algehele M&V onsekerheid

beslaan, veral wanneer opnames gedoen word. Dit bevraagteken die kostevoordeel van laboratori-

umkalibrering. Die voorgestelde tegniek gebruik ’n ander kommersieële-akkuurraatheidsgraad meter

(wat self ’n nie-weglaatbare metingsfout bevat), om die kalibrasie in-situ te behaal. Dit word gedoen

deur die metingsfout deur SIMulerings EKStraptolering (SIMEKS) te verminder. Die SIMEKS res-

ultaat word dan deur Bayesiese statistiek verbeter, en behaal aanvaarbare foutbereike en akkuurate

parameterafskattings.

Die tweede tegniek gebruik ’n DLM met Bayesiese vooruitskatting om die onsekerheid in die meting

van die opnamemonster van die algehele bevolking af te skat. ’n Genetiese Algoritme (GA) word

dan toegepas om doeltreffende opnamegroottes te vind. Bayesiese statistiek is veral nuttig in hierdie

geval aangesien dit vorige jare se uitslae kan gebruik om huidige afskattings te belig Dit laat ook

die presiese afskatting van onsekerheid toe, terwyl standaard vertrouensintervaltegnieke dit nie doen

nie. Resultate toon ’n kostebesparing van tot 66%. Die studie ondersoek dan die standvastigheid van

kostedoeltreffende opnameplanne in die teenwoordigheid van vooruitskattingsfoute. Dit word gevind

dat kostedoeltreffende opnamegroottes 50% van die tyd te klein is, vanweë die gebrek aan statistiese

krag in die standaard M&V formules.

Die derde tegniek gebruik ’n DVLM op dieselfde manier as die DLM, behalwe dat bevolkingsoorlewing-

opnamegroottes ondersoek word. Die saamrol van binomiale opname-uitslae binne die GA skep ’n

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



probleem, en in plaas van ’n Monte Carlo simulasie word die relatiewe nuwe Mellin Vervorming

Moment Berekening op die probleem toegepas. Die tegniek word dan uitgebou om laagsgewyse

opname-ontwerpe vir heterogene bevolkings te vind. Die uitslae wys ’n 17-40% kosteverlaging,

alhoewel dit van die koste-skema afhang.

Laastens word die DLM en DVLM saamgevoeg om ’n doeltreffende algehele M&V plan, waar meting

en opnamekostes teen mekaar afgespeel word, te ontwerp. Dit word vir eenvoudige en laagsgewyse

opname-ontwerpe gedoen. Moniteringskostes word met 26-40% verlaag, maar hang van die aangenome

koste-skema af.

Die uitslae bewys die krag en buigsaamheid van Bayesiese statistiek vir M&V toepassings, beide vir

presiese onsekerheidskwantifisering, en deur die doeltreffendheid van die dataverbruik te verhoog en

sodoende moniteringskostes te verlaag.
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1.1.2 Conference Papers

[1] Herman Carstens, Xiaohua Xia, and Sarma Yadavalli, “Measurement Uncertainty and Risk in

Measurement and Verification Projects” International Energy Programme Evaluation Conference,

August 2015, Long Beach, California.

1.2 CHAPTER OVERVIEW

This chapter introduces the concept of M&V and explains the problem and approach to the proposed

solution. The most important terms and notation used in the rest of this thesis are also explained. Most

references and rigorous motivation will be deferred to Chapters 2 and 3.

1.3 BACKGROUND

Measurement and Verification (M&V) is the process by which energy savings realised by energy

efficiency and demand side management projects are independently and reliably quantified [1]. It is

an established field in which the basic principles and practices are well defined, similar to auditing in

finance. The crux of M&V is the fact that energy savings cannot be measured directly. A statistical

model forecasting what the business-as-usual energy use in a given period would have been can be

created, and this can be compared to the actual energy use. The difference between the forecast

and actual consumption is the savings estimate. The uncertainty in the savings estimates should fall

within certain statistical bounds, which are often set by regulators. For many real-world projects,

this is a non-trivial problem. For other kinds of M&V projects, this counterfactual calculation is

simple, but monitoring with satisfactory accuracy can be expensive. Because project payment often

depends on the M&V report, and because M&V can be costly, the field is well suited to a statistical

engineering investigation. Some projects are also only marginally feasible, especially if M&V needs

to be added to the project cost. Efficient M&V methods can increase the feasibility and reduce the risk

for others.

In the South African context, M&V was originally done by teams from various universities, and projects

were administrated by Eskom’s Integrated Demand Management (IDM) unit. In 2014 there were more

than 700 active M&V projects. Recently, South African M&V was opened to private companies, subject
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CHAPTER 1 INTRODUCTION

to accreditation by the South African National Standards Authority (SANAS). In a parallel development,

the 12L tax incentive was promulgated by the South African Revenue Service (SARS) [2], and provides

a rebate for savings certified by an accredited M&V company. These certifications take place according

to the South African National Standard (SANS) 50010: Measurement and Verification of Energy

Savings [3], which governs M&V in South Africa. The standard codifies minimum requirements and

methods from guidelines such as the International Performance Measurement and Verification Protocol

(IPMVP) [1], but does not place a numerical uncertainty constraint on M&V reporting. However, the

process of identifying fair, quantified uncertainty reporting requirements is underway and contributes

to the timeliness of this thesis. A parallel approach adopted by SANAS is to require energy meters

to be calibrated before they may be used for accredited M&V projects. This requirement places no

uncertainty requirement on reporting but limits the risk by quality control – at a cost – as will be

discussed in this thesis. Regardless of whether firm uncertainty reporting limits are legislated in the

South African context, the efficient quantification of uncertainty in M&V is relevant both locally and

internationally.

A second factor compounds the problem of costly uncertainty quantification in M&V. The time

horizons on M&V projects may be many years. For these projects to be eligible under the United

Nations Framework Convention on Climate Change (UNFCCC)’s Clean Development Mechanism

(CDM), the performance of lighting projects should be tracked for up to 10 years, while other projects

may be tracked for up to 21 years [4]. For these studies, a longitudinal component is therefore present

in M&V designs. This needs to be combined with the cross-sectional aspect to yield a savings estimate

for a given year.

Lighting projects are frequently used as M&V case studies because they are relatively simple and do

not detract from model development with case-specific model features. A lighting retrofit case was

therefore selected for this thesis, as it allows the study to focus on the measurement of the energy use

of the lighting population, and the sampling of such a population over time.

1.4 PROBLEM STATEMENT

M&V costs can be prohibitive for projects where uncertainty needs to be quantified with adequate

statistical precision. Efficient M&V methods, that is, methods that achieve the required accuracy at
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low cost, are therefore needed.

Specifically for lighting retrofit M&V studies, two kinds of data are needed to calculate the energy

use in such projects: population survival data, and aggregated energy use data. Energy use data are

obtained from electricity meters installed in a statistically representative number of households, while

population survival data are collected through surveys.

Energy use data are usually obtained from calibrated energy meters or through spot metering and the

use of lighting loggers. The former is a more accurate approach adopted as part of an M&V plan

known as ‘retrofit isolation with all parameter measurement’. However, installing an adequate number

of meters to obtain a statistically representative sample can be expensive. Not only are meters to

be bought and installed, but they also have to be calibrated periodically as a statutory requirement.

This entails possible facility shutdown as well as sending a meter to a laboratory for calibration using

special equipment. Ironically, energy metering uncertainty usually makes a small contribution to

the overall uncertainty when compared to sampling uncertainty. A more cost-effective measurement

calibration method may, therefore, reduce metering costs, and even if such meters are calibrated to a

lower standard, may still make a small difference to the overall savings uncertainty.

The second aspect of a longitudinal M&V study is population surveillance. Considering multi-year

savings rather than first-year savings only, can decrease the cost of electricity saved by up to 70% [5].

The savings reported in a given year should be a function of the number of units that have survived to

that year. If only 50% of the units are still functioning in a given year, only 50% of the original savings

can be claimed for that year, all else being equal. Determining this proportion to a given statistical

precision is a longitudinal survey design problem.

Designing a longitudinal model for a single population has limited use in practice. It is often necessary

to stratify a population by luminaire type, location, or application. Treating such strata as completely

independent is statistically inefficient, but combining their population proportion estimates with other

sources of uncertainty in a meaningful way has not been done to the author’s knowledge.

The total savings uncertainty then needs to be calculated by combining results and uncertainties from

the cross-sectional metering sample with those of the population survey.
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1.4.1 Research gap

Basic frequentist statistics have been used on the majority of M&V problems and are recommended by

all leading guidelines. However, these methods make restrictive assumptions on the data and do not

reflect the complexities of real-world projects. They also fail to account for other information that is

known about the project – especially for longitudinal studies where the same population is sampled

repeatedly. Bayesian statistics provide a mathematically rigorous way of incorporating such data to

decrease uncertainty and increase M&V monitoring efficiency. These methods have enjoyed much

attention in other fields, but they have not been applied to M&V problems.

1.5 RESEARCH OBJECTIVE AND QUESTIONS

The objectives of this thesis are:

• To provide a systematic overview of the state of the art for measurement uncertainty in M&V.

• To develop a low-cost energy meter calibration method.

• To develop an efficient longitudinal cross-sectional meter sampling method that accounts for

past data and quantifies uncertainty accurately.

• To develop an efficient longitudinal population survey sampling method that accounts for past

data and quantifies uncertainty accurately.

• To develop an optimization method by which optimal sampling plans for stratified longitudinal

studies may be determined.

• To combine metering and survey sampling into an overall longitudinal M&V plan.

Department of Electrical, Electronic and Computer Engineering
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1.6 HYPOTHESIS AND APPROACH

This thesis hypothesizes that by using Bayesian statistics, more efficient M&V sampling plans than

those of standard frequentist M&V methods can be devised.

The approach is to use a lighting retrofit monitoring project as a case study and to develop efficient

M&V methods using Bayesian statistics and various machine learning algorithms. The results of these

methods will then be compared to the results of standard frequentist M&V methods.

M&V efficiency is improved on two fronts.

1. a) Lower the cost metering through low-cost calibration.

1. b) Improved metering sampling planning.

The second is lower cost sampling:

2. a) Improved metering sampling planning (overlapping with 1. b).

2. b) Improved survey sampling planning.

1.7 RESEARCH GOALS

The goal of the proposed research is to develop cost-effective monitoring plans by characterising

lamp population survival with energy use while reporting energy use and savings with the required

accuracy. To this end, Bayesian methods are employed in conjunction with other necessary statistical

techniques.

1.8 OVERVIEW OF STUDY

This thesis is arranged as follows. In Chapter 2, relevant literature is reviewed and evaluated in the light

of current needs and the present state of the art in M&V. This chapter informs all the other chapters

Department of Electrical, Electronic and Computer Engineering
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and includes a systematic study of measurement uncertainty in M&V to identify opportunities and

research gaps, which has not been done before. It also includes an evaluation of the applicability of

literature from related fields in applied statistics, such as Bayesian methods, survival analysis, and

errors-in-variables research.

Chapter 3 introduces the Bayesian paradigm. After a discussion of the advantages of this paradigm

relative to the standard frequentist one used for M&V, the theory is presented. Aspects relevant to

M&V are discussed, and applications to measurement, sampling, and regression are made using simple

examples.

In Chapter 4, a low-cost energy meter calibration method using Simulation Extrapolation (SIMEX) and

Bayesian regression is given. SIMEX and naïve methods are compared to illustrate the effectiveness

of the method in removing systematic bias from data measured with error. Bayesian optimization is

added to reduce variance and bias even further.

In Chapter 5, cross-sectional and longitudinal metering sampling plans are discussed for lighting

retrofit projects. This introduces the main case study of the thesis. A Dynamic Linear Model with

Bayesian forecasting is used to quantify the meter sampling uncertainty for a large-scale project, and

through forecasting to determine an efficient sampling plan for future sampling. The robustness of the

plan to different future results is also explored.

In Chapter 6, an efficient longitudinal population survival survey sampling design method is presented.

It uses a Dynamic Generalised Linear Model with Bayesian forecasting. A Mellin Transform moment

calculation method and a genetic algorithm are then used for sampling optimization. Sampling

optimization considers other sources of uncertainty and variance such as measurement error and

variance in the hours of use of the luminaires as well.

In Chapter 7, the models from the previous two chapters are combined into an overall M&V sampling

plan, where cross-sectional meter sample sizes are traded off against population survival survey

sample sizes. Figure 7.1 illustrates the flow of the chapters and their contribution to the overall M&V

plan.

Chapter 8 draws conclusions and recommends future research.
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1.9 NOMENCLATURE

In this thesis, probability density functions are indicated by the notation ∼ [·]. In cases where specific

density functions are used, an identifier is added, so that if x is normally distributed, for example, then

it would be written as x∼ N[·, ·]. The first term in the brackets is the first moment (the mean), and the

second term the standard deviation. In other cases, square brackets will indicate a vector of data points

or a range inclusive of the bounding values, but the difference should be apparent by the absence of the

tilde (∼) sign. The tilde sign is also used in the conventional manner to indicate “approximately”, so

that ∼ 5% means “approximately 5%.

In a slight abuse of notation, Pr(·) will indicate any probability density function. This is standard in

Bayesian texts. It only indicates “the probability of...", and not a particular functional form.

The | sign is used in the conventional manner to indicate a conditional probability, so that Pr(A|B)

refers to the probability of A given, or conditional on, B.

The hat sign ( ˆ ) is used to indicate an estimate of the true value so that x̂ is the estimate of x. Similarly,

the superscripted asterisk ∗ indicates an observed value (measured with error), so that x∗ is the observed

value of x.

Boldface letters indicate multidimensional vectors, as opposed to normal letters which indicate scal-

ars.

A few nuanced or subject-specific terms are used in M&V uncertainty quantification. In the interest of

clarity, these are explained below. The terms are arranged by topic rather than alphabetically.

An M&V study is usually divided into two parts: the baseline period, and the reporting period. The

baseline period is that period before an intervention is applied, when the pre-retrofit energy system is

characterised. This information is used to create an adjusted baseline (a forecast) for the post-retrofit,

or reporting period, against which the actual reporting period energy use is compared. It is called an

adjusted baseline because the forecast baseline needs to be adjusted to the reporting period’s Energy

Governing Factors (EGFs). For example, a hot year should not be compared to a cold year for an

air-conditioner retrofit study. Both years need to account for temperature, so that an accurate forecast

Department of Electrical, Electronic and Computer Engineering
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Figure 1.1. Illustration of M&V baseline and reporting periods, with adjusted baseline and savings

indicated. Data from an actual University of Pretoria residence has been used and adapted. The red

area is the installation period, and green represents the savings.

of what the energy use would have been, had no intervention taken place, can be calculated. This is

illustrated in Figure 1.1.

An M&V facility is any energy system around which a boundary can be drawn. It can be a free

standing building but may include more than one building, or only a wing of a building.

The definitive International Performance Measurement and Verification Protocol (IPMVP) [1] defines

four methods for defining M&V project boundaries. Options A and B are retrofit isolation approaches.

A boundary is drawn to include only the interventions or retrofits considered for a project. Option C is

the whole-facility approach, where a facility’s total energy use is considered – including non-project

systems that might interact with the retrofits. Option C measurements usually rely on the utility meter

or main incomer of the facility. Option D is calibrated simulation, which usually involves Building

Department of Electrical, Electronic and Computer Engineering
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Energy Modelling (BEM) software.

For lighting projects, incandescent lamps are often replaced with Compact Fluorescent Lamps

(CFLs) during a retrofit. They are also known as ‘energy savers’. Incandescent lamps can also be

replaced with Light Emitting Diodes (LEDs), although CFLs will be considered for this study.

The Project Developer (PD) is usually an ESCO (Energy Services Company). They are responsible

for identifying necessary EE and DSM interventions, and implementing them.

In electricity, the power factor is the ratio of real to apparent power. At a unity power factor, the real

power in Watts is equal to the apparent power in Volt-Amperes, so that the P = V I equation holds:

power in Watts truly is equal to Volts multiplied by Amperes. However, when inductive or capacitive

loads are present as the current and potential difference move out of phase, the power factor changes.

This is because the power factor reflects the real-to-reactive power ratio. This phase difference is

expressed in radians. Non-unity power factors are very common and are caused by electrical motors

and power electronic circuits, which usually have inductive loads. Mismeasuring the power factor will

have the net effect of changing the ‘gain’ of a meter.

Uncertainty reporting is usually done using the expanded uncertainties as per the International

Standards Organisation (ISO)’s Guideline for the expression of Uncertainty in Measurement – the

GUM. An expanded uncertainty expression reports a value with a given confidence and precision. For

example “90% confidence that the value is within 10% of the mean” – known as the 90/10 criterion.

Many guidelines require savings to be reported with expanded uncertainties such as 68/50, 80/20, or

90/10. Other guidelines use discount factors to ensure conservatism. These will be elaborated on in the

literature review.

As mentioned in the previous section, lighting studies are usually simpler because there are usually

no independent variables (also known as covariates or EGFs) to consider. Another way of describing

it would be to say that in lighting studies there is measurement and sampling uncertainty, but little

modelling uncertainty. These three kinds of uncertainty are usually mentioned when discussing

M&V uncertainty quantification. While one usually associates measurement uncertainty in M&V with

electricity or other meters, instruments measuring with error also include surveys and questionnaires [6],

tracking databases, non-intrusive load monitoring, and inspection reports [7]. These instruments may
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measure or record any number of variables such as occupancy [8], floor area, schedules, income, the

proportion of Miscellaneous Electrical Loads (MELs) [9, 10], etc. Sometimes data such as plug load

energy use are used as a proxy to measure occupancy [11]. More about this in Section 2.2.3.8. This

thesis focusses on energy metering uncertainty, which is a subset of measurement uncertainty and is

used to refer to the uncertainty in energy meters as opposed to the uncertainty in the measurement of

other covariates in energy models.

Sampling uncertainty arises when the whole population of Energy Conservation Measures (ECMs)

or facilities are not monitored. For example, when 100 000 Incandescent Lamp fixtures are retrofitted

with CFLs in a residential mass roll-out programme, not all lamps can be tracked. In such cases, it is

necessary to take a sample of the population to determine the energy saved by the project.

Modelling Uncertainty has to do with the fact that all models are merely an approximation of reality.

Relevant EGFs may be omitted, or an irrelevant one included. Two EGFs may both be relevant, but may

also be partially collinear. The correct EGFs may be considered, but they may be difficult to measure –

occupancy is a classic example. Since modelling uncertainty inherits measurement uncertainty and

adds other sources as well, various uncertainty typologies have been proposed [12–14].

The CV value, or coefficient of variance, is a normalised measure of the dispersion of the data and is

calculated as CV = σ

µ
, where σ is the standard deviation, and µ is the mean. A CV of 0.5, therefore,

denotes that the ratio of the standard deviation to the mean is 0.5. This is the traditional M&V

assumption if nothing else is known about the data set [15].

Error is the difference between the actual and the measured value. Random errors are distributed

symmetrically around the mean and usually follow a normal distribution. Systemic or non-random er-

rors introduce bias. Bias “deprives a statistical result of representativeness by systematically distorting

it” [16]. For example, biased data will consistently have a different mean to the true mean. Random

errors usually do not have this effect, except in the case of attenuation bias, which will be discussed

in Section 2.3.2.

Uncertainty is “the range or interval of doubt surrounding a measured or calculated value within

which the true value is expected to fall with some degree of confidence” [17].
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Precision relates to the “fineness of discrimination” [18] or “the closeness of agreement among

repeated measurements of the same physical quantity” [17]. It is the uncertainty interval around a

measured value, and should always be expressed with an associated statistical confidence. Confidence

is a probability, whereas precision is a distance, or size, of the error band. Confidence and precision

together usually define the broader term accuracy, which is “the capability of an instrument to indicate

the true value of a measured quantity” [17]. Note that the above definition of confidence is popular

although not technically correct [17, 19–21] unless Bayesian methods are used.

Homoscedasticity means that the variances in all data points are the same, or the variance on the

residuals of a regression model is constant over the whole range of the input variables. Heteroscedastic

datasets have non-constant variance.

This thesis uses Highest Density Intervals (HDIs), rather than standard equal-tailed Confidence

Intervals (CIs). HDIs and CIs correspond exactly when symmetrical distributions such as the normal

or Student’s t-distribution are used. However, when asymmetrical distributions such as the beta

distribution are used, there is a difference. The equal-tailed 90% CI (for example) cuts off the top

and bottom 5% of the distribution range. However, when the distribution is skew (think about an

exponential distribution), this will exclude the 5% most likely values, which are between zero and 5%,

and include some unlikely values in the tail (between 90% and 95% of the range) even though they are

far less likely. The HDI solves this problem by selecting the range by likelihood, not by the range of

values. An illustration of the CI and HDI for an exponential distribution is shown in Figure 1.2.

Calibration is the process of comparing an instrument to a standard or reference (instrument) to

characterise its errors and improve its accuracy. The range and kinds of values that should be compared

are often codified in standards. Disciplining an instrument is a less complete calibration process

where one only considers ranges and values expected to be encountered in a specific environment,

and not the full range at which the instrument may be able to measure. Calibration is different

from qualification, which ensures the quality of an instrument model range, because of its design

and manufacturing process. For example, tests are done to ensure the stability of meter readings

under different environmental conditions, specified by the International Electrotechnical Commission

(IEC) [22–25]. Although a specific meter may be qualified because it is part of a model range and

never lose this qualification, it may need to be calibrated periodically to compensate for drift.
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Figure 1.2. Illustration of difference between 90% equal-tailed Confidence Interval (CI) and 90%

Highest Density Interval (HDI), for an exponential distribution.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

13

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2 LITERATURE REVIEW

2.1 CHAPTER OVERVIEW

Since this thesis considers M&V uncertainty and how it relates to measurement and longitudinal

sampling uncertainties, the literature survey and appraisal of the present state of the art is structured

around these themes. The first section is a short introduction to the terms used in this thesis. The two

main sections address relevant M&V literature, and general statistical methods applicable to M&V.

Measurement uncertainty plays a critical role in calibration in later chapters. Therefore the sections

addressing measurement uncertainty in M&V (specifically energy metering uncertainty), and statistical

methods for addressing mismeasurement, are comprehensive. A discussion of Bayesian statistics is

deferred to Chapter 3. 1

2.2 MEASUREMENT AND VERIFICATION

This section will start by considering M&V guidelines, as these are foundational to the field. M&V

uncertainty quantification will then be investigated, and the reasons and methods for uncertainty

quantification assessed. Measurement uncertainty is then considered in detail, and finally persistence

and longitudinal studies are investigated.

Note that a ‘deemed savings’ approach is sometimes adopted in M&V. In such an approach, each

installed unit is deemed (or stipulated) to save a given (conservative) amount of energy per year. As

such, no measurements are necessary - only installation verification. This merely is verification, and

1The current chapter is based on journal articles published as part of the author’s PhD research [26–29].
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CHAPTER 2 LITERATURE REVIEW

will not be considered in this thesis unless the verification procedure is done to determine persistence

as in Chapter 6.

2.2.1 M&V guidelines

Many M&V guidelines and protocols have been written, and each one reflects the different purposes of

their context. This discussion will focus on the ones relevant to uncertainty quantification. The are the

US Department of Energy’s Uniform Methods Project (UMP) [30] and the American Society of Heating,

Refrigeration, and Air Conditioning Engineers (ASHRAE)’s Guideline 14 (G14) [17, 31]. Both of

these documents provide guidance on methods of data collection and validation. Both also prescribe

methods for analysis, forecasting, and savings calculations with uncertainty quantification.

G14 has a 2002 and a 2014 version, the former being freely available. There is not much difference

between the two, although the 2014 version does have critical typing errors in some of its formulae

which have yet to be corrected. A useful summary by some of its authors has been written and applies to

both [32]. G14 contains methods for considering correlated or uncorrelated residuals on the independ-

ent variables to determine savings uncertainty as a function of the fraction of total energy saved and

other factors. These methods are based on Reddy and Claridge’s fractional savings M&V approach [33],

which has also been adopted by numerous other guidelines including the California Commissioning

Collaborative [34]. G14 classifies projects according to the IPMVP schema described in Section 1.9,

and provides uncertainty reporting requirements for each of these options. The Coefficient of Variance

on the Root Mean Square Error (CV(RMSE)) and the Normalised Mean Bias Error (NMBE) or Net

Determination Bias (NDB) are used to evaluate model goodness of fit. A survey of M&V profession-

als has found that these are considered the definitive goodness of fit measures for energy baseline

models [35]. A method is then given for combining this (modelling uncertainty) with measurement

uncertainty, sampling uncertainty, uncertainty in independent variables, and autocorrelation. It is a

variation on the standard root-sum-of-squares method where σa+b =
√

σ2
a +σ2

b , where σ denotes the

standard deviation of the component uncertainties. G14 also provides excellent reference appendices

detailing different regression approaches, instrument characteristics, and M&V plans. A few caveats

should also be noted, however. The method is based on linear regression. Only lag-1 autocorrelation is

considered, which is often not a realistic assumption [36]. Furthermore, the independent variable error
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CHAPTER 2 LITERATURE REVIEW

is added to the total uncertainty as a random error, and the errors-in-variables effect is not considered 2.

This could lead to significant bias and other effects, as explained in Section 2.3.2. Nevertheless, G14 is

a valuable resource and one of the two leading M&V guidelines.

The UMP was commissioned by the US National Renewable Energy Laboratory (NREL), and its

chapters were written by different experts. Each chapter creates a protocol for a different M&V

technology or approach.3 The chapter on sampling cross-cutting protocols was written by some of the

same authors as the IPMVP’s statistics and uncertainty guide [42], and is therefore similar. Although

the UMP does contain calculations, it shows that accurate M&V is about more than applying the

correct formula; the process leading up to the formula is often as important. This includes study design,

data collection, validation, storage, and other aspects. The relevant chapters will not be discussed in

detail here but will be referred to where applicable in the rest of this thesis.

Notable guidelines that do not provide requirements for uncertainty calculation but discuss uncertainty

management generally include the IPMVP [1] on which the SANAS 50010 [3] is based, the State and

Local Energy Efficiency Action Network’s Energy Efficiency Program Impact Evaluation Guide [43],

and the Federal Energy Management Protocol (FEMP) guideline [44]. The IPMVP does have a

separate guideline for statistics and uncertainty that was published in 2014 [42]. It addresses sampling

uncertainty but does not provide much detail on measurement and modelling uncertainties.

Greenhouse gas reduction programmes often require M&V. Vine et al. reported on different options

considered for dealing with measurement uncertainty in such cases [45]. Although this was a work

in progress in 2002, it is still relevant, since the debate around the advantages and disadvantages

of different measurement approaches is explained well. Discount factors to compensate for the

uncertainty of various methods are also listed. The scale of the United Nations Framework Convention

for Climate Change’s Clean Development Mechanism (UNFCCC CDM) methodology specifications

dwarfs other M&V documentation. It contains over two hundred methodologies for different project

scales and applications. Accuracy requirements vary, but the 90/10 criterion is most common, although

Sonnenblick and Eto [46] have shown that this precision level is only necessary for projects where the

2See Section 2.3.2
3Chapter 2: Commercial and Industrial Lighting Evaluation, Chapter 6: Residential Lighting Evaluation, Chapter 9: Meter-

ing Cross-Cutting Protocols, Chapter 11: Sample Design Cross-Cutting Protocols, and Chapter 13: Assessing Persist-

ence [37–41] are applicable to this thesis.
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CHAPTER 2 LITERATURE REVIEW

savings to cost ratio to be verified is small. In many cases, 90/50 is adequate for identifying project

cost-effectiveness (that is, whether or not a project saved energy).

Shishlov and Belassen [47] provided a useful review of how monitoring uncertainty is handled in

the CDM. For example, CDM AM0046 requires CFL Retrofit programmes to be monitored very

stringently at the insistence of regulators, even requiring custom-made meters. Michaelowa, Hayashi,

and Marr [48] who developed the methodology noted that no projects were completed under AM0046

until the alternative AMS II.C [49] was adopted. Later AMS II.J [50] was also adopted. In it, every

CFL is deemed to operate for 3.5 hours/day, eliminating the need for measurement. Even so, they

assert that there are still projects that would reduce emissions but are ineligible. These difficulties

illustrate that measurement goals should always be construed in the larger project and social context.

Achieving important individual statistical outcomes is never an end in itself. It may even hinder meeting

overarching programme goals such as emissions reduction or development. Research on efficient

sampling designs has been conducted to reduce the sampling burden as much as possible [51–53],

although there is still much scope in this field. The CDM board is also working towards a stringency/cost

trade-off system to replace the current system [54]. Table 2.1 summarises the comparison of these

guidelines.

2.2.2 M&V uncertainty quantification

A mathematical description of M&V has been compiled [56], detailing the role of uncertainty in M&V.

Uncertainty is usually quantified for three reasons, which will be considered in turn:

1. Compliance with a standard or reporting requirement.

2. Risk quantification and decision analysis when assessing project performance.

3. Efficient M&V study design.
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Table 2.1. The treatment of measurement uncertainty in leading M&V guidelines.

Name Year Level Features Reference

of detail

G14 2002, 2014 10 • Most comprehensive [17, 31]

• Excellent methods

• Instrument uncertainty database

• Itemized measurement costs

IPMVP 2012 5 • Introductory treatment [1, 42]

• Sensitivity and Uncertainty Analysis [1]

CDM 2015 8 • Approach varies between methodologies [4, 47]

• Emphasis on being conservative [48]

• Discount factors for >95/5 measurement error [54]

• 95/10 for unknown measurement error [54]

• Deemed Savings also used [50]

UMP 2014 6 • Varies with authors of chapters [30]

• Errors-in-variables discussed in Chs 13, 23 [41, 55]

• Metering error discussed in Ch. 9 [39]

• Survey error discussed in Ch. 11 [40]

SEE 4 • Practical guidance [43]

Action 2012 • Discussion of uncertainty and project risk

Guide

CCC 2012 6 • Appendix on uncertainty analysis [34]

• Adopts and simplifies fractional savings approach
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2.2.2.1 Compliance and risk

Compliance calculations are those contained in the guidelines described above. From these, the risk of

non-compliance may be calculated by an M&V team or PDs.

Besides the M&V guidelines, relevant research on this topic has also been conducted from a legal

metrological perspective. Here measurement uncertainty and cost of non-compliance are traded off in

a decision support framework. Crenna [57] and Pendrill [58,59] used an MC method, while Fearn [60]

used a more cumbersome analytical approach. Risk was viewed from a government perspective as

a function of the cost of emissions to society, should a faulty meter be accepted. Sonnenblick and

Eto also used this cost function in their report on the cost-effectiveness estimates of energy projects

in the context of measurement precision [46], and Rysanek and Choudhary [61] used the marginal

abatement cost: the ratio of net present value to GHG units saved. These metrics seem more rational

than short-term financial risk measures when one considers the broader goals of energy research.

2.2.2.2 Project decision support through uncertainty quantification

Pendrill rightly observed that measurements are seldom made for their own sake, but rather in support

of a financial decision [59]. Indeed, decision maker uncertainty about cost-effectiveness is the most

frequently-cited barrier to the commissioning of energy projects [62]. However, the contribution of

technical uncertainty in the performance of the ECM is usually smaller than economic uncertainty

contributions [61, 63]. Project risk associated with measurement uncertainty has also been identified

by both researchers and practitioners [64–66], but little M&V literature addresses this topic directly. In

this section decisions under uncertainty for both M&V and Building Energy Modelling (BEM) are

considered. Because these are difficult to separate, the distinction between the two is blurred at times,

and BEMs or BEM data often form part of an M&V calculation. Economic project decision support

literature will not be considered, as this is more concerned with economic aspects than is necessary for

the current investigation. BEM studies are useful for M&V practitioners because the methods used and

level of sophistication exceeds that of much of the M&V work being done, and can therefore serve as

useful exemplars of uncertainty quantification in the buildings and energy field. It is especially relevant

to IPMVP Option D (Calibrated Simulation).
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Foundational work on uncertainty quantification for decision analysis in M&V was conducted in the

US in the 1990s and is still relevant. In 1991 Violette presented an insightful discussion on statistical

precision in DSM M&V projects and suggested that Bayesian statistics could be used to incorporate

prior information from previous years [67]. In 1993 Violette et al. [68] presented a framework for

cost-effective parameter determination for a lighting retrofit project. Sonnenblick and Eto’s technical

report for Lawrence Berkeley National Laboratory (LBNL) provided a definitive ‘framework for the

evaluation of the cost-effectiveness of utility DSM programs’ [46]. It therefore considered only the

uncertainty limits necessary for determining whether or not a project saved more money than it cost

(levelised project cost vs. levelised savings), which is a less stringent requirement than quantifying

those savings. Nonetheless, the report is insightful in the way that it applies decision theory (which

hinges on uncertainty quantification) to M&V.

Goldberg [69] adopted a similar value of information approach to energy monitoring, weighing the

cost of measurement against potential benefits when the buyer and seller have different perceptions

about the value of the project. She was also one of the first researchers to present a coherent M&V

sampling design framework, similar to what was adopted by the IPMVP [1] and UMP [30] in later

years.

There is only one recent attempt to quantify the risk due to energy metering uncertainty [70, 71].

However, this calculation was much too simplistic and was presented by a marketing manager of

a meter manufacturer calling for even-more-stringent standards to which the latest meters could be

qualified. This standard is unnecessary since the current Class 0.2S energy meters are the smallest

uncertainty sources in almost any conceivable project, and their uncertainties can already be neglected

for risk calculation purposes in many cases [72].

Regarding project decisions under measurement uncertainty, research into uncertainty in BEMs has

increased dramatically in the last ten years. This is because it has been recognised that considering

model input uncertainty is essential to identifying which ECMs should be implemented.

Because uncertainties are naturally and easily quantified in Bayesian statistics, its applications have

proven to be a fruitful area of research in recent years. Although most of it is not applied to M&V

specifically but rather to project decisions, some of the methods are still relevant to the current

discussion. Georgia University of Technology’s research group led by Augenbroe has produced the
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most notable research in this field under a risk-conscious design and retrofit research programme.

Heo, now at Cambridge, started under Augenbroe and will also be referred to often for her work on

uncertainty quantification using semi-Bayesian Gaussian Process (GP) methods.

Riddle and Muehleisen provided a useful introduction to building calibration with Bayesian models

[73], and Heo has recently presented an overview of building simulation models under uncertainty,

as well as an introduction to the Bayesian approach [74]. Note that in a Bayesian framework,

measurement, sampling, and modelling errors are considered simultaneously, although they remain

distinct [12].

Considering decision theory, an introduction in the context of energy projects was provided by Wang

et al. [75]. An insightful cost-benefit trade-off for chilled-water system design in the context of

uncertainty [76] influenced the G14 [31] approach, which also supplies elaborate tables for determining

measurement costs for different instruments in various project scenarios, although it does not calculate

risk adequately [77]. Research on financial decision support related to EPCs with project uncertainty

and risk have been conducted from an economic perspective using MC analysis [78] and other

techniques [79]. The US Department of Energy (DOE)’s EnergyPlus software is usually used [80].

Deng et al. [81] provided a useful summary of the design of EPCs under uncertainty and presented a

relatively sophisticated EPC decision model [82]. Measurement uncertainty is not considered explicitly

in these cases, although it can be incorporated without many extensions.

A full review of building simulation calibration literature is beyond the scope of this survey, which

focusses on uncertainty quantification and related methods. For a broader view, a useful starting

point is Reddy et al.’s research as part of ASHRAE’s investigation into calibrated simulation in RP-

1051 [83–86], and Coakley, Raftery, and Keane’s more up-to-date review, considering uncertainty

in detail as well [13]. Heo’s PhD thesis also provided an in-depth discussion and case study of one

approach [77].

Databases of parameter uncertainties have been compiled [87], and these, or results from the literature,

are used for uncertainty analysis or quantification. The key problem however, is that doing an MC

simulation considering all parameters simultaneously is infeasible due to the curse of dimensionality.

Sensitivity analysis methods are thus needed to reduce the number of parameters to a feasible figure.

Sun et al. provided one of the better discussions on this topic [88], and Tian also wrote an informative
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review [89]. Several excellent examples of this process have been published, and are summarised

in Table 2.2.

Most building simulation research accounts for varying input parameters through uncertainty and

sensitivity analysis. However, much of this research concerns itself with how varying the input

parameters changes the output, but not how variance in the input parameters affects the output. As

will be demonstrated in Section 2.3.2, random zero-meaned noise in the input parameters do more than

add uncertainty to the output, and this should be taken into account. It is possible that this is accounted

for in Gaussian Processes (GPs), although it is uncertain.

Two related studies deserve mention. To alleviate the burden of MC computation for building simulation

studies with large uncertainties and many options and combinations, Rysanek and Choudhary proposed

a lightweight non-probabilistic decision approach [61]. These scenarios apply more to simulation

(modelling) uncertainty rather than measurement uncertainty. On the other side of the spectrum, Sandal

et al. reported a machine learning and supercomputer-based method to alleviate the modelling burden

by pre-tuning simulation inputs to extant data for standard US buildings [90]. This speeds up model

building significantly.

Heo and Augenbroe have built up a noteworthy body of work on building simulation covariate

calibration and uncertainty analysis using semi-Bayesian GP methods [91, 92]. Quantitative risk

analysis for decision support in retrofit project planning was then explored with a focus on the accuracy

of the simulation rather than metering decision making [93]. Their latest research incorporates this

into a scalable methodology whereby more optimal retrofit decisions can be made, given uncertainty

in input parameters [94]. Along similar lines, a lightweight and reasonably accurate alternative to the

GP has been proposed [95]. Another notable contribution has been made by Tian et al. who used

sophisticated data analysis and Bayesian methods to show the relative importance of different data on

building calibration, and the robustness of the Bayesian method to missing input data [96]. Bayesian

methods have therefore been demonstrated to deliver very good estimates, but Heo notes that even if

this were not the case, they could still be superior to deterministic models since they quantify model

prediction uncertainty distributions [91].

Table 2.2 presents a summary of key uncertainty quantification publications in BEM. The techniques

used can also be applied to M&V in many cases.
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2.2.2.3 Optimal M&V study designs

The guidelines discussed above provide many examples and formulae for simple, once-off M&V

designs. However, these sample sizes are not efficient for multi-year or longitudinal projects such

as the ones considered in this thesis. That being said, the only research on optimal M&V sampling

designs that the author is aware of, has been conducted in his research group. Some of it was on

modelling and sampling uncertainty [97], although most was by himself and a colleague. Much of this

work was on the longitudinal CFL retrofit M&V problem [51–53, 98, 99]. Although this research laid

the groundwork for understanding the problem, there are significant limitations.

The method reduces planned future sample sizes in two ways. First, by aggregating results in different

years. Second, by reducing sample sizes through the Finite Population Correction (FPC) factor, for

later years where the population size declines because of failures. The first factor may be refined.

Metering results from a meter installed in year one should not be added to the result from the same

meter at the same facility in year two as if they were independent samples (or strata) from a larger

population. R.T. Cox’s simple definition of independence is that “knowledge about sample one should

be irrelevant for reasoning about sample two” [100]. This is not the case for consecutive samples

from the same facility: year one’s energy use would be a good starting point for reasoning about year

two’s energy use. Therefore, 34 metering results from year one should not be added to 34 metering

results from year two, so that the total sample size is 68. Due to serial correlation (autocorrelation),

samples in year two will contain less information than samples in year one. G14 [17] suggests using

an autocorrelation correction factor for lag-1 autocorrelation.

The second factor used previously to reduce meter sample sizes is FPC. However, FPC only becomes

relevant for population sizes below 1 000 and is therefore not applicable to the large-scale studies

considered.

The previous method also assumes that the means of the metering results for all years are stationary.

The method proposed in this thesis does not make that assumption.

Low-cost meters with lower accuracies were also selected for low-CV populations [99]. However, high-

accuracy meters only enhance the overall accuracy in low-CV cases, when process variability
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Table 2.2. Recent and notable non-BEM energy project decision support literature considering input uncertainty. The abbreviations can be found in the list

at the beginning of this thesis.

Author Year Application Sensitivity Analysis Uncertainty Analysis

Method

Decision Analysis Metric Reference

Sonnenblick, Eto 1995 Owner, ESCO profitabil-

ity

- MC CE [46]

Kammerud, Gillespie, Hydeman 1999 Chilled water system

design

(Taylor Series Expansion) Quadrature Discounted cash flow CE [76]

de Wit, Augenbroe 2002 Thermal comfort - Bayes Expected Utility [101]

Pendrill, Källgren 2006 Exhaust gas analysers - Analytical Cost to society [58]

Crenna, Rossi, Bovio 2009 Water meters - MC Non-conformance cost [57]

Jackson 2010 EE Investments - MC Value at risk [78]

Burhenne, Tsvetkova, Jacob, Henze,

Wagner

2013 BEM Sobol’ Sequence MC Filtering NPV-CE [79]

Lam, Yik, Chan 2013 EPC Differential: Influence Coefficient MC-LHS Savings shortfall [80]

Sun, Gu, Wu, Augenbroe 2014 HVAC sizing MC-LHS, LASSO, ANOVA MC Unmet peak load percentage [102]

Heo, Augenbroe, Graziano, Meuh-

leisen, Guzowski

2015 BEM Morris, MC-LHS Bayes % savings, EV(savings), fifth quantile

savings predictions

[94]

Lee, Lam, Lee, Chan 2016 Chiller replacement EPC Correlation analysis MC-LHS EPC compliance PDF [103]

Wang, Augenbroe, Kim, Gu 2016 Occupancy MC-LHS, LASSO, Variance-based Bayes - [8]
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Table 2.3. Recent and notable BEM energy project decision support literature considering input uncertainty. Note that goodness-of-fit as an outcome is not

included. These usually employ CV(RMSE) and NMBE. The abbreviations can be found in the list at the beginning of this thesis.

Author Year Application Sensitivity Analysis Uncertainty Analysis

Method

Decision Analysis Metric Reference

Reddy, Maor, Panjapornpon 2007 BEM MC-LHS MC GOF [85, 86]

Corrado, Mechri 2009 BEM Morris, MC-LHS MC - [104]

Heo (PhD Thesis) 2011 BEM Morris, MC-LHS Bayes-GP EV, CE with payback time, Guaranteed

Savings, Savings Curve Score

[77]

Tian, Choudhary 2012 BEM MC-LHS, SRC, MARS LP, Bayes EUI [105]

Booth, Choudhary 2013 BEM, Decision Support Factorial Sampling Bayesian regression NPV-PDF, Multi-criteria decision util-

ity, CE, CEAC

[106]

O’Niell, Eisenhower 2013 BEM SVR-GK, RS, derivative-based quasi-MC GOF [107]

Manfren, Aste, Moshkar 2013 BEM and M&V DOE (min, max, mean) Piecewise regression,

Bayes, GP

GOF [108]

Rysanek, Choudhary 2013 BEM - Non-probabilistic CE; MAC: NPV vs. GHG emis-

sions saved, Discounted payback period

vs. required capital; Wald’s Minimax,

Hurcwiz’s Maximin, Savage’s Regret

[61]

Sun (PhD Thesis) 2014 BEM, HVAC MC-LHS, LASSO, ANOVA MC CRPS, PIT [109]

Li, Augenbroe, Brown 2016 BEM MC-LHS, LASSO Lightweight Bayes-GP

with stepwise linear

regression

GOF [95]

Tian, Yang, Li, Wei, Pan, Li 2016 BEM Sobol’ Sequence, SRC, RFVI, CCA Bayesian GOF [96]
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plays a smaller role relative to energy metering uncertainty.4 Energy meters with accuracies of 0.01%

and 0.002% were used. Such meters do not exist. Class 1 meters (standard utility meters) have an

accuracy of 1%, and high-precision Class 0.2S meters have an accuracy of 0.2%. However, as will

be demonstrated in this thesis, there is no advantage in using a Class 0.2S meter rather than a Class 1

meter for sampling a population with a CV of 0.5. Also, the time resolution of the meter does not refer

to how often the meter measures current and voltage, but rather the time period over which the meter

integrates when storing a data point [110]. The measurement interval is shorter than the integration

interval. The integration interval can also be set, and is not five minutes as is supposed for a Class 1

meter.

Furthermore, if meter accuracies are considered, Current Transformer (CT) accuracies should also

be added, as these uncertainties can be more significant than the meter uncertainty itself. This is

considered in Section 5.4.1.2.

Regarding optimization, gradient-descent methods were employed previously. However, the optimiza-

tion function is an integer non-linear program (INLP) with discontinuities, as shown in the author’s

Master’s work [111]. Heuristic methods will therefore be used to provide more reliable results, as

discussed in Section 5.4.1.3. The plans devised in the previous studies should also not be called

‘optimal’, since optimality cannot be guaranteed by the gradient descent method or the heuristic used in

this thesis. It is more accurate to refer to ‘efficient’ solutions, as many efficient solutions to a sampling

problem may exist.

Last, the earlier method assumes that the proportion of lamps surviving at a given point in time

is known with certainty, and does not combine this survey sampling uncertainty with the meter-

sampling uncertainty. Survey sampling uncertainty was characterised in previous work [28], and will

be incorporated in Chapter 7.

For these reasons, there is an opportunity to improve upon the current method using Bayesian statistics.

This would incorporate prior information in a mathematically rigorous way to reduce the longitudinal

monitoring burden.

4See Section 4.2.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

26

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2 LITERATURE REVIEW

2.2.3 Measurement uncertainty

As a subsection of M&V, measurement uncertainty is now considered in some detail, as it is the most

neglected of the three kinds of uncertainty in M&V (the others being sampling and modelling). It

therefore represents an opportunity for cost reduction if it is understood properly.

2.2.3.1 Meter uncertainty as a component of M&V uncertainty

In South Africa, measured and verified energy savings achieved by businesses are eligible for tax

deductions according to the 12L tax incentive [2]. However, measurement devices used for such projects

need to be calibrated by accredited laboratories. This is a sound principle and has been adopted by

many other agencies as listed by Ahmad et al. [112]. However, it greatly increases measurement costs,

which can make M&V prohibitively expensive and reduce the number of feasible projects significantly,

as in the CDM case [47, 48]. Given the small contribution to overall uncertainty made by electrical

meters, especially when sampling is done,5 such requirements may be counter-productive. Overall

accuracy requirements could be better served by spending the funds on obtaining a larger or more

detailed sample, or measuring independent variables more accurately.

2.2.3.2 Measurement uncertainty in M&V literature

Measurement uncertainty is acknowledged in M&V literature, although firm guidance is seldom

given. The IPMVP [1, 42] provides general guidance on uncertainty but does not address measurement

uncertainty in much detail. The UMP [30] is the only guideline to discuss mismeasurement at

all. ASHRAE Guideline RA96: Engineering Analysis of Experimental Data [113] also deserves

mention. It is a general quantitative introduction to handling measurement uncertainty in engineering

measurements and could be applied to some M&V cases.

5See Chapter 4.
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2.2.3.3 Energy metering uncertainty

Energy metering uncertainty can be dominated by other uncertainties such as sampling or model-

ling [72], but can nonetheless be significant depending on the application. Five cases will be considered

below: general energy metering uncertainty, sub-metering and its contribution to measurement un-

certainty, how power quality affects energy metering uncertainty, virtual instrumentation, and the

possibility of in-situ meter calibration.

Regarding energy metering uncertainty, static (solid-state) electrical energy meters used for reporting

purposes have to be qualified to standards set by the IEC, or its national equivalents, such as ANSI C 12-

20 [114] in the US. Metering classes indicate maximum allowable percentage errors over the majority

of the measurement range, so that a Class 1 meter is 1% accurate, for example.6 A graphic illustration

of the accuracy requirements is shown in Figure 2.1. Close attention should be paid when acquiring

meters, as accuracy class (mis)specification has also been abused as a marketing tool, as catalogued by

Irwin [70]. M&V professionals should also note that influence quantities such as harmonics are tested

for, but in a one-at-a-time fashion, with all other quantities held at default levels.

Even when meters are qualified to these standards, errors or bias can be introduced by environmental

conditions. For example, even though temperatures in Saudi Arabia still fall within IEC specifications,

systematic bias is introduced due to consistently abnormal values [115]. Even such small biases on

revenue meters metering large installations can lead to significant billing errors.

The discussion above applies to the meter itself, but not to the CT which is often used to measure the

current. In many cases, CT accuracies are lower than the meter accuracies. An example of CT accuracy

specifications can be found in Figure 2.2. They need to be considered separately from energy metering

uncertainty and added using the sum-squared error method. In many situations, the accuracy class of

the CT and meter, together with their rated currents will suffice to determine the overall accuracy of

the measuring system.

Rogowski coils have also become popular in M&V [110]. These devices are flexible wires that can

be threaded around the conductor of interest and are more accurate than split-core CTs. They also

6IEC 62053-21 [22] refers to Class 1 and 2 (active), 62053-22 [23] to Class 0.2S and 0.5S (active), and 62053-23 [24] to

Class 2 and 3 (reactive) meters.
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Figure 2.1. Comparison of different IEC accuracy class meters [22–24] for transformer-connected

single or polyphase meters with balanced loads under sinusoidal conditions. The meter classes, from

the inside to the outside, are Classes 0.2S, 0.5S, 1, 2, and 3.

do not saturate the way CTs do but have a multiplicative error proportional to the current in the

conductor.

Although accuracy influences meter prices, the communication protocol used by the meter is also

significant, as shown by Ahmad et al. in their review of energy and related sensors [112].

2.2.3.4 Sub-metering

Sub-metering an installation often provides valuable insight into the main load drivers but can be

expensive if revenue-accuracy meters are used. One can consider less accurate and less costly options

in these applications.

Plug-through meters are popular for metering Miscellaneous Electrical Loads (MELs). Polese et al.

provided a comprehensive case study detailing the challenges in implementing such a solution at a

large retailer, for an NREL project [116]. The study demonstrates the inaccuracy of such meters, as

well as other factors that contribute to general measurement uncertainty. In this study, 41% of the
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Figure 2.2. Instrument Current Transformer accuracies according to IEC 60044-8 [25]. From the

inside, Classes 0.1, 0.2, 0.5, 1 are indicated. For Class 3 and Class 5, the limits are flat at 3% and 5%

respectively.

meters had significant portions of the data series that were erroneous. Errors of 20% in the range

0-20 W were common, and 6% in the range 25-100 W. Given that 40% of the MELs operated below

the 60 W level, these errors are significant.

Stick-on Electricity Meters (SEMs) represent an exciting new low-cost measurement or logging

option [117]. These sensors are placed on the circuit breaker in the distribution board, and senses

when current is drawn on the circuit. It is important to note that these do not work where relays are

present.

Current-only meters are becoming a popular option for residential metering. They usually use split-

core CTs and are much more affordable than revenue energy meters, but are not as accurate, or even

qualified. In personal correspondence with a popular meter manufacturer based in the UK, the accuracy

was quoted as 10% [118]. Given that they operate in a narrow environmental and electric range,

this is usually not of great concern, provided that they can be verified in some way. However, they
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can not be recommended as the sole meters used for projects. The voltage may vary due to supply-side

fluctuations, or due to facility-level demand factors. On the demand side, current-only meters multiply

their readings by a nominal voltage. The resultant power measurement is in Volt-Amperes: apparent

power, not true power in Watts. The power factor is thus assumed to be unity. Inductive power

electronic equipment found in most households will decrease the power factor to below one, biasing

the measurement by the power factor. On the supply side, the utility voltage is seldom at the nominal

level. It is regulated to be in a certain range [119]. In Europe, utility supply voltage is determined

to be 230V±10% [120], and in the United States, 120V±5% [114]. However, certain asymmetrical

tolerances may also hold. For ANSI C84.1 Range B [121], these tolerances are −13% and +6%.

These asymmetrical tolerances may skew the calculation since under-voltages are higher and possibly

more likely than over-voltages.

For the symmetrical tolerance case, it may be argued that unmeasured variations would cancel out

over time. However, a constant voltage offset may also apply. The supply voltage at a facility such

as a house varies with a number of factors. These include the distance of its distribution transformer

from the substation on the primary feeder, the distance between this house and the transformer on the

secondary feeder, the number of facilities on the secondary feeder, and the load on the feeders. The

average incomer voltage at a house on the edge of a distribution network may be at the lower end of the

specification interval, while a facility closer to a transformer may be at the higher end of the interval.

Therefore the distribution of voltage for a single facility may not be symmetric around the country’s

nominal voltage, biasing the measurements for which a nominal voltage was specified.

2.2.3.5 Power quality

Power Quality is an important consideration in energy metering uncertainty calculation, although

M&V literature does not discuss it very much. The IEC standards qualify meters only for sinusoidal

conditions, but on networks with modern power electronic equipment, this assumption is usually

invalid. The harmonics which cause the non-sinusoidal condition may originate from some modern

power electronics sources, such as Variable Speed Drives (VSDs), fluorescent lamps with electronic

ballasts, switching power supplies, or controlled rectifiers [122]. These harmonics are generated by

loads on the network but are observed as a supply-quality problem when measured. For certain cases

where the customer pollutes the power network with large harmonic power flows, the presence of
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harmonics may skew the reactive energy measurement to such an extent that a power factor greater

than unity is indicated, even if this is not the case at all [122].

These conditions then lead to mismeasurement in static energy meters, especially when a non-unity

power factor is present [123–125]. This does not apply to older electromechanical induction meters,

but only to solid-state (static) smart meters [124, 126]. Berrisford provides an accessible and practical

introduction to this problem [127]. Literature reviews of this field have been conducted [128, 129],

although this thesis will focus on M&V applications.

The problem with measuring non-sinusoidal loads is that reactive power is calculated and defined in

numerous ways [125, 130]. Although the different formulas give the same result under sinusoidal

conditions, they differ when harmonics are present. Current magnitude and power factor are the main

uncertainty drivers [122]. An example of this inaccuracy has been documented in the field [127]:

an approved Canadian meter using Budeanu’s power definition [131] was replaced by an approved

Canadian meter using Fryze’s power definition [132]. This resulted in a power factor penalty being

added to the customer’s bill when the meter was changed, even though the energy use did not change.

Further investigation revealed non-sinusoidal conditions due to the harmonics generated by the client’s

VSDs, which the meters measured in different ways. Some of the inaccuracy noted by Polese et

al. [116] in their metering of a retailer with many MELs may be due to such effects.

Because of these different definitions and different calculation methodologies among different meters,

Cataliotti et al. [124, 130, 133] recommends that when calibrating a meter in-situ, a reference meter

implementing the same metric as the Unit Under Test (UUT) should be selected, so as not to compound

the errors. If the manufacturer does not state the metric used, methods for determining it experimentally

have been devised. However, it was found that in such a case, the UUT only adheres to the accuracy

limits set in the standard when compared with the reference meter adopting the same power definition,

not with the true energy value.

There is, however, a course charted through the reactive power-definition confusion. The IEEE Stand-

ard 1459 (2010) [134] gives guidance on how reactive power should be defined and calculated. The

consensus among most of the papers cited here is that this definition should be adopted. It is also

endorsed by the IEC. Berrisford has demonstrated that reprogramming certain kinds of digital watt

meters in minor ways can lead to them calculating power according to the IEEE 1459 definition [127].
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Although utilities do not itemise harmonic distortion on the bill, preliminary work is being done to

prepare the way for future considerations [135, 136].

M&V professionals should use meters measuring so-called ‘fundamental’ quantities, from which

the true reactive power may be calculated according to the IEEE 1459. Meters with sampling rates

adequate for including relevant harmonics should be selected, although increasing the sampling rate

increases the price of the meter significantly in the range 0-80 µs [137].

2.2.3.6 Analogue to Digital Conversion (ADC) and Virtual Instrument measurement uncer-

tainties

Most modern static meters employ ADC (also known as Digital Signal Processing, or DSP). ADC is

also used in Virtual Instrumentation (VI), where a transducer is connected to a personal computer via a

Data Acquisition (DAQ) board, for user-built DSP software to process [138]. Note that VIs can measure

any analogue signal on which to perform ADC and that the general uncertainty principles remain the

same. This field shows great promise for lower cost calibration and measurement of electrical signals

for M&V purposes.

ADC technology is useful in electrical measurements as it has the potential for measuring true reactive

non-sinusoidal power accurately, as discussed in Section 2.2.3.5. However, various standards specifying

different parameters for ADC exist. Spataro [139] notes that ADC uncertainty has been quantified

by the ISO GUM uncertainty propagation law (through a Fast Fourier Transform) [140], random-

fuzzy variables [141], and MC approaches [138]. Due to the difficulty of convolving different

uncertainty distributions analytically, such numerical methods make sense. This thesis would add

MTMC [142–145] to the list. These require any number of different variables, depending on the

standard and method employed. Spataro identifies that only offset (bias), gain, Total Harmonic

Distortion (THD), spurious tones, and the Signal to Noise Ratio (SNR) are needed to quantify power

quality. The details of such errors depend on the electronic components of the DAQ itself, but such

systems can reach standard-level accuracies at a fraction of the cost [146]. They are thus expected to

increase in popularity as they become commercialised [140]. In any event, the uncertainties introduced

by ADC is usually much smaller than those of the transducers themselves [138]. The most recent
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results in this field comprise a detailed theoretical model with experimental results for a DAQ-based

sampling watt meter, based on the definitions set out in IEEE 1459 [128].

2.2.3.7 In-situ meter calibration

Due to the Measurement Instrument Directive (MID) ratified by the European parliament in 2004 [147],

European meters (gas, water, electricity, etc.) need to be calibrated under actual conditions, interpreted

as the actual meter installation location [148]. This has lead to various studies of how such a calibration

may be achieved. Femine et al. [148] have devised a scheme for a field laboratory with a travelling

standard. Power generated by the laboratory then allows a set of tests to be conducted at the facility.

The directive has been viewed as impractical since not all plants can be shut down for such a procedure,

metering cost increases drastically with a call-out for a portable metrology laboratory, and man-hours

needed to test all Italian meters twice-yearly is unrealistic [149]. To offset this burden, Amicone et

al. proposed a low cost, stable, ‘add-on’ calibrator that can be activated twice yearly to perform the

necessary calibration [149]. Crenna et al. [57] considered the MID as a step toward the modernization

of legal metrology. They considered water meters and proposed an MC approach based on statistical

metrology and risk techniques, similar to Pendrill and Källgren’s work on CO2 meters [58,59] discussed

in Section 2.2.2.2. This seems by far to be the simplest and most affordable proposal, although it

relies on large quantities of manufacturer data and does not address all the concerns raised by the other

authors. Meter ageing and water temperature are considered as influence factors similar to power factor

and harmonic distortion for energy meters, although the analogy is not close enough to use the method

as-is in electrical applications.

Measurement accuracy and its place in the smart grid are being investigated [150] and was proposed in

rudimentary form a decade ago [151]. As smart meters become more common and interconnected,

network cross-calibration to relieve the burden of calibrating every single meter may become a

possibility, and represents an opportunity for future research.

2.2.3.8 Measurement uncertainty for non-electrical parameters

Often, non-electrical variables are also included in the energy model. Table 2.4 details typical errors

for such cases. This is especially common when whole-facility regression models are constructed
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using measurements of variables such as temperature [152], occupancy [8, 11] or flow rate [57].

Besides the error in the meter itself, poor meter selection, placement, or misestimation of independent

variables may also contribute to unquantifiable errors in this case [42]. For example, the flow rate and

temperature in a duct vary between the edge and the centre and features such as elbows impact flow

and heat transfer characteristics for a non-negligible downstream portion of the duct. Because of these

complex interactions, it is useful to work with general error estimates such as those found in G14 [31].

However, even these values should be used with caution. For example, CO2 sensor accuracy was

investigated [153] and the authors found that only seven of the eighteen sensors had errors of less than

20% at standard CO2 levels for classrooms – a much higher value than that specified by G14.

Occupancy is a key factor in building energy use but is notoriously difficult to measure and model.

Combinations of reed switches and passive infra-red (PIR) sensors seem to work well for offices [154],

but these are very simple environments with single occupants per room. For more complex situations,

proxies such as blind, fan, light, thermostat, door, or other sensors are used, although these are

imperfect [155, 156]. Wang et al. [8] have shown in a sophisticated study that occupancy was not a

significant energy use factor for their case study building. However, the building in question used a

centrally controlled independent HVAC system, and this result is to be expected.

Occupancy models usually compare forecasts to data measured with error. However, as long as the

measured variable predicts energy use well, the measurement error or true occupancy is not significant

for energy models, unless occupant behaviour is being investigated.

Table 2.4. Instrument uncertainties for M&V Applications. Note that many of these values come from

ASHRAE Guideline 14-2002 Appendix A5.6 [31], and are quoted at the 68% confidence level for this

source. Guideline 14-2014 values are unchanged unless otherwise noted. Furthermore, Guideline 14-

2014 stipulates these as minimum requirements, rather than typical values, but also recommends that

they are used if no other values are available (Section 4.2.11.2). The confidence level for the other

sources is unspecified or complex, and readers are referred to the original documents for more complete

descriptions. FS denotes a percentage of full-scale.

Quantity Type Guideline 14 Other Source

Temperature Ambient outdoor portable electronic 2-5%
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Domestic water portable electronic 2%

Air ducts 5%

Pipes and ducts 2-5%

Air velocity Indoor: non-mechanical or blower door 5% 2-5% [112]

Handheld anemometer 10%

Recording anemometer 5%

Meteorological grade anemometer 2%

Air ducts: array 2-5%

Pressure Gauge 0.25-2%

Ducts 1-5%

Pressurization/depressurization 3-5%

Energy Electrical Energy meter 1% 0.2-0.5% [22–24]

Current Transformer 2-3% 0.2-3% [25]

Portable Watt meter 1-5%

Current: low cost home energy >10% [118]

Stick-on Meter 5% [117]

Plug-through meter 20% [116]

Relative humidity 2-5% 4.5% [112]

Energy meter (gas) 1%

Flow rate Bucket and stopwatch, portable meter/probe 5% <1-5% [1]

Domestic, accumulating 1-2%

HVAC inline or insertion meters 2% <1% [1]

Ultrasonic, flare 2.5-5% [157]

Smokestack gas 5-20% [158]

Run-time Permanent 1-5%

Portable 2-5%

Light Sensor / logger 8-10% [112]

Other Pyranometer 2-5% >10% [159]

Door position 2%

RPM 1%

CO2 >20% [153], 4% FS [112]

Combustion 2% ∼0.5% [59]
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2.2.4 Persistence and longitudinal M&V

In M&V, persistence refers to the effective useful life of an installed measure. In a 1991 M&V

guideline by the Oak Ridge National Laboratory (ORNL), the authors noted that “Persistence is a

genuine problem of undetermined scope. Its effects on cost-effectiveness, program planning, and

resource reliability are clear. It is now time to address persistence in earnest” [160]. In a 2015

article [161] and a 2015 technical brief by the LBNL [162] similar comments were made.

For this thesis, only technical persistence, or equipment lifetimes, will be considered. The curves

used may hold for overall persistence as well, but this is not proven. Laboratory tests and equipment

lifetimes are not equivalent to actual persistence in the field [163], and studies should also account

for human- and market-related factors [38, 164], although the UMP recommends that such factors not

be taken into account for residential monitoring programmes [38]. For a foundational introduction to

persistence study design, see Vine [165], and for updated treatments, see Hoffman et al., Skumatz, and

the UMP [41,162,163]. One engineering rather than statistical approach is to use technical degradation

factors popular in the US [162, 166]. These are the lifetimes of the measures relative to the original

equipment installed [43] – a single number, rather than curve characterisation or longitudinal studies

as implemented in this thesis.

Since primary persistence research is expensive, secondary sources are often used [41, 163]. Primary

research studies usually do not track populations, but try to provide a median measure life estimate [167,

168]. Two notable exceptions are the Polish Efficient Lighting Project (PELP) [169] and the Lighting

Research Centre (LRC) at Rensselaer Polytechnic Institute’s Specifier Report on CFLs [170]. These

data sets will be used. Another reason for selecting CFLs as the application technology for this study

is that CFL retrofits are often used as M&V case studies [1,30,68,69] as it is a well-studied technology

with relatively simple principles.

Regarding the curve shapes, The CDM recommends a linear decay curve [50]. Logistic decay curves

similar to those used in survival analysis have also been introduced [51, 169, 171] and later improved

upon [53] to the form used in this paper to fit the data sets referred to above. Logistic curves are widely

used in reliability engineering and applied to many technologies besides CFLs [172]. The techniques in

this thesis will, therefore, have broader applicability. More examples of linear and non-linear survival

curve assumptions and study results for EE appliance models are listed by Young [173].
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Persistence monitoring requirements range from 3.9 years [5] to 10 years for CDM lighting projects [4].

Pennsylvania and Texas require 15 years [162]. This thesis will consider 10 and 12-year studies, as

this reflects both regulatory requirements and realistic CFL lifetimes.

2.3 STATISTICAL METHODS

2.3.1 General M&V statistics

Besides the methods contained in the guidelines and Reddy and Claridge’s fractional savings method al-

luded to already [33], as well as general regression and statistical literature (such as Montgomery [174]),

other recent M&V work should also be noted.

The Bonneville Power Administration has commissioned a regression guide [175] which is useful as

an introduction to the subject. Walter, Price and Sohn [176] presented an uncertainty quantification

method for baseline estimates based on Mathieu’s time-of-week and temperature model [177] and

cross-validation. A convincing case is made by Shonder and Im (G14 authors) using Bayesian

regression and comparing it to the G14 method [178]. They point out that although linear regression is

computationally efficient and robust, many energy monitoring problems require non-linear models.

Furthermore, normalised savings calculations are done when the reporting period conditions do not

reflect a standard operating period, and energy use from the baseline and reporting periods need to be

‘normalised’ to a third set of EGF conditions. There is currently no other way to do normalised savings

uncertainty calculations other than by using Bayesian methods.

Walter, Price and Sohn’s study does confirm that when finer graduations of data, such as half-hourly

or hourly data points are used, the ‘full operating cycle’ of a year’s data is not needed to characterise

the system properly. Three to six months’ data is adequate. This is echoed by Granderson et al.’s

comparison of different M&V baseline methods [35, 179]. This finding applies to energy systems

where rapidly fluctuating EGFs such as outside air temperature is present. However, it will not work

for population decay or other slow processes.

An interesting comparison of baseline modelling techniques is given by Zhang et al. [180], who

compare M&V models using linear regression, GPs, Gaussian Mixture Models (GMMs), and Artificial
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Neural Networks (ANNs). When applied properly, all methods have similar fit characteristics, with

the Gaussian models illustrating the uncertainties very well. Note that these methods specifically are

non-parametric. That is, they do not specify an underlying system equation. As such, they are useful

for fitting data in regression-type problems, but not for extrapolation as would be needed in time-series

forecasting in longitudinal studies.

2.3.1.1 Measurement uncertainty in metrology

Metrology is the science of measurement and represents the larger field of which a large portion of

M&V forms a part. Its guiding document is the GUM [181]. The GUM has standardised the expression

of uncertainty across most quantitative scientific disciplines and is also applied to energy monitoring.

Instructive tutorials have been written, most notably by the British [18, 182] and European [183]

accreditation agencies. ISO/IEC 17025 [184] General requirements for the competence of testing

and calibration laboratories has contributed to the GUM’s popularity by stipulating that complying

laboratories apply a procedure to estimate uncertainty in measurement.

The GUM distinguishes between measurement uncertainty calculated by statistical methods from

measured data (Type A), and those measured or stipulated from prior information or judgement (Type

B). It also standardised the expression of uncertainty as a coverage interval, also known as an expanded

uncertainty. This is the confidence/precision format of expressing uncertainty, which should be familiar

to most M&V professionals and is used in the IPMVP [1], RA96 [113], and CDM [4] documents. For

example, when a measurement is expressed as 10±1, the precision range (or semi-range) is p = 1.

The interval from nine to eleven is expected to correspond to the 95% confidence interval if no more

information is given [18,113]. Since the standard score of the normal distribution z95% = 1.96≈ 2, the

coverage factor is 2. The rectangular/uniform distribution is recommended rather than the Normal

distribution for digital volt meters and instruments where uncertainties are not stated [18]. Although

this is conservative, it is not a realistic assumption for M&V. Energy data are usually aggregated or

integrated over a time interval such as 30 minutes, and such errors would then be normally distributed.

If an M&V practitioner opts for the uniform distribution assumption, and later convolves it with a

normal distribution for sampling error, for example, the resultant coverage interval will be a statement

about uncertainties, not probability density intervals [21]. Monte Carlo (MC) convolution or the Mellin

Transform method (Section 6.4.2) is recommended for obtaining the probability distribution in such a
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case. These will be discussed in the section on new directions in metrology.

The concept of dominant uncertainty components is also useful in M&V. As a rule of thumb, if one

uncertainty component is two to three times larger than the next highest one, it may be considered to

be the sole contributor to the overall uncertainty [18, p.17]. This is because of the sum-of-squares

approach to adding standard deviations together allows larger standard deviations to dominate the final

result. Commenting on the efficient allocation of measurement resources between Type A and Type B

measurements, Birch, therefore, remarks that the

[the] quantification of uncertainties in testing normally involves a large element of estima-

tion of... uncertainty components. Consequently, it is seldom justifiable to expend undue

effort in attempting to be precise in the evaluation of uncertainty for testing. [18, p.15].

This is relevant when trading metering calibration costs off against sampling costs, where meter

calibration can be expensive for comparatively little gain.

New Directions in Metrology

Although acknowledged as very helpful, the GUM has drawn criticism, most notably from Bayesian

statisticians [21].

One point of contention relevant to M&V is that the propagation of errors calculation is defined as a

first-order Taylor series approximation, which does not always hold. Some physicists and statisticians

are also uncomfortable with the frequentist approach to how confidence intervals are calculated in

the GUM. It has been shown from first principles that this approach is invalid in many measurement

cases [21]. This is explored more fully in Chapter 3.

In reaction to the criticisms above, the GUM was updated and a supplement describing a Monte Carlo

(MC) alternative was published [185]. It is especially useful for non-linear cases, where any distribution

other than the Gaussian or scaled-and-shifted T is used, or where the error propagation function is

complex. It also delivers the final error estimation as a probability distribution rather than an uncertainty

interval. Therefore it is all but recommended as the de facto method for uncertainty propagation

calculation by the supplement. MC can be too computationally expensive for high-dimensional

problems, and approaches such as MC-Latin Hypercube Sampling or Sobol’ Sequences [186] are
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then used. Respected Bayesian metrologists such as Lira have advocated analytical calculus-based

approaches over MC methods where possible [187]. However, this is not a viable alternative in the

energy M&V industry.

A second interesting approach is the MTMC [142, 143]. By this method, the moments of the posterior

of such a convolution may be expressed in terms of the scale and shape parameters of the constituent

distributions. Section 6.4.2 provides a practical example. The MTMC allows for exact expressions

of the first four (or more) moments of the distribution: mean, variance, skewness, and kurtosis, at a

fraction of the computational burden of an MC simulation. This work is made available through an

online toolbox as the Mellin Transform Moment Calculator [188]. Although the first four moments

of a distribution do not identify it uniquely for all cases, most metrological problems are unimodal,

and therefore should not be a problem. A Johnson SB (bounded) distribution [189] can then be fitted

using these four moments. This distribution family was expressly designed for such flexibility and has

been applied to skewed data in a variety of disciplines from econometrics [190] to quality [191]. For

more information on uncertainty evaluation through moment-based distribution fitting, see Rajan et

al. [144].

Regarding the Bayesian approach, the UK Accreditation Service (UKAS) noted that “Bayesian

statistics is becoming recognised as being particularly useful in certain areas of testing” [182], and as of

2016 the GUM itself is also in the process of being extensively revised to accommodate the Bayesian

paradigm [192]. This signals an interesting shift in metrology and the way in which uncertainty is

viewed and calculated. Estler [193] provides a comprehensive tutorial of Bayesian theory in the context

of measurement and the GUM, while shorter theoretical Bayesian frameworks for metrology have also

been written [194, 195].

2.3.2 Mismeasurement

The measurement errors discussed thus far are mostly harmless. If random, mismeasurement of the

dependent variable (usually energy) widens the confidence interval around the estimate but does not

add bias to the parameter estimates. However, this is not the case when these noisy measurements

are used as independent variables in a regression analysis. This errors-in-variables effect is seen

in energy regression models when a covariate such as temperature or occupancy is measured with
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error, and may also occur when one calibrates an instrument against a standard with some error. In

such cases, the random variation is no longer in y, but in x. Random errors in x have two effects.

First, all the regression parameters become biased due to the “flattening out” of the data points as

they spread out on the x-axis (see Figure 2.3). This is called attenuation. Second, the confidence

intervals on these estimates are narrower than they should be, giving misleadingly high confidence

in biased values, also manifesting as a loss of statistical power [196, 197]. This is because as the

measurement error (variance) increases, it becomes increasingly difficult to distinguish it from the

process variance. This lack of power may then be misinterpreted as a lack of effect when pre- and

post-retrofit measurements are compared [196]. To regain this power, much larger sample sizes are

then required. Table 2.5 summarises the effect of mismeasurement on various statistics. Effects vary

with error type and regression model type.

To illustrate attenuation, consider attempting to use one unbiased meter to calibrate another when the

reference meter reading contains random error. Let the reference meter be x, and the UUT be y. If

both the reference and the UUT are perfectly accurate, a regression line with a gradient of one should

be drawn on the xy plane:

y = ax+b, (2.1)

where a = 1 and b = 0.

If only the UUT has an error (thus an error in the response or dependent variable measurement), the

dependent variable y∗ = y+ εεε will be measured by the UUT, where the y∗ indicates the surrogate

reading and εεε the error. y∗ is observed in lieu of y, where:

y∗ ∼ N[y,τy] (2.2)

The error will add noise, but will not bias the result, as illustrated in the left-hand graphs of Figure 2.4.

These are Ordinary Least Squares (OLS) regression estimates for increasing values of the standard

deviation multiplier τ . Increasing error does not bias the estimates. However, this does not hold for

errors in x of the form

x∗ ∼ N[= x,τx], (2.3)

An illustration of one instance is shown in Figure 2.3. An illustration of the effect on parameter

estimates for the straight line case over a range of error values is shown in Figure 2.4.

Mismeasurement is less of a problem for prediction, which is often the goal of M&V models. If one

infers some function y∗ = θθθ
∗x∗ based on measurements of x made with random error, that relationship
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Figure 2.3. Demonstration of the effect of random error in the measurement of the independent variable

on regression. For the regression on the observed values, the parameters are a∗ = 0.6 and b∗ = 175.1.

However, the true parameters are a = 1, b = 27.1.

defined by θθθ
∗ will continue to hold as long as you forecast and measure using x∗ in lieu of x. In such a

case a Measurement Error Model (MEM) is unnecessary. This is part of the reason that measurement

error is not a greater problem in M&V: often the baseline and reporting period measurements are made

with the same instruments, and so the attenuation effect may ‘cancel out’, as long as inference about

the physical meaning of the parameters (e.g. kWh/Heating Degree Day) is not attempted. Consider

the ‘time-of-week and temperature’ M&V regression model [35, 176, 177], in a situation where the

temperature is measured with error because the weather station is in a different microclimate to the

facility [88, 198]. The relationship between energy use and temperature would be attenuated. This

would cause certain elements of the time-of-week parameter vector to seem more influential than they

actually are. However, this may not be a problem. Suppose that HVAC-related Energy Conservation

Measure (ECM) is installed and the model is used for M&V. The forecast (adjusted baseline) energy

use in the post-retrofit period will have the same attenuation as the baseline. It would, therefore, be

accurate, assuming a calibrated model and same temperature data source. Therefore the total savings

estimation will have a similar NMBE to the case with no measurement error, although the added noise
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Figure 2.4. OLS parameter estimates for y=ax+b, where a=1 and b=0, given measurement error τ in

the form (2.2) and (2.3).

may lead to a higher CV(RMSE) on the training set. This being said, one cannot regress energy use

against temperature to infer the effectiveness of the ECM, nor can such a regression be transported for

project decisions in other places. Furthermore, the confidence interval around the reported savings will

also be too narrow.

From these results we can see that fitting a model to data D = {x∗i ,y∗i }= {(x∗1,y∗1),(x∗2,y∗2)...(x∗n,y∗n)}

where x∗ and y∗ are they surrogate values (ones measured with error), is a difficult problem not

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

44

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2 LITERATURE REVIEW

adequately addressed by frequentist statistics [200]. Ordinary Least-Squares (OLS) and most other

standard techniques can account for errors in y only, but have no way of dealing with simultaneous

errors in x. This is because when presented with data, it is difficult to distinguish the contribution of

measurement error in x from that of y for a specific data point.

From Appendix A5.6 of the ASHRAE Guideline 14-2002 [31] mentioned above it can be seen

that covariate measurements have uncertainties many times greater than that of the energy metering

system. By the rule of thumb mentioned in Section 2.3.1.1, measurement uncertainty is therefore

often dominated by non-electrical covariate measurements. The recalibration of energy meters to

high accuracy standards may therefore be an unnecessary expense for large-sample applications. The

question then arises: can meters be verified to a lower specification, using less precise calibrators or

power supplies, and still be useful for M&V purposes?

Table 2.5. Spurious effect of mismeasurement in x on various statistics assuming classical additive

errors [196, 197, 199].

Statistic Effect

Mean None

Variance Increases

Covariance None

Regression, single predictor, slope Decreases

Regression, single predictor, intercept Increases

Regression, multiple predictors Complex

Confidence on regression coefficients Increases

Statistical power for detecting relationships Decreases

Correlation Decreases

Partial correlation Increases

Non-linear features (such as y = sinx) Masked
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2.3.2.1 Mismeasurement in M&V literature

Although attenuation bias due to mismeasurement has been documented in M&V, the effect is not

well-known. With the exception of the UMP Chapters 13 and 23 [41,55], all M&V guidelines discussed

so far, as well as M&V regression guides [175] do not mention attenuation, even when measurement

errors are discussed. The UMP Chapters 11 and 12 (Sample and Survey Design) [6, 40] state that

random measurement error does not lead to bias, even though survey measurement error is one of

the most common MEM test cases [201]. G14-2014 stipulates that the total span of the additional

uncertainty created by errors in independent variables shall be determined by biasing the variables to

their maximum and minimum values [17]. Attenuation is unaccounted for.

Regarding literature, an MC analysis was done by Sonnenblick and Eto from LBNL in 1995. They

found this bias effect for measurement precision of energy programmes [46, Fig. EX-2], and identified

it as the errors in variables effect. The measurement of operating hours was considered to be the most

sensitive to this effect.

Ridge [202] presented an informative paper on mismeasurement in M&V in 1997. He relates how

the Californian utility Pacific Gas and Electric’s 1992-1993 Commercial New Construction Program

and the 1994 Commercial HVAC program realisation rate estimates were unreasonably low. The

realisation rate is the ratio of expected to actual savings. He traced the problem back to random errors

in independent (explanatory) variables that led to attenuated estimates. This was corrected for in

subsequent studies by the use of dummy variables.

A more recent example of mismeasurement is found in the case where Canadian economists Rivers

and Jaccard published a study which found that Demand Side Management (DSM) interventions made

no statistically significant impact on energy demand when viewed at a national level [203]. This

generated some controversy. Rivers and Jaccard proposed that measurement error in the independent

variable (DSM spending proportion vs EE spending proportion) may have played a role in attenuating

the DSM-effect parameter estimate. However, although Violette et al. [204] also acknowledged this

errors-in-variables possibility, they proposed that other features of the original Rivers and Jaccard

model were more influential.
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2.3.3 MEMs and calibration techniques

There are two main bodies of research addressing measurement errors relevant to energy models.

First, commercial electrical metrological techniques have been honed over the last half-century. These

methods usually employ Test Uncertainty Ratios (TURs), which is the ratio of the precision of the

calibrator to that of the UUT. They have had to be revised recently as the accuracy of calibrators and

digital multimeters (DMMs) has converged to 8.5 digits (one part in 108). Second, trans-disciplinary

academic investigations have been conducted using a variety of approaches. These have advanced

significantly in response to the stringent and complex requirements of medical fields such as epi-

demiology, coupled with the relatively poor accuracy of the instruments measuring certain human

epidemiological variables.

2.3.3.1 Electrical calibration techniques

These techniques are applicable mainly to calibration. They are commercial techniques usually using

indirect, empirical, conservative methods, and cannot be classified as true MEMs. A TUR of 4:1

is generally required. This means that an instrument accurate to p% may be used to calibrate an

instrument accurate to 4p% (called the Unit Under Test, UUT). This may reflect the other rule of

thumb proposed in Section 2.3.1.1. However, since DMMs such as the 8.5-digit Fluke 8508A do

not allow for a TUR>4 between the UUT and the calibrator, other techniques had to be developed.

The simplest and most accurate is to characterize the long-term drift of the instrument by plotting the

change in measurement errors over time, and then drawing a regression line through the successive

measurement points [205, 206]. This regression line has been shown to be more accurate than the

individual calibrations [207]. Within limits, and with a large enough calibration history, this technique

may be used to accurately quantify an instrument’s error without recent calibration. This technique

has also been proposed for characterising the stability of a calibrator that may not meet the TUR>4

nominally but does meet it practically. This is possible as the calibrator’s stability specifications

are usually lower than what an individual instrument’s stability may be when measured with a more

accurate DMM.

On the other hand, if one wants to test an instrument with no history, and one can not achieve

the required TURs, alternative methods also exist [208]. For true calibration, the only option is
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‘disciplining’ the calibrator by using an additional, more accurate DMM to measure the calibrator

output in real time [206].

In cases where an accept/reject decision has to be made rather than full calibration, there are three

options: lower the confidence level of the test, invest in a more accurate standard, or analyse and

document the measurement points for which inadequate TURs exist. The first option (lowering

the confidence level) is called guard banding [209–211]. A guard band is a test limit stricter than

the instrument specification limit [212]. In other words, by employing guard bands, one can use a

calibrator with a TUR of 2 instead of 4. The price one pays is that the UUT may still be rejected,

even if the test result falls between the Lower Confidence Limit and the Upper Confidence Limit of

the calibrator. This is because to compensate for our lower TUR, the test limits are narrower than the

instrument specification limits. Thus guard banding keeps the consumer’s risk constant even though a

less accurate calibrator is used, but increases the producer’s risk for such a case. When considering

this approach, one must remember that at a certain level, testing becomes uneconomical. For example,

for a TUR of 2 and specification limit of 2σ , the consumer’s risk is as significant as it would be if no

testing at all took place, and the consumer simply accepted the probability of the unit being outside

of specification (probability=1.2%) [208]. In such scenarios, the expected value of the test, or the

cost/benefit trade-off between testing and not testing, should be considered.

Rossi and Crenna [213] provided a good example of setting test limits lower than specification limits

for in-house testing at the producer side to minimise risk, which they applied to water meters [57]. To

this end, they have developed a software package called UNCERT – essentially an automated MC

approach. Researchers from the US National Institute of Standards and Technology (NIST) have

also shown that a Bayesian approach to the accept/reject decision rule of ISO 14253-1 (inspection of

workpieces) [214] delivers superior results in cases where it is applicable [215].

2.3.3.2 Trans-disciplinary MEM techniques

Not all uncertainty analysis models (also known as uncertainty quantification models) considering

measurement error are MEMs. On the other hand, some probabilistic models using MC methods

could well be incorporated into MEMs, although their function in most literature is exploratory what-

if analysis, sensitivity analysis, or forecasting (see Table 2.2). Other methods are simply robust:
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insensitive to outliers. This section discusses statistical techniques for unbiasing regression estimates.

These will include some techniques common to general statistics (such as MCMC and MLE), as well

as mismeasurement-specific methods.

There is a notable amount of literature on MEMs, although much of it is too technical to be useful to

the M&V practitioner without a strong background in statistics. For linear problems Fuller [216] is

popular, and his method-of-moments is straightforward and recommended for OLS regression with

additive measurement errors (cf. Carroll et al. [196]). The non-linear case presents a greater challenge,

but may also be more relevant to M&V and instrument calibrations as shown by Carobbi et al. [217].

The most appropriate (and readable) treatments are by Carroll et al. [196], and Gustafson [197].

MEMs can be divided into functional and structural approaches. Functional approaches make no

assumptions about underlying distributions (thus avoiding model misspecification) and include Re-

gression Calibration and SIMulation EXtrapolation (SIMEX). These techniques are specific to the

mismeasurement sub-field. Structural approaches make assumptions about the underlying distributions

and relations governing the measurement system and include Maximum Likelihood Estimation (MLE)

and Markov Chain Monte Carlo (MCMC) techniques: ones used in other areas of statistical inference

as well. All four of these techniques are powerful and can yield useful results if applied well. The

choice of method depends on its appropriateness to the data and ease of implementation.

The SIMEX concept is simple and powerful. Suppose one knows that the variance VAR(x∗|x) = τ .

Current parameter estimate θθθ
∗|x∗ are also known, that is, θθθ

∗|τ2
0 . The true parameters θθθ |x are sought.

If one now increases the error τ in the dataset, the parameter estimates will start drifting away from

their true values due to attenuation. In this way, one can obtain values for θθθ
∗|τ2

1 , θθθ
∗|τ2

2 , θθθ
∗|τ2

3 , ... A

trend will be observed, and a curve can be fitted to these points. Extrapolating backwards will then

yield θθθ
∗|(τ = 0), which is θθθ |x. See Figure 4.5 for a graphical illustration. The disadvantage is that

SIMEX is difficult for cases where there are combined multiplicative and additive errors and that it can

be expensive for non-linear higher dimensional models. It has also been found that in certain cases

MLE methods yield considerable smaller variances [218], although for most applications SIMEX is

simple and effective.

Regression Calibration methods essentially trade an exposure model for a validation (calibration)

sample: a sub-sample measured without error, using a ‘gold standard’. From the information gleaned
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from the sub sample, values for x are imputed instead of the x∗ values measured. Repeated measure-

ments may also be used. It is not susceptible to bias due to model misspecification since the exposure

models do not need to be specified. Regression Calibration is useful for trials where extensive, precise,

or repeated testing is only feasible for a small sub-sample.

One potential weakness of the Regression Calibration method is that it maps x∗ onto x in a one-to-one

fashion, where methods such as Bayes-MCMC consider all reasonable values for x given the data.

Therefore the uncertainty is specified as fully as possible. This avoids the effect of not considering

the uncertainty contribution of imputing x values for the first step of the Regression Calibration

procedure.

Two structural approaches will now be discussed. It is important to note that although these techniques

have solid analytical foundations, they are solved numerically. Different kinds of inference algorithms

could be used, with MCMC and MLE being the most popular.

Maximum Likelihood Estimation has become a very powerful structural approach in many areas

of statistics. It produces a likelihood distribution on parameters of interest, and can account for

measurement error by specifying such errors in the structure of the model. MLE techniques have

the potential of producing better estimates than functional approaches if the model is well specified,

although this is often difficult [196]. MLE methods are advanced empirical Bayesian methods using

non-informative priors (more on this in Chapter 3). Full Bayesian methods provide some advantage

since the models are easily specified and solved, no approximations are necessary, and standard errors

on the estimates are more easily calculated [197]. Stopping or convergence criteria are a concern

for both approaches [219]. Gelman [220] also notes that EM algorithms with multivariate normal

approximations are not ideal for small data sets as convergence is only asymptotic, and the normal

distribution not ideal for describing such cases.

Much literature on the technical merits and application of Bayesian methods exists, as it is the natural

structural MEM approach [196].

Bayesian approaches with non-informative priors provide MLE estimates of data [220]. However, they

are more flexible since they do not require ad hoc techniques dealing with special cases, as with most
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frequentist statistics. This allows rapid model development and greater ease in specifying and building

complex, realistic models.

The disadvantages of the Bayesian-MCMC techniques are that they can be computationally expensive,

susceptible to model misspecification, and require more thinking on the part of the practitioner. The

computational expense becomes a problem when many variables (or data points) have uncertainties in

them which need to be modelled using MCMC. The model then suffers from the curse of dimension-

ality. Thus, for problems such as the real-time calibration of thermal network parameters, Bayesian

techniques have been found to be too computationally expensive even though they are more robust

than lightweight ‘grey-box’ techniques [221]. Variational inference may alleviate this concern, and

although the technique is relatively new it has been implemented in popular software [222]. Model

misspecification arises when the true error structure is different from the one specified in the model.

Investigating the robustness or sensitivity of the model to such assumptions becomes necessary. Last,

there are few simple ‘recipes’ in Bayesian statistics. There is no t-test or F-test blanket equivalent,

although Kruschke provides alternatives [19]. However, Bayesian solutions are more problem-specific

than popular frequentist tests.

Two non-technical reasons for the application of Bayesian approaches to M&V should be noted. First,

a Bayesian MEM is similar to a standard, well-specified Bayesian model. The model’s ability to

deal with measurement errors follows from the nature of the Bayesian mathematics itself. Second,

the development of Markov Chain Monte Carlo (MCMC) techniques has allowed for the previously

intractable integration involved in most non-trivial Bayesian calculations to be done efficiently and

accurately.

2.3.4 Longitudinal studies

Two methods are directly applicable to the longitudinal sampling problem: Survival Analysis (SA)

and regression. SA is used for time-to-event data and can account for censoring (where exact failure

times are unknown) as well as for measurement error. For an introduction, see Clark and Bradburn et

al. [223–226], and for an application to EE and DSM persistence studies, a commercial study where

this was implemented [168]. As with logistic regression, the focus of the method is on identifying

the effect of covariates, and not on time-series forecasting, although such applications have been
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made [227]. Most SA models use the ‘proportional hazards’ assumption of fixed hazard or failure

rates. This is not accurate for CFLs, although alternatives do exist and are mentioned below. SA is not

used in this study but is a promising approach for future persistence research.

The second approach is regression. Various regression methods exist in energy monitoring [35, 177,

180, 228]. A suitable regression method should weigh points according to sample size and account for

the binomially distributed nature of the samples. It should also quantify uncertainty accurately. This

was achieved in West et al.’s seminal work on Bayesian Forecasting and DGLMs [229, 230], building

on McCullagh and Nelder’s GLM work [231]. Triantafyllopoulos [232] provided a useful comparison

of these and related methods such as particle filters and extended Kalman filters with posterior mode

estimation. Gamerman and others have applied these models to survival analysis [233–236] and

hierarchical models [237]. These models work with parametric distributions that do not describe the

complexities of the energy savings calculations discussed in Section 6.4, but more research in this

area is warranted. A model similar to West, Harrison, and Migon’s advertising awareness study [229]

has been adopted for this thesis, which uses a DGLM with Bayesian forecasting to model binomial

survey response data in Chapter 6. This model uses the conjugate prior property of the beta-binomial

distribution pair to incorporate information from past surveys into current estimates, even when those

surveys found the population proportion to be higher than the current proportion due to decay. This

is an implementation of Violette’s proposal of using a Bayesian framework for longitudinal M&V

studies [67].
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CHAPTER 3 THE BAYESIAN PARADIGM FOR

MEASUREMENT AND

VERIFICATION

3.1 CHAPTER OVERVIEW

In this chapter, no novel theory or method will be proposed. Instead, an overview of some aspects of

the Bayesian approach relevant to M&V practitioners is presented. Those familiar with the Bayesian

paradigm may wish to go directly to the next chapter, as the examples below are well known. After the

introduction, a motivation for selecting the Bayesian approach is given by comparing it to existing

frequentist methods. The theory of the Bayesian approach and theorem is presented, and a discussion

of subjectivity, information and entropy, and numerical methods is offered. Applications are then made

by considering sampling, measurement, and regression.

3.2 INTRODUCTION

This chapter proposes a Bayesian approach to M&V, but cannot be a full exposition of Bayesian theory.

Many useful texts have been written on the philosophy and application of Bayesian statistics, and

these will be alluded to below. The author also does not intend to settle the Bayesian-vs.-frequentist

(classical statistics) debate in this chapter. Both have advantages and disadvantages, and in the hands

of a skilled statistician both can be useful for many (but not all) estimation problems. Instead, a

pragmatic approach is adopted. Engineers prefer simple, effective techniques, and it will be argued

that the Bayesian option makes sense in theory, and can be powerful, flexible, and simple to implement

in practice. Bayesian techniques have become popular in fields closely related to M&V: industrial
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machine learning and metrology. Although it has been recommended for error analysis of energy

measurement and verification, especially for cases where errors are financially significant [65], it is

underutilised in M&V. One recent exception is Tehrani, Khan, and Crawford who have used recursive

Bayesian regression in a novel way for baseline forecasting in M&V [228].

The Bayesian approach derives its name from a posthumously published article by Reverend Thomas

Bayes [238], although Pierre-Simon Laplace developed the modern notation of the theorem. The

approach relies on the logic of conditional probabilities, developed from first principles via various

axioms. Frequentism has been the dominant approach for the last hundred years, however. In the

frequentist approach, data are assumed to be realisations or “snapshots” of long-run processes, or

frequencies. This approach does have some appeal in many cases: flipping a coin ten times, whatever

the result, can be seen as a sample of results of flipping a coin millions of times. Probability is therefore

equated to frequency-calculations, which often simplifies the mathematics. However, such long-run

frequency approximations are not always valid for problems in energy measurement, as will be argued

below.

3.3 MOTIVATION

When is an M&V plan efficient? Why should one M&V study be preferred over another? Besides

quality control measures, an M&V study should report savings accurately, at low cost. 1 A small

sample, taken with low cost, inaccurate equipment, will still yield a result, albeit a possibly biased one

with high variance around the estimate. A large sample obtained with accurate equipment would be

preferable if cost were not a concern (assuming this implies low bias and variance). M&V is therefore

an uncertainty quantification exercise, in the context of cost. ‘Optimal’, or ‘efficient’ M&V will yield

savings estimates with low bias and accurately quantified uncertainty, at low cost. The author adopted

the Bayesian paradigm for this thesis because he realised during his Master’s work [111] that it might

satisfy the above argument in a way that standard frequentist methods cannot.

The Bayesian-vs frequentist debate is not as simple as “Bayesians are right and frequentists are

wrong”. The frequentist paradigm is not as deficient as some Bayesian texts argue, and the Bayesian

paradigm does not seem to be the panacea it is made out to be by some of its exponents (on which,

1Accuracy can be measured in terms of bias (not being consistently higher or lower than the true value), and variance

(having a narrow range of possible values around the estimate).
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see the discussion of Lindley’s paper [239]). Kruschke does make a convincing case, motivated by

the underlying theory as well as numerical comparisons [240], that for the comparison of samples,

the Bayesian approach provides richer information, and often different conclusions, to standard Null-

Hypothesis Significance t-tests. This should not be generalised to all methods, however. In all cases,

careful modelling is still necessary in the Bayesian case, and the expert frequentist statistician who is

aware of the shortcomings of the methods, can still draw valid (but more limited) conclusions. Besides

the theory, there is a practical advantage to the Bayesian approach as well. Most users of statistics

(including M&V engineers) are not professional statisticians. The simpler, more reliable method

should, therefore, be preferred: the Bayesian one. This statement will be motivated by considering

some of the shortcomings of the frequentist paradigm for M&V.

At first, the two paradigms may seem very similar. Both provide a way of making sense of data and

provide a method of inference about the world. However, they do diverge significantly. For example,

in the Bayesian paradigm, the data are fixed, and the parameters are viewed probabilistically: as

uncertain values described by probability density functions. ‘Uncertainty’ therefore describes our

state of knowledge of reality, or our degree of belief, codified in mathematics. In the frequentist

paradigm, the data are viewed as random realisations of a reference set which has fixed parameters.

Probability is described in terms of the frequency of the data arising from the hypothesised, but

unknown, fixed-parameter reference set. If one is sampling items from a production line, the meaning

is clear. However, if one is calculating failure probabilities of nuclear reactors or the population from

which the energy measurement made at 14:15 today at a specific site, given specific weather conditions,

it is not clear. Kruschke [19, 240] mentions illuminating cases. For example, a coin is flipped twenty

times, and seven heads are observed. What is the probability of the coin being fair? The answer

depends on the reference set from which one intends to sample, since this set includes the data which

might have happened, but did not [241]. If one intended to stop after twenty flips, p = 0.032. If one

intended to stop after seven heads, p = 0.017. If one intended to stop after two minutes of flipping,

p = 0.024. If one intended to compare it to a second coin, p = 0.103. The probabilities obtained from

the calculation therefore depend on the hypothetical reference set, and not only on the data observed,

as frequentists often claim.

Probably the most significant problem with the frequentist paradigm in M&V is the use of confidence

intervals. According to Neyman, who devised these intervals, they do not convey a degree of belief,

or confidence, as is often thought. They are a product of a process that produces an interval which
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contains the true value a given percentage of the time [20]. Montgomery and Runger explain the

difference as follows in their textbook Applied Statistics and Probability for Engineers [242], under

“Interpreting a Confidence Interval”. The bold and italic emphases are theirs:

How does one interpret a confidence interval? In the impact energy estimation problem

in [the notch impact test] Example 8-1 the 95% CI is 63≤ µ ≤ 65.08J , so it is tempting

to conclude that µ is within this interval with probability 0.95. However, with a little

reflection, it’s easy to see that this cannot be correct; the true value of µ is unknown and

the statement 63≤ µ ≤ 65.08 is either correct (true with probability 1) or incorrect (false

with probability 1). The correct interpretation lies in the realization that a CI is a random

interval because the probability statement defining the end-points of the interval L and U

[lower and upper] are random variables. Consequently, the correct interpretation of a ... CI

depends on the relative frequency view of probability. Specifically, if an infinite number

of random samples are collected, and a [95%] confidence interval for µ is computed for

each sample, [95%] of these intervals will contain the true value of µ .

...

Now in practice, we obtain only one random sample and calculate one confidence

interval. Since this interval either will or will not contain the true value of µ , it is not

reasonable to attach a probability level to this specific event. An appropriate statement is

that the observed interval [l,u] brackets the true value of µ with confidence [95%]. This

statement has a frequency interpretation; that is, we do not know if the statement is true

for this specific example, but the method used to obtain the interval [l,u] yields correct

statements [95%] of the time.

Therefore, a frequentist confidence level is the probability of the interval including the parameter,

while a Bayesian credible interval (or probability) is the probability that the parameter is included

in the interval. To be sure, the frequentist and Bayesian confidence intervals agree for common

problems such as linear regression, provided that the linear regression assumptions hold and that a

non-informative prior (explained below) is appropriate for the Bayesian analysis [21]. In such cases,

the linear regression is easier and adequate, and the Bayesian interpretation can be appropriated for

the frequentist interval for the calculation of risk. However, this is not guaranteed outside of these

special (though common) cases. In general, the limits of the frequentist interval should be viewed as

random numbers, and the interval is simply an interval, not a probability density function. This makes
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Figure 3.1. Illustration of frequentist 90% confidence interval for 68 samples drawn from the distribu-

tion N[100,50], as per standard M&V practice, repeated for twenty different realisations.

the calculation of risk, or the quantification of uncertainty, problematic. Shonder and Im [178] also

point out that describing the uncertainty by a PDF rather than a point estimate enables other kinds

of calculations that a standard confidence interval does not. For example, the probability of savings

being above any given value may be determined. The PDF shape may also indicate where most of the

probability mass lies, in the case of skew distributions.

The second, well-known problem with frequentism is the interpretation of p-values used for null-

hypothesis significance testing. Besides the difficulty in explaining to clients that one “cannot reject the

null-hypothesis”, p values have proven to be unreliable measures of statistical significance. This was

already a well-known problem when Berger and Delampady discussed it, and Bayesian alternatives, in

1987 [243]. However, for reasons of convenience and institutional inertia, p-values remained popular

in medicine, until Ioannidis [244] and others [245] found that most medical studies resulting from

its use contain false conclusions and exaggerated effects. This is because data may reach ‘statistical

significance’, but the study is still underpowered. In other words, p = 0.05 for a small sample is less

reliable than p = 0.05 for a large sample. The significance may still be spurious, and p = 0.05 does

not mean that there is a 95% probability of the effect being true, as is commonly thought (and taught).

As Button et al. [245] note, this is because the prior odds of an effect being present should also be

considered. The probability of a false positive should consider the data (which may show a ‘positive’),
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as well as the odds of an experimental treatment actually working. If only one in five experimental

treatments that are investigated work, the odds of the ‘positive’ being false is higher than if four out of

five experimental treatments investigated, worked. This then is exactly the Bayesian paradigm, which

will be explored in more detail below. Before continuing, it should be noted that M&V may not be as

affected by this phenomenon as medical studies since it is assumed that most projects where M&V is

done, do save energy. The prior odds of an effect being present is therefore much higher than for the

medical field. However, the probability of exaggerating this effect due to low statistical power is still

of concern.

Other shortcomings are less serious. For example, it is often noted that frequentist methods are

ad-hoc. That is, different methods and measures are used for different problems, or indeed for the

same problem, and all have certain assumptions. There is no unified theory. This contributes to the

confusion non-statisticians have about the statistics, since one might not know which test to apply to

one’s current problem, or what a desirable result for the chosen test would be. The Bayesian approach

is relatively standard and its interpretation more intuitive. Its application is admittedly difficult in some

cases, but the use of numerical methods such as MCMC has simplified the task. As such, the Bayesian

framework makes it easier to combine the different sources of uncertainty typically quoted in M&V.

For the frequentist paradigm, ASHRAE’s G14 [17] does provide a way of combining these into a single

figure for cases satisfying linear regression assumptions, although it is at best approximate [77].

The Bayesian paradigm is well-suited to M&V analysis specifically. As Estler [193] notes, meas-

urements always imply inference, since one reasons from incomplete information to make rational

decisions in the context of uncertainty. In the Bayesian paradigm, all unknowns are approached prob-

abilistically: as probability distributions. In fact, computer programs used for Bayesian calculations

are called probabilistic programs. This is one of the most powerful features of Bayesian analysis in

practice. Instead of working with unknown, fixed variables, one works with PDFs. Since M&V is

mostly concerned with uncertainty quantification rather than hypothesis testing, Bayesian methods are

well-suited. The second feature of M&V that makes it suitable for full Bayesian analysis is that it has

well-defined utility functions. The cost of a study and the benefit derived from it can often be described

in monetary terms, as savings realised, and penalties for non-compliance. Sampling planning can then

proceed according to established principles [246–248].
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3.4 BAYESIAN THEORY

The derivations of Bayes’ theorem is probably the simplest part of the whole paradigm and is also

instructive.

Let Pr(SD|I) be the joint probability of events S and D given information I. S and D are left as generic

signifiers for now. The product rule of probability states that

Pr(SD|I) = Pr(D|I)Pr(S|DI) (3.1)

This means that the probability of S and D simultaneously, is equal to the probability of D, multiplied by

the probability of S given D, both conditional on the other information (the ‘reasoning environment’) I.

This accords with intuition. For instance, the probability of savings being realised at a given household

by an energy savings programme is the probability of the household participating in the energy savings

program, multiplied by the probability of savings being realised, given that they participate in the

program. The term I is implicit in all probability calculations since all probabilities are conditional

on a set of assumptions [193]. By rearranging the equation and dropping I (it is implicit in all further

calculations), we find:

Pr(S|D) =
Pr(SD)

Pr(D)
(3.2)

expanding the Pr(SD) term in the numerator by the product rule, but this time the other way around

than before, we find that:

Pr(S|D) = Pr(S)
Pr(D|S)
Pr(D)

. (3.3)

S and D are usually chosen to represent the hypothesis and the data. Since this thesis considers energy

savings, let the hypothesis be “energy is saved”, denoted S, and the data be denoted D. Then this reads:

the probability of savings, given the data, is proportional to the prior probability of savings, multiplied

by the likelihood of the data arising if savings were indeed realised, divided by the global probability

of the data. The resultant term Pr(S|D) is called the posterior distribution, since it describes our state

of knowledge after combining our prior probability that savings have been realised, Pr(S), with the

likelihood of observing the data, had the savings been realised, Pr(D|S). The latter term is called the

likelihood and corresponds to the frequentist idea of inference from the data alone. The numerator

Pr(D) is the most troublesome, as it rarely has a physical meaning. However, it should be included in a

normalising factor so that the right-hand side of the equation integrates to one, to make it a proper PDF.

It may, therefore, be replaced by a normalising factor. Obtaining this factor and convolving the prior

and likelihood PDFs analytically can be difficult or impossible for many kinds of problems. However,
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Likelihood
Pr(D|θ)

Data
D

Posterior
Pr(θ |D)

Prior
Pr(θ)

Figure 3.2. Flow chart illustrating Bayes’ theorem for a single sampling step.

what has made Bayesian statistics so popular since the early 1990s is that it happens automatically

in MCMC numerical computations of the posterior. Otherwise, Bayes’ theorem is often written in

unnormalised form as

Pr(S|D) ∝ Pr(S)Pr(D|S). (3.4)

In general in statistics, certain model parameters θ are sought, given data D. Therefore Bayes’ theorem

is often written as

Pr(θ |D) ∝ Pr(θ)Pr(D|θ) (3.5)

which is, the probability of the parameters θ , conditional on the data D, is proportional to the prior

on the parameters, Pr(θ), multiplied by the probability of the data D given parameters θ . A diagram

illustrating this graphically is shown in Figure 3.2.

The Bayesian statistician’s task, therefore, is specify credible PDFs for the prior and likelihood

functions. If we are mostly ignorant about what we are investigating or want to see the results from

the data alone, we can specify a diffuse, also called a non-informative or ignorance prior. If this prior

is locally uniform in the region of the more peaked likelihood, and a normal distribution is assumed,

then Bayes’ theorem reduces to maximum likelihood estimation. If we have a firm prior belief that the

hypothesis is false, and set the prior to zero, then no matter how much data we collect, it will not alter

our posterior. The same is true for cases where we set the prior to 1 (on which see Estler [193, Eq.

14]). For values of the prior in between zero and one, the posterior is a weighted product of the prior

and likelihood, with the weights based on the variances of the two distributions.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

60

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3 THE BAYESIAN PARADIGM FOR MEASUREMENT AND VERIFICATION

3.4.1 Subjectivity, objectivity, and the selection of priors

Since questions regarding the objectivity of the prior are the most common objection to the Bayesian

paradigm, they will be addressed briefly here. It should be stated that priors are useful for making

implicit assumptions explicit. Implicit assumptions are a danger in both frequentist and Bayesian

analysis, although the Bayesian paradigm makes it more difficult to gloss over such assumptions.

How the priors are applied is where the controversy arises, though (no matter what is selected).

Recently, Gelman and Hennig offered a helpful philosophical discussion on this question [249], which

is recommended for further reading.

The first point to note is that the prior is not implicitly subjective or objective. It simply is. Subjective

Bayesians such as Lindley [239] and de Finetti [250] have used the prior to encode their prior beliefs

(although this is not the only interpretation). They reason that this simulates the human decision process

by which our prior beliefs are (or should be) updated to incorporate new data. Since the (subjectivist)

Bayesian posterior is seen as describing our state of knowledge about a system, it means that if two

people differ in their assessment of the data, they are reasoning from different priors. Although the

following quotation from an interview with Tom Redman for the Harvard Business Review does not

refer to subjective Bayesian analysis specifically, it illustrates the point well:

“You always lay your intuition on top of the data,” he explains. Ask yourself whether

the results fit with your understanding of the situation. And if you see something that

doesn’t make sense ask whether the data was right or whether there is indeed a large

error term... And, he says, never forget to look beyond the numbers to what’s happening

outside your office. “You need to pair any analysis with a study of the real world. The

best scientists – and managers – look at both.” [251]

There are methods for eliciting such personal distributions [252, 253], but it is not always easy or

possible since decision makers are less rational than we would like to think [254]. The subjective prior

is also strict in the sense that it may not be changed, regardless the outcome of the model. This can be

frustrating when one runs a model and finds that a diffuse prior allows the model to explore regions of

the solution space (combinations of model parameters) that are physically impossible or unlikely. For

these, and other reasons contained in the discussion of Lindley’s paper [239], a subjectivist Bayesian

approach is not recommended for M&V.
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Objective Bayesians such as Jaynes [255] and Berger [256], try to make the prior as non-informative

or diffuse as possible, so that the data “speaks for itself”, and the result is not altered by the analyst’s

beliefs. This seems like a better idea than the subjectivist approach and is the more popular choice.

Much research has been conducted on representing ignorance (or using neutral priors) in Bayesian

statistics. A normal distribution with a large variance, or a uniform distribution, is often used. For

cases where the scale may span several orders of magnitude, a scale-invariant prior is needed, and

the Jeffreys prior [241] of Pr(θ) = 1/θ is useful since d(lnθ) = constant. However, non-informative

priors also influence the outcome and may have a negative impact in cases where pertinent information

is omitted [256, 257]. Not all non-subjectivists would ignore it. In energy studies, for example,

informative priors based on data from previous studies have often been used and enjoy a strong

precedent [74, 77, 87, 106]. Ignoring such prior information, if available, may not be wise.

A falsificationist (or empirical) Bayesian approach would adapt the prior to constrain the model, as is

done in Section 4.3.4.3. Care must be taken when selecting data-dependent priors, however, since these

can lead to a case of “data reinforcing data”. This results in misleadingly high confidence on posterior

estimates. Nevertheless, when such techniques are used correctly, they do have precedent [257], and

are mathematically defensible in some instances, as was shown by Darnieder in his PhD thesis on the

topic [258].

In this thesis, the author hopes that the chosen priors are not controversial since they will be derived

rationally from repeated measurements in time-series data. Bayes’ theorem works so that the posterior

for a single analysis can be used as a prior for the subsequent analysis. In other words, the result

of drawing n samples and analysing them simultaneously will be the same as the result of drawing

one sample, inserting the result into the likelihood, calculating the posterior, using this posterior as

a prior for the next draw, and repeating n times. This property is used for time-series measurements,

so that the prior contains information from previous sampling results, as shown in Figure 3.3. When

the posterior distribution is of the same form as the prior distribution, it is called a conjugate prior.

This is a useful property which will be exploited in this thesis. Specifically, the normal-normal and

beta-binomial prior-likelihood pairs will be used. These are all of the exponential (ex) family of

distributions. In simplified terms, if the prior and likelihood are both ex, their product is e2x, which

can easily be used as the prior for another calculation with a likelihood ex, and so on. Estler [193, Eqs

50-56] and Lira [192, Eqs 5-8] give clear examples of this using the normal distribution.
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Likelihood1

Pr(D1|θ1)

Data
D1

Posterior1 : Pr(θ1|D1)

= Prior2 : Pr(θ2)

Prior1

Pr(θ1)

Likelihood2

Pr(D2|θ2)

Data
D2

Posterior2

Pr(θ2|D2)

Figure 3.3. Diagram of Bayes’ theorem, where the posterior of the first step is used as the prior for the

second step. This diagram can be compared to the single-step case in Figure 3.2.

3.4.2 Information and entropy

Since uncertainty quantification is one of the main themes in this thesis, it is worthwhile to mention

how uncertainty is described in the Bayesian paradigm. Uncertainty is usually measured by the

variance of the distribution in question. More data increases the ‘information’ about the parameter

of interest and decreases uncertainty by decreasing the variance in the estimate. In the Bayesian

paradigm2 ‘information’ is not just a figurative term, but refers to an actual quantity. As discussed up

to now, it is important to specify correct distributions in the calculations, since one can unwittingly

add more information than is justified by the data, or omit information that is available. For unimodal

distributions, uncertainty is represented by the variance in the distributions specified. However, this

only describes location uncertainty, and would not hold for bimodal distributions, for example. In

such cases, there is a high likelihood of the parameter being in two distinct areas and a low likelihood

of it being in the range between. Variance is therefore an incomplete description of uncertainty.

2and some aspects of the frequentist one as well

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

63

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3 THE BAYESIAN PARADIGM FOR MEASUREMENT AND VERIFICATION

A more general opposite for information is entropy, as described by Shannon in his information

theory [259]. Shannon’s description is applicable in many different Bayesian settings, for example

in sample size determination [247]. The upshot of the current discussion is that it is also useful for

finding least-informative distributions. Specifically, using the theory one can prove that the maximally

entropic distribution for an uncertainty stated as a confidence/precision value (popular in M&V and

the GUM [181]), is the normal distribution. Therefore assuming the normal distribution for such cases

is not only convenient but also has the mathematical property of being ‘maximally non-committal with

regard to missing information’ [260].

3.4.3 Numerical and non-parametric calculations

Were it not for the advent of numerical methods, Bayesian statistics would have remained a theoretical

field, applicable only to simple problems. However, in the early 1990s, a method developed for

statistical physics [261] was applied to the problem, and the MCMC Bayesian revolution began. The

simplified explanation of MCMC is that it is a random-walk algorithm with a Markov Chain function

whose stationary distribution is the posterior distribution of the Bayesian model. The algorithm visits

different parts of the solution space in direct proportion to their probabilities in the posterior, and

converges reliably on the analytical solution [262]. The more samples (steps) are taken, the higher

the resolution of the posterior distribution, similar to Monte Carlo simulation.3 Different samplers

choose the next steps in their random walks more or less intelligently, but the process remains the

same. The most popular algorithms at the time of writing are the Gibbs Sampler [263], NUTS (No

U-Turn Sampler) [264] and ADVI (Automatic Differentiation Variational Inference) [222], which is

used in this thesis.

MCMC algorithms have allowed Bayesian data analysis to flourish, since many different kinds of

distributions and functions can be used in simple and hierarchical models, with the MCMC resolving

all of the underlying mathematics. As with all machine learning algorithms, some knowledge of

the algorithm is useful for specifying and debugging models efficiently. However, for better or for

worse, the modeller needs to know only the basics of Bayesian theory to solve many different kinds of

problems.

3Note that this is the simulation sample size, based on the sample data. It does not “manufacture” data, but approximates

the sample data with increasing accuracy as the simulation size increases.
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The most popular software for doing MCMC is JAGS (Just Another Gibbs Sampler) [265], Stan [266],

and PyMC3 [267].

Although a whole section could be devoted to non-parametric Bayesian regression, it will be mentioned

only briefly. Bayesian data analysis as described in this thesis usually refers to parametric models. In

parametric modelling, the exact functional relationship between the data and the output is described,

and the distributions on the model parameters are obtained. However, in many cases it is not possible

to specify such models. Non-parametric Bayesian regression models, specifically GPs and GMMs,

have proven very useful for energy studies, specifically in the work of Heo et al. [77, 91, 93] . GPs and

GMMs allow for Bayesian uncertainty quantification in the context of heteroscedasticity and models

that cannot be described parametrically. Although these methods can be very useful, they do not

extrapolate well, as far as the author is aware. This is a disadvantage for time series forecasting as is

done in this thesis, and will therefore not be pursued further. However, for models where the range

of the independent variables is not wider in the reporting period than in the baseline period, these

methods allow for accurate uncertainty quantification and regression without needing to worry about

specifying change points or a functional relationship.

3.5 APPLICATION

In this section, some of the theory discussed so far will be applied to the M&V case, with some

simplifications.

Many guides to Bayesian metrology have been written, but the most helpful ones for M&V are by

Estler [193] and M.G. Cox et al. [195]. The notation does differ significantly between different authors,

however. This can be confusing to someone new to the field but helps in the sense that the principles

rather than the notation are learned.

3.5.1 Regression

Since chapters 5 and 6 discuss specific regression methods in depth, and Shonder and Im [178]

have described Bayesian M&V regression well, only general remarks about regression will be made

below.
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In M&V, one often uses the baseline data (Db) to infer the baseline (pre-retrofit) model parameters θθθ

through an inverse method:

θθθ = f−1(Db, t), (3.6)

Where f (·) is a function relating the independent variables to the energy use of the facility, and

t is time. The model parameters describe the sensitivity of the energy model to the independent

variables such as occupancy, outside air temperature, or production volume. For some inverse methods

such as linear regression, uncertainty quantification is reasonably straightforward. However, linear

regression seldom captures the different states of a facility’s energy use, and piecewise regression is

then implemented. Such regression techniques for M&V have been proposed [33, 65, 176, 268, 269],

and they tend to work reasonably well if their assumptions are satisfied, but they are not stable in all

cases, are approximate [178], and the assumptions are often restrictive.4 Once the parameters have

been obtained, they may be substituted into the function f so that the ‘adjusted baseline’ energy use in

the reporting (post-retrofit) period can be predicted, given the reporting period data Dr. The adjusted

baseline energy use Eab can be represented by the predicted value

Êab =
∫ T

R
f (θθθ ,Dr, t)dt. (3.7)

where R is the time of the retrofit and T is the end of the study. If the energy use during the reporting

period is Er, the energy saved is simply Eab−Er. However, this is a deterministic description of M&V.

Since all quantities are uncertain, it would make sense to treat them probabilistically, as in the Bayesian

paradigm.

Because Shonder and Im have written a detailed paper on Bayesian regression in M&V [178], and

because work in later chapters is similar, only a short conceptual discussion will be given here.

Kruschke [19] and Gelman [220] have also given clear, detailed accounts of general Bayesian regres-

sion.

Bayesian analysis proceeds according to (3.5). Suppose one has a simple regression model where the

energy use of a building E is correlated with the outside air temperature T. Let the intercept coefficient

be θ0, and a slope coefficient θ1. One could then write

E = θ0 +θ1T. (3.8)

4If other techniques such as genetic algorithms or particle swarm optimization [270] are used for parameter estimation,

uncertainty quantification may not be possible.
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In standard linear regression, one would write θ̂θθ as the vector of two coefficients and do some linear

algebra to obtain their estimates. There would be a standard error on each, which would indicate their

uncertainties, and if the assumptions of linear regression, such as normality of residuals, independence

of data, homoscedasticity, etc. hold, then it would be accurate. In Bayesian regression, one would

describe the distributions on the parameters as

Pr(θθθ |D) ∝ Pr(D|θθθ)Pr(θθθ)∼ N[θ̂θθ ,σσσ ], (3.9)

where σσσ is the standard deviation on the estimates. Generating random pairs of values from the

posterior, at a given value of T , according to the appropriate distributions, will yield the posterior

predictive distribution. This is the distribution of energy use at a given temperature, or over the range

of temperatures. Overlaying such realisations onto the actual data is called the posterior predictive

check.5

For a problem such as the one above, Bayesian regression is hardly necessary. However, in modern

Bayesian software such as PyMC3 [267], the code used to describe and run the Bayesian model is not

much longer than that for linear regression and runs in a few seconds on a standard computer. Therefore

both could be used. The difference becomes more apparent when the Bayesian model is extended. A

simple way to change the model to be more robust to outliers is to use a Student’s T-distribution [272]

rather than a normal distribution. The heavier tails accommodate outliers better so that they have a

smaller leverage or influence on the regression line. Non-linearity, or even generalised linear models

are also very easily described by simply changing the functional relationship in the model specification.

One disadvantage of Bayesian regression is that it does not scale well. For high-dimensional problems

it would take very long to run, and may not explore the solution space fully unless much care is taken

with the sampler.

A further advantage in the Bayesian paradigm is the use of hierarchical models. This is due to the

model structure rather than the Bayesian calculation itself (it also works for MLE) [19], but it is

nevertheless useful in M&V. Suppose that multiple measures are installed at multiple sites so that the

IPMVP Option C: Whole Building Retrofit is used for M&V. The UMP Chapter 8 [273] reports that

there are two ways to analyse such data. The two-stage approach involves first analysing each facility

separately and then using these results for the overall analysis in stage two. The fixed effects approach

analyses all buildings simultaneously but assumes that the effects are constant across them. This then

5Note that strictly speaking one can specify more scale-invariant priors for regression coefficients than simply using

normal or uniform distributions in Pr(θθθ) [271]. However, the author has not seen this done in practice.
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uses an average effect for all buildings. Hierarchical modelling considers both the individual facility’s

energy saving and the overall effect, simultaneously. It does this by assuming that the group effects are

different realisations of an overarching distribution with a mean and variance, which is used as a prior.

This can lead to ‘shrinkage’ (of the variance, similar to shrinkage in stratified sampling), because the

group effects are mutually informative. For groups with little data, the overarching effect distribution

plays a larger role, and for groups with more data, a smaller role. Also, the overall variance is reduced

because the sources of inter-facility variance are isolated from that of inter-measure variance. The result

for a hierarchical model is that the effect estimation for an individual facility is influenced by the overall

estimate of the measure effect, as well as by the data for the facility. As another example, consider a

program that retrofits air conditioning units in different provinces in South Africa. One could fix the

savings effect across all facilities, but this will underestimate some and overestimate others. Or one

could analyse by facility, then by province, and then overall. The hierarchical model provides a better

alternative in these cases and comprises the bulk of many Bayesian data analysis texts [19,220]. Booth,

Choudhary, and Spiegelhalter have provided an excellent study on using hierarchical Bayesian models

in M&V [274]. For comment on the errors-in-variables model used by them, see Section 4.3.3.3.

3.5.2 Sampling

The goal of measurement is to reduce our uncertainty about a parameter θ (which is our priorPr(θ))

by taking measurements. When this is done our state of knowledge is represented by Pr(θ |D), which

we obtain via Bayes’ theorem. Stated the other way around, we enhance our state of knowledge by

obtaining data. That is, as long as the data is of such quality as to outweigh the prior distribution.

If we are certain that the true value lies within 5% of some known value, and we take measurements

with an instrument that has an accuracy of 20%, we are not increasing our certainty about the true

value, but calibrating our instrument. No matter how much data we collect, our prior Pr(θ) will be

more sharply peaked than the likelihood Pr(D|θ), so that the posterior is dominated by the prior.

To illustrate how such intuition is reflected mathematically by Bayes’ theorem, a well-known calculation

is demonstrated. More comprehensive descriptions can be found in Kruschke [19] and Estler [193].

Normal distributions are assumed, as these are both common and simple for illustration purposes. Let
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the prior estimate of the energy use be denoted Ep centred at E0, which follows the distribution

Pr(Ep)∼ N[E0,σp] =
1

σp
√

2π
exp

[
−(E−E0)

2

2σ2
p

]
. (3.10)

if E is some measured value. The system is then measured by an instrument with some error. Assume

that the instrument is unbiased, so that

Pr(Em)∼ N[0,σm] =
1

σm
√

2π
exp
[
−(Em−E0)

2

2σ2
m

]
. (3.11)

If a measurement with result E is taken, then the uncertainty in the value is Pr(Em|E) = N[E,σm].

However, usually one is not interested in Em itself, but in the true value E. Using Bayes’ theorem, this

can be obtained by

Pr(E|Em) ∝ Pr(Em)Pr(Em|E) (3.12)

so that

Pr(E|Em) ∝ N[E0,σp]×N[E,σm]. (3.13)

It simplifies the mathematics to work with the precision of the distribution, rather than the variance or

standard deviation, where the precision is the reciprocal of the variance. The precision is often denoted

τ. 6 Therefore

τ = 1/σ
2. (3.14)

By convolving the two distributions in (3.13), and with some algebraic manipulation7 one finds

that:

Pr(E|Em) ∝
τ̄√
2π

exp
[
−(E− Ē)2τ̄

2

]
. (3.15)

where

τ̄ = τp + τm (3.16)

and

Ē =
τpE0 + τmEm

τp + τm
. (3.17)

The resultant distribution in (3.15) is N[Ē,1/τ̄], and by substituting the values of the above equations

into this formula, the posterior of the mean of E can be described. Its mean is the weighted average

of the prior and measurement, where the weights are determined by the respective precisions. If

one can increase the precision τm by taking repeated measurements with accurate equipment, these

measurement data will dominate the posterior distribution, and the prior will have a small effect. If n

6It should not be confused with its notation in Chapters 5-7 where it denotes ‘present time’.
7Detailed by Kruschke [19, Ch. 16].
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measurements are taken, then

Ē =
τpE0 +nτmEm

τp +nτm
(3.18)

and

w̄ = τp +nτm. (3.19)

The main point of this calculation is to illustrate how the Bayesian paradigm makes mathematical

sense of repeated measurement and the associated decrease in uncertainty. These results, although

useful, are limited by the fact that only the mean energy use E is estimated, and it is assumed that the

variances are known. Allowing both to vary simultaneously causes the mathematics to become more

involved. In Section 3.5.4 the power and simplicity of Bayesian numerical methods are illustrated for

such a case.

3.5.3 Measurement

The Bayesian approach also makes sense of how one should approach nuisance parameters. A nuisance

parameter is one whose value is uncertain and influences the outcome of a process but is not of interest

itself. A good example of this is measurement error in M&V. The way the Bayesian paradigm deals

with nuisance parameters in the context of conditional probability is called marginalisation. The

example below is a very simplistic treatment of mismeasurement, and references to more complex

methods are discussed in Section 2.3.2. Gregory [275, p.68] also presents a worked out example

similar to the one below.

Suppose that one wants to infer a parameter θ from the data: Pr(θ |D). The parameter could be

energy use. However, one measures the data with an instrument containing an error a, so that the joint

distribution

Pr(θ ,a|D) (3.20)

is produced. This is illustrated graphically in Figure 3.4. However, one is only really interested

in

Pr(θ |a,D). (3.21)

To marginalise a out of the equation means to integrate over a. This collapses the vertical axis

of Figure 3.4 by summing all of the columns into the “margin”, to obtain (3.21): a probability

distribution over θ only, but considering a. This is expressed mathematically as
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Figure 3.4. Joint distribution of a and θ .

Pr(θ |a,D) =
∫

a
Pr(θ |a)Pr(a|D)da. (3.22)

In practice, however, θ needs to be inferred from the data, and for this Bayes’ theorem is needed. Let

a ∼ N[a,σm] where σm is the standard deviation. Also, let the measured data fall in a distribution

D∼ N[m,s]. Implementing Bayes’ theorem, we obtain

Pr(θ |a,D) =
∫

a
Pr(θ)Pr(a|D,θ)Pr(D|θ ,a)da. (3.23)

Since the prior is not a function of a, it may be removed from the integral:

Pr(θ |a,D) = Pr(θ)
∫

a
Pr(a|D,θ)Pr(D|θ ,a)da. (3.24)

If one assumes for the sake of simplicity that the measurement error is additive and therefore independ-

ent from the measurand, θ may be neglected from the metering accuracy term:

Pr(θ |a,D) = Pr(θ)
∫

a
Pr(a|D)Pr(D|θ ,a)da. (3.25)
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By substituting the normal distribution formula into each conditional probability term, the probability

may be written as:

Pr(θ |a,D) = Pr(θ)
∫

a

1√
2πσm

exp
(
−(a−1)2

2σ2
m

)
︸ ︷︷ ︸

marginalised

1√
2πs

exp
(
−(m−aθ)2

2s2

)
︸ ︷︷ ︸

likelihood

da. (3.26)

In this way, the measurement error term is ‘marginalised’ or integrated out. The two-dimensional joint

probability distribution of (3.20) is collapsed to only the θ dimension: the variable of interest, as a

function of the data and the nuisance parameter (measurement uncertainty). In very simple cases, the

mathematics reduce to adding the variances of convolved independent normal distributions according

to σ2
total = σ2

1 +σ2
2 . However, in practice, Bayesian software packages do this calculation numerically

on the user’s behalf. As with most Bayesian modelling, the modelling decisions relate to which

distributions to specify, and how to relate them to the parameters (in a hierarchical model), rather than

doing integration.

3.5.4 IPMVP example

To illustrate a practical Bayesian M&V model, consider the following example from the IPMVP [1].

Twelve readings are taken by a meter. These are reported as monthly readings, but are assumed to

be uncorrelated with any independent variables or other readings, and are therefore construed to be

random samples. The values are

D = [950,1090,850,920,1120,820,760,1210,1040,930,1110,1200]. (3.27)

The units are not reported, and the results below are therefore left dimensionless, although kWh would

be a reasonable assumption. These data were carefully chosen, and have a mean µ = 1 000, sample

standard deviation ss = 150.

3.5.4.1 IPMVP solution

The standard error is SE = 43. The confidence interval on the mean is calculated as

CI = µ± t×SE (3.28)
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Since t90%,11 = 1.80, the 90% confidence interval on the mean was calculated as

1000 ± 1.80 × 43 = (933, 1 077), or a 7.7% precision. Energy metering uncertainty is not

considered in this calculation.

3.5.4.2 Bayesian solution

The Bayesian estimate of the mean is calculated as follows. First, prior distributions on the data need

to be specified. Vague priors will be used:

Pr(µ)∼Uni f orm[0,2000] (3.29)

Pr(σ)∼Uni f orm[0,1000] (3.30)

A t distribution will be used for the likelihood below, and the degrees of freedom parameter (ν) of this

distribution will therefore need to be specified. One could fix ν for the t-distribution at 12. However, if

outliers are present or if the data has more or less dispersion than the standard t-distribution, this would

not be realistic. It is therefore warranted to indicate the uncertainty in the data by specifying a prior

distribution on ν . Kruschke [240] recommends an exponential distribution with the mean equal to the

number of data points. This allows an equal probability of ν being higher or lower than the default

value:

Pr(ν)∼ Exponential[1/12]. (3.31)

If θθθ = (µ,σ ,ν), the likelihood is:

Pr(D|θθθ)∼ StudentT [Pr(µ), Pr(σ), Pr(ν)] . (3.32)

Note that the t distribution is not used because of the t-test, but because its heavier tails are more

accommodating of outliers. Any distribution could have been specified if there was good reason to do

so. The posterior on µ is plotted in Figure 3.5. It was simulated in PyMC3 using the ADVI algorithm

with 100 000 draws, which is stable and converges on the posterior distribution in 10.76 seconds on a

middle-range laptop computer.

It is important to note that no probability statements about the values inside the frequentist interval

can be made, nor can one fit a distribution to the interval. The distribution indicated is strictly a

Bayesian one. The Bayesian (highest density) interval is slightly wider than the frequentist confidence

interval, at a precision of 8.5%. If ν were fixed at 12, (indicating that we are certain that the data

does indeed reflect a t distribution with 12 degrees of freedom exactly), Bayesian and frequentist
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Figure 3.5. Illustration of Bayesian posterior density Pr(µ|D), 90% HDI, and frequentist 90% CI.

intervals correspond exactly. However, the Bayesian alternative allows for a more realistic value. With

comparisons between two groups (two-sample t-tests), the effect of uncertainty in the priors becomes

even more pronounced [240].

The posterior distribution can now be used to answer many interesting questions. For instance, what

is the probability, given the data at hand, that the true mean is below 900? Alternatively, is it safe to

assume that the standard value of 950 is reflected by this sample, or should the null hypothesis be

rejected? (If previous data to this effect is available, it could be included in the prior, maybe using the

equivalent prior sample size method [253]). The frequentist may say that there is not enough evidence

to reject the null, but cannot accept it either. In the Bayesian paradigm, 950 falls comfortably within

the 90% confidence range, and can therefore be accepted at that level. As a further question, if this is an

energy performance contracting project, and we assume that the data points are different facilities rather

than different months, would it be worthwhile taking a larger sample to increase profits, if we believe

that the true mean is at 1 100? (On which see Lindley [246], Bernardo [247] and Goldberg [69]).
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3.6 CONCLUSION

The Bayesian approach provides an intuitive and coherent framework by which M&V uncertainty can

be assessed. It treats all unknown parameters as random variables and codifies the interactions of their

probability distributions given the data. Although most M&V problems will not be solved analytically,

the analytical solutions provide a logical foundation for how measurement and sampling uncertainties

are treated intuitively. Numerical solvers and modern software have greatly expanded the range of

application of the Bayesian approach, and have precluded the need for analytical solutions. In many

cases, the Bayesian approach is preferable to standard frequentist methods regarding theory and has

become simple to implement in practice.
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CHAPTER 4 ENERGY METERING UNCERTAINTY

AND CALIBRATION

4.1 CHAPTER OVERVIEW

This chapter will consider two aspects of the cross-sectional energy metering uncertainty problem. The

first is the contribution of energy metering uncertainty to overall metering-and-sampling uncertainty. It

considers the difference that installing less accurate meters make on the overall uncertainty. Since it

will be shown that energy metering uncertainty plays a small part in overall project uncertainty, the next

question is whether this discovery can be used to minimise project cost. A portion of a large project’s

metering costs is due to meter calibration. A low-cost meter calibration method is therefore devised.

To devise such a method, the nature of mismeasurement is explained, and different mismeasurement

mitigation techniques are considered. A technique is then decided upon, and after modification is

tested on a real-world data set.

There is a third aspect to the cross-sectional sampling problem, which relates to how many meters

should be installed to estimate the population’s energy use accurately. For single-year studies, optimal

simple random or stratified sampling formulae could be used. But for multi-year studies, the information

from previous years could be used to reduce planned future sample sizes. The mathematical framework

for this calculation is left to Chapter 6. 1

1This chapter is based on a conference paper presented at the International Energy Programme Evaluation Conference [72]

and journal articles published as part of the author’s thesis [27–29].
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4.2 ENERGY METERING UNCERTAINTY IN THE CONTEXT OF OVERALL PROJECT

UNCERTAINTY

The summation of simple measurement and sampling uncertainties is reasonably well understood, both

in statistics and in M&V. Note that this does not include attenuation bias due to mismeasurement as

described in Section 2.3.2 and later in this chapter. For now, the discussion will focus on simple energy

metering uncertainty. Although G14 [17, 31] provides the best description in terms of formulae and

calculation methods, to understand the relative contribution of measurement uncertainty to overall

uncertainty it is necessary to rearrange some of the known formulae and plot them graphically.

Before a detailed investigation of measurement uncertainty can be made, the sampling distribution

should be carefully defined. There are three distributions relevant to sampling: The population

distribution is the true distribution of the population, and is unavailable to the engineer unless he

samples the total population with perfect measurement equipment. The sampling distribution is

the idealised distribution for samples of a given size. With perfect measurement equipment, the

sample distribution will be equal to the sampling distribution. The sample distribution is the observed

distribution on the sample that was actually taken, with the measurement equipment actually used.

This is the only distribution accessible to the engineer.

The calculations below are only valid under the standard statistical assumptions of independent,

normally distributed data. We also assume that although the measurement instrument may be inaccurate,

a large population of such instruments will be unbiased. This implies that the measured sample mean

will tend to the true mean as the sample size tends to infinity. It is also assumed that measurement

errors are normally distributed around the mean.

Let the subscript s denote the (theoretical) sampling distribution, and the subscript m denote measure-

ment parameters. Furthermore, let σm be the measured standard deviation of the sample and zm be

the standard score of the known confidence level α on the measured data. Since only measured data

is available, consider sm as the sample standard deviation and x̄ as the sample mean, and pm as the

precision or error bound. The upper limit of this error bound should be equal to the upper confidence

limit:

x̄+ pmx̄ = x̄+ smzm, (4.1)

∴ pmx̄ = smzm, (4.2)
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∴ sm =
pm

zm
x̄. (4.3)

The standard deviation, and therefore the variance and distribution on the measurement data has now

been characterised by writing the standard deviation in terms of the known precision level, desired

confidence level, and the sample mean.

The error in a measurement system may be expressed statistically as a standard deviation from the

mean, or it may be expressed as a maximum error. The maximum error approach is popular and

conservative. However, it represents a highly unlikely and unnecessarily strict case where all the

individual errors are assumed to be at their maxima simultaneously. Instead, the statistical approach

will be considered here. The total error is calculated as a root mean square, which is the way in which

standard deviations are added. It should also be stated with a certain confidence level.

Errors can also be expressed in absolute or relative terms. 200 kWh±10 kWh has an absolute error of

10 kWh, but a relative error of 5%. The expressions for adding and multiplying uncertain values differ

according to which expression is used. Relative errors will be used in this thesis.

When combining two independent normal distributions, the means are added arithmetically. However,

the total variance of the combined distribution should be

s2
combined = s2

s + s2
m, (4.4)

where s2
s is the sampling variance. But from (4.3),

s2
m =

p2
m

z2
m

x̄2. (4.5)

Therefore,

s2
combined = s2

s +
p2

m

z2
m

x̄2. (4.6)

It is useful to define these relations in terms of the coefficient of variance(CV), since this makes the

calculation independent of the size of the mean and variance:

CV =
s
x̄
. (4.7)

Also, since sample size required for M&V reporting is proportional to the CV value, the relative

contribution of energy metering uncertainty to CVcombined is an indication of size of the effect of energy

metering uncertainty on overall project cost. Substituting (4.6) we can now define the combined CV

as

CVcombined =
scombined

x̄
=

√
s2

s +
p2

m
z2

m
x̄2

x̄
. (4.8)
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Figure 4.1. Contour plot of combined CV as a function of sample CV and measurement precision in

equation (4.9), for a measurement confidence of 95%.

This may be simplified to

CVcombined =

√
CV2

s +
p2

m

z2
m
, (4.9)

The combined CV has now been reduced to a formula needing only values that are readily available

(meter accuracy), and widely estimated (CVs [15]). An example of (4.9) is plotted in Figure 4.1 at the

95% confidence level, which is the most common one used in metrology [113]. This corresponds to a

“coverage factor" of k = 2, or 2σ . We can see that for pm ≤ 0.1 and CVs ≥ 0.2, the overall uncertainty

is dominated by sampling uncertainty, and energy metering uncertainty can be safely neglected.

The formula for the sample size n required to report with a given confidence αr at zr, and a precision

pr, is:

n =
z2

r CV2

p2
r

. (4.10)
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Figure 4.2. Contour plot of sample size as a function of sample CV and measurement precision.

By substituting (4.9), one can write the required sample size as a function of sampling CV, and

measurement accuracy, and required reporting precision:

n =

(
CV2

s +
p2

m

z2
m

)
z2

r

p2
r
. (4.11)

An example of (4.11) is plotted in Figure 4.2.

4.2.1 Practical implementation

Consider the case of energy meters which conform to the IEC 62053-22 [23]. These standards specify

that electricity meters should have an accuracy of 0.5% for class 0.5S and 0.2% for class 0.2S during

normal operation. However, for the 0.5S class, precision may be up to 1% for low power factors.

ASHRAE 14-2002 Technical note #7 of A5.6.2.1 [31, p.91] gives the instrument system error as

2%, which includes the CT accuracy. The standards do not specify a confidence interval on these

values. One may therefore select the 2% value as a realistically low precision, and zm = 1.96, which
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corresponds to a 95% confidence level [113]. One may also assume CV= 0.05: that is, a stable process

with a coefficient of variance of 5%. This reduces the contribution of sampling uncertainty to overall

uncertainty.

Using the above-mentioned figures, by (4.9), the ratio between CVcombined and CVs is:

CVcombined

CVs
=

√
CV2

s +
p2

m
z2

m

CVs
. (4.12)

Therefore, by substituting our assumptions above,

CVcombined

CVs
=

√
0.052 + 0.022

1.962

0.05
= 1.021. (4.13)

Thus in a worst-case scenario, energy metering uncertainty would add 2.1% relative to the sampling

uncertainty. In other words, if the uncertainty on the savings is 10%, sampling uncertainty comprises

roughly 9.8% of this figure, and energy metering uncertainty comprises the other 0.2%. It can be seen

that in such cases, energy metering uncertainty may be neglected in most practical applications.

4.2.2 G14 uncertainty formula sensitivity analysis

As further confirmation, the G14 uncertainty summation formula 4-8 was considered. This formula

combines metering, sampling, and modelling uncertainties and is widely used in industry. It is a more

complicated formula than that described above, with many input variables. To consider the importance

of energy metering uncertainty on the total G14 uncertainty, a sensitivity analysis was conducted. A

Sobol’ sequence [276, 277] with Saltelli et al.’s sampling improvement [278] was implemented in

Python via the SALib module [279]. It was run with 50 000 points, and the overall sensitivity was

considered.2 Energy metering uncertainty proved to be one of the least influential factors considered.

The results of the sensitivity analysis are shown in Table 4.1. From this, and the result of the calculation

in the previous subsection, it is clear that energy metering uncertainty plays a small role in overall

M&V reporting uncertainty for cases where sampling is done.

2The Morris method [280,281] could also be used and has proven popular among energy researchers as shown in Table 2.2,

because it is more computationally efficient for the calculation of higher-order effects. This becomes important for expensive

BEMs. Menberg, Heo, and Choudhary [282] have shown that it gives similar results to the Sobol’ sequences for such cases.
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Table 4.1. Sensitivity Analysis of ASHRAE G14 [17, 31] overall M&V uncertainty equation, in

descending order of overall influence.

Parameter Range Overall Sensitivity Score

Fraction Saved (0, 0.5) 1.449667

Lag-1 Autocorrelation Coefficient (0, 1) 0.263855

Model CVRMSE (0, 0.5) 0.040357

Reporting Confidence (68%, 95%) 0.023823

Sampling CV (0, 1) 0.019965

Number of Reporting Period Points (12, 60) 0.019742

Proportion of Population Surveyed (10%, 100%) 0.011008

Population Size (2, 100) 0.008594

Number of Baseline Period Points (12, 60) 0.007507

Energy Meter Uncertainty (0%, 5%) 0.000029

Independent Variable Uncertainty (0%, 5%) 0.000026

Number of Parameters in Regression Model (2, 5) 0.000005

4.2.3 Sampling power

The standard sampling formula (4.10) recommended by leading guidelines is not robust, or in stat-

istical terms, yields underpowered study designs. To illustrate, the following simple example is

presented.

According to the formula, one needs 68 samples for 90/10 precision, if the CV of the sampling

population is 0.5. Randomly generate 68 data points (sampling results) from such a distribution:

D0−68 ∼ N[1000,500] (4.14)

As in Section 3.5.4.1, the standard error (SE) is calculated as σ/
√

n, and the 90% confidence interval

as µ ± 1.645× SE. By repeatedly sampling n = 68 points according to the distribution above, and

checking whether the true mean does, in fact, lie in the interval, and whether these 90% bounds are

less than 10% from the mean, it can be verified whether the interval does, in fact, satisfy the 90/10

requirement.
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This simulation was repeated 10 000 times. It was found that the interval does not contain the true

mean 10.75% of the time. This accords with the 90% frequentist interval specification. The 0.75%

additional violation can be reduced to 0.21% if the t-score for 67 degrees of freedom is used, rather

than the z-score (which assumes an infinite sample size). The precision is where the problem lies,

however. The lower bound on the interval is more than 10% away from the sample mean in about 44%

of cases. In more than 50% of cases, the interval either does not contain the true value, or the precision

bound is violated. In other words, when using (4.10), there is a 50/50 chance of not reaching the

desired precision level. This demonstrates that the sample sizes yielded by (4.10) are underpowered.

If a sample size of n = 80 is used instead, the precision constraint is violated in only 16.5% of cases,

and the total violation rate drops to 24.5%. If n = 100 is used, these are reduced to 0.83% and 11%

respectively.

These values do not change noticeably when measurement errors between 0.2% (Class 0.2S meter)

and 3% (Class 3 meter) are added.

4.2.4 Metering vs sampling uncertainty conclusion

The practical implication of the results above is that more accurate and expensive meters do not provide

an advantage over more cost-effective meters in cases where sampling is done, all else being equal.

There is no increase in risk for the project developer or client when using more cost-effective metering

for such projects [72]. As long as meters are properly calibrated and suitable for the environmental

conditions of the application, more valuable information will be gained from installing a larger number

of standard meters, rather than a smaller number of high-accuracy meters.

4.3 LOW-COST CALIBRATION

4.3.1 Introduction

This section builds on the background given in Section 2.3.2.

The first question to be answered is, “is it really necessary to develop a low-cost calibration method

when the chapter up to now has shown that energy metering errors do not contribute meaningfully
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to overall uncertainty for cases with standard sampling and modelling uncertainties?”. It is indeed

necessary. The results up to now have shown that more expensive meters with very high accuracies

are not necessary in such cases. However, any meter still needs to be calibrated. While reducing the

purchasing cost of a meter may reduce the capital outlay for a project or an M&V company, reducing

calibration costs will reduce the operational overheads of such a project or company. Note that only

meter models qualified to international standards are considered.

South Africa’s 12L tax incentive programme [2] requires that M&V meters be calibrated by an accred-

ited laboratory at fixed intervals, and other international programmes adopt similar approaches [112].

This is a sound principle from a regulatory point of view. It minimises the consumer’s risk, that is,

the risk of using an inaccurate meter and paying for savings that did not occur. However, a significant

opportunity cost is incurred because many projects are never implemented due to monitoring, laborat-

ory, and plant shut-down costs. An example of this has been recorded for the CDM lighting retrofit

project specifications [47,48]. Striking a balance between calibration costs and monitoring accuracy is,

therefore, an essential but non-trivial consideration for policymakers.

Furthermore, the European Measurement Instrument Directive (MID) [147] requires that meters

be calibrated in-situ, that is, in the environment in which they will be installed [148]. Besides

regulatory compliance in European countries, a method capable of doing this is also convenient and

practical.

One of the reasons imprecise reference instruments are avoided is because it will lead to an error-in-

variables effect, requiring Measurement Error Models (MEMs).3 To the best of the author’s knowledge,

MEMs have not been applied to electrical meter calibration before. The Bayesian approach will be used

below. The method proposed in this chapter is therefore novel for a number of reasons. Calibration

is usually done in a laboratory, using highly accurate and expensive laboratory equipment, whereas

this method will use a commercial-grade meter as a calibrator. Calibration usually does not account

for errors in the calibrator, whereas this method will do so. To the author’s knowledge, Simulation

Extrapolation has not been used for meter calibration and has also not been combined with Bayesian

regression as is done in this paper. Finally, the proposed approach provides a more practical solution

to in-situ calibration than those proposed in the literature.

3See Section 2.3.2.
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It is recognised that calibration is about more than having access to an accurate reference instrument

and that quality and traceability procedures as set out in ISO 17025 [184] should also be in place.

However, even energy meters calibrated to lower accuracies than the current classes should be sufficient

for most M&V applications, where uncertainties are dominated by other factors.4

The cost saving from using the method proposed in this paper will vary with the number of meters

disciplined instead of being sent to a calibration laboratory. The cost saving for the client will also vary

with the cost of facility down-time needed to install and remove meters. The meters needed when using

the proposed method are not more or less accurate than standard energy meters, and their accuracy

will normally be determined by other factors than the method proposed.

The commercial meter-as-calibrator will measure with a non-negligible error, and therefore the error-in-

variables effect should be taken into account. A range of scenario-specific MEMs has been developed

to account for how the measurement errors may arise. The nature of the errors needs to be classified

accurately to apply the correct MEM to a problem. In some cases, certain simplifying assumptions

may restrict the model’s applicability. In others, incorrect assumptions may lead to erroneous results.

Mismeasurement in M&V is treated more fully in Section 2.3.2. Carroll et al. [196] and Gustafson [197]

have also written excellent textbooks on the topic.

The notation x will be used to denote the true values of the independent variable (reference instrument

or calibrator) and y the true values of the dependent variable (UUT). To differentiate between the true

values and the observed values which are measured with error, an asterisk (*) is used for measured

values.

Before considering the errors themselves, two related concepts need to be mentioned. An exposure

model is often needed when specifying an MEM. Although we often have a model of how errors arise

in the form f (x∗|x), we cannot work backwards to infer x from the observed x∗. An exposure model

describes this function: f (x|x∗). This is often done through a third variable z. The exposure model

then takes the form f (x|z), where z is some covariate measured without error.

Model identifiability is another concern. Sometimes a key piece of information is missing, and the data

are not enough to identify all the model parameters uniquely. Carrol et al. [196] and Gustafson [197]

4compare Section 2.3.1.1.
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adopt complementary approaches. Briefly, Gustafson found that non-identifiability is not always

detrimental, and Carroll et al. found that formal identifiability is not always good enough, especially for

threshold cases. Gustafson also found that specifying uncertainty (Bayesian priors) on some parameters

may even lead to better results than fixing those parameters at slightly incorrect values for the sake of

identifiability.

4.3.2 Error taxonomy

Errors may vary in a number of ways. First, errors can be correlated or uncorrelated. This is not in

the same category as the classifications that follow but is an important distinction nonetheless. Errors

that are uncorrelated with other variables are the simplest to model. Consecutive errors may also be

autocorrelated in a time series. This sequentiality is hidden in scatter plots and regression analyses,

although it still affects the estimates.

Errors can be classical or Berkson. If ε is a generic error term, classical errors take the form x∗= x+εεε ,

and are more common. This is when the error is in the instrument itself. Berkson errors take the

form x = x∗+ εεε . This occurs when the actual value of the measurand varies around the assigned or

measured value, because the source of the error is external to the instrument.

Errors are classified as multiplicative or additive. Multiplicative errors are of the form x∗ = xεεε ,

whereas additive errors take the form x∗ = x+ εεε . The additive error assumption is a popular one as it

greatly simplifies MEM mathematics: additive errors are usually associated with constant variance

throughout the measurand range. This is called homoscedasticity and is a critical assumption when

performing Linear Regression (LR). The majority of techniques have been developed to describe this

kind of model. However, this assumption is not always valid. For example, it has been demonstrated that

energy meter measurement errors are non-linear and multiplicative [217], and are thus heteroscedastic.

This has been acknowledged to produce problems in econometric energy analyses [283], and frequentist

methods to account for some cases in regression analysis has been developed [201]. It may be

mitigated by assuming a log-normal distribution and working with logx∗, since logxεεε = logx +

logεεε , transforming the error model to an additive one. However, the assumption of a log-normal

distribution on ε (so that logε ∼ Normal), although mathematically convenient, is not always valid or

preferred [196]. Heteroscedasticity can be present even for additive errors when they have non-constant

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

86

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4 ENERGY METERING UNCERTAINTY AND CALIBRATION

bounds over the measurement range, such as energy meters and CTs [22–25]. These bounds are shown

in Figure 2.2.

Errors may be differential or non-differential. Non-differential errors mean that x∗ contains no more

information about y than x does. The response does not change due to measurement. Differential

errors may occur when the response y is measured before the covariates x∗ and z, and these variables

are liable to change. For example, the diet (x) of women with breast cancer may be measured only after

their diagnosis y. It is possible that the test subjects change their diet as a result of the diagnosis [196].

Another example is when x∗ is a proxy for x, not simply a mismeasurement. For example, plug loads

are sometimes used as a proxy for occupancy [11]. Differential errors may also occur in ex-post energy

use surveys for residential retrofit programmes where the response (purchasing of certain equipment,

for example) is measured before other variables of interest are measured.

Last, the function y(x) may be linear or non-linear. This is not an assumption about the errors

themselves but does affect the kinds of errors that are permissible. The linear assumption is popular as

it allows LR to be used if one assumes normally distributed additive errors. For many models, this is a

valid assumption. However, Carobbi, Pellicci, and Vieri [217] have shown that the standard P =V I

electrical power equation, where P is Power in Watts, V is potential difference in Volts, and I is current

in Amperes, can be modelled as

Pn = (1+α)V Icos(φ +φc)+ ε, (4.15)

when an energy meter measures with error. In this equation, α is the gain error, φc is the phase error,

and ε is the bias error. The gain error α changes the amplitude of measured power fluctuations, but

does not affect the mean. In other words, the larger the energy reading, the larger the error. The bias

error ε offsets the measured power, changing the mean power read by the meter, but not the amplitude

of the fluctuations. This error may bias the power and energy reading upwards or downwards. The

phase error φc has a similar net effect to the gain error, but changes according to the power factor error

of the meter. Carobbi, Pellicci, and Vieri’s contribution [217] was to show that (4.15) is a statistically

adequate model, capturing the real error behaviour of energy meters without specifying too many

parameters.

Although this error is multiplicative, the error bounds in the IEC meter qualification standards [22–24]

are additive. The meter may still have a multiplicative error, but this error is always smaller than the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

87

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4 ENERGY METERING UNCERTAINTY AND CALIBRATION

additive error bound. In cases where these are the only data available, additive errors may have to be

assumed. Furthermore, the error model is only non-linear if the phase error term φc is of interest.

4.3.3 Meter calibration

The method below focusses on energy meters but can be used for instruments measuring other

parameters as well. The most analogous cases are flow measurement [57], and possibly exhaust gas

analysis [58]. Occupancy measurement may also benefit from thoughtful application [8, 11], but

temperature measurements are often biased due to spatial variations [152], and will require more

careful application.

The proposed approach is to discipline a meter (the UUT) using another relatively low-specification

commercial-grade metering system. This could be done by installing the meters in parallel in-situ

at the facility for a short period, such as 24 hours if both measure at a resolution of 15 minutes.

The data from the calibrator are then used to correct (discipline or calibrate) the data from the UUT.

Although the UUT is not calibrated, we assume that it is of reasonable quality. For example, the model

range to which the UUT belongs should be qualified to an IEC specification. This is necessary to

ensure that readings will remain stable under different operating conditions such as winter and summer

temperatures.

For high-accuracy laboratory multimeters measuring to six or eight decimal places, various additional

factors should be considered during calibration. These include thermoelectric voltages, cable imped-

ance, and performance at different frequencies [182]. However, these fluctuations are small enough to

be negligible for commercial energy measurement applications.

4.3.3.1 Errors in x

The calibrator data is selected for the x-axis, rather than the UUT. This is because the calibrator should

have smaller errors than the UUT. In this way, attenuation bias is minimised as much as possible before

MEM adjustments are made.
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Table 4.2. Accuracy specification for IEC Class 3 meter [24]. Pn denotes the rated power, In rated

current, and Imax the maximum current. See also Figure 2.1

Value of Current Power Factor Error limit

0.02In ≤ I ≤ 0.05In 1 ±0.04Pn

0.05In ≤ I ≤ Imax 1 ±0.03Pn

0.05In ≤ I ≤ 0.1In 0.5 ±0.04Pn

0.1In ≤ I ≤ Imax 0.5 ±0.03Pn

To be conservative, the highest (least accurate) IEC class meter and Current Transformer (CT) com-

bination will be used as a reference instrument. This would be a Class 3 meter [24] with a Class 5

CT [25]. The meter accuracy limits are shown in Table 4.2. For power factors between ±0.5 and ±1,

the accuracy limits were linearly interpolated. The CT has a flat accuracy limit of 5% of the rated

current. These are additive error bounds relative to the rated, or full scale, current. It is assumed that

this meter is calibrated. The true errors may still be multiplicative but will fall within these additive

bounds.

Metrology guidelines often recommend that a uniform error distribution between the error bounds be

assumed [18]. However, this is too conservative. Instead, errors bounds are assumed to be the 95%

confidence limits on a normal distribution [18, 31]. The readings are also assumed to be unbiased.

Errors are assumed to be classical, non-differential, and uncorrelated. Even though errors are additive,

they are heteroscedastic (having non-constant variances) due to the stepwise nature of the error bounds

as described by Table 4.2 and Figure 2.1. The total error would be the root sum of squares of the meter

and CT error bounds at a given point:

pcombined =
√

p2
meter(x)+ p2

CT (x). (4.16)

Let pcombined(x) be the combined error bound at x, and z be the standard score (or coverage factor).

The standard deviation on the a given reading can then be written as

σu =
pcombined(x)

z
. (4.17)

The rated power of the meter is assumed to be 200 kW, and the rated current for the CT is assumed to

correspond to this value.
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The measured values on the calibrator x∗ can then be defined as

x∗ ∼ N[x,σu] (4.18)

4.3.3.2 Errors in y

For errors in our UUT (y) more detailed assumptions may be made. Following Carobbi et al. [217],

the characteristic function for the UUT is assumed to be

y∗ = (1+α)xcos(φ +φc)+ ε, (4.19)

where α is the gain error, φ is the phase difference between voltage and current, φc is the phase error,

and ε is the bias error. The errors are classical, with multiplicative and additive components. They

are also homoscedastic, and the function is non-linear. Since these errors will not cause attenuation

bias, the MEM is not selected on their basis. However, they are built into the overall measurement

model.

4.3.3.3 MEM selection

Since φc is one of the variables of interest, this is a non-linear function, and standard LR techniques

such as Fuller’s method of moments [216] are not valid unless the cos(φ +φc) term in (4.15) and (4.19)

is neglected.

Although f (x∗|x) is available by (4.18) in the form of a distribution function, f (x|x∗) is not. To obtain

this, an exposure model would be needed, which is not available.

One approach would be to specify a naïve Bayesian model on the data using (4.18). By specifying

a distribution on x∗, the noisy independent variable is taken into account, mitigating the attenuation

effect to some degree. If errors were Berkson rather than classical, this would be accurate. However,

this is not the case for measurements under investigation.5

5The author believes that this mistake was made in an otherwise excellent previous Bayesian errors-in-variables investiga-

tion for M&V [274].
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Since the availability of an exposure model, repeated measurements, or a sub-set of gold-standard

measurements is not assumed, MEMs like Regression Calibration, Maximum Likelihood techniques,

and the Bayesian approach are not available. Instead, a hybrid SIMEX solution is proposed

4.3.3.4 SIMEX

SIMEX is a simple, powerful algorithm that compensates for measurement error using only f (x∗|x) in

the form of σu explained in Section 2.3.3.2. It was first proposed by Cook and Stefanski [284], and

a useful summary can be found in Carroll, Stefanski, et al. [196]. The premise is that although the

biased parameter estimates {α∗,φ ∗c ,ε∗}= θθθ
∗|x∗ cannot be unbiased directly, they can be biased even

more by adding more noise to x∗. By repeating this biasing for increasing noise levels, the relationship

between noise in x and bias in θθθ is found. A trend can be observed from these successive noise levels,

and the noise-free state θθθ |x can then be inferred by backwards extrapolation. Figure 4.5 illustrates this

graphically. The SIMEX procedure can be defined more rigorously as follows:

1. Describe the variance σu due to mismeasurement.

2. Describe the UUT function y = f (x).

3. Specify the vector of noise multiples to obtain a vector ζζζ of length n at which simulation will be

done. Values for ζζζ can start at zero and could go up to five.

4. Calculate x∗
ζζζ ,n = x∗+(1+

√
ζζζ )σu. The reason for the square root on ζ is explained by Carroll

et al. [196], but is beyond the scope of this study.

5. Solve y∗
ζζζ ,n = f (x∗

ζζζ ,n) to find θθθ(ζζζ ). If f (x) is linear, this can be done by LR. For non-linear

problems, an appropriate function should be specified, and an optimization algorithm is needed

to solve for the function parameters.

6. For every element of θθθ (that is, α,φc,ε), a vector of n solutions in ζζζ is now available. Consider

the gain error α . If the function α̂(ζζζ ) were linear, one could now solve

α̂(ζζζ ) = aαζζζ +bα . (4.20)
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Carroll et al. [196] divided ζζζ into discrete levels with many samples per level. They then used

the mean of every level of ζζζ . However, since this is not an expensive step, one would rather

regress against the full data set than assume that the distribution is symmetric. Also, rather than

using discrete levels, a linear spacing of points between the maximum and minimum values of ζζζ

was used.

7. The unbiased parameter estimate α|x is found by solving (4.20) for ζ =−1. This is illustrated

graphically in Figure 4.5.

8. Repeat Step 7 for φ and ε .

4.3.4 Case study: SIMEX application

The SIMEX algorithm was modified slightly and applied to the meter calibration problem at hand.

Initially, the algorithm was tested with an energy data set of linearly interpolated points between

0 and In, at three different power factor levels. This simulates a laboratory set-up. However, to simulate

in-situ calibration, real load profile data was needed. The actual energy consumption of a university

residence at the University of Pretoria, on 2 February 2016 was used. The data are plotted in Figure 4.3.

The power factor was converted to a phase angle by θ = cos−1(Power Factor).

A graphical representation of the process used to produce the values in this case study is shown in the

flowchart of Figure 4.4.

One problem with such data is that power factor and energy use are correlated. High power factors

occur at high loads, and low power factors occur at lower loads. This could be due to heavy loads such

as geysers having unity power factors and forcing the overall power factor upwards during peak times.

Such a correlation has a confounding effect on parameter estimation, of φ especially. Using larger

calibration data sets such as a one-week rather than a one-day period helps only marginally since the

system still has the same correlation characteristics.

For the experiment, the (unknown) parameter values are set as shown in Table 4.3, and altered the

data using (4.18) and (4.19) to produce the observed data x∗ and y∗. The SIMEX algorithm was
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Figure 4.3. Load (green) and power factor (blue) profiles for the period used for calibration.

Table 4.3. Parameter values

Parameter name Symbol Value

Gain Error α 0.2

Phase Error φc 0.2

Bias Error ε ∼ Normal[5, 2.5]

implemented in the following manner, according to the steps described in Section 4.3.3.4:

1. The variance σu is described by (4.16).

2. The UUT function y∗ = f (x) is described by (4.19).

3. The SIMEX graphs were found to be non-linear, especially for ζ values above 2. Therefore,

n = 300 points between ζ = 0.5 and ζ = 5 were selected. Points between 0 and 0.5 were not

included because in this region the data converge asymptotically to ζ = 0, which is an artefact
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Figure 4.4. Flow chart demonstrating the process of derivation of various values in calibration simula-

tion procedure.

of the algorithm rather than a real trend.

4. These n realisations were generated using Python’s numpy library [285] and the

numpy.random.normal pseudo-random number generator for

x∗
ζζζ ,n ∼ N[x∗,σu]. (4.21)

The variance σu was defined by (4.18).

5. In this case, Python’s scipy [286] module was used to find the least-squares solution of

(4.19) for θθθ(ζζζ ). The library implements the Broyden et al. quasi-Newton method [287] by

default. Non-default optimization algorithms were also tried but showed poorer convergence

and efficiency.

6. A non-linear model was assumed to solve for θθθ(ζζζ ). The data exhibit a sigmoid shape, and

various sigmoid-shaped functions such as piecewise linear, hyperbolic tangent, sinusoid, and
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Figure 4.5. Illustration of the SIMEX procedure of Section 4.3.3.4. The error added to the measured

data is indicated by the factor ζ , with ζ =−1 indicating the error-free state towards which simulation

is extrapolated. This figure illustrates one realisation of the simulations for α .

logistic functions were tested. The standard logistic function below delivered the most reliable

results. For α , for example, one would solve

α̂(ζζζ ) =
Lα

1+ ekα (ζζζ−ζ0,α )
(4.22)

for Lα ,kα , and ζ0,α . L determines the curve’s maximum value, k determines the slope, and ζ0

determines the x-value of the midpoint. The data and resultant fit for one realisation can be seen

in Figure 4.5. The same optimization algorithm as the previous step was used.

7. Once the unbiased parameter estimates θ̂θθ(ζ =−1) were found by substitution into equations

such as (4.22), the errors relative to Table 4.3 were calculated as

Error =
θθθ − θ̂θθ(ζ =−1)

θθθ
×100. (4.23)
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Table 4.4. Summary of distributional characteristics of parameter estimate errors for 300 random error

realisations. These data are presented graphically in Figure 4.6.

Method ααα φφφ ccc εεε

2.5% Mean 97.5% 2.5% Mean 97.5% 2.5% Mean 97.5%

Naïve -188 -91 -9.21 -245 -162 -58 -459 -286 -123

SIMEX -23 39 73 -108 -16 57 -173 54 26

Bayes -62 -3 39 -111 -24 59 -175 -56 25

The author recommends that calibration for M&V purposes only be done using IEC-qualified meters.

The overall accuracy of such a system, over the majority of the measurement range, is
√

0.032 +0.052 =

5.8%. One can see that the CT error dominates the overall uncertainty [18]. Replacing the meter in

this system with a more accurate one will have little effect, reducing uncertainty to 5.4% for a Class 2

meter. However, replacing the Class 5 CT with a Class 3 CT will reduce the overall uncertainty to

approximately 4.24%.

Initially, LR was used on a smaller, approximately linear subset of the data, namely ζ ∈ [0,2]. This

worked well for α and ε estimates, but consistently overestimated φc. The sigmoid shape was also

partially hidden while the discrete ζζζ approach described in Step 6 of Section 4.3.3.4 was used. If this

approach is followed, the mean or mode of each ζ should be plotted rather than the full set, to show

the shape of the data more clearly for regression model selection. However, it was found that a linearly

spaced ζζζ illustrates the shape of the function the best, as is seen in Figure 4.5.

Selecting the right calibration period is important. If calibration is done over a weekend, for example,

the proper power and power factor ranges will not be observed. Selecting a good calibration period is

easy for a simulation study such as this one where all the data are available. However, it is more difficult

in real situations when the data have not been observed yet. Therefore, the in-situ meter calibration

period should be selected with care and in consultation with the facility manager. The IPMVP’s

recommendation for whole-building measurement, that “all operating conditions be represented fairly”

during the baseline measurement period, should be followed. Furthermore, if ECMs are installed

after the baseline period in an M&V project, meter recalibration may be necessary, depending on the

changes. The installation of Power Factor Correctors, which would decouple the power and power

factor profiles, is an example of a case where baseline period parameter estimates may not hold during
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CHAPTER 4 ENERGY METERING UNCERTAINTY AND CALIBRATION

the reporting period.

4.3.4.1 Discussion of results

Although SIMEX is viable for this case, it does not un-bias parameter estimates perfectly: for certain

realisations of random noise, such as where most points happen to be biased in the same direction, the

starting data set for ζ = 0 is misleading, and SIMEX estimates will be imperfect. Therefore, to evaluate

the reliability of the different methods, the process above was repeated for various realisations of x∗ and

y∗ in (4.18) and (4.19). Altogether 300 realisations were simulated, and a summary of the results are

shown in Table 4.4 and in a violin plot in Figure 4.6. This figure also shows the SIMEX-Bayes result

for comparison. The SIMEX-Bayes method will be introduced and discussed in the next section.

A violin plot is similar to a box-plot in that it shows the probability distributions of the parameters.

Where a box plot indicates the quartiles with a box and whiskers, a violin plot shows the full probability

density function in mirrored form around a vertical axis. The dashed line indicates the median, and

the dotted lines the quartiles. Long, slender shapes such as for the Naïve bias estimate in Figure 4.6

indicate a large variance and thus uncertainty in the estimate. Short, wide shapes like the SIMEX gain

estimate indicate low variance and concentrated probability mass. Symmetric shapes such as for the

SIMEX phase estimate indicate a symmetric probability distribution around the mean. Asymmetry

such as for the SIMEX bias estimate indicates that the parameter estimates are skewed, in this case

towards zero.

For Figure 4.6, estimates with zero (error) means will, on average, be error-free, although some variance

is expected. This is the desirable result. The first notable observation is that the naïve estimates are

further away from the zero line than the SIMEX estimates. This is to be expected: the naïve method

should be more biased, and this feature confirms the errors-in-variables theory. It is also observed that

the SIMEX estimate errors have smaller variances. This means that the SIMEX method converges on

its less biased estimates more reliably. It is, therefore, more robust to the random effects of sampling

than the ordinary least squares regression. The error in the ε estimate is the largest. However, to put it

in perspective, a 100% error in ε means that ε̂ = 10 for ε ∼ N[5,2.5], given data in the range (0,200).

A 100% error is therefore only a 2.5% error relative to the data range. A 100% error in the gain α
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Figure 4.6. Violin plot showing probability distribution shapes for Naïve, SIMEX, and SIMEX-

Bayes parameter estimates, with quartiles indicated. A discussion of this figure can be found in

Section 4.3.4.1.

could be much more significant (representing a 100% error relative to the data range), although a

caveat to this assertion is discussed in Section 4.3.4.2.

From these results it is demonstrated that the SIMEX procedure produces superior estimates to naïve

regression, although they are not perfect. However, even if SIMEX produces better estimates on

average, the quality of the prediction will depend on the specific combination of estimates in a specific

set, and not only on the means across sets. A discussion of this result would be premature in this

section, and the reader is referred to Point 4 of Section 4.3.4.2, as in the next section, this interactive

effect will be evaluated.

4.3.4.2 Application to meter calibration

The three meters used above will now be compared based on how accurately they predict a longer

measurement period than the calibration period. Three cases are considered. The first is a laboratory-
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CHAPTER 4 ENERGY METERING UNCERTAINTY AND CALIBRATION

calibrated Class 3 meter with a Class 5 CT. This case is simply the readings of the reference instrument

(calibrator) used for disciplining the other two meters. The second is a meter disciplined using the naïve

procedure; assuming that the calibrator readings contain no error. The third is a meter disciplined using

the SIMEX procedure, with Bayesian refinement. The parameter estimates obtained by disciplining

the meter using the data from 2 February 2016 are then used to predict the energy consumption for the

period 1 January 2016 - 3 August 2016.

Two goodness of fit metrics were selected to evaluate how well the predictions correspond to the

true values for each of these 300 data sets. The NMBE measures whether the model consistently

over-predicts or under-predicts energy use. The CV(RMSE) measures how closely the model tracks

the actual data up and down: similar to its variance. An NMBE of 0% would indicate no difference

between the prediction and actual mean energy use, and a CV(RMSE) of 0% would indicate no

variance in the prediction relative to the actual.

For the calibrator, the CV(RMSE) happens to correspond to its combined precision of 5-6%. However,

the two metrics express uncertainty in slightly different ways and do not always correspond. Since it is

assumed that the meter is unbiased, and specify it in that way for the calibration, its NMBE is close to

0%.

This goodness of fit was evaluated in the following way:

1. Generate observed energy use for the UUT (y∗), for the full data set, by (4.19).

2. Generate observed energy use for the calibrator (x∗), for the calibration period, using (4.18).

3. Using only the 24-hour calibration data set, employ SIMEX and the naïve regression to estimate

parameters α,φ , and ε .

4. Refine SIMEX estimate through Bayesian regression, discussed further in Section 4.3.4.3.

5. Generate predicted energy use for the full data set by inverting (4.19) using the parameter

estimates, so that:

xpredicted =
y∗− ε̂

(1+ α̂)cos(φ + φ̂c)
(4.24)
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Table 4.5. Summary of distributional characteristics of two goodness of fit metrics for the methods

under investigation: the Coefficient of Variation on the Root Mean Square Error (CV(RMSE)), and the

Normalised Mean Bias Error (NMBE). These results are presented graphically in Figure 4.7.

Method CV(RMSE) NMBE

2.5% Mean 97.5% 2.5% Mean 97.5%

Naïve 3.03 5.8 9.91 0.33 3.08 6.34

SIMEX 4.59 8.87 12.49 -10.344 -6.79 -2.33

Bayes 2.27 2.96 4.35 -2.05 -0.09 2.03

6. As with the calibration procedure in Section 4.3.4, repeat Steps 1-5 300 times to account for

different random realisations of x∗ and y∗. The summary statistics of the goodness of fit metrics

from these simulations are given in Table 4.5, and plotted in Figure 4.7.

Before the results are discussed, an explanation of the Bayesian refinement is given.

4.3.4.3 Bayesian refinement

Although the parameter estimates of the SIMEX method are clearly superior to the naïve method, as

shown in the previous section, Figure 4.7 shows that the resultant CV(RMSE) and NMBE on the rest

of the data set are worse. The reason is plotted in Figure 4.8.

Although the naïve estimates of the parameters are much worse than the SIMEX estimates, the

prediction quality (goodness of fit) is dependent on their combination. Thus α may be overestimated

and φc underestimated, but they cancel each other out in such a way that the final result is close to

the true value, especially with noise in ε adding some tolerance to the results. Neglecting ε for a

moment, one can visualise this in Figure 4.8. Gain error is the x-coordinate on the map, phase error

is the y-coordinate, and CV(RMSE) is the height, indicated by colour. Low CV(RMSE) values form

a valley running north-west to south-east. Although there is only one coordinate that is “correct" in

the sense of corresponding to the true values, this valley indicates the combinations of gain and phase

error values that will also yield a low CV(RMSE). Now, because the sum-squared error is a major

component of the CV(RMSE) calculation, a low sum squared error will lead to a low CV(RMSE).
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Figure 4.7. Violin plot showing probability distribution shapes of goodness of fit metrics using

parameter estimates of Naïve and SIMEX methods. Quartiles and median indicated by dashed lines.

Two outliers were removed from the SIMEX plots to improve the vertical scale. A discussion of this

figure can be found in Section 4.3.4.4.

Least Squares regression finds a solution with the least sum of squares error. In other words, the naïve

method effectively optimizes for CV(RMSE), and we are therefore not surprised that it produces results

with low CV(RMSE)s, even if the individual parameter values themselves are not accurate. This lack

of convergence on the true values shows a parameter identifiability problem between the gain and

phase errors α and φc in (4.19). Another confounding factor is that the power factor φ is correlated

with energy use as referred to earlier. This correlation, as well as the small range for φ , do not help

identifiability.

Because the SIMEX method improves the parameter estimates independently of each other, it does

so without considering their combined effect on the sum squared error of the fit. This results in more

accurate estimates of the parameters, but slightly higher CV(RMSE) values when they are combined.

It was therefore decided to refine SIMEX estimates using Bayesian regression. This changes the

SIMEX estimates slightly to serve the double purpose of improving the goodness of fit metrics and

providing probability distributions on the parameter estimates. These distributions can be used for risk
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Figure 4.8. CV(RMSE) (indicated by colour) for different combinations of parameters α and φc.

The parameter combinations plotted are for single instances of solutions. This plot assumes a bias

error ε = 5. The positions of the SIMEX and Bayes estimates relative to the true values varies from

realisation to realisation. A discussion of this figure can be found in Section 4.3.4.4.

and uncertainty quantification calculations, both on the parameter estimates and also on the predicted

energy use, although a careful use of the data-dependent prior [258] will be necessary for uncertainty

values to be valid. As shown in Figure 4.8, the Bayesian method does not interpolate linearly between

the SIMEX estimates and true values. However, it does converge on parameter estimates in the SIMEX

region while yielding improved CV(RMSE) and NMBE values. The method is explained more fully in

Section 4.3.4.3. Using the Bayesian method on the naïve estimates, or using the naïve optimization

algorithm with the SIMEX estimates as its starting position, did not improve on the original naïve

estimates.

In conditional probability terms, we observe

Pr(D|θθθ) = Pr(x∗,y∗ | α,φc,ε, I) (4.25)

where I is the prior information at our disposal through the SIMEX result, and α,φc, and ε are unknown.

By Bayes’ theorem in (3.5), through a numerical algorithm, this can be inverted so that the posterior
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conditional probability estimates of the parameters

Pr(θθθ |D) = Pr(α,φc,ε | x∗,y∗, I) (4.26)

are found. The modes of the posterior distributions for α,φc, and ε will correspond to their maximum

likelihood estimates given the data observed. To do this, the priors and likelihood function need to be

defined, and the model solved. This is discussed below.

Prior selection

The empirical or falsificationist Bayesian approach is adopted here, so that θ̂θθ SIMEX obtained from

the SIMEX algorithm can be used to constrain the MCMC. Further discussion of this topic, see

Section 3.4.1 and Gelman and Hennig [249].

For this case, specifying vaguely informative priors is justified because the SIMEX parameter estimates

do not arise naturally from the data itself. The priors are used to ‘constrain’ the algorithm to the

solution space around the SIMEX solution. If overly vague priors are specified, the algorithm tends to

converge on low CV(RMSE) solutions far away from the SIMEX estimates, and thus far away from

the true values. The priors on the parameters are specified as follows:

Pr(α)∼ N[α̂SIMEX ,5], (4.27)

Pr(φc)∼ N[φ̂c,SIMEX ,1], (4.28)

Pr(ε)∼ N[ε̂SIMEX ,5]. (4.29)

A prior is also specified on x∗. If the meter errors were Berkson, this prior would be perfectly

representative. However, since the errors is located in the meter itself, they are classical. Therefore the

prior below is not perfect but does allow for variation in x∗ so that the model does not consider the

observed values for x∗ as fixed. The prior on x∗ is specified as

Pr(x∗)∼ N [x∗,σu] . (4.30)

The likelihood function Pr(D|θθθ) is defined as a multivariate Student-T distribution. The heavier tails of

this distribution allows for more robust inference, since outliers have a smaller effect on the posterior

mean [272]. In this case, the data are the values observed from the reference and the UUT meters, and

the priors are the SIMEX parameter estimates. Therefore:

Pr(y∗|x)∼ StudentT [y∗|µµµ = µµµ p,σσσ = Pr(σp), ννν = Pr(νp)] (4.31)

where

µµµ p = (1+Pr(α))Pr(x∗)cos(φ +Pr(φc))+Pr(ε), (4.32)
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as in (4.19) and the hyper-priors are defined as

Pr(νp)∼ Exponential[48−1] (4.33)

and

Pr(σp)∼ Hal fCauchy[1]. (4.34)

Hyper priors add a second layer of variation by allowing uncertainty in the parameters of the uncertainty

distributions used in the Bayesian models. The choice of ‘48’ as the inverse scale parameter for the

exponential distribution relates to the number of data points in the calibration period [19]. For the scale

parameter σ , we follow Gelman’s recommendation of a half-Cauchy distribution [288].

Solving the model

Although a full Bayes-MCMC is standard, Automatic Differentiation Variational Inference

(ADVI) [222] is a new and much faster alternative to standard MCMC algorithms. It has com-

parable accuracy and is useful for batch runs where the different approaches are compared for different

error realisations on the same data set. The model is solved using 50 000 runs of the ADVI algorithm.

The starting points are specified as the SIMEX estimates. The analysis is performed in Python via the

PyMC3 [267] library. Because only point estimates of the parameters are of interest for the current

problem, the full Bayesian capability of eliciting full posterior probability distributions for each of the

runs was not exploited.

4.3.4.4 Discussion

The resultant CV(RMSE) and NMBE for the naïve and SIMEX calibrated meters are shown in Table 4.5

and Figure 4.7. In these, it can be seen that the Bayesian refinement improves the CV(RMSE) SIMEX

estimates substantially, from 8.87% to 2.96%. The average NMBE improves from -6.79% to -0.09%.

A CV(RMSE) of 2.96% seems lower than the original 5.8% noise in the data. However, one should

bear in mind that although CV(RMSE) is the appropriate metric to use, it cannot be compared to the

way in which the noise is expressed originally. From Equation 4-4 of G14 2014 [17] for α ,

CV(RMSE)α =

√
∑(αi−α̂)2

n−par

ᾱ
(4.35)

where yi is the true value, ŷi is the model estimate, ȳ is the mean, n is the number of data points, and

par is the number of parameters. As the name suggests, it is, therefore, the mean of the sum squared
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error, normalised with respect to the mean of the data. This is a different value to the relative precision

of the meter.

Figure 4.7 shows that the Bayes-SIMEX procedure produces predictions with superior goodness of

fit, both in terms of bias and in terms of CV(RMSE). Besides the violin plot, it is also graphically

illustrated in Figure 4.8, where the SIMEX-Bayes coordinate approaches the true coordinate. The

distributions are also tighter than for the other procedures, indicating improved consistency compared

to SIMEX and naïve regression. Figure 4.6 indicates that Bayes-SIMEX does not do this at the cost of

individual parameter estimates. On the contrary, superior and more consistent parameter estimates are

also obtained.

To put these values in perspective, the G14 requires an NMBE below 5% for monthly data and 10%

for hourly data [17]. CV(RMSE) requirements are 15% and 30% respectively. As this is half-hourly

data, the requirements are in effect even more generous. However, it should be kept in mind that the

G14 metrics do not refer to the calibration of measured energy data, but to building energy modelling

requirements relative to measured energy data. The calibration figures in this paper are therefore

baselines to which traditional M&V modelling uncertainty is added, before being compared to G14

requirements. Nevertheless, the calibration procedure is so effective, even with low accuracy meters

and only 24 hours of calibration, that building models on energy use data obtained from this calibration

method should still be acceptable. With longer calibration times or more accurate calibrators, these

figures would also improve.

It is noted again that valid calibration requires more than simply having a reference instrument available.

An adequate quality system needs to be followed to ensure that results are traceable and repeatable.

However, we may conclude that from a technical point of view, the calibration itself does not require

exceptionally accurate instruments for practical M&V purposes, and can reduce monitoring costs

significantly through in-situ calibration.

4.4 CONCLUSION

Energy metering uncertainty makes a relatively small contribution to overall M&V reporting uncertainty

when sampling is also done, and therefore presents an opportunity for M&V cost reduction, because
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laboratory calibration of energy meters for monitoring projects can be expensive, and may not be

cost-effective in terms of the gains in accuracy. A method is presented for disciplining or verifying a

qualified, uncalibrated meter in-situ by using another calibrated commercial-grade metering system,

in this case, a Class 3 meter and a Class 5 CT. By using the SIMEX MEM and refining parameter

estimates using a Bayesian approach, the verified meter is shown to report energy use accurately

and with low error variance compared to naïve OLS methods. For the data set under investigation,

the CV(RMSE) was reduced from 8.87% to 2.96%, and the NMBE from -6.79% to -0.09%. To be

conservative, the most inaccurate meter-CT combination for IEC-qualified instruments was selected

and has been demonstrated to have acceptable accuracy. For any other combination of IEC-qualified

meters and CTs, more accurate results should be obtained if calibration period data is representative.

The general method proposed may also be applied to instruments other than energy meters.
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CHAPTER 5 EFFICIENT METER SAMPLING

5.1 CHAPTER OVERVIEW

The previous chapters have dealt with the literature and theory of M&V and the Bayesian paradigm, as

well as low-cost calibration of energy meters. The second half of the thesis will apply these principles

to an M&V case where retrofitted lamps are monitored over a number of years using the retrofit

isolation with all parameter measurement approach [1]. In this chapter, the metering aspect of such a

longitudinal M&V study is considered. After an introduction to the problem and brief remarks about

existing methods, a Dynamic Linear Model with Bayesian Forecasting is presented in Section 5.3.

The method is demonstrated and verified using a minimal working example and is also compared to

previous methods. A more realistic case study is then presented in Section 5.4. This involves both the

design of an efficient sampling plan, as well as an evaluation of its execution and robustness. Finally,

conclusions are drawn. 1

5.2 INTRODUCTION

The rest of this thesis will consider the lamp retrofit longitudinal monitoring problem. In such an

M&V case, the energy savings resulting from a lamp retrofit project is monitored over a number of

years. There are two aspects to this monitoring problem: metering to determine the average annual

energy use of a lamp in a given year, and population survival survey sampling, to determine how many

of the original lamps are left in a given year. The metering aspect, which includes cross-sectional

considerations (how many to install in a given year) and longitudinal ones (how many to install this

year, given the results from the previous years), will be considered in this chapter. The longitudinal

1This chapter is based on a journal article written by the author as part of his PhD research, published in Energy and

Buildings [29].
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population survival survey sampling component, which considers persistence, will be addressed

in Chapter 6.

Meters often need to be installed over a wide geographic area spanning many facilities or circuits,

such as different parts of a factory or different homes. Since it is not practical to meter all facilities or

circuits, only a sample is metered. The size of this sample is determined by the interaction between

the meter’s accuracy, the variance in the energy use between different lamp circuits, and the reporting

requirements regarding statistical precision. These are the cross-sectional aspects of the meter sampling

problem.

The longitudinal aspect of the meter sampling problem considers how previous sample sizes and

sampling results influence the choice of the current and future sample sizes. A regression or time

series model can be implemented to determine these effects. Since OLS regression is a special

case of Bayesian regression, OLS or Bayesian regression may also be used in a leveraged sampling

design [40,69]. However, to enhance the flexibility of the model, a Dynamic Linear Model (DLM) with

Bayesian forecasting will be used. The Bayesian forecasting component allows for exact uncertainty

quantification which may then be used for optimal or robust sampling design. Furthermore, the

informative prior and updating step are useful for forecasting and sampling planning. This is because

although past data can be incorporated into a regression model, future data need to be simulated. For

small sample sizes, simulating draws from the distribution will not reflect the distribution from which

they were drawn accurately, for most cases. It is therefore desirable to specify the distribution from

which they were sampled, rather than a random draw of samples. However, this distribution will

vary with the number of samples planned, making the model heteroscedastic and thus violating the

assumption of OLS regression. It is allowed in the DLM, however, and the constant variance (Vt)

can be scaled by a factor, in this case the sample size nm, t , to obtain the standard error on the mean.

This variance can be added to the prior variance to produce the posterior variance on the regression

estimate, as a function of the sample sizes at various points in time. The Vt/nt method can also be used

for modelling past samples in a simulation such as this one, so that the same data effect (not being

representative of the underlying distribution) is mitigated.

This chapter is only part of the greater M&V approach, but can be described in M&V terms as follows:

M&V measurement option: Retrofit isolation with key parameter measurement (measuring energy

consumption over time, but not measuring population survival over time).
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Project boundary: The lighting circuit(s) under investigation.

Baseline and baseline adjustment approach: The baseline is assumed from the metered data, as-

suming a constant energy consumption difference between the retrofitted units and the original units.

Savings determination approach: Standard energy efficiency savings (as opposed to normalised

savings) is assumed. This is done in Chapter 7.

5.3 EFFICIENT CROSS-SECTIONAL METERING SAMPLING

5.3.1 Modelling assumptions

It is assumed that meters are placed on circuits containing only one kind of luminaire, as per the retrofit

isolation approach of the IPMVP [1]. The circuits may contain one or many fixtures and may contain

switches with sub-circuits so that not all fixtures are on at the same time. The average annual energy

use per lamp is modelled by dividing the annual energy use of a circuit by the number of lamps on

the circuit. Seasonality can be built into the model to increase model granularity to monthly or hourly

levels [230], but is not considered here.

The aggregated meter results are normally distributed. That is, if n meters are placed on different

circuits, the distribution of the n average luminaires is approximately normal. This assumption seems

reasonable by the Central Limit Theorem, but warrants further investigation in future research.

It is assumed that the average annual luminaire energy use varies linearly over time. A straight-line

linear model is used, although other linear functions may also be specified.

It is assumed that samples are independent in time. This means that the same facilities cannot be

sampled repeatedly in consecutive years, unless by chance. A new random selection of facilities

needs to be made in each sampling year. Although this was not done in previous works on this

problem [51, 52, 98, 99] it is necessary for the validity of the study design, and is used in other

longitudinal energy use studies such as the US Commercial Buildings Energy Consumption Survey

(CBECS) [289]. If the same meters are used in the same buildings, the independence assumption is

violated, and normal distribution statistical and linear models will probably be invalid. It is often argued

that this makes the proposed method very expensive and laborious in comparison to the approach of
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metering a specific cohort for the duration of the longitudinal study. However, if such a cohort study is

done rigorously, the costs should be similar. The reasons are the following:

For standard sampling statistics to be applicable, samples must be independent. Should one opt for the

alternative, a longitudinal randomised control trial should be designed. For a longitudinal study such

as the one under consideration, but where the same sample is monitored continuously for many years,

certain practicalities also need to be considered:

1. Subject dropout. How large should one’s sample be to ensure that enough study units are left

at the end of ten years for the 90/10 accuracy to hold on the savings? How does one deal with

censoring (individuals who terminated early or started late)?

2. Uniformity. Bearing in mind that a control group also needs to be monitored and that this control

group must be similar to the treatment group in almost all respects (matched), but must not install

energy efficient lights for the next ten years. The control group and treatment groups must also

have sample sizes much greater than 68 (assuming CV=0.5, and 90/10) for their difference to be

determined with 90/10 accuracy, to which the dropout factor should be added. Other longitudinal

factors also need to be controlled. For example, persons in certain homes may have children in

the next ten years, changing their occupancy and usage patterns. Older children may leave home,

or the family may move. A circuit may be lost to follow-up due to renovations or accident. If

the same individuals are monitored continuously, these changes will be imputed as trends of the

general treatment population.

3. Self-selection. Are those who agree to have their lighting circuits monitored for the next ten

years representative of the population as a whole, or are they self-selected? It would seem that

such a radical position is not representative.

4. Free ridership. Would the treatment group not have made the changes independent of the

project? In such a case the savings cannot be attributed to the project.

These are important questions in practical longitudinal M&V study design (addressed to some extent in

the UMP Ch. 8 [273]), but they are difficult to quantify for the sake of comparing the current approach

to a longitudinal RCT.
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CHAPTER 5 EFFICIENT METER SAMPLING

Then there is the question of autocorrelation. If the same meters in the same homes are used in

consecutive years, the sample size will be affected by autocorrelation. Consecutive samples are deemed

independent if the first sample contains no information about the second or third, and so on. Of course,

this is very unrealistic when dealing with the annual energy consumption of a facility or lighting circuit.

One could use this year’s energy use as a very good approximation for next year’s estimate: they are

very highly correlated on an annual level. With enough data the extent of this serial correlation can

be determined, but probably only halfway through the study. The implication of autocorrelation is

that the individual samples do not count as much (in terms of information), as they would have had

they been independent. Therefore the sample size grows with the size of the serial correlation factor,

to compensate for the lack of information. For the annual energy use case, the required sample size

would almost double for every year of the longitudinal study: If this year’s figure for one building

presents almost no new information beyond last year’s figure, then one needs to sample roughly two

buildings to obtain the same amount of information: one for information about this year, and one for

information about last year. This can be modelled with an autocorrelation correction factor. In previous

works, an exponential windowing function was used [53, 111], but a sample size adjustment factor

as per G14 [17] is better. These are just adjustment factors, though, and may not be accurate enough

for uncertainty quantification. Best practice dictates that if the meters monitor only a sample of the

population and cannot be moved, an unbiased comparison group needs to be found and monitored as

for a randomised control trial, which is an expensive and challenging task in itself. As Violette [67] has

shown, the means of both groups then need to be determined with much higher accuracy than 90/10

for the savings estimate to achieve that level. Chapter 8 of the UMP discusses such designs as applied

to M&V [273].

As smart meters and load disaggregation techniques become more common, it is unlikely that project-

specific meters will have to be installed in every new facility in every year, especially for long

time-horizons. It has been costed it in this way to be conservative, but realistically the amount of

annual follow-up required in the alternative case would rival that of the assumed method.

Due to the considerations discussed above, a clear financial advantage in continuously sampling the

same facilities in a longitudinal study, over the method assumed in the paper, is not apparent.

Even though it was shown in Section 4.2.3 that the standard sampling formula is underpowered, it will

be used as a general benchmark in this study due to its popularity.
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Population
Model

Cost Optimisation

Uncertainty
Quantification

Model

Past
Samples

nm

Figure 5.1. Flow diagram illustrating existing methods [51–53, 98], where nm denotes the metering

plan.

5.3.2 Dynamic Linear Model with Bayesian Forecasting

The proposed solution to the problem described above uses Dynamic Linear Models (DLMs). These

can be thought of as adaptive models in which the new information that becomes available at each

time step changes not only the estimates of the mean, but also the parameter estimates and variance

matrix of the underlying model. For non-adaptive or static models, the model parameters would be

fixed before calculation, and the process data would only update the state of the system. For example,

in previous works, the average annual energy use measured by the meters was fixed at the beginning of

the study [51–53, 98]. For models taking population decay into account, the population decay rates

were fixed at study inception, and not updated as new information became available. These differences

are illustrated in Figure 5.1 vs. Figure 5.6. In a dynamic modelling framework, new data alters both

the parameters and the estimates of the system state in real-time.

The sequential updating and filtering aspects of Bayesian forecasting used with the DLM are the same

as Kalman filtering [290, 291], applied to time-series analysis rather than control. However, according

to West and Harrison [230]:
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CHAPTER 5 EFFICIENT METER SAMPLING

To say that “Bayesian forecasting is Kalman filtering” is akin to saying that statistical

inference is regression.

The function of Bayesian forecasting is, therefore, broader than only fitting models and making

forecasts. Furthermore, where Kalman filters assume normality and use least squares and minimum

variance methods, Linear Bayesian Estimation (LBE) is more general. Kalman filters are therefore

a special case of general LBE where normality is not assumed. The disadvantage of LBE is that the

solution is linearised (similar to extended Kalman filters), and that only the first two moments of the

distribution are used. For normal distributions the first two moments define the distribution, but for

other kinds it may not do so. A more complete explanation of LBE in the context of DLMs is given by

West and Harrison [230].

For simple special cases, the DLM estimate at a given point in time would be equal to the weighted

OLS regression estimate. For example, the DLM estimate (and forecast) given three data points would

be the same as the OLS regression estimate and forecast, given that OLS regression assumptions hold.

If a fourth point is added, redoing the OLS regression on all four data points (offline estimation) would

yield the same value as the DLM updated “online” only for the fourth point. In such cases, the DLM

would not yield a better ‘Best Linear Unbiased Estimator’ (BLUE). Both reduce modelling uncertainty

to the best weighted OLS estimate for this case. However, DLMs with Bayesian forecasting have other

desirable properties and capabilities that will be explored below.

The Bayesian forecasting component allows for exact uncertainty quantification, which is not always

available for OLS regression. These uncertainty results may then be used for efficient or robust

sampling design, without resorting to computationally expensive bootstrapping or cross-validation

approaches [176, 292].

The informative prior and updating steps of the DLM are useful for forecasting and sampling planning.

This is because although past data can be incorporated into a regression model, future data also needs

to be simulated for sampling planning. Consider two scenarios. In the first case, a sample of 50 meters

is planned. In the second case, a sample of 20 meters is planned. Only their means are used in the

regression model. How should the model distinguish between these two plans? It is therefore desirable

to specify the variance of the distribution from which they were sampled. However, the sample variance

will vary with the number of samples planned or taken, making the model heteroscedastic and thus
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violating a key OLS regression assumption. Unequal variances are allowed in the DLM, however. The

constant variance (V ) can be scaled by a factor, in this case the sample size nt , to obtain the standard

error on the sample mean. This variance can be added to the prior variance to produce the posterior

variance on the regression estimate as a function of the sample sizes taken or planned for different

points in time.

Turning to the method now, for the univariate case, the observation equation is

Yt = F′θθθ t +ν , ν ∼ [0,V ] (5.1)

where Yt is the observed value at time t, F is called the regression vector, θθθ the state vector at t, V is

the population variance as defined before, and ′ denotes the transponent. The state equation is

θθθ t = Gθθθ t−1 +ωωω t , ωωω t ∼ [0,Wt] (5.2)

where G is the evolution matrix and Wt is the evolution variance. For the Time-Series Dynamic Linear

Model (TSDLM) under investigation, F and G are constant in time, although for many other models

(e.g. [28]) this may not be the case.

During M&V modelling and sampling planning, there are two cases that need to be considered. The

first is step-ahead forecasting into the future given the current data, but no new data. The second is

updating parameters to the current time-step, given new data at time t. For sampling planning in future

years, these two steps happen simultaneously: a forecast to t + k is made and using the forecast value

and the planned sample size, the uncertainty in Yt+k is determined.

5.3.2.1 Variable definitions

Since it is assumed that the annual average energy use after the retrofit, Er, t can vary linearly from one

year to the next according to the gradient βt , it can be described as

Êr, t = βtt + constant (5.3)

The state vector for this system is then

θθθ
′
t = (Êr, t , βt), (5.4)

where the regression vector is

F = (1,0), (5.5)
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so that (5.1) is satisfied by yielding Yt = Êr, t . The evolution matrix is defined as

G =

 1 1

0 1

 , (5.6)

so that (5.2) is satisfied by yielding θθθ
′
t = (Er, t−1 +βt−1, βt−1). In this way, the linear regression line

is extended to time t through forecasting, given Dt−1.

5.3.2.2 Forecasting

Forecasting is done when no data are available for that time step. The joint forecast distribution can

be described as follows. Let ft be the forecast mean, at the prior on θθθ t , Qt the variance on the mean

in (5.10), Rt the prior variance in (5.11), and At the adaptive vector in (5.16) (not used explicitly in

forecasting). Let the data up to the previous time step be Dt−1. In the LBE scheme only the first and

second moments are specified. The joint distribution on Yt and θθθ t is then Yt

θθθ t
Dt−1

∼
 ft

at

 ,

 Qt QtA′t
AtQt Rt

 . (5.7)

In this study, the equation above describes a normal distribution, although other kinds can also be

described this way. Again, West and Harrison [230] provide a full explanation of the DLM and

distributions on all parameters. For this study and its application to M&V, the updating, forecasting,

and filtering equations will be given in an applied format useful to M&V.

The step-ahead forecast mean ft+1, which corresponds to the energy use Er, t+1 is defined as

(Êr, t+1|Dt) = ft+1 = F′at . (5.8)

Since there is no posterior in the forecast case, the prior for θθθ is simply updated by evolving it according

to

at = Gat−1. (5.9)

Updating the variance is more involved. The variance on the mean, Qt+1, is calculated as

Qt+1 = F′Rt+1F. (5.10)

The prior variance R is evolved according to

Rt+1 = GRtG′+Wt . (5.11)
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The evolution variance Wt can be static, but as explained more fully in the next chapter, it can also be

updated according to

Wt = GUtG′ (5.12)

where, using a discount factor δ and covariance matrix Ct ,

Ut = δCt . (5.13)

Wt has a small effect on the uncertainty at times steps where data are available, but becomes prominent

during forecasting periods. Since δ is subjective, it should be chosen carefully if it is non-zero.

5.3.2.3 Calculation

The equations below apply to the time steps in which data are available, so that Dt = {Yt ,Dt−1}. They

combine calculations from the updating or filtering steps in the standard method. The values ft ,at ,Rt ,

and Wt are updated according to (5.8), (5.9), (5.11), and (5.12) respectively.

In the calculation step, at and Rt in the forecasting calculation are replaced by mt and Ct respectively,

so that

(θθθ t |Dt)∼ StudentT [mt ,Ct ]. (5.14)

These are calculated as follows. Because data are available, rather than using (5.10), the variance on Et

is updated according to

Qt = F′RtF+ ktV (5.15)

where V is the observational variance and kt is a weight, or variance divisor. If one assumes the

variance to be constant throughout the process, it may result in a non-constant CV if the mean estimate

x̄ changes, since CV=
√

V/x̄. It is therefore preferable to define V = ftCV. Furthermore, the term

added in (5.15) refers to the observational variance, and should therefore be scaled according to the

sample size at t: kt = 1/nt .

The adaptive vector At translates the forecasting error from the previous step into an adjustment when

new data become available. It is calculated as

At = RtFQ−1
t . (5.16)

The state is updated by

mt = at−1 +Atet (5.17)
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where

et = Yt − ft , (5.18)

and

Ct = Rt −AtA′tQt . (5.19)

5.3.3 DLM demonstration

To demonstrate how (and verify that) the DLM works, a hypothetical case is considered, and is

illustrated in Figure 5.2. Sampling is done at t = 0,1,2,3,4,5, and the mean of E = 12.49 kWh is set

for every sampling result. According to standard theory for normal distributions, the sample size n is

calculated from (4.10). Therefore, 68 samples are needed for a 90% confidence interval (z = 1.645)

at 10% precision when CV = 0.5 [42]. The metering sample size at time t is denoted by nm, t . The

demonstration sampling plan (the vector containing the sample sizes for future years) nm is

nm = [68,68,68,68,200,68,0,0,0,68,0]. (5.20)

It is evident that the 90% confidence interval narrows as more information becomes available between

t = 0 and t = 2. When a large sample of nm, 4 = 200 is taken, there is a more dramatic change in the

interval, but it widens again, when a smaller sample of nm, 5 = 68 is taken. This widening occurs

because of the inherent process variation specified through the CV. For other CV-to-sample size ratios,

no widening may take place. The narrowing of the confidence intervals over the first three years (t = 0

to t = 2) is also considerably more dramatic for smaller CVs. After t = 5, no samples are taken for three

years, and the confidence interval on the forecast widens, but is reduced again at t = 9 when a sample

is planned. Another realisation is shown in Figure 5.3. In this case random sampling results were

drawn from the sampling distributions defined by the sample sizes and process variances. Multiple

results are overlaid to demonstrate the randomness inherent in each individual sampling realisation.

It can be seen that DLM estimates also follow an approximately normal distribution, with a greater

density of predictions close to the mean. A large sample is planned for t = 9 rather than t = 4 as in the

previous example. Such a sample “filters” the estimate, forcing subsequent estimates to be much closer

to the true mean, and forecasting an approximately constant energy use, which is accurate.
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Figure 5.2. DLM demonstration. Hypothetical case where all sampling results fall on the mean.

Sample sizes are nm, 0−3, 9 = 68, and nm, 4 = 200.

5.3.4 Comparison to previous method

In this section, the DLM will be compared against the earlier method [51–53, 98, 99], using the case

study from [53]. However, a direct comparison can be misleading because of the differences between

the two approaches. Some of these differences can be addressed by restricting the capability of the

current model. For example,

• The old method assumes a stationary mean. A comparison can therefore only be made if the

DLM is restricted to a horizontal line, no matter the trend in the data. To do this, prior on the

slope is set to zero.

• The old method uses FPC to compensate for population decay. FPC cannot be included in the

DLM without significant changes. However, for models such as those under investigation, FPC

is only applicable to populations smaller than about 1 000, or 0.16% of the installed population

in the benchmark study [53]. Therefore it does not affect the calculation and may be neglected
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Figure 5.3. DLM demonstration reflecting true sampling results. Multiple realisations shown.

in the DLM.

Other differences are not as easy to address, and indicate fundamental differences of approach:

• The previous approach uses frequentist confidence intervals. The difference between these and

Bayesian intervals is discussed in Section3.3.

• The improvements to the old model [53] include an exponential windowing function. This

decreases the influence of prior data points exponentially, to compensate for the autocorrelation

present in taking repeated measurements from the same study units. It transforms the method

into a moving average function. Exponential windowing is mathematically convenient for the

way the model was set up and is better than nothing. However, it does not address autocorrelation

satisfactorily because such correlation is the strongest between consecutive measurements, while

the windowing function reduces the influence of less recent samples. The discount factor

in (5.13) is a similar mechanism in the DLM but increases the estimated variance. The problem
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with choosing a discount or windowing factor is that the figure is arbitrary. When this is done,

uncertainty quantification is no longer objective.

• In the old model, confidence and precision levels are undefined for years in which no sample is

taken. The result is that the precision of the model is unaffected by non-sampling. If sampling

is done at t = 1 and then again at t = 4, the increase in uncertainty is equivalent to sampling

at t = 1 and t = 2. It is not possible to adapt the DLM accordingly since forecasting increases

uncertainty.

With these caveats in mind, a case study for the old method [53] is analysed by the DLM, using the

optimal sample sizes determined using the previous method. In this case study, 607 559 CFLs rated

at 20W were distributed to households in the Northern Cape, Free State, Gauteng, Limpopo, and

Mpumalanga, to replace 100W ICLs, as part of a CDM project. It was assumed that they burn for an

average of 4.5 hours per day, but no uncertainty on this value was specified.

Exponential windowing (for the earlier method) is neglected, as is the discount factor for the DLM, to

avoid confusion about their functions. The earlier method disregards autocorrelation from consecutive

measurements of the same facility, while the DLM assumes random sampling. This will narrow the

apparent uncertainty bounds resulting from the DLM calculation using those results, but is left as-is.

Other changes in the bulleted points above also apply. The average annual energy saving for that study

was 131.4 kWh. The sampling plan nm was

nm = [68,68,28,16,8,8,6,6,4,4,2]. (5.21)

The result is shown in Figure 5.4. The red error bars represent the 10% precision limits. The figure

indicates that (had the samples been independent), there is slight oversampling in years two, four

and six, and under-sampling in years eight and ten. However, since the model is simplified to a case

where there is zero inter-sample variance, it becomes sensitive to the DLM priors on the mean energy

use and slope. Increasing the prior on the slope of the regression line to a number above zero results

in under-sampling for all years, for example. Such changes do not affect models with inter-sample

variance as strongly.

When decreasing the effective sample size by using an autocorrelation factor of 0.25 [17], it is found

that year six is also undersampled. However, when the exponentially windowed sampling plan is used,
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Figure 5.4. Confidence bounds (shaded) compared to precision limits (red error bars) for previous

sampling plan using earlier method [53, 98], analysed by DLM.

the confidence bounds are much closer to the precision limits for all years.

When this is optimised with the DLM as described in the next section, an efficient sampling plan is

found to be

nm = [68,68,65,0,61,0,55,0,27,0,31], (5.22)

plotted in Figure 5.5. It is difficult to compare the two because of the assumptions as mentioned above.

However, it can be seen that the DLM satisfies the reporting precision constraints and that the number

of meters required also decreases over time.

5.4 CASE STUDY: EFFICIENT CROSS-SECTIONAL METERING DESIGN

In this case study, the DLM is used in an optimization routine to design an efficient sampling plan,

given past data. It is assumed that the luminaires are 11W CFLs that operate for an average of
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Figure 5.5. Efficient sampling plan using the DLM for the case study in Section 5.3.4.

3.11 hours per day [293], or E = 12.49 kWh per year. The CV in the sample is set to 0.5; a standard

M&V assumption [15]. This implies that the distribution on the estimate of the annual energy use per

luminaire is Ê ∼ N[12.49,6.24] kWh. Assuming CV = 0.5 is reasonably conservative and dominates

the priors. At lower CV values, the information contained in the prior becomes dramatically more

significant. For this case study, it was assumed that CV is constant. However, if sampling results

from the first few years justify it, the CV value may be decreased. The Bayesian model can easily be

updated in any year to adjust the CV values – another useful feature of the DLM.

Note that the study commences at t = 0.

The true energy use is modelled as being constant in time (thus a straight line with zero gradient).

However, the estimate for a specific year will fall in the probability distribution described above. It

may therefore seem as if there are short-term trends, depending on the realisations of the data from the

underlying distributions. It is assumed that three years’ data are available and that the remainder of

the 11-year study is to be planned. Let the vector defining the reporting points be M. For this study,

M = {3,5,7,9}.
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Figure 5.6. Flow diagram of cross sectional metering sampling designs as in Section 5.4.1.
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The priors are defined as follows. It is assumed that the average annual energy use can be approximated

reasonably well from previous case studies. It is assumed that there is a 99% chance that the energy

use is within 25% of the prior. The same numbers hold for the expected change in energy use: not

more than 25% per year, at 99% confidence. Therefore 3σ = 12.49/4, with the prior variance specified

as σ2.

5.4.1 Cross-sectional metering sampling designs

In this section the case of cost-efficient sampling design using the DLM is considered. The basic flow

is illustrated in Figure 5.6.

5.4.1.1 Robust and efficient designs

The design with the smallest sample size that still adheres to the reporting precision requirement is

not necessarily the most cost-efficient design when uncertainty is present. It is only optimal in the

best-case scenario, where the forecast is perfectly accurate. This is because installing just enough

meters in future years, based on a forecast, runs the risk of not controlling variance adequately, since

the forecast may be inaccurate. A meter may malfunction, or the sampled result may differ from the

forecast to increase the variance in the estimate enough to violate the reporting precision constraint.
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By the end of the measurement period, it is too late to install more meters for measuring the energy

use of that period. Insufficient reporting precision would render the project ineligible, or incur a

penalty from the regulator. Therefore these are referred to as naïve efficient designs. A robust design

with more meters, on the other hand, will prove to be more cost-efficient over the whole range of

possible scenarios (thus lowest expectation cost), even though the metering cost may be higher than

the most efficient design for the most likely scenario would be. However, determining such a robust

cost-efficient sampling design will depend on assumptions made about the penalty incurred for not

complying to the reporting precision constraint, which may vary significantly between programmes.

In the more common case where projects are rendered ineligible, the cost of non-compliance may be

very high. For these reasons, as well as for brevity, the current investigation is limited to the narrow

sense of the meaning of efficiency (except for Section 5.4.1.6) and robust efficiency is recommended

for future research.

5.4.1.2 Adding energy metering uncertainty

Modelling and sampling uncertainty are combined automatically in the Bayesian framework described

above. However, meters also have inherent uncertainty. It has been shown [72] that energy metering

uncertainty makes a small contribution to overall uncertainty for sampling designs with standard

variance assumptions. We assume Class 1 meters [22] are used with Class 1 Current Transformers

(CTs) [25], as these are common for revenue metering. Since no load profiles are assumed for the

study, a flat error rate of 3% is assumed. (For plots showing the change in error rate as a function of the

rated current of the instruments, see [26]). The 3% figure allows for the combined meter-CT accuracy,

as well as for low-cost calibration [27]. However, at this level, it can be shown [72] that the difference

made by metering error is so small that the required sample sizes do not change due to the additional

uncertainty.

5.4.1.3 Optimization

Thus far a model has been created that determines the overall uncertainty at a specific point in time,

given the sampling regime and certain modelling assumptions. Such a model can be used to determine

an efficient sampling regime, given past sample times, sizes, and results. These are combined with

a forecast of future energy use and associated uncertainties. Planned (future) sample sizes can then
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CHAPTER 5 EFFICIENT METER SAMPLING

be used to control the reporting precision at future reporting points. Sampling is not constrained to

reporting years only, however. If it is advantageous for the algorithm to sample in a non-reporting year,

it may do so.

Optimization can be done in one of two ways. If the present time is τ , the first is to forecast one step

ahead to τ +1, and then determine an efficient sample size. This can be repeated for all time steps. The

other option is to consider all future sample sizes simultaneously, given the forecast from the present

time. This will produce a multi-year sampling plan in which earlier future samples may be traded off

against later future samples. The latter approach is adopted.

Since only a discrete number of meters can be installed, an integer program is needed. Although the

DLM is linear, the behaviour of the uncertainty bounds is not linear. The optimization algorithm will,

therefore, need to be able to solve an integer non-linear program (INLP). Gradient search methods

are therefore not appropriate choices for optimization, and a Genetic Algorithm (GA) was selected.

The constraints are discontinuous [53], and will, in this case, be represented by very large stepwise

changes rather than invalid regions, as this is more efficient for the GA. Similar optimization programs

have been described in previous works [28, 53]. The GA was implemented via the DEAP (Distributed

Evolutionary Algorithms in Python) library [294].

The details of the GA can be summarised as follows. Each solution ns is a vector of numbers

representing the sample sizes in the different years. These are called individuals, and the sample size

for a specific year is called a gene. The algorithm starts with a population of different individuals,

which are different sampling plans. A portion of the population is mated or hybridised to produce

offspring by selecting genes from the parents according to certain rules. In this case, the “uniform

crossover" rule was used to determine how offspring inherit traits from the parents. To ensure genetic

diversity, a given proportion of the population is mutated by altering random genes. The optimality or

fitness of the individuals in the population is evaluated according to the fitness function (known as the

objective function in standard optimization). This evaluation takes place in the form of a tournament.

The fittest individuals are kept for the next generation. This process repeats for a predefined number of

generations and rapidly converges on excellent solutions. Because of the random nature of the solution

generation process, it is not feasible to constrain a GA in the conventional manner. Rather, the fitness

function is programmed to penalise infeasible solutions to such an extent that they are too costly to

propagate to future generations, as shown in (6.44).
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CHAPTER 5 EFFICIENT METER SAMPLING

The parameters used to tune the GA for this case will need to be the same as for the optimization in

Section 6.3.3, since these are combined in Chapter 7, and the survey sampling model of Chapter 6

is more computationally expensive and therefore dictates how large the GA population and other

parameters may be. The parameters are described in Table 5.1. The mutation function was set so that

the genes that are selected for mutation are altered by adding a number from the distribution

Mutation factor∼ N[−10, 500]. (5.23)

Previous cross-sectional efficient metering studies have considered installation, maintenance, and

meter removal costs separately for each meter [51–53, 98]. This cost structure is based on the

assumption that the same facilities are monitored throughout the study, and that these individuals

are representative of the whole population. However, as discussed in Section 5.3.1, the least

problematic and most consistent solution would be to draw random individuals from the population

at each sampling point, as is assumed in this study. The costing structure for such a sampling

plan would be a simple fixed rate per meter per sampling point. This fixed rate would possibly

include purchasing costs, subscription to an Advanced Meter Reading (AMR) telemetry service

for accessing the data online, as well as installation and removal costs. Since the rate is fixed, the

optimization function will simply reduce the total number of meters installed over the duration of

the study. The price is therefore irrelevant. It does become a factor when metering is traded off

against surveying as in Chapter 7, however. From industry experience, this is set at R3 000 (South

African Rand) per meter per sampling point, although it may vary significantly by contract and supplier.

Mathematical formulation

From the notation on the following page, the fitness function can be defined as

min
N

∑
t=τ

nm, twm + r(nm), (5.24)

where

r(nm) = ∑
t∈M

(
105wm(et − ε)+107 +5wmnm, benchmark, t

)
∀t ∈ χ (5.25)

and

et =
Êr, t −LCLm, t

Êr, t
. (5.26)
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CHAPTER 5 EFFICIENT METER SAMPLING

Notation

Let:
χ Number of sampling points where et > ε

nm, benchmark Non-DLM solution at time t

nm, t Decision variable. Sample size at time t.

n = {τ,τ +1, ...,N}

wm Cost per meter in Rand/sample

τ Present time, where τ ∈ {1,2, ...,N}

N Last year of study

et Precision of reported average annual energy use

at time t, where et ∈ [0,1]

ε Given precision limit, where ε ∈ [0,1]

M Required reporting points (years), where

M⊂ {τ +1,τ +2, ...,N−1}

Êr, t Estimate of average annual energy use at t

LCLm, t Lower Confidence Limit at t

Description

The decision variable is the metering sampling plan nm, the individual elements of which are written

as nm, t in (5.24).

The fitness function (objective function) for the model is reasonably simple. There is a cost to metering

and a cost to violating the reporting precision requirement. The first term in (5.24) describes the

metering cost, and the second term describes a penalty function for violating the precision constraint.

Setting a hard constraint for a GA is not efficient due to the randomness inherent in the optimization

process [28]. The penalty r(nm) is therefore invoked only for sampling plans which violate the

precision constraint. The shape of this penalty function is designed so that solutions that do incur a

penalty are directed into the feasible region, rather than away from it [28]. It reduces to zero when

the precision requirement is satisfied. Consider Figure 5.7. If there were no constraint, the cost

would increase with nm, twm along line ab, and the GA would optimize to zero, violating the actual

constraint. A penalty function could be specified simply as a constant added to the cost function if

the confidence/precision bounds are violated: line dcb. However, this is not efficient. If a solution (or
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Table 5.1. GA parameter values. These values have been used in all case studies.

Parameter Value

GA Algorithm MuPlusLambda

Crossover Rule Uniform Crossover

Crossover proportion 45%

Crossover exchange probability 75%

Mutation Proportion 40%

Individual gene mutation probability 30%

Number of Generations 35

Population Size 100

population of solutions) violate the constraint (placing it on d), the algorithm would tend to optimize

away from the constraint boundary in the wrong direction towards the local minimum at the y-intercept

of d. Mutation could transport an individual to b, but it is inefficient to rely solely on this mechanism.

Therefore line ef is needed to direct the algorithm towards the constraint rather than away from it.

This is what the 105wm(et − ε) term does. The 105 term increases the gradient of the line (or ‘gain’ of

the error size), and therefore encourages the algorithm to optimize downwards. The threshold value nε

at which the penalty occurs is unknown — that is why the GA heuristic is needed. A step is built into

the model to ensure that adhering to the constraint is always preferred over violating the constraint.

However, since the exact number of samples at which this occurs is unknown, and a larger required

sample size would also increase the constraint violation cost, a step of 107 +5wmnm, benchmark, i is built

in to ensure that constraint violation is always costly, where nm, benchmark, i is defined by (4.10). This

step is represented by line ce.

Regarding (5.26), only the lower bounds are considered when calculating precision. For a normal

distribution where these bounds are symmetric about the mean, this makes no difference. However,

for asymmetric distributions as will be encountered later, there may be a difference. The reason the

lower bounds are considered rather than the upper bounds is that reported savings should always be

conservative in M&V [1]. This means that although the post-retrofit savings value may be higher than

the reported value, it should not be lower.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

128

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5 EFFICIENT METER SAMPLING

a

d

f

e

c
b

nε Sample Size

C
os

t

Figure 5.7. Genetic Algorithm constraint function r(n) in (6.45), where nε represents the threshold

sample size.

5.4.1.4 Benchmark

The DLM model with Bayesian forecasting should be benchmarked against current best-practice

efficient sampling designs. It has been suggested that for cases involving weighted or normal regression,

the sample size may be reduced by a factor of (1−R2) [69]. R2 is the coefficient of determination, which

is the square of the Pearson moment correlation coefficient. This is similar to ‘ratio-estimation’ [295] ,

where the additional information contained in the known ratio or regression line can be used to reduce

the sample size [296]. However, for cases where the process is supposed to be stationary, the regression

line will have a slope coefficient equal to zero. It should, therefore, be “uncorrelated” even if the

regression line exhibits high goodness of fit. This means that the correlation coefficient and thus R2

will be zero, even if all the sampled points fall exactly on the straight (horizontal) line. In fact, for a

stationary process, any other (erroneous) slope estimate would increase the R2 value spuriously and

thus decrease sample size.

A more reliable and popular measure of goodness of fit in M&V is the CV(STD) or CV(RMSE) [17,35],

which does not reduce to zero for stationary processes. However, these are not ratios bounded by zero

and one like R2. How they relate to a sample size reduction factor can be the topic of future research
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Figure 5.8. Efficient sampling plan using the DLM for one random model realisation

as an extension of G14 [17] and Reddy and Claridge’s work [33].

Therefore the method is benchmarked against the standard M&V approach of (4.10). Since metering

error has been determined to not affect sample size, it may be neglected.

5.4.1.5 Results and discussion

The values generated for the first three points are D0−2 = [12.39,13.02,12.71]. One efficient sampling

plan for one realisation of results is shown in Figure 5.8. The planned sample sizes nm are

nm, DLM = [56,0,36,0,32,0,26], (5.27)

while standard sampling theory yields

nm, Benchmark = [68,0,68,0,68,0,68]. (5.28)

The total number of meters under the DLM plan is 147 at a cost of R450 000, while under the standard

plan 272 meters are installed at a cost of R816 000. A saving of 66% is achieved.
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The red error bars in Figure 5.8 indicate the reporting precision limits. Should the uncertainty bounds

(light blue area) fall outside these limits, the reporting precision requirement will have been violated,

and r(nm) in (6.45) invoked. Efficient sampling plan precisions tend to be in the range 0.97 to 0.99. If

a certain year has a precision of 0.97, sample sizes can be reduced to so that the precision is closer

to 0.1 (being more efficient), but doing so usually results in precisions in later years violating their

constraints, requiring more samples in those years.

Since the full solution space is not known and convergence is not guaranteed mathematically, the

solution cannot claim to be ‘optimal’. It may be the case that the solution is only a local minimum, or

that one or two samples may still be removed from the solution, resulting in an even more efficient

sampling plan. That is why the solution is presented as ‘an efficient solution’ rather than ‘the optimal

solution’, although the GA does converge reliably to very efficient solutions. This consideration has

been noted before [53, 111], but has not always been adopted [51, 52, 98, 99].

This model illustrates certain crucial characteristics that M&V study designers should take into account.

The first is that although this is a stationary process, random realisations from the distribution could

indicate a trend. In this case, it appears as though energy use is increasing, although it is not the case.

Another realisation may show the opposite with equal probability. The larger the sample size, the less

pronounced this trend should be, but the sampling error effect will not be mitigated completely.

As in Figure 5.2, the uncertainty decreases over time as more samples are taken and the prior informa-

tion of the Bayesian method becomes more prominent. This results in smaller sample sizes in later

years. The CV of the process plays a significant role in this narrowing effect.

An interesting relationship emerges when solving the optimization model for different energy use

realisations in years zero to three (sampling results drawn from the relevant distributions). It is plotted

in Figure 5.9. The sum of all future (efficient) sample sizes are related to the gradient of the energy

use line (least-squares regression line) plotted through these three data points. From this relationship,

an estimate of future sampling costs may be obtained, even before a GA is used to determine exactly

how these samples should be spread over the remaining years. This can be done by simply calculating

the gradient of the weighted regression line drawn through the past sampling points. The caveats for

using the graph are that it is specific to the parameters used for this model, since many variables may

affect this relationship. These include past sampling points and sample sizes, CV, future reporting
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Figure 5.9. Natural logarithm of the total number of future samples under efficient sampling plans, as

a function of the gradients of the regression lines on past samples, e.g. in Figure 5.8.

points, reporting precision, and others. The model also assumes that such an increasing or decreasing

relationship apparent in the past sampling results, does exist. However, all the points on the graph

were generated from realisations of what is in fact a stationary process (gradient = 0). One should

therefore be very careful about interpreting low future sample sizes from a positive gradient-model,

especially with few past sampling points. The algorithm may recommend small future sample sizes

when such sample sizes will yield inadequate precision. The forecasting uncertainty bounds should

certainly be considered.2 Nonetheless, the relationship shown in Figure 5.9 is true in the sense that if

that relationship is correct, the required future sample sizes do follow that curve.

5.4.1.6 Sampling plan execution

After an efficient sampling plan has been designed, it should be executed. In this section, the reliability

of efficient sampling plans is investigated, in terms of compliance to reporting precision requirements.

2Note that the forecasting uncertainty bounds in Figure 5.8 are instantaneous future sample sizes which include results

from planned future samples.
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Since the sampling plan needs to be updated every time new data becomes available, only the next

time step beyond the sampling plan already devised is investigated. It is supposed that three years’

data are available (D0−2), and that the fourth year is forecast, planned, and executed. Such scenarios

are simulated and the result analysed. The investigation proceeds as follows:

1. Generate D0−2 from the distribution ∼ N
[
12.49, 12.49CV√nm, 0−2

]
.

2. Fit DLM to data points, forecasting t = 3.

3. Find minimum sample size nm, 3 that adheres to the reporting uncertainty limit.

4. Instead of assuming that D3 will correspond exactly to the most likely forecast value, generate a

random realisation of D3, given the planned sample size nm, 3: D3 ∼ N
[
12.49, 12.49CV√nm, 3

]
.

5. Update the DLM to include D3|nm, 3

6. Calculate reporting precision at t = 3.

7. Repeat steps 1-6 10 000 times to examine the adequacy of the sample size for different random

realisations of the sampling distribution.

As discussed in Section 5.4.1.1, a naïve efficient design is not necessarily efficient when all possible

scenarios are considered. For this case study, if only the best-case scenario is considered and sampling

is planned accordingly, the reporting precision requirement will be met in only 48% of cases, as shown

in Figure 5.10. Meeting the reporting precision requirement means that the lower confidence limit

(LCL) at time t = 3, given the data at time t = 3, (LCLm, 3, 90%|D3) is within 10% of the most likely

value. Taking only a naïvely efficient (or ‘optimal’) number of samples has a 50/50 chance of being

inadequate, according to the simulation described above. Note that this lack of power is not due to the

DLM or regression generally, but due to the sample size produced by the standard M&V sampling

formula (4.10) recommended by the leading guidelines [1, 17, 40], on which see Button et al. [245]

and Senn [248]. As shown in Section 4.2.3, the interval produced includes the true value and satisfies

the 90/10 criterion in only 50% of cases.
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Figure 5.10. The effect of oversampling on the probability of compliance, as per Section 5.4.1.6.

In the first approach, the algorithm oversamples by 10-70% and plot the results in Figure 5.10. (The

UMP recommends 10-30% oversampling [37].) This relationship depends on past sample sizes, CV,

reporting uncertainty requirements, and other factors. It can be seen that the probability of compliance

increases as the percentage of oversampling increases, but there is also a diminishing return on

investment.

The second approach is to determine a robust sampling design based on the DLM. In this approach,

Step 3 above is planned not according to D3 taking the most likely value of the forecast, but according

to the value at the forecast lower confidence limit LCLm, 3, 90%. Instead of blindly oversampling, this

result leverages the capabilities of the DLM to decrease the likelihood of non-compliance. It was

found that when this is done, the probability of compliance reaches 100%. It comes at a cost, however.

Robust designs have larger samples, following the curve illustrated in Figure 5.10.

From these results, it is evident that naïve efficient M&V designs have an inherent risk in cases where

metering is done. The risk is compounded by the fact that the sampling plan cannot be amended or

expanded at a later date, as survey designs could be.
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It may seem as though robust sampling is much more costly than naïve efficient sampling. However,

this is only true if cost is narrowly defined as metering cost. In a robustly efficient sampling plan, on

the other hand, the cost of metering is traded off against the cost of non-compliance to uncertainty

reporting requirements. Considering non-compliance can make naïve efficient plans be as costly as they

actually are, because such penalties may be incurred in all but the best-case scenarios. Furthermore, a

robust sample size in the next year will decrease the sample sizes needed in the years after that. One

should not expect the robust plan to have the same overall sampling cost as a naïve efficient plan,

however.

The analysis above represents a very simple robust plan, and future works may develop a more

complete, robust framework, similar to that of Rysanek and Choudhary [61] or Lindley [246] and

Bernardo [247].

5.5 CONCLUSION

A DLM with Bayesian forecasting is shown to provide superior uncertainty quantification and sampling

designs compared to standard and previously proposed methods. The current method combines the

three significant M&V uncertainty sources, namely metering, sampling, and modelling uncertainty,

into a coherent energy model which can be used for quantifying uncertainty and designing other

types of M&V studies. It is applied to a multi-year M&V lighting retrofit study and found to reduce

metering costs by 40%. However, an investigation into the robustness of efficient sampling plans is

also conducted. It is found that efficient plans yield valid results for only half of possible scenarios,

given the assumptions in the case study.

DLMs are recommended as a useful alternative to standard linear regression for M&V, should reliable

uncertainty quantification be required.
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CHAPTER 6 EFFICIENT POPULATION SURVIVAL

SURVEY SAMPLING

6.1 CHAPTER OVERVIEW

This chapter addresses the second part of the longitudinal M&V problem: population survival survey

sampling. After an introduction to the nature of the problem, modelling is discussed in Section 6.3. A

dynamic decay model for CFL populations is presented, as well as a mathematical technique for using

this model. A method of including this technique in an optimization function is also discussed. In

Section 6.4 and Section 6.5, two cases studies are presented: the first is for a homogeneous population,

and the second for a stratified population. 1

6.2 INTRODUCTION

The longitudinal M&V problem has two components: cross-sectional metering, and population survival

survey sampling. The metering component was addressed in the previous chapter. The longitudinal

sampling component, which considers persistence, will be addressed in this one.

Persistence describes how annual savings are preserved over time, the literature of which was discussed

in Section 2.2.4. Population survival is measured using surveys. Survey design is a science in itself,

on which the UMP Chapter 12 is a useful introduction [6]. This chapter will focus on the data

analysis and modelling method, and not consider factors such as non-response, self-selection, and

1This chapter is based on a journal article written by the author as part of his PhD research, published in Energy and

Buildings [28].
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other measurement errors, for which Gustafson presents an excellent Bayesian treatment [197], and

Carroll et al. present other important methods [196].

After considering various methods for modelling population survival with quantifiable uncertainty, it

was decided to use a Dynamic Generalised Linear Model (DGLM) with Bayesian Forecasting. The

DGLM is very similar to the DLM used in the previous chapter. The difference is that the Generalised

Linear Model allows for the modelling of non-normal distributions, which are needed to describe the

binomial nature of survival data.

This chapter will consider the survey sampling problem only, and not use the meter sampling method

developed in the previous chapter. In the next chapter, these two methods will be implemented

simultaneously.

This chapter can be described in M&V terms as follows:

M&V measurement option: Retrofit isolation with key parameter measurement (Measuring popula-

tion survival, estimating energy use).

Project boundary: The lighting population(s) under investigation.

Baseline and baseline adjustment approach: The baseline is assumed as the business-as-usual case

where original-type failed luminaires would have been replaced by identical original-type luminaires.

Savings determination approach: Standard energy efficiency savings (as opposed to normalised

savings) is assumed. This is done in Chapter 7.

6.3 MODELLING

6.3.1 General remarks

The purpose of the DGLM in this chapter is to define the remaining population proportion and quantify

the uncertainty with which population survival can be reported at a given point in time. This is done

by producing a probability distribution on the proportion of the population left at time t = k. Once

the DGLM has been defined, it will be used as a constraint in an optimization routine in Section 6.3.3

to find an efficient sampling plan that accounts for past data and sample sizes and adheres to future

reporting requirements.
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In this section the modelling assumptions will be stated before presenting the mathematical

model.

1. Energy savings, and not population survival, is the key performance indicator of the EE project.

2. Energy use is the product of energy meter data and population survival data.

3. Incandescent lamps have been retrofitted with energy-saving CFLs.

4. Only the CFLs installed by the original project are considered part of the population, although

efficient maintenance approaches for such projects have been developed [52, 98, 297, 298]

5. CFL electricity consumption is constant over time. The decay in performance (reduced lumen

output) is not considered.

6. Minimising monitoring cost is not necessarily equivalent to minimising the number of sampling

points, or the number of samples per sampling point.

7. M&V reporting frequency and sampling frequency are different. Reporting can be required

every second year (or every fifth year in some cases), but sampling may take place annually if

there is an advantage in doing so.

8. Survival data can be described as a time series of population proportions (fractions).

6.3.1.1 Dynamic model for population decay

Survival data are time-dependent and have an autoregressive or dynamic relationship [299], which is

also useful in control applications [300]. This means that the state at time t = k+1 can be inferred

from t = k, provided that some model parameters are known. This attribute is useful for predicting

the population proportion at some time in the future, given current data. In autoregressive form this

population survival relationship is

Φk+1 = βγΦ
2
k∆t−βΦk∆t +Φk, (6.1)
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Figure 6.1. PELP data and best fit line of (6.2), as reported by (6.47).

where Φk is the proportion of the population surviving at step k, and β and γ are model parameters [111].

Their meanings become apparent when (6.1) is written in its standard form as a logistic equation:

Φt =
1

γ + eβ t−L . (6.2)

The slope of the logistic curve is determined by β , and the starting population proportion is determined

by γ . Theoretically γ = 1, but this is not the case for real data: some measures are removed immediately

because of customer dissatisfaction, for example [165]. The model is sensitive to fixing this value, and

therefore it is best left as a variable. The L-term falls away for the autoregressive model in (6.1) as it

shifts the curve left or right, determining the median life of the population, but is not needed to predict

tk+1|tk. To visualise this logistic curve, data from the PELP [169] has been plotted with a best fit line

of (6.2) in Figure 6.1. The PELP was a large-scale CFL retrofit study undertaken in the late 1990s

where over a million luminaires were installed and tracked over many years. It is a reliable data set

and was adopted for use in the South African case [171], but represents only one instance of such data.

For Section 6.5 on stratified sampling, other data sets will be used.
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If the points on the logistic curve were known with certainty, predicting future population survival

would need only simple regression. However, the current state of knowledge of the system is imperfect.

Uncertainty is introduced because the whole population is not surveyed. Credible intervals around

current and future estimates should, therefore, be determined, but are dependent on the confidence

with which previous estimates were determined. This, in turn, is dependent upon the sizes of previous

samples. Furthermore, the population proportion estimate Φ̂t at t is dependent on the regression model

and the sample size ns, t at t. A larger sample size at t should have a greater influence on Φ̂t than a

smaller sample size. The sampling schedule and recency of the previous sample should also play a role

in the current estimate. Therefore it is desirable to use a weighted regression technique to characterise

the population survival curve. Fortunately, such models do exist in the form of Generalised Linear

Models (GLMs). However, GLMs do not usually take sample sizes into account, and do not provide

uncertainty bounds around predictions. To do so, Bayesian forecasting techniques need to be added.

The model is referred to as a Dynamic GLM because the parameter values are updated at each time

step.

6.3.1.2 Bayesian forecasting

An introduction to Bayesian theory has been given in Chapter 3. A brief remark on the use of priors

is in order, however. As discussed in Section 3.4.1, the priors used in Bayesian calculations can be

informative (and often subjective), or non-informative (as is often used in the objective approach).

The DGLM allows for the use of informative, objective priors. This is done by using the weighted

regression forecast derived from previous samples and forecasting according to the DGLM and the

population decay model in (6.1).

An informative prior is used because longitudinal population survival sampling models can be solved

analytically, since the likelihood and prior are naturally conjugate. This condition is satisfied if

convolving the likelihood distribution type with the prior distribution results in a posterior which is

of the same distribution type as the prior. This is the case for the binomial survival data set, since

it is known that binomial likelihood distributions and beta prior distributions form a conjugate pair

resulting in a beta posterior. It is, therefore, possible to solve a repeated Bernoulli trial sampling

problem without using Bayesian MCMC. The conjugate prior property is used instead.
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Let Φ̂t be the estimate of the true population proportion and Dt−1 be the data available up to but not

including t, Yt the number of lamps in the sample functioning at t, and ns, t the survey sample size at t.

Also, let rt and st be the first and second moments defining the Beta distribution. Then:

Dt = {Dt−1,Yt}, (6.3)

and

(Φ̂t |Dt)∼ Beta(rt +Yt ,st +ns, t −Yt), (6.4)

given that the conjugate prior is Beta:

(Φ̂t |Dt−1)∼ Beta[rt ,st ], (6.5)

and the likelihood function is binomial:

(Yt |Φ̂t) ∝

 ns, t

Yt

Φ̂
Yt
t (1− Φ̂t)

ns, t−Yt . (6.6)

This means that if all prior knowledge of the system up to t = k− 1 can be summarised by a Beta

distribution describing the uncertainty around the population proportion, Bayesian statistics may be

used to update this estimate with the new data, to provide a new estimate of the population proportion.

This will be demonstrated below.

6.3.2 Dynamic Generalised Linear Model

The model proposed below is very similar to an extended Kalman filter, which also relies on Bayesian

statistics. The state (population proportion and model parameters) at time t is estimated using previous

data Dt−1. Data Dt are then collected, and the state estimate for time t is updated. If need be, the state

at time t = k in the future can then be forecast. A summary of these steps is given in Table 6.1.

This model was derived from West, Harrison, and Migon’s model for Television Viewer Ratings [229,

230]. Their model estimated and forecast television viewer ratings based on sampling a population of

viewers and asking them if they were aware of the particular product that was advertised that week. By

correlating this awareness to the number of advertisements shown (the perturbation in the system),

the system could be characterised. The model used for population decay is somewhat simpler as it is

assumed that there are no inputs to the system.
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Table 6.1. Notation

Variable Symbol Information Updating Forecasting

Time t t−1 t t + k

Data D Dt−1 Dt Dt

State Vector θθθ ∼ [mt−1,Ct−1] ∼ [mt ,Ct ] ∼ [at(k),Rt(k)]

Dist. on P P ∼Beta[rt ,st ] ∼Beta[r∗t ,s
∗
t ] ∼Beta[rt(k),st(k)]

P “mean" E[P] ft f ∗t ft(k)

P “variance" VAR[P] qt q∗t qt(k)

The state of the population decay model from (6.1) can be described by the parameters:

θθθ
′
t = (βt ,γt ,Φt). (6.7)

The estimated population proportion Φ̂t can then be described by

Φ̂t = Fθθθ t (6.8)

where the regression vector is

F = (0,0,1). (6.9)

The state vector evolves according to

θθθ t = Gtθθθ t−1, (6.10)

however, in this special case

θθθ t = gt(θθθ t−1). (6.11)

Letting ′ denote a transponent, so that column vectors can be written as row vectors, gt(z) and Gt(z)

are defined as follows. Using (6.1),

gt(z)′ = (β ,γ,βγΦ
2−βγ +Φ) (6.12)

and

Gt(z)′ =


1 0 γΦ2−Φ

0 1 γΦ2

0 0 2βγΦ−β +1

 . (6.13)
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6.3.2.1 Information step

The moments of the parameter estimate distributions for the information step θθθ t−1 may be defined

as

(θθθ t−1|Dt−1)∼ [mt−1,Ct−1], (6.14)

where mmmt−1 is the mean vector estimate of θθθ , taken from the previous time step’s mt , defined in (6.37).

C is the covariance matrix. The current state given past data is defined as:

(θθθ t |Dt−1)∼ [at ,Rt ] (6.15)

with the mean vector of the prior as

at = gt(mt−1), (6.16)

as in (6.11). The variance matrix of the prior is defined as

Rt = Gt (Ct−1)G′t +Wt , (6.17)

where the evolution variance matrix Wt is

Wt = GtUtG′t , (6.18)

and the discounted covariance matrix Ut is

Ut = 0.03Ct−1, (6.19)

and

Gt = Gt(θθθ t)θθθ t=mt−1 . (6.20)

This is the prior. Translating this to the moments of the prior distribution at time t is done as

follows:  µt

θθθ t
Dt−1

∼

 ft

at

 ,

 qt F′tRt

RtFt Rt

 , (6.21)

where the forecast mean of the information step is

ft = F′tat , (6.22)

in accordance with (6.8), and the forecast variance of the information step is

qt = F′tRtFt . (6.23)

ft and qt are the mean and variance terms of the distribution of µt given Dt−1. However, in the binomial

case

(µt |Dt−1)∼ Beta[rt ,st ], (6.24)
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which implies that

ft = E[µt |Dt−1] =
rt

rt + st
, (6.25)

and

qt = V[µt |Dt−1] =
ft(1− ft)
rt + st +1

. (6.26)

rt and st are the first and second moments of the beta distribution, and are related to the number of

successes and failures obtained in a certain set of Bernoulli trials. For binomial linear regression, West

and Harrison [230] invert (6.25) and (6.26) so that:

rt = ft

[
ft(1− ft)

qt
−1
]

(6.27)

st = (1− ft)
[

ft(1− ft)
qt

−1
]
. (6.28)

However, this is found to be inaccurate for the current case. An alternative is given as

ft = ψ(rt)−ψ(st) (6.29)

and

qt = ψ̇(rt)+ ψ̇(st) (6.30)

where ψ and ψ̇ are the digamma and trigamma functions respectively. However, optimizing for these in

Python does not lead to very accurate estimates of rt and st . The following formulae were used:

rt =

(
1− ft

qt
− 1

ft

)
f 2
t , (6.31)

st =

(
qt + f 2

t − ft
)
( ft −1)

qt
. (6.32)

This then is the prior used for the Bayesian analysis.

6.3.2.2 Updating step

Updating Φt for data sampled at t, the posterior may be written as

(Φt |Dt)∼ [ f ∗t ,q
∗
t ], (6.33)

with the update step forecast mean and variances defined as

f ∗t = E[Φt |Dt ] =
rt +Yt

rt + st +ns, t
, (6.34)

and

q∗t = VAR[Φt |Dt−1] =
f ∗t (1− f ∗t )

rt + st +ns, t +1
. (6.35)
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The posterior moments can then be updated as follows:

(θθθ t |Dt)∼ [mt ,Ct ], (6.36)

where

mt = at +RtFt

(
f ∗t − ft

qt

)
(6.37)

and

Ct = Rt −RtFtF′tRt

(
1−q∗t

q2
t

)
. (6.38)

6.3.2.3 Forecasting Step

For forecasting to year k given the data at t,

(θθθ t+k|Dt)∼ [at(k),Rt(k)] (6.39)

with at(k) as in (6.16). Rt is calculated as follows:

Rt(k) = Gt(k)Rt(k−1)G′t(k)+Wt(k) (6.40)

where W is the evolution variance matrix, defined as

Wt(k) = Gt(k)(Ct +Ut)G′t(k), (6.41)

Similarly, ft(k) and qt(k) are calculated according to (6.22) and (6.23). The parameters of the posterior

(forecast) distribution can be calculated through (6.24), (6.27), and (6.28).

6.3.2.4 Confidence/credible interval estimation

Confidence (or credible) intervals may also be calculated using the posterior Beta distribution. Because

the probability distributions are asymmetric, an equal-tailed confidence interval will not capture the

true nature of the system, and the HDI is used, as explained in Section 1.9.

As in (6.5), the distribution on µt is beta. However, in (6.5) Dt is not taken into account, and rt and st

should be considered in the light of f ∗t and q∗t . Thus, following (6.27) and (6.28),

r∗t = f ∗t

[
f ∗t (1− f ∗t )

q∗t
−1
]

(6.42)

s∗t = (1− f ∗t )
[

f ∗t (1− f ∗t )
q∗t

−1
]
. (6.43)
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However, the HDI on the population proportion estimate is not of specific interest for this study.

Instead, the HDI on the total savings, which incorporates other uncertainty sources as well, is sought.

This is solved from the Johnson PDF in Python. More on this point in Section 6.4.2.

6.3.3 Optimization

The DGLM described above computes the confidence with which population proportions can be

reported at a given point in time for a given sampling plan. It does not produce an optimal sampling

plan. For that, a cost or fitness function should be specified and a sampling plan devised using an

optimization model. In this section, such a model will be formulated. The notation will be the same as

for Section 5.4.1.3, with the subscript s indicating survey sampling, instead of the subscript m used

before to indicate metering.

6.3.3.1 Mathematical formulation

From the notation above and in Section 5.4.1.3, the fitness function can be defined as

min
N

∑
t=τ

dtv+ns, tw+ r(n), (6.44)

where

r(n) = ∑
i∈M

(
105w(et − ε)+107 +5wns, benchmark, i

)
∀t ∈ χ (6.45)

and

et =
Φ̂t −LCLt

Φ̂t
. (6.46)

6.3.3.2 Model explanation

The proposed fitness function evaluates a particular sampling regime n based on the cost w per sample,

and a cost v of initiating sampling for a given time point, as well as a penalty constraint discussed in

the next paragraph. For the cost, if w = 10 and v = 1000, the cost of taking one sample at t would

be R1 010, and for 5 samples it would be R1 050. This is the standard survey costing scheme used

in literature [301, 302]. Levy and Lemeshow do not consider sampling initiation costs [303], while

Hansen describes a more thorough approach where costs may vary per stratum [304]. Barnett [301]

adds a term for travelling required between samples.
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Table 6.2. Case Study 1 Model Parameters. ∼ N[·] indicates a normal distribution.

Description Symbol Value

Initial Covariance Matrix C0


1 0 0

0 1 0

0 0 1


Confidence α 0.9

Discount factor 0.03

Precision ε 0.1

Study duration N 12

Fixed cost v 1000

Variable Cost w 10

Baseline Power Pb ∼ N[60,1.5]

Reporting Period Power Pr ∼ N[11,0.275]

Hours of use HOU ∼ N[3.11,0.15]

Number of units nretro f itted 105

A GA and constraint function as described in Section 5.4.1.3 was used. The parameter values for the

DGLM were set as indicated in Table 6.2.

6.3.4 Risk-conscious sampling design

The optimization described above is for the lowest cost sampling plan. Under this strategy, it is

assumed that the outcomes of future surveys fall precisely on the forecast population survival curve

and that no data are lost. Assuming the most likely future survey outcome is the natural approach

to sampling planning. However, taking only an optimal number of samples is risky as discussed in

Sections 5.4.1.1 and 5.4.1.6. Survey outcomes which differ from this forecast value will result in worse

confidence intervals than those forecast by the model. The result could be that the optimal sample

size does not meet the required accuracy level for M&V reporting. Unlike the metering case, it would

be simple to enlarge the sample size by surveying additional units, and therefore this scenario will

not be detrimental to the M&V study in the same way metering under-sampling would. Furthermore,

the concern is only for the present year of the study, not future years. Under- or oversampling in past
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years is accounted for as a matter of course by the DGLM, and future sample sizes will be adjusted

accordingly by the optimization routine. Nevertheless, the robustness of the current year’s required

sample size is still of concern.

6.4 CASE STUDY 1: SIMPLE RANDOM SAMPLING DESIGN

6.4.1 Data

The first case study considered is for a single unstratified population of CFLs which were installed in a

lighting retrofit project. The survival data used for this case study is the PELP dataset [169] discussed

above. The parameters for (6.2) were determined to be [γ,β ,L] = [1.030,1.056,5.233], so that

Φt,sim =
1

1.030+ e1.056×t−5.233 . (6.47)

A realistic way to use this data would be to generate data points according to

Dsim,t ∼ Binomial[n = ns, t , p = Φ̂t,sim]. (6.48)

However, what often happens is that due to random variation, a dataset will have a sequence such as

[0.91, 0.9, 0.96]. Fitting a logistic curve to these data results in a monotonically increasing function.

This often happens with optimal (small) sample size allocations for early project years where there is

little change in the population. The sample sizes may satisfy the 90/10 criterion but are inadequate for

trend determination. Furthermore, if sampling points are not exactly the same as the PELP data, the

fitted line will be higher or lower than the PELP best-fit line. This is realistic, but makes benchmarking

difficult as it changes the (relative) accuracy limits and therefore the required sample sizes. The PELP

data points are therefore used. Smaller sample sizes will still have larger variances in the DGLM; the

way real data would.

The PELP data are:

DPELP = [0.97,0.97,0.91,0.83,0.77,0.4,0.29,0.08,0.02,0.02,0.02]. (6.49)

For this study, it is assumed that data has been collected for the first three years, and supposed

that n0−2 = [250,250,250] lamps were surveyed. We suppose further that according to the contract,

reporting must be done in years 3-6. Therefore M = {3,4,5,6}. The contract stipulates that reports
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should have a 90% confidence and 10% precision on the estimate, as per CDM [49] and IPMVP [1]

guidelines. It is usually assumed that savings are distributed normally and symmetrically around a

mean value. However, this will not be the case with beta-distributed estimates. For asymmetrical

distributions the mean does not represent the most likely value – the mode does. This is referred

to as the Maximum A-Posteriori or MAP estimate. Furthermore, because the distribution of Φ̂t is

asymmetrical, it may happen that the lower confidence limit of the HDI falls within 10% of MAP

estimate of the distribution on Φ̂t , but the upper limit does not. Additional samples will then be needed

to constrain the upper limit of the 90% HDI. However, the upper limit on the savings estimate is not of

interest since the conservatism principle of M&V dictates that savings may be underestimated, but

should not be overestimated [1]. Therefore the 10% precision bound is considered to apply to the

lower limit of the 90% HDI only. If the lower limit of the 90% HDI is more than 10% away from the

MAP, the accuracy constraint is violated, and the function is penalised. The GA will then attempt to

find a solution for Φ̂t that has a tighter HDI around the MAP by increasing the sample size in that or a

previous year.

The uncertainty limits do not apply to the population survival estimate alone, but to the overall estimate

of the energy saved by the project during the monitoring period. This means that the population

proportion estimate Φ̂t should have an accuracy greater than 90/10. How much greater will depend on

the variance of the estimate of the energy saved per unit, as well as the variance in the baseline energy

use.

This chapter considers the retrofit isolation with key parameter measurement approach. The next

chapter will expand this to retrofit isolation with all parameter measurement by including meter

sampling. However, to keep the current model focussed on survey sampling, the metering sampling

DLM will not be considered here.

If one supposes that 99% of the lamps were working at the time of the retrofit, b represents baseline

and r represents reporting, then the savings may be calculated as:

Esaved, t = nretro f ittedHOU(0.99Pb−Pr)Φ̂t , (6.50)

Where HOU is the distribution of daily hours of use and P is the distribution of the power drawn by
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the old (Pb) and new (Pr) units. The number of lamps retrofitted is nretro f itted . Interactive heating and

cooling effects and the in-service rate [38] are not considered.

For the power P drawn by the unit, the uncertainty may be relatively small, although estimates vary.

Some tests report a mean value of about -5.8% compared to the labelled power in laboratory tests

of CFLs [170], others 1.75% [305], while others report in the order of ±0.5% in actual operating

conditions of fluorescent lamps and pre-retrofitted fixtures generally [306]. These are only the active

power (in Watts) measurements. CFLs also have significant power factor and harmonic distortion

effects, but considering these will take us too far afield for the current study. Usually, 60W incandescent

lamps are replaced with 11W CFLs. The energy saving is therefore 49W per fixture, according to the

recommended lumen-equivalence savings method [38]. Therefore a 2.5% error was selected.

The values used for these distributions are summarised in Table 6.2. Typically the hours of use are the

most uncertain factor in lighting retrofit projects [1], and this uncertainty should be taken into account.

Vine and Fielding [293] conducted a meta-study of CFL HOU studies. For the 25 CFL HOU estimates

listed by them for summer interior fixtures, the mean of was 3.11 hours per day, and the median 3.00

hours per day.2 This accords with the CDM assumption [50]. Their data are distributed as

HOU study estimates = 2+∼ Exponential[0.893]. (6.51)

Few of the studies listed by Vine and Fielding mention uncertainty. Those that do list them as 17%,

10%, 4%, and 3% at the 68% confidence level. The last two will still be adequate at the 90% confidence

level (assuming normally distributed data). For this study, a 4% uncertainty on the HOU is assumed. It

is also assumed that the HOU stay the same between the baseline and the reporting period. Should

snapback or rebound [38] be proven, two different HOU terms could be defined for the baseline and

reporting periods.

6.4.2 Distribution convolution

Many of these values have been assumed to be normally distributed, but need to be convolved with

the beta estimates calculated by the DGLM. This is difficult to do analytically, and therefore numeric

2Another meta-study disaggregated lamp HOUs and found lower numbers [307]. For information on CFL HOUs

disaggregated per installation location, see [308].
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Monte Carlo convolution would be the standard way of calculating (6.50). However, MC simulation

has two related disadvantages in the context of threshold optimization.

The first is inconsistency. MC is usually considered very accurate, provided that enough trials have

been conducted. This is because the shapes and means of the posterior MC distributions are usually of

interest, not the low-mass tails as in this case. The problem manifests when MC simulation is done for

each individual in each generation of the GA. There is some inter-simulation variation between the

MC realisations of the same parameters. Because the GA seeks an optimal solution, certain individuals

which are slight MC outliers due to noise, are evaluated to be the fittest individuals because they seem

to adhere to the constraints, when this is just an artefact of MC noise. They only seem to conform

because that specific MC realisation is not a perfect reflection of the convolution. On most other runs

the same solution (sampling plan) would not conform to the accuracy requirements. Although these

‘false positives’ happen relatively rarely, they mislead the algorithm by incorrectly altering the ranking

of good solutions. For 106 MC trials, 20 out of 20 of the best GA solutions were such false positives.

For 107 MC trials, 19 out of 20 were false positives, violating the constraints by 0.01-0.05. Although

increasing the MC trial size could help, it is very expensive to convolve such large datasets for each

individual in each generation, and the GA approach then becomes impractical. For example, the case

study in this chapter runs for 33 minutes for an MC trial size of 106, and 5 hours, 20 minutes for trial

size of 107. Although these speeds may be improved by using specialised hardware or faster software,

this would reduce the appeal of MC, which is its wide applicability and ease of implementation.

The solution to this problem is to calculate the Esaved in (6.50) analytically. This is usually thought

to be very difficult or impossible. However, recent work by Kuang and Rajan et al. [142, 143] have

produced a method by which the moments of the posterior of a convolution of a polynomial expression

of distributions may be expressed in terms of the scale and shape parameters of the constituent

distributions. This allows for exact expressions of the moments of the resultant distribution, at a fraction

of the computational burden of an MC simulation. This work is made available through an online

toolbox as the Mellin Transform Moment Calculator (MTMC) [188], on which see Section 2.3.1.1.

By using the first four moments (translated to mean, variance, skewness, and kurtosis), a Johnson SB

(bounded) distribution [189] can then be fitted. Although the first four moments of a distribution do not

identify it uniquely for all cases, the distribution on Esaved is unimodal and will be adequately described,

since this distribution family was expressly designed for such flexibility. For more information on

uncertainty evaluation through moment-based distribution fitting, see Rajan et al. [144]. The Johnson
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distribution is fitted using Hill’s algorithm [309], implemented in Matlab/Octave [310] and then linked

to the DGLM in Python.

To illustrate, let (6.50) by expressed as a polynomial of distributions:

Esaved, t ∼ nretro f itted ·N[m1,s1] · (Φb ·N[m2,s2]−N[m3,s3]) ·Beta[b4a,b4b, lb4,ub4], (6.52)

where Φb indicates the proportion of functioning lamps during the baseline period, and lb4a and

ub2 are the upper and lower bounds of the beta distribution, which for this case are zero and one

respectively.

The subscript t is omitted from the following equations for notational clarity, but the moments do still

apply to distributions at specific time points. The first four raw moments of the resultant distribution

obtained via the MTMC are:

E[y1] =
nretro f ittedb4am1 (Φbm2−m3)(lb4 +ub4)

b4a +b4b
, (6.53)

E[y2] =
n2

retro f ittedb4a (1+b4a)
(
m2

1 + s2
1
)(

(m3−Φbm2)2 +b2s2
2 + s2

3

)
(lb4 +ub4)

2

(b4a +b4b)(1+b4a +b4b)
, (6.54)

E[y3] =
n3

retro f ittedb4am1 (1+b4a)(2+b4a)(Φbm2−m3)
(
m2

1 +3s2
1
)(

(m3−Φbm2)
2 +3Φ2

bs2
2 +3s2

3

)
(lb4 +ub4)

3

(b4a +b4b)(1+b4a +b4b)(2+b4a +b4b)
,

(6.55)

and

E[y4] =
AB

(b4a +b4b)(1+b4a +b4b)(2+b4a +b4b)(3+b4a +b4b)
. (6.56)

where

A = n4
retro f ittedb4a (1+b4a)(2+b4a)(3+b4a)

(
m4

1 +6m2
1s2

1 +3s4
1
)

(6.57)

and

B =
[
(m4

3−4Φ
3
bm2m3

(
m2

2 +3s2
2
)
+Φ

4
b
(
m4

2 +6m2
2s2

2 +3s4
2
)
+6m2

3s2
3 +3s4

3 + (6.58)

6Φ
2
b
(
m2

2 + s2
2
)(

m2
3 + s2

3
)
−Φbm2m3

(
m2

3 +3s2
3
)]

(lb4 +ub4)
4 .
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CHAPTER 6 EFFICIENT POPULATION SURVIVAL SURVEY SAMPLING

They could also be expressed as hypergeometric 2F1 functions, but the algebraic expressions evaluate

faster on a computer. The mean, variance, skewness, and kurtosis can be calculated as

,mean = E[y1] (6.59)

standard deviation =
√

E[y2]−E[y1]2, (6.60)

skewness =
E[y3]−3E[y1]E[y2]+2E[y1]

3

standard deviation3 , (6.61)

kurtosis =
E[y4]−4E[y1]E[y3]+6E[y2

1E[y2]−3E[y1]
4

standard deviation4 . (6.62)

These in turn are used in the Johnson distribution:

Esaved, t ∼ Johnson [mean,standard deviation,skewness, kurtosis] (6.63)

to yield very accurate (and consistent) representations of the true distribution.

6.4.3 Specification of initial estimates for DGLM optimization

The initial conditions for θθθ
′ in (6.7) were specified using the known PELP data. Weighted least-squares

regression could also be used if enough sampling points were made available. For practical problems

with realistic sample sizes, the model is insensitive to the covariance matrix and discount factor

specification, as long as the variances are not set to zero. It is sensitive to the specification of γ0 and

β0, however. If less than three sampling points are available, and these are from the early years of the

study, it is recommended that these values be specified as equal to one rather than doing a least-squares

regression to determine the parameters.

6.4.3.1 GA tuning

Usually GAs are not very sensitive to the initial population (or starting point). However, there are

significant stepwise discontinuities in the solutions space. Therefore certain steps were taken to
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Table 6.3. GA Parameter values.

Parameter Value

GA Algorithm MuPlusLambda

Crossover Rule Uniform Crossover

Crossover proportion 50%

Crossover exchange probability 95%

Mutation Proportion 50%

Individual gene mutation probability 10%

Number of Generations 30

Population Size 50

improve the GA effectiveness. The first is that the starting population was populated with known good

solutions – either from non-DGLM benchmarks or from previous GA results. The mutation proportion

and probability was increased, and the mutation function was also adapted to yield negatively-biased

mutations (see (5.23)), since the GA was found to converge on good sampling patterns, but not to

optimize those patterns to the precision limits.

The DEAP Python library [294] was used for this calculation, as it includes many of the standard

methods and allows for rapid prototyping. The parameters used are reported in Table 6.3.

A tournament size of ten supplies a severe selection pressure and homogenises the population within a

few generations. The mutation function was then set in such a way to make incremental improvements.

The large mutation proportion ensures a steady incremental improvement rate

6.4.4 Benchmark

The proposed method needs to be benchmarked against a realistic alternative method for solving the

problem at hand. Goldberg [69] and the UMP [40] proposed leveraged sampling for M&V designs,

where regression or prior estimates are used to reduce the variance in the estimated mean, under the

assumption of normality. However, as normality is not assumed this is not applicable.
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First, a note on confidence intervals. Various confidence intervals for binomial proportion sampling

have been suggested, on which Brown, Cai, and DasGupta provide an illuminating study [311]. Of

these, Jeffreys sampling has been shown to be the most accurate and least conservative [311] and is

used here, although less accurate methods are often used in M&V [40]. The Jeffreys interval is derived

from a Beta distribution with a (0.5, 0.5) prior. However, it yields an equal-tailed confidence interval

and not an HDI. Also, it does not account for the other uncertainty components. To be consistent with

the approach in the rest of this study, the benchmark is defined as the smallest lamp population survey

sample size for which the lower confidence limit of the 90% HDI is less than 10% away from the mode.

The difference between this sample survey plan and the DGLM plan would then be the cost saving

contribution made by the predictive power of the prior information used by the DGLM.

To determine the benchmark sample size, the estimate population proportion Φ̂t is needed. One could

use the PELP best-fit line, but this has misleading results: if the DGLM line is higher than the PELP

line for some future point, the 10% precision limits will be larger than the PELP limit. A smaller

sample size will therefore be required, making it appear as though the DGLM approach is superior

when it is only the population proportion forecast which is higher. Like would not be compared to

like in such a case case. A more fair comparison would be to use the same population proportion

value Φ̂M, DGLM that was used by the DGLM. Then, using the GA, an optimal sampling plan can

be devised using conventional sampling theory (therefore not including the prior information as the

DGLM does).

6.4.5 Results and discussion

The model takes a few minutes to run on a laptop computer, with the majority of this time being

spent in the GA. The MTMC convolution of the different distributions needed to determine the HDI

also has a noticeable effect on performance. This could be because the Johnson distribution is not

evaluated natively in Python, but called as an external function. A plot of the minimum and average

population fitness vs the generations of the GA (not shown) exhibits the classic concave-up shape,

although the incremental-improvement mutation function does lend a more linear quality to it. The

average population fitness decreases rapidly in the first ten generations and then approaches a minimum

asymptotically in the next 20.
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Figure 6.2. Population proportion inferred from results and sample size data from DGLM for Case

Study 1, with forecasting to future years, and optimal sample sizes. The grey lines and points are

the PELP data and fits, dark blue past sampling results, and light blue future sample sizes. The 90%

confidence area is shaded, and the 10% precision limits indicated by the red error bars.

It is assumed that adequate sampling is done within the first few years. Characterising a logistic function

with two sampling points close to Φ = 1 (for the first two years) will not be adequate. Therefore the

DGLM will not yield accurate sampling plans with such data. From simulations, it is recommended

that samples greater than 150 be taken for the first few years. This figure is affected by the error in the

data points which translate to a modelling error in the DGLM regression.

An efficient sampling plan is found to be

ns = [83,260,601,1696,0,0,0], (6.64)

at a cost of R30 400. The benchmark for this realisation is

ns, benchmark = [153,303,707,2101,0,0,0], (6.65)

at a cost of R36 640. The DGLM reduces the sampling cost by 17%. If only every second year is

sampled, the savings reduce to single digits, depending on the configuration. This is because the prior
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Figure 6.3. Savings inferred by DGLM using (6.50) for Case Study 1.

moments (rt and st) decrease during the forecasting step, as forecasting without annual data increases

uncertainty.

At year six only about 25% of the original population of lamps are left. This drops to less than 10% for

year seven, greatly increasing the sampling burden at diminished returns, although the DGLM then

saves 26% relative to the non-DGLM method.

The results plotted in Figure 6.2 and Figure 6.3 show instantaneous confidence levels. That is, the

confidence around year t in year t: LCLt |Dt . For future sampling years t + k, the confidence levels

shown assume the samples taken between and including t and t + k, that is, LCLt+k|Dt+k. The forecast

confidence intervals for future years given only the samples taken up to the present time is also possible,

but not shown. The DGLM also allows for the calculation of a retrospective confidence level. This is

the confidence level for some t− k time in the past, given all the sampling done up to the present time,

including the sampling done after t− k. This allows for the updating of past estimates, should that be

necessary. These are not shown.

Some features of the results plotted in Figure 6.2 warrant attention. It is clear that the actual population

proportion result from the survey sample may be different from the true population proportion. This
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has been illustrated by plotting both the blue (inferred) and grey (actual or base-case) line. Of course,

as the sample size increases this discrepancy tends to disappear. This is also a function of the sample

sizes, as well as the number of past sampling points. As the study progresses and real samples are

taken, the shape of the true curve emerges.

The red error bars in Figure 6.2 and Figure 6.3 indicate the 10% precision limits around the reported

value, and are only plotted for the reporting years. The algorithm does not adhere to these for non-

reporting years, which may have confidence intervals wider than the reporting accuracy requirements.

Because there is still uncertainty in the other parameters of (6.50), it is expected that the algorithm

constrains the population proportion estimate to less than the 90/10 bound, to meet the overall savings

90/10 bound. The overall uncertainty is plotted in Figure 6.3. Less detail is shown in this curve, but it

is clear that the 90/10 bound is adhered to for the overall savings estimation, at least in years three to

six.

The errors bars show that the uncertainty reporting requirement becomes more stringent as the savings

decreases. This leads to a situation where monitoring smaller savings require greater resources [69].

This is illustrated by the relatively large sample sizes required for the later years. This all assumes

that the accuracy requirement holds for every year individually, rather than the total projects savings

aggregated over the project lifetime, which would be a more efficient policy requirement from an M&V

point of view.

6.5 CASE STUDY 2: STRATIFIED SAMPLING DESIGN

The second case study considered is for a heterogeneous population: one in which where there are

sub-populations that have different energy use and survival characteristics. In such a scenario sampling

should be approached with the overall savings uncertainty in mind. This means that the uncertainty in

each sub-population need not adhere to the prescribed uncertainty reporting bounds, but the combined

uncertainty of all populations should do so. Practically, this means that one sub-population may be

under-sampled and another oversampled if it is justified by the sampling cost and the population’s

overall uncertainty contribution.

The optimum allocation of sample sizes across different strata of a stratified survey sampling design is
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Table 6.4. Case Study 2 Model Parameters. Only those parameters that differ from Table 6.2 are shown.

∼ N[·] indicates a normal distribution.

Description Symbol Value

Baseline Power 1 Pb, 1 ∼ N[60,1.5]

Baseline Power 2 Pb, 2 ∼ N[60,1.5]

Baseline Power 3 Pb, 3 ∼ N[100,2.5]

Retrofit Power 1 Pr, 1 ∼ N[11,0.275]

Retrofit Power 2 Pr, 2 ∼ N[11,0.275]

Retrofit Power 3 Pr, 3 ∼ N[14,0.7]

Hours of use 1 HOU1 ∼ N[.11,0.15]

Hours of use 2 HOU2 ∼ N[2,0.1]

Hours of use 3 HOU3 ∼ N[4.11,0.21]

Population 1 nretro f itted, 1 5×104

Population 2 nretro f itted, 2 2×104

Population 3 nretro f itted, 3 3×104

well-studied. For example, Barnett [301] listed formulae for different cases, and the UMP Chapter 11

discussed cost-optimal Pearson allocation for M&V in some detail [40]. However, such formulae

are not applicable to this case because although an allocation may be optimal for a given year, given

certain population proportions for various strata, it may not be optimal in the context of the larger

multi-year sampling model. It also does not account for the possible non-normality of the overall

savings equation (6.50). Therefore the optimum allocation formulae will not be used. Instead, the GA

will be used to find an efficient allocation.

To generate different realistic population survival curves, the data published in the LRC’s Specifier

Report on CFLs [170] were used. The LRC laboratory tests monitored test bench mounted lamp

populations and reported the 5% population decrease intervals. In other words, the population survival

interval was fixed, and the time between recordings variable. However, the model described in this

paper is more suited to real-world studies in which the observation interval is fixed (once per year),

and the population survival figures are variable, such that the proportions of the population surviving

after one, two, or three years are reported. To convert the LRC data to a suitable format, least-squares
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logistic curves were fitted to the data. The data sets which fitted (6.2) with the sum-squared errors

less than 0.05 were then selected (19 of the original 20 sets). Three of these curves were used for the

simulation. Slow, medium, and rapid decay rate curves were selected. The binomial uncertainty as

discussed in Section 6.4.1 was used to reflect sampling variation and uncertainty. This could be done

since the CFLs used for this case study last longer than the PELP ones, and thus more preliminary data

points could be collected.

The total energy saving is the sum of the three populations described by (6.50):

Esaved, total =
3

∑
i=1

Esaved,i. (6.66)

The MTMC can be used to evaluate the moments in the same way as Section 6.4.2, for every individual

distribution. The overall savings distribution will then be the sum of the three strata’s distributions.

The four moments can be calculated as:

E[y1, T ] = E[y1]+E[y2]+E[y3], (6.67)

E[y2, T ] = E[y2
1]+2E[y1]E[y2]+E[y2

2]+2E[y1]E[y3]+2E[y2]E[y3]+E[y2
3], (6.68)

E[y3, T ] = E[y3
1]+3E[y2

1]E[y2]+3E[y1]E[y2
2]+E[y3

2]+E[y2
1]E[y3]+ (6.69)

6E[y1]E[y2]E[y3]+3E[y2
2]E[y3]+E[y1]E[y2

3]+3E[y2]E[y2
3]+E[y3

3],

and

E[y4, T ] = E[y4
1]+4E[y3

1]E[y2]+6E[y2
1]E[y

2
2]+4E[y1]E[y3

2]+E[y4
2]+4E[y3

1]E[y3]+ (6.70)

12E[y2
1]E[y2]E[y3]+12E[y1]E[y2

2]E[y3]+4E[y3
2]E[y3]+6E[y2

1]E[y
2
3]+

12E[y1]E[y2]E[y2
3]+6E[y2

2]E[y
2
3]+4E[y1]E[y3

3]+4E[y2]E[y3
3]+E[y4

3].

which can be used in the Johnson distribution in (6.63).

For a three-stratum, twelve-year monitoring project, the sampling solution ns is a 3×12 vector.
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Table 6.5. Stratified sampling plans for Case Study 2. Benchmark (top), Efficient (bottom)

Years 6 7 8 9 10 11 12

Stratum 1 66 0 178 0 280 0 758

Stratum 2 11 0 11 0 0 0 557

Stratum 3 105 0 301 0 841 0 9338

Stratum 1 481 0 347 0 101 257 601

Stratum 2 0 0 0 0 0 0 0

Stratum 3 356 0 62 0 1010 0 6470

Regarding past samples, for stratum one, the sample sizes were ns, 0−4 = [100,100,100,100,200].

For strata two and three, the sample sizes were ns, 0−4 = [50,50,75,75,100,150]. The reason that the

sample sizes increase for the survey sampling is that it is critical to identify the point at which the

population curve changes from the plateau to the transition phase. Small sample sizes during these

years add disproportionate noise which leads to inaccurate forecasts.

The GA fitness function also needed to be adapted to account for the expanded sampling term and the

three separate Esaved distributions. Aside from these differences the algorithm works in the same way

as for the simple random sampling case, and can easily be expanded to accommodate more strata, or

different sampling or initialisation costs for each stratum.

The benchmark for this case study was calculated in a similar way to Section 6.4.4 A GA was used

to find the optimal sample size allocation across the different strata, given the uncertainty reporting

requirements, while considering the combination of population survival and energy use distributions as

specified in Table 6.4.

6.5.1 Results and discussion

Much of the discussion in Section 6.4.5 is also relevant here. The benchmark cost was found to be

R116 625, while the DGLM study cost is R59 370. This represents a saving of 49%. The sampling

plans are shown in Table 6.5. It is graphically illustrated in Figure 6.4, and the savings curve is

shown in Figure 6.5. The DGLM method, therefore, presents a significant advantage over simple
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Figure 6.4. Case Study 2 population proportion inferred from results and sample size data from DGLM,

with forecasting to future years, and optimal sample sizes. Sampling is done up to and including t = 5.

regression methods, even if these methods still use the Mellin Transform Moment Calculator and

Genetic algorithm for overall efficient sampling design.

In this case, it was found that accurately determining the point at which the population curve enters the

transition phase from the plateau phase is critical for sampling planning. Consider year 5 of stratum 1

in Figure 6.5. If the sampling error makes the population proportion in year 5 appear too high, the

DGLM curve fit will predict very little population decay: essentially a horizontal line. This is to be

expected: the full decay characteristics of a population can only be determined once the population

starts decaying. This is the reason for increasing the sample size of stratum 1 in year 5: to reduce

variability and ensure a more accurate estimate. Prior information does help, but in this case γ0 and β0

were determined from a weighted ordinary least squares regression on the known data points.

It is evident that in years where no sampling takes place (year 7, for example), the uncertainty bounds

widen. In years where large samples are taken (e.g. year 12), the uncertainty bounds are ‘pinched’ as

the DGLM accounts for the increased certainty.
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Figure 6.5. Savings inferred by DGLM using (6.50) for Case Study 2.

Also, note that no samples of stratum two are taken after year 5 (the last past-sampling year). In

the simple random sampling case (Section 6.4), the smaller the surviving population proportion, the

more stringent the sampling requirement. However, this is because the total savings are also small.

In year six the total savings are still relatively large due to the other two populations. It is therefore

unnecessary to determine stratum 2’s (small) contribution accurately.

6.6 CONCLUSION

DGLMs with Bayesian forecasting provide an advantage over traditional regression approaches for

longitudinal measurement and verification study designs. This is because they incorporate information

about past sample sizes. The GA and MTMC combination allows for efficient sampling design,

based not only on the population sampling distribution but also on other uncertainties in the savings

calculation, such as hours of use and luminaire power consumption. The flexibility of this approach

allows for both simple random sampling, as well as stratified sampling designs to be devised. Sampling

cost savings are in the order of 17-49%, depending on stratification and how the study costs are

calculated.
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CHAPTER 7 COMBINED METERING AND

POPULATION SURVIVAL SURVEY

SAMPLING

7.1 CHAPTER OVERVIEW

This short chapter demonstrates the combination of metering and survey sampling into a comprehensive

M&V planning model. After introducing the structure of the combined model and the moment equations

for the combined uncertainty distribution, two case studies are presented. The first considers a simple

random sampling model for a homogeneous population. The second considers a stratified model

where three different groups (by lamp type or usage) are surveyed and metered.1 This case study is

very similar to previous stratified longitudinal M&V case studies [99], but obtains hours of use from

published sources (see Section 6.4), and includes population survival survey sampling from Chapter 6,

which is novel.

7.2 INTRODUCTION

Instead of combining the survey result uncertainty from Chapter 6 with estimates for energy consump-

tion (hours of use and power consumption), it will be combined with more accurate meter sampling

results from Chapter 5.

1This chapter is based on a journal article written by the author as part of his PhD research, published in Energy and

Buildings [29].
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This chapter can be described in M&V terms as follows:

M&V measurement option: Retrofit isolation with all parameter measurement (measuring energy,

and measuring population survival).

Project boundary: The lighting circuit(s) under investigation.

Baseline and baseline adjustment approach: The baseline is assumed from the metered data, as-

suming a constant energy consumption difference between the retrofitted units and the original units.

(See (7.1) below).

Savings determination approach: Standard energy efficiency savings (as opposed to normalised

savings) is assumed.

For this case, metering and survey sample sizes need to be traded off against one another to ensure

adherence to the overall uncertainty reporting bounds, at low cost. Note that measurement, sampling,

and modelling uncertainty are considered simultaneously in this model. A diagram illustrating how the

various components discussed so far fit into the overall plan is shown in Figure 7.1. This is different

to previous combined sampling designs (Figure 5.1), where only meter sampling was optimized,

assuming that population decay was known with certainty and with no adaptive population decay

model considered.

The vector of the saved energy distributions in this combined model may be calculated by element-wise

multiplication of vectors as

Êsaved ∼ Φ̂ΦΦ ·n ·∆Ê, (7.1)

where ∆Ê is the difference in annual energy use between an original and a retrofitted luminaire. The

power difference between these luminaires can be taken from the product specification, but G14 [17]

recommends that this difference be measured in situ. A simple measurement may therefore be done in

the retrofitting year by measuring the pre- and post-retrofit energy use on the lighting circuit. Let Pb

be the baseline lamp power draw, Pr the retrofitted lamp power draw, and sb and sr their respective

standard deviations. Assuming that there is a measurement error in the meter of 2.52% as described

in Section 5.4.1.2, the uncertainty distribution on the ratio of the power draws Pb/Pr can be described

by the distribution

Pb/Pr ∼ N

Pb

Pr
,z

Pb

Pr

√(
sr

Pr

)2

+

(
sb

Pb

)2
 , (7.2)
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Past
Survey
Data

DGLM
Chapter 6
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GA
Section 5.4.1.3

DLM
Chapter 5

Fitness
(7.11)

MTMC
Section 6.4.2
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Overall M&V plan

Meter
Uncertainty
Chapter 4

Figure 7.1. Flow diagram illustrating proposed method for combining metering and surveying data.

The metering plan is denoted nm, and the sampling plan ns.

as per the ASHRAE’s guideline RA96 [113]. The annual energy saving per luminaire given this ratio

can then be expressed as

∆Ê∼ Êr(Pb/Pr−1). (7.3)

The MTMC method of Section 6.4.2 can then be used to calculate the first four moments of Esaved in

(7.1) and (7.3), which can be rewritten as:
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Êsaved ∼ nretro f itted ·Beta[b1a,b1b, lb1,ub1] ·N[m2,s2] ·N[m3,s3]. (7.4)

The first four moments of Êsaved can be calculated as

E[y1] =
nretro f ittedb1am2 (m3−1)(lb1 +ub1)

(b1a +b1b)
(7.5)

E[y2] =
n2

retro f ittedb1a (1+b1a)(lb1 +ub1)
2 (m2

2 + s2
2
)(

1−2m3 +m2
3 + s2

3
)

(b1a +b1b)(1+b1a +b1b)
(7.6)

E[y3] =
n3

retro f ittedb1a1
(
2+3b1a +b2

1a

)
(m3−1)(lb1 +ub1)

3 (m3
2 +3m2s2

2
)(

1−2m3 +m2
3 +3s2

3
)

(b1a +b1b)(1+b1a +b1b)(2+b1a +b1b)
(7.7)

E[y4] =
AB

(b1a +b1b)(1+b1a +b1b)(2+b1a +b1b)(3+b1a +b1b)
(7.8)

where

A = n4
retro f ittedb1a

(
6+11b1a +6b2

1a +b3
1a
)
(lb1 +ub1)

4 (m4
2 +6m2

2s2
2 +3s4

2
)

(7.9)

and

B = 1−4m3
3 +m4

3 +6s2
3 +3s4

3 +6m2
3
(
1+ s2

3
)
−4m3

(
1+3s2

3
)
. (7.10)

These are used with (6.59)-(6.62) as inputs to the Johnson distribution as in (6.63), which will describe

the overall probability distribution on the savings estimate for a specific point in time.

The fitness function (6.44) is modified to include the survey cost term. Let v be the survey initiation

cost (v = 1000), and ws the cost per survey sample (ws = 10). Also let dt = 1 for years in which

surveying is done, and dt = 0 otherwise. Then the fitness equation is modified to

min
N

∑
t=1

nm, twm +
N

∑
t=1

ns, tws +dtv+ r(n). (7.11)

The penalty function is also modified accordingly:

r(n) = ∑
t∈M

(
105(ws +wm)(et − ε)+108 +5(wmnm, benchmark, t +wsns, benchmark, t

)
∀ t ∈ χ. (7.12)
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CHAPTER 7 COMBINED METERING AND POPULATION SURVIVAL SURVEY SAMPLING

In this case, the relative cost of surveying and metering play a significant role in determining an optimal

solution, since the GA will trade these sources of uncertainty off against one another. The parameters

used for this GA are the same as those listed in Table 5.1. Since these costs are project-specific, the

result from any single study is not normative but may illuminate the characteristics of the method and

the kinds of results that can be expected. Two cases will be considered below. The first is a simple

random sampling case: monitoring a single population of retrofitted lamps over multiple years. The

survey and cross-sectional metering sample sizes are then optimized simultaneously to minimise cost

while still adhering to the required reporting precision levels. In the second case, the study is expanded

so that three distinct sub-populations of lamps are monitored over multiple years to achieve the same

objective. This is a combined stratified sampling design.

7.3 CASE STUDY 1: SIMPLE RANDOM SAMPLING DESIGN

The first case considers a single population of retrofitted lamps tracked over a number of years. The

lamp population is assumed to decay according to the PELP data points [28, 169].

It is assumed that three years’ data has been collected (D0−2), and that reporting is to be done annually

for M = {4,5,6,7}. In the project, 100 000 CFLs of 11W each replace their 60W incandescent

counterparts, and the savings need to be determined. Past meter samples were nm, 0−2 = [68,68,68],

and past survey samples were ns, 0−2 = [250,250,100].

7.3.1 Benchmark

The combined benchmark is calculated using a GA with the combination of the survey sampling

and energy metering uncertainty determined as in (7.1), where the uncertainty in Er in (7.3) is

calculated according to the standard sampling formula of (4.10) combined with the meter measurement

error. As in Chapter 6 the survey sampling benchmark was selected as a Jeffreys interval on the

proportion [311].

The benchmark is, therefore, an optimal sampling plan in which prior data are not taken into account

through the Bayesian method.
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Figure 7.2. Plot of combined survey sampling (top left) and metering (top right) for a single population

(Case Study 2), with the combined savings estimate over time at the bottom. Dark blue indicates past

samples, and light blue indicates planned future samples.

7.3.2 Results and discussion

An efficient sampling plan is listed in Table 7.1, and has a cost of R772 240. A benchmark sampling

plan is listed in Table 7.2, and has a cost of R1 128 940. The Bayesian method therefore achieves a

saving of 40.13% for these cases.

The results for this scenario are shown in Figure 7.2. The top four graphs show the individual metering
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Table 7.1. Combined sampling plan for Case Study 2. Years beyond seven are not shown since no

reporting was required, and no samples were taken.

Years 3 4 5 6 7

Survey 3448 7008 0 0 5568

Meters 0 50 39 90 24

Table 7.2. Benchmark of the combined sampling plan for Case Study 2. Years beyond seven are not

shown since no reporting was required, and no samples were taken.

Years 3 4 5 6 7

Survey 0 1189 3730 12842 7633

Meters 84 74 92 94 0

and survey sampling plans and results, with the bottom graph combining these results into an overall

savings estimate.

No reporting was deliberately specified for t = 3, to force the algorithm to forecast for that year. The

increase in uncertainty is evident.

As would be expected, the algorithm favours oversampling on the survey side to compensate for the

metering cost. Under present assumptions, three hundred survey samples can be taken for the cost

of a single meter. However, metering cannot be completely neglected. Furthermore, the additional

information contained in a sample decreases with the square root of the sample size. This means that

to double the amount of information available from a sample of size n, a sample of size 4n (2
√

n) will

be needed. The principle of diminishing returns, therefore, applies to large survey sample sizes traded

off against small metering samples. Although an additional meter may be more expensive, its relative

contribution to uncertainty reduction is greater than the additional three hundred survey samples would

be.

The DLM-DGLM shows a clear advantage over existing methods. Smaller sample sizes than existing

sampling methods such as (4.10) are needed.
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7.4 CASE STUDY 2: COMBINED STRATIFIED SAMPLING DESIGN

To demonstrate the scalability of the method, a stratified sampling design is considered. As before,

both survey sampling and meter placement are considered simultaneously over a number of years.

However, instead of considering a project with a single population, a project with three different

sub-populations is considered. In stratum one, 50 000 incandescent lamps of 60W each, burning

for 3.11 hours per day, are replaced by 11W CFLs. In stratum two, 20 000 incandescent lamps of

60W each, that burn for two hours per day, are replaced by 11W CFLs. In stratum three, 30 000

incandescent lamps of 100W each, that burn for 4.11 hours per day are replaced by 14W CFLs. To

provide realistic population survival curves, three curves from the LRC data on CFLs are used [28,170].

Curves with short, medium, and long lives were selected. Data points D were then randomly generated

as Dsim, t ∼ Binomial[n = ns, t , p = Φt, sim], so that large sample size results have less random scatter

than small sample size results. It was assumed that meter placement and surveying costs were constant

across the strata, although this could easily be changed if there were a reason to do so. The method is

unaltered from the simple random sampling case, except for minor changes in the fitness function to

sum all three strata regarding cost and uncertainty.

Five years of sampling are assumed to have been conducted in the past. Meter sample sizes

were nm, 0−4 = [50,50,40,30,20,10] for each stratum. Survey sampling was conducted based

on the decay rates of the individual populations. For stratum one, the sample sizes were

ns, 0−4 = [100,100,100,100,200]. For strata two and three, the sample sizes were ns, 0−4 =

[50,50,75,75,100,150]. The reason that the sample sizes increase for the survey sampling is that it is

critical to identify the point at which the population curve changes from the plateau to the transition

phase. Small sample sizes during these years add disproportionate noise which leads to inaccurate

forecasts.

Expansion of the MTMC equations to three strata proceed in the same manner as (6.67)-(6.70).

7.4.1 Benchmark

Wherever possible, stratified sampling designs are preferable to simple random sampling designs,

because the intra-stratum variance is homogenised, leading to smaller sample sizes [40]. Stratified
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Table 7.3. Stratified survey sampling plans for Case Study 3. Benchmark (top), Efficient (bottom)

Years 6 7 8 9 10 11 12

Stratum 1 886 45 923 132 440 0 849

Stratum 2 945 60 872 0 284 0 447

Stratum 3 783 11 189 23 363 0 183

Stratum 1 780 0 291 0 553 0 848

Stratum 2 692 0 238 0 141 0 100

Stratum 3 403 0 799 0 259 0 97

designs should, therefore, be benchmarked against other stratified designs. The most efficient stratified

sampling design for normally distributed strata with unequal variances is the ‘Neyman allocation’. If

different costs are incurred for different strata, the cost-weighted Neyman allocation should be used.

These methods cannot capture the complexities of the case at hand, however. To provide a robust

benchmark, we expand the method described in Section 7.3.1 to the stratified case. In effect, a GA is

used to devise a stratified sampling design with all the complexity of the proposed method, except for

the Bayesian forecasting and dynamic model components.

7.4.2 Results and discussion

One efficient sampling result is shown in Table 7.3 and Table 7.4 at a cost of R1 417 010. The

benchmark is R1 918 350, representing a 26.55% saving. It is evident that the algorithm favours

placing meters and doing surveys in strata where many lamps are left, as these have the highest

contribution to overall energy use. In other respects, the result is similar to the simple random sampling

case. The survey component is oversampled to offset the high cost of metering.

The result shows the scalability of the method to multiple strata, as well as the advantage of doing

so. By stratifying the population, smaller sample sizes are needed. The Neyman allocation method

recommended by M&V guidelines [40] is efficient and accurate, provided that only simple stratified

designs be attempted. However, the method proposed in this paper is more flexible and allows for

intricate, real-world stratified designs needed for most M&V projects.
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CHAPTER 7 COMBINED METERING AND POPULATION SURVIVAL SURVEY SAMPLING

Table 7.4. Stratified meter sampling plans for Case Study 3. Benchmark (top), Efficient (bottom)

Years 6 7 8 9 10 11 12

Stratum 1 49 0 108 0 146 0 159

Stratum 2 11 0 0 0 0 0 0

Stratum 3 26 0 61 0 22 0 26

Stratum 1 40 0 62 0 116 0 109

Stratum 2 0 0 0 0 0 0 0

Stratum 3 35 0 41 0 30 18 0

7.5 CONCLUSION

The DLM in combination with a DGLM can be used to model metering and surveying simultaneously,

and is shown to reduce overall M&V project costs by almost 40% for the simple random sampling

case, while still adhering to the 90/10 reporting uncertainty requirement. This figure depends on the

cost profile of the specific project, however. The method is then expanded to a stratified sampling case

with three metered and surveyed sub-populations, for which sampling and metering costs are reduced

by 26.6%.
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Figure 7.3. Efficient combined sampling plan using the DLM and DGLM for one random model

realisation (Case Study 3). Stratum 1 is in blue, stratum 2 in red, and stratum 3 in brown. Combined

values are shown in blue. The 10% error bars are shown in red, and the 90% confidence intervals in

light blue.
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CHAPTER 8 CONCLUSION

The aim of this research is to illustrate the application of Bayesian statistics to energy M&V. This is

done by addressing the three main uncertainty drivers in M&V: measurement, sampling and modelling.

The Bayesian paradigm as explained in Chapter 3 describes uncertainty as a state of knowledge and

treats parameters of interest as random variables with probability density functions. It also allows for

the transparent use of prior knowledge when evaluating measurement results. Although such priors

could be subjective, this thesis uses results from the SIMEX algorithm for mismeasurement correction,

and prior sampling results for future sampling planning.

8.1 MEASUREMENT UNCERTAINTY

It is shown that energy metering uncertainty makes a relatively small contribution to overall M&V

uncertainty for cases where sampling is done (Section 4.2), although practitioners should be careful to

dismiss it out-of-hand, as shown in Figure 5.9. Rather, careful M&V has the potential to reduce meter-

ing uncertainty costs by allocating financial resources to its mitigation only when warranted. Chapter 4

proposes one method of doing so, by using low-cost calibrators and more advanced mathematical

calibration techniques, rather than costly advanced meters and simpler mathematics.

For most M&V sampling projects, the conclusion is that more information can be gained by installing

a large number lower accuracy meters, rather than a small number of high-accuracy meters.

It is also found that the errors-in-variables effect may be significant in M&V, as discussed in Sec-

tion 2.3.2. The SIMEX procedure with Bayesian refinement was used to mitigate the effect on energy

measurement itself, removing attenuation bias and improving parameter estimation. However, in M&V
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CHAPTER 8 CONCLUSION

the errors-in-variables effect will usually be a factor in the measurement of independent variables such

as temperature and occupancy.

8.2 SAMPLING UNCERTAINTY

The second aspect addressed in this thesis is sampling uncertainty. Current methods based on frequentist

assumptions do have particular problems that could be solved by Bayesian methods (See Chapter 3).

Previously proposed methods also have certain disadvantages (cf. Section 2.2.2.3) which are improved

upon through the DLM and Bayesian forecasting proposed in Chapter 5. During the optimization phase,

it was shown that Monte Carlo simulation is not reliable inside a heuristic such as the GA (Section 6.4.2).

The MTMC method provides a more computationally efficient and stable alternative.

The DLM and DGLM in Chapters 5 and 6 were found to have superior uncertainty quantification

capabilities when compared to previous methods, and also address the modelling uncertainty aspect

of M&V for the cases to which they were applied. When these were combined with a GA, M&V

monitoring savings in the order of 17-66% were achieved compared to the benchmarks. However,

the robustness of such plans is of concern. Efficient sampling plans are based on the forecasts

being perfectly accurate. When this is not the case, an efficient plan may have inadequate statistical

precision.

8.3 RECOMMENDATIONS FOR M&V PRACTICE

1. M&V studies designed using the standard sampling formulae are usually underpowered, casting

some doubt on the validity of results with small sample sizes. A greater focus on robustness will

go some way in solving this problem.

2. The Mellin Transform Moment Calculation method deserves greater use in M&V, as does

the Johnson distribution. The implementation of these methods in open-source data analysis

software such as Python has the potential to increase the quality of M&V results significantly.

3. The use of power meters measuring fundamental quantities or using the IEEE 1459 definition of

power is recommended for M&V.
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4. Reporting precision (such as 90/10) is often required for annual savings. However, if this

requirement is changed to the precision of the savings to date for longitudinal projects, monitoring

costs would be decreased significantly.

8.4 RECOMMENDATIONS FOR FURTHER RESEARCH

1. This thesis applies Bayesian statistics to a few problems in M&V, but many more remain.

Probably the most significant opportunity is for the application of hierarchical modelling to

complex M&V projects, as alluded to in Section 3.5.1 and done in Booth et al. [274].

2. Low-cost metering remains a promising field for M&V. Metering is becoming cheaper and

smarter, especially in developed countries. However, to implement it at scale for M&V in

developing countries presents a significant opportunity. In this regard virtual instrumentation as

in Section 2.2.3.6 shows promise and should be investigated further.

3. Further research on M&V sampling planning should focus on efficiency in the context of

robustness.

4. It would be useful to develop methods for meter cross-calibration in a smart grid.

5. Survival Analysis is a powerful tool for persistence research. Much of this work has already

been done in other fields, and applying it to M&V should be simple and effective.

6. The DLM and DGLM used in this thesis are relatively simple. They can be expanded to include

periodicity or seasonality such as daily or weekly load profiles, thereby increasing the resolution

at which time-series modelling can be done. They can also be expanded to include covariates

such as temperature and occupancy. Fully-fledged DLMs have the potential to be powerful

M&V tools
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