
1 

Do House Prices Hedge Inflation in the US? A Quantile 

Cointegration Approach# 

Christina Christoua, Rangan Guptab, Wendy Nyakabawob, Mark E. Woharc,d,* 

a School of Economics and Management, Open University of Cyprus, 2220, Latsia, Cyprus 

b Department of Economics, University of Pretoria, Pretoria, 0002, South Africa 

c College of Business Administration, University of Nebraska at Omaha, 6708 Pine Street, Omaha, NE, 

68182, USA  

d School of Business and Economics, Loughborough University, Leicestershire, LE11 3TU, UK 

Highlights 
• Long-run relationship between U.S house prices and non-housing Consumer Price Index analysed.

• Instability in standard cointegration models detected.

• We thus employ a quantile cointegration analysis.

• U.S non-housing CPI and house price index cointegrated at lower quantiles only.

• House prices over-hedges inflation at these quantiles.

Abstract 

This study analyses the long-run relationship between U.S house prices and non-housing Consumer 

Price Index (CPI) over the monthly period 1953 to 2016 using a quantile cointegration analysis. Our 

findings show evidence of instability in standard cointegration models, suggesting the possibility of 

structural breaks and nonlinearity in the relationship between house prices and non-housing CPI. This 

motivates the use of a time-varying approach, namely, a quantile cointegration analysis, which allows 

the cointegrating coefficient to vary over the conditional distribution of house prices and 

simultaneously test for the existence of cointegration at each quantile. Our results suggest that the U.S 

# We would like to thank an anonymous referee for many helpful comments. However, any remaining errors are 
solely ours. 
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non-housing CPI and house price index series are cointegrated at lower quantiles only, with house 

prices over-hedging inflation at these quantiles. In addition, we also show that this result holds for 

higher price levels only. Using these two sets of results, we conclude that house prices act as an 

inflation hedge when the latter is relatively higher and the former is lower. 
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1. Introduction

Price stability plays an important role in the economy, since price levels affect economic activities, 

financial sector and investment decisions (Chang, 2016). A rise in price levels can reduce the real 

value of holding money, and since the main objective for investors is to obtain a positive real rate of 

return on their investment portfolio (Rubens et al., 1989), they aim to increase the portfolio positions 

of inflation-hedging assets. The relationship between real estate returns and inflation has been a 

subject of interest particularly for investors since perceived inflation-hedging ability of real estate is 

often used to justify its inclusion in mixed-asset investment portfolios (Simpson et al, 2007). 

The importance of the relationship between house prices and inflation is highlighted in that, in the 

United States and other countries, residential real estate is the principal asset held in most private 

portfolios (Hong et al, 2013). In the United States, two thirds of the nation’s households are 

homeowners and homeowner equity constitutes approximately one third of all households (Tracey et 

al., 1999; Iacoviello, 2012). Corporate equity has recently surpassed homeowner equity to become the 

largest asset in the household sector but it is important to note that over half of all households do not 

hold corporate equity. In this context, homeowner equity constitutes the larger portion of most 

households’ investment portfolio and its ability to protect the investor against price level changes has 

important implications for personal wealth and the economy as a whole (Anari and Kolari, 2002). 
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Empirical studies show mixed evidence on whether real estate provides a good inflation hedge.
1
 

Using residential property indexes for the period 1975 to 2008, Hong et al (2013) find that house 

prices are a relatively good hedge over the long term against inflation in the US and UK. Anari and 

Kolari (2002) using new and existing house prices and CPI excluding housing costs for the US from 

1968 to 2000 also supports the evidence that house prices provide a stable inflation hedge in the long 

run. In contrast, Hoesli et al (2007), using UK data, conclude that real estate provides little hedging 

ability when the inflation rate is low, which actually disappears when inflation is high. Barber et al 

(1997) support the findings that the UK real estate provides weak hedge against changes in underlying 

inflation, and no hedge against shocks that change price levels. Furthermore, there is also evidence 

that real estate assets are not a good hedge against inflation both in the shorter- and longer-terms 

(Glascock et al, 2008). Mixed evidence can also be found in earlier studies of Fama and Schwert, 

(1977); Fogler et al. (1985); Hartzell et al. (1987); Rubens et al. (1989).
2
 

In addition to the studies that consider the relationship between house prices and inflation, other 

studies focus on securitized real estate in the form of real estate investment trust (REITs) (Chang, 

2016; Hong and Lee, 2013; Hardin III et al, 2012; Glascock et al, 2002; Park et al, 1990; Gyourko and 

Linneman, 1988). This literature shows that the role of REITs as inflation hedge is also ambiguous, 

with some evidence supporting REITs as a good inflation hedge, while others show evidence that they 

provide a perverse inflation hedge. 

So clearly, there is mixed evidence on whether real estate provides a good inflation hedge, and this 

mixed evidence could possibly be because of the time-varying relationship between house prices and 

its predictors, including inflation, as suggested by Anari and Kolari (2002), Bork and Møller (2014), 

and Pierdzioch et al., (2016). In addition, this empirical relationship should be tested regularly based 

on updated data, given the dynamic nature of the housing market and the transformations it has gone 

and going through continuously post the recent financial crisis. Given this, the objective of the study 

is to explore within the context that cointegration coefficients may vary over time, the long-run 

1  See also Fama and Schwert, (1977); Fogler et al. (1985); Hartzell et al. (1987); Rubens et al. (1989). 
2 For a detailed review of the international literature on housing acting as an inflation hedge, the readers are 
referred to Inglesi-Lotz and Gupta (2013). 
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impact of inflation on homeowner equity by analyzing the relationship between house prices and 

prices of non-housing goods and services, which is Consumer Price Index (CPI) excluding housing 

costs
3
, across various quantiles of house prices using monthly data from 1953 to 2016. Note that, we 

decided to work with house prices instead of REITs, given the role played by the housing market in 

the recent financial crisis, and its influence on US business cycles (Leamer, 2007; Ghysels et al., 

2013), thus making it of paramount importance to determine the predictors, in this case, inflation in 

driving the US housing market. In addition, the size of investment in owner-occupied homes are also 

larger compared to that of REITs (Iacoviello, 2012) Following Anari and Kolari (2002), non-housing 

CPI is used instead of return series and inflation rate as in previous studies because of two important 

reasons. Firstly, return on housing cannot be accurately measured as they strongly depend on the 

underlying assumptions about imputed values of rent and services performed by the owner, house 

prices can therefore be used since they fully reflect total return on housing. Secondly, by using returns 

series, the time series is differenced and this is likely to lead to loss of long-run information contained 

in the time series. 

Note that, since the quantile cointegration approach of Kuriyama (2016), which we follow in this 

paper allows us to test for the existence of cointegration and also estimate the cointegrating 

parameters, at each point of the conditional distribution of the dependent variable, it is inherently a 

time-varying approach to detecting and estimating long-run relationships (Xiao, 2009). This is 

because each point of the conditional distribution of the dependent variable captures the phase in 

which the dependent variable, in our case, the housing market is, with lower quantiles suggesting bear 

market, the median capturing the normal phase of the market, while the upper quantiles depicting the 

bull-phase of the market. Clearly, this approach is preferable over Markov-Switching methods (see, 

Jochmann and Koop (2015) for a detailed discussion of regime-switching cointegration), as we do not 

explicitly need to pre-specify and test for the number of regimes in the housing market. Of course, 

there are pure time-varying parameter cointegration approaches of Park and Hahn (1999), and Bierens 

and Martins (2010). We, however, decided to work with the quantile cointegration test, since unlike 

3 Housing costs historically range from 20% to 30% of the consumer price index (Anari and Kolari, 2002). 
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the time-varying cointegration, the former test allows us to detect cointegration at specific parts of the 

conditional distribution, and hence specific points of housing market phases. Time-varying 

cointegration tests for whether there is overall time-varying cointegration to fixed-parameter based 

cointegration, and thus is of little value to the question we are asking, which is to determine 

cointegration at specific market phases. In addition, in time varying cointegration, testing for 

parameter restriction is not necessarily straight-forward and requires understanding of cointegrating 

spaces (Martins, forthcoming). An alternative approach could have been the interrupted cointegration 

method of Martins and Gabriel (2014), which would have allowed us to detect cointegration at 

specific points in time, but this again would have required us to use extraneous information to 

categorize the market phase the housing prices were in. So overall, for our purpose of detecting time 

varying inflation hedging at specific phases of the housing market, the quantile cointegration 

approach is the most-suited, with it being also preferable over recursive or rolling test of cointegration 

as pursued in Anari and Kolari (2002) in relation to housing and inflation. This is because results in 

such approaches are sensitive to the size of the estimation window (sub-samples) with no clear-cut 

statistical approach in determining the length of the window to be used (Nyakabawo et al., 2015). 

To the best of our knowledge, this is the first attempt to test for inflation hedging characteristic of 

house prices using a quantile cointegration method.  Prior to that, we take the following standard 

steps: First we test the variables for unit root using standard unit root tests as a starting point for 

cointegration analysis. Since house price series and inflation are characterized by the presence of 

potential structural breaks (Canarella et al., 2012; Caporin and Gupta, forthcoming) which can 

significantly reduce the power of unit root tests, we apply the Zivot and Andrews (1992) unit root test 

which allows for an endogenous structural break. Furthermore, we employ Lumsdaine and Papell 

(1997) and Lee and Strazicich (2003) unit root test which allows for two shifts in the deterministic 

trend at two distinct unknown dates, with the main difference between the two being that the latter test 

allows for breaks under both the null and alternative hypotheses. To accommodate the possibility of a 

non-linear dynamics of house prices and inflation (Canarella et al., 2012; Álvarez-Díaz, 2016), we 

perform Kapetanios et al., (2003) nonlinear unit root test. All the tests suggested that both house 
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prices and non-hoisng CPI are I(1) processes, so we proceeded to testing for cointegration using 

various standard cointegration tests (for example, Engle and Granger (1987), Phillips and Ouliaris 

(1990), Park (1992) and Johansen (1988, 1991)). However, these tests provided mixed evidence in 

favour of cointegration, which was not surprising given that we detected instability in the 

cointegrating vector using Hansen’s (1992) parameter instability test. This statistical result in turn, 

justified the implementation of the quantile cointegration methodology proposed by Kuriyama (2016), 

which test for the existence of a long-run relationship across the conditional quantiles of the 

dependent variable, which is house price. The remainder of the paper is organized as follows: Section 

II presents the theoretical model that defines our econometric testing framework, while Section III 

outlines the basics of the quantile cointegration approach. Section IV discusses the data and empirical 

results, with Section V concluding the paper. 

2. Theoretical Framework

Economic theory identifies housing expenditure as possessing both investment and consumption 

effects. Survey findings of Case and Shiller (1988), and Case et al., (2012) tend to show that 44% to 

64% of responding households purchase houses for investment benefits, while only 10% considered 

potential investment benefits as unimportant. 

Since houses are considered as both investment and consumption goods, it is important to understand 

their relationship with inflation. There exist two transmission channels through which higher prices of 

goods and services can be transmitted to higher house prices (Anari and Kolari, 2002). Through the 

consumer good channel, inflation causes an increase in construction costs through higher costs of not 

only building materials, but also construction wages. These higher construction costs of new houses 

will result in higher new house prices. This further affects replacement costs of existing houses which 

also increase since they are close substitutes for new houses. 
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The second channel is through a house being an investment good. House prices in the investment 

context are equivalent to the present value of actual or imputed net rents. Without taking into account 

taxes on income and capital gains, the present value model can be defined as: 

       ∑
  (    )

(   )  
 
    (1) 

where PV denotes present value (equivalent to house price or HP), n is the life span of the house, 

  (    ) is the net annual rent in period       that is expected in period    and   is the discount rate. 

Anari and Kolari (2002) further define net annual rent as gross rent less depreciation and other 

charges, and depreciation charges accumulated at the end of the lifespan of the house are used to 

develop another house on the land. Flow of net rent is therefore permanent, meaning that       

When rent and discounting are presented in real terms, it means that the present value is also in real 

terms. Imposing the assumption that annual rent is constant, Equation 1 can be represented as: 

       
 

 
 (2) 

Fisher (1930) proposes that a 1% increase in expected inflation will increase interest rates by 1% 

because of constant real rate of interest. Applying this proposition to Equation (2) means that it can be 

expressed in nominal terms, to show the link between nominal house prices and goods and services 

prices adjusted for housing costs. Since landlords aim to maintain purchasing power of rental income 

in real terms, expected inflation is incorporated in rent agreements by taking into account consumer 

price index. Therefore Equation (2) can be expressed as: 

           

 [
  .        

/

      

]

 
  (3) 

where    (       
) is the expected nonhousing price index of goods and services for period      

based on all available information in period  , and         is the nonhousing price index in the base 

period. Assuming that   and   are constants and that          , and taking the log of both sides 

of Equation (3), we obtain 
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                     (        )  (4) 

where the coefficient of the goods price index     , and the constant term              . 

Equation (4) is consistent with the Fisher effect as it proposes that in the absence of taxes, there is 

inflation elasticity of unity for house prices with respect to goods and services prices adjusted for 

housing costs (Anari and Kolari, 2002). 

But, accounting for taxes complicates the relationship between house prices and inflation. Taxes 

applying to landlords include income tax on rents and capital gains from selling property, and 

deductions for depreciation and maintenance costs from rental income are included. However, by 

living in a home for two of the previous five years, homeowner can be exempt from capital gains tax 

and are permitted to subtract mortgage interest payments from their income but not depreciation and 

maintenance expenses (Anari and Kolari, 2002). But, there are data limitations in analysing the 

impact of taxes and exemptions on housing prices or returns. 

Darby (1975) and Carrington and Crouch (1987) suggest that the effects of all these taxes and 

exemptions are reflected in the   coefficient. They further suggest that if            and     

represent nominal interest rate, real interest and inflation rate respectively, and   is the tax rate, then 

the Fisher relationship can be written as 

     (   )      
  (   )      

    (5) 

According to Crowder and Wohar (1999) and Anari and Kolari (2001), the tax version of the Fisher 

relationship will hold for the relationship between asset price and CPI indexes, such that the 

  coefficient in Equation (4) can be written as    (   )    

3. Methodology

Let    (     )  be (k+1)x1 process, where    is a scalar. We further assume that    is an  ( ) 

process and the elements of    are not cointegrated. Consider the following model: 
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                            ,  (6) 

             (7) 

where    is the vector of deterministic components like constant and a linear trend. If the error terms 

   and    are ( ) , then    and    are cointegrated. 

Xiao and Phillips (2002) suggest a cumulated sum (CUMSUM) statistic for testing the null of 

cointegration. The authors argue that if    and    are cointegrated, then the residual process  ̂  of 

regression (6) should be stable and reflect only equilibrium errors. Thus, the null of cointegration can 

be tested directly by looking at the fluctuation of the residual process  ̂  through the following 

statistic: 

   ⏟
         

 

√ 
∑ | ̂ |

 
      (8) 

It is the well-known (Park and Phillips (1988); Phillips and Hansen (1990)) that under the null of 

cointegration, the least squares estimator of the cointegration vector,  ̂   , is super-consistent (T-

consistent). Unfortunately, the asymptotic distribution of  ̂   is miscentered and depends on nuisance

parameters. As a consequence, the statistic (8) cannot be used directly for valid inference. 

Xiao and Phillips (2002) show that the conventional CUMSUM statistic can be applied to test the null 

of cointegration. To construct a CUMSUM statistic with a limiting distribution free from nuisance 

parameters, Xiao and Phillips (2002) construct fully modified (FM) residuals in the spirit of the fully 

modified least squares (FMLS) method of Phillips and Hansen (1990). 

Kuriyama (2016) extends the CUSUM type fully modified analysis of Xiao and Phillips (2002) to the 

case of conditional quantiles. Specifically, the proposed statistic examines the equilibrium 

relationships across different quantiles of the distribution of the response variables.  To introduce the 

statistic for quantile cointegration, Kuriyama (2016) introduces the quantile analog of eq. (6): 

     ( )     ( )     ( )    ( )     ( )             ,  (9) 
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where  ( )  (  ( )   ( )) ,     ,   - 

This suggests that  ̂      ̂ ( )   and the estimator  ̂( ) of the parameters of interest  ( ) is the

solution to: 

     
 

∑   (       ( )) 
        (10)  

where   ( )   (   (   )) , the check function (Koenker and Basset, 1978). Kuriyama (2016) 

shows that although   ̂( ) is consistent, its asymptotic distribution shares the same undesirable

properties with the least squares estimator of the cointegration vector  ,  ̂  . Specifically the

asymptotic distribution of  ̂( ) contains nuisance parameters and second order bias terms. These

effects make   ̂( )  a poor candidate for inference. The author following Xiao and Phillips (2002)

adopts the FM corrections initially suggested by Phillips and Hansen (1990). The resulting FM 

estimator  ̂ ( ) of  ( ) takes the following form:

 ̂ ( )   ̂( )  0 (   ( ))̂ ∑   
   

   
   1

  
[∑   

  
    ̂   ̂  

       ̂  
 ],  (11) 

where   
  denotes demeaned or detrended regressors, and  (   ( ))̂  is a nonparametric

consistent estimator of the density function  (   ( )).  ̂  and  ̂    are semiparametric kernel

estimators of the long run covariance matrices:        
  ∑  (    (  ( )))

 
    , and     

∑  (     )
 
    , where   ( ( ))     (   ). Analogously,  ̂  

 is semiparametric kernel 

estimators of the modified one-sided long run covariance matrix    
            

     , where 

    ∑  (    (  ( )))
 
   ,     ∑  (     )

 
   . Kuriyama (2016) shows that the fully modified 

estimator  ̂ ( ) follows asymptotically a mixed normal distribution:

 . ̂ ( )   ( )/    (  
    

 

 (   ( ))
,∫        -  )   (12) 

where        (∫    )(∫   )    is a demeaned or detrended Brownian motion (for more 

details see Kuriyama (2016)),    is a Brownian motion with covariance matrix     ,     
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      , and   
  the long run variance of   ( ( )). Again, all long run variances are 

estimated nonparametrically using kernel methods. Next, the author uses the residuals  ̂ ( )    
  

 ̂  ( )   , from the fully modified regression to build the CUSUM test statistic in the spirit of eq. 8,

as follows: 

   ( )             
 

 ̂   √ 
|∑   ( ̂ 

 ( )) 
   |   (13) 

where    ̂ ( )   ̂( )  0 (   ( ))̂ ∑      
 
   1

  
0∑   

 
    ̂   ̂  

       ̅̂  
 1,

 ̅̂  
  (   ̂  

  )   , and   
      ̂   ̂  

     . Kuriyama (2016) shows that under certain 

assumptions and for a certain quantile τ, the asymptotic represantaion of the    ( ) statistic is as 

follows: 

   ( )     ⏟
     

| ( )|   (14) 

Where  ( )     ,∫     -,∫    -  ∫  
 

 
,   (  

     ), and    and    are one and k-

dimensional independent standard Brownian motions.   Critical values of the    ( ) statistic can be 

obtained by Monte Carlo simulation (see Table 1, Xiao and Phillips (2002), among others). 

  Note that, we preferred the Kuriyama (2016) methodology over that developed earlier by Xiao 

(2009), since in the latter case, detection of cointegration is contingent on the correct choice of leads 

and lags in the model, as it is based on the Dynamic Ordinary Least Squares (DOLS)-type approach 

of Saikkonen (1991). The CUSUM test statistic developed by Kuriyama (2016) corrects for 

endogeneity by using fully-modified residuals. 
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4. Empirical Analysis

4.1 Data description 

For the empirical estimation, we use monthly US data covering the monthly time period from 

1953:M1 to 2016:M2 for non-housing CPI and nominal house price index. The data span ensures that 

we cover the longest possible known economic expansions and recessions, as well as housing market 

innovations that may imply different responses during different periods (Nyakabawo et al., 2015). 

Non-housing CPI is obtained from the United States Department of Labor, Bureau of Labor Statistics, 

and the nominal house price index is obtained from the data segment of the website of Professor 

Robert J. Shiller: http://www.econ.yale.edu/~shiller/data.htm. We process the data by first seasonally 

adjusting it, and then transform it into logarithms denoted as       and      for non-housing 

CPI and house price index, respectively. Figure 1 shows the comovement between the housing price 

index and the non-housing CPI. 

4.2 Preliminary analysis 

We perform standard unit root tests to determine whether the non-housing CPI and house price index 

series are stationary and results are reported in Table 1.
4
  According to results in Table 1, the 

Augmented Dickey and Fuller (ADF, 1981), Elliott et al.’s (1996) Dickey-Fuller Generalized Least 

Squares (DF-GLS), Phillips and Perron (PP, 1988)  (PP), and Ng and Perron (2001) tests fail to reject 

the null hypothesis of non-stationarity for the non-housing CPI and house price index series at 

conventional levels of significance. The tests further indicate that the first differences of non-housing 

CPI and house price index series reject the null of a unit root. Therefore, the unit root test results 

indicate that the non-housing CPI and house price index series of the U.S both conform to  ( ) 

processes. 

4 For all the unit root and cointegration tests, the choice of lag-length was based on the Schwarz Information 

Criterion. However, alternative choice of lag-length based on other criteria, like the Akaike Information 

Criterion and the Hannan-Quinn Criterion, yielded qualitatively the same results. Complete details of these 
results are available upon request from the authors.  

http://www.econ.yale.edu/~shiller/data.htm
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Table 1: Unit root Tests 

Levels 
ADF DF-GLS PP Ng-Perron 

C C+T C C+T C C+T C (MZa) C+T (MZa) 

House 
prices 

-0.526 -3.938 -1.053 -2.984 -0.003 -1.712 1.377 -2.238 

Inflation -1.140 0.522 1.268 -0.956 -0.810 -0.189 1.237 -0.761 

First difference 

ADF DF-GLS PP Ng-Perron 

C C+T C C+T C C+T C (MZa) C+T (MZa) 

House 
prices 

-3.515*** -3.506** -2.451** -3.246** -9.679*** -9.643*** -128.295*** -156.670*** 

Inflation -4.028*** -4.120*** -1.514 -2.265 -18.441*** -18.471*** -138.036*** -270.351*** 

Notes: *** indicates significance at a 1% level; 

ADF and PP:  a constant is included in the test equation; one-sided test of the null hypothesis that a unit root exists; 1, 5 and 10% 

significance critical value equals -3.439, -2.865,-2.569, respectively.  

ADF and PP: a constant and a linear trend are included in the test equation; one-sided test of the null hypothesis that a unit root exists; 1, 5 

and 10% critical values equals -3.970, -3.416, -3.130, respectively. 

Ng-Perron: a constant is included in the test equation; one-sided test of the null hypothesis that a unit root exists; 1, 5 and 10% significance 

critical value equals -13.800, -8.100, -5.700, respectively. 

Ng-Perron:  constant and a linear trend are included in the test equation; one-sided test of the null hypothesis that a unit root exists; 1, 5 and 

10% critical values equals -23.800, -17.300, -14.200, respectively. 

DF-GLS: a constant is included in the test equation; one-sided test of the null hypothesis that a unit root exists; 1, 5 and 10% significance 

critical value equals -2.568, -1.941, -1.616, respectively. 

DF-GLS:  constant and a linear trend are included in the test equation; one-sided test of the null hypothesis that a unit root exists; 1, 5 and 

10% critical values equals -3.480, -2.890, -2.57, respectively. 
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Figure 1: Data Plots 
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However, a major shortcoming with the standard unit root tests is that they do not allow for the 

possibility of structural breaks. Perron (1989) shows that the power to reject a false unit root null 

hypothesis decreases and therefore a structural break can be ignored. While Perron (1989) treats the 

structural break as being exogenous, we follow Zivot and Andrews (1992) by implementing a unit 

root test to determine a break point endogenously, allowing for a break in both trend and intercept. 

Results of Zivot and Andrews (1992) unit root test are reported in Table 2A and show that we cannot 

reject null hypothesis implying that both series contain unit root. It is also expected that there is a loss 

of power when two or more breaks are not accommodated when employing a test that only 

accommodates a one-time structural break. Therefore, we also implement Lumsdaine and Papell’s 

(1997) unit root test that allows for two breaks in the trend at two distinct unknown dates. Table 2B 

reports the results of the Lumsdaine and Papell (1997) test allowing for breaks in both intercept and 

trend. According to the results, we cannot reject the null hypothesis, implying that non-housing CPI 

and house price index contain unit root with two breaks. In this regard, we further apply the powerful 

Lee and Strazicich (2003) LM unit root tests, which takes into account two structural breaks and the 

alternative hypothesis unambiguously implies the series to be trend stationary. Results are reported in 

Table 2C, and indicate that we cannot reject null hypothesis of unit root again.
5
 

To accommodate the possibility of a non-linear dynamics of house price and non-housing CPI, we 

perform Kapetanios et al., (KSS, 2003) nonlinear unit root test on the de-meaned and detrended data, 

which shows further evidence of non-stationarity in these two variables, as reported in Table 2D. 

Therefore, based on the unit roots tests which incorporate the possibility of one or two structural 

breaks and nonlinearity, the null hypothesis of unit root cannot be rejected, and hence, we can move 

ahead to the test of cointegration having met its pre-requisite of both variables being I(1). 

5 We also applied the Residual Augmented Least Squares–Lagrange Multiplier (RALS–LM) unit root test with 

structural breaks in the mean and trend as recently proposed by Meng et al., (forthcoming); however, our results 

still indicated that both the house price index and the non-housing CPI index are I(1) processes. Complete 
details of these results are available upon request from the authors.  
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Table 2A: Zivot and Andrews (1992) one break unit root test 

Series Test statistic Breakpoint 

LNHPI -5.57  2002:01 

LNHCPI -3.71  1973:08 

Notes: Allowing for Break in both Intercept and Trend Breaks Tested for 1962:10 to 2006:10. Including 5 Lags of Difference selected by 

user. The critical values for the Zivot and Andrews (1992) test are -5.57 per cent, -5.08 per cent and -4.82 per cent at the 1 per cent, 5 per 

cent and 10 per cent levels of significance respectively (Zivot and Andrews, 1992). 

Table 2B: Lumsdaine and Papell (1997) two breaks unit root test 

Series Test statistic Breakpoint 1  Breakpoint 2 

LNHPI -3.69  1976:06  2002:02 

LNHCPI -5.15  1966:04  1978:12 

Notes: Regression period 1953:07 to 2016:02. The critical values for the Lumsdaine and Papell (1997) two break test are -7.19 per cent, -

6.75 per cent and -6.48 per cent at the 1 per cent, 5 per cent and 10 per cent levels of significance respectively. 

Table 2C: Lee and Strazicich (2003) LM two breaks unit root test 

Series Test statistic Breakpoint 1  Breakpoint 2 

LNHPI -0.79  1965:12  1978:11 

LNHCPI -1.57  1969:08  1981:05 

Notes: Regression period 1953:02 to 2016:02. The critical values for the Lee and Strazicich (2003)  two break test are -6.32 per cent, -5.71 

per cent and -5.33 per cent at the 1 per cent, 5 per cent and 10 per cent levels of significance respectively.  

Table 2D: Kapetanios, Shin and Snell (2003) nonlinear unit root test 

Series Test statistic 

LNHPI -1.91 

LNHCPI  2.38 

Notes: *** indicates significance at a 1% level; ** indicate significance at a 5% level; * indicate significance at a 10% level  

The critical values for the Kapetanios, Shin and Snell (2003) KSS test are: -3.93 (1-percnt level); -3.40 (5-percent level); and -3.13 (10-

percent level) (Kapetanios, et al., 2003, Table 1). 
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We start off the cointegration analysis with the standard Engle and Granger (1987) cointegration test 

(reported in Table 3A) which tests the null hypothesis that series are not cointegrated.
6
 Based on the 

results, we reject the null hypothesis of no cointegration indicating that non-housing CPI and the 

house price index series are cointegrated.
7
 The Phillips and Ouliaris (1990) test (Table 3B) tests the 

null hypothesis that series are not cointegrated. We do not reject the null hypothesis of no 

cointegration suggesting that the non-housing CPI and house price index series are not cointegrated. 

Further analysis using Park (1992) added variable test (Table 3C), leads us to reject the null 

hypothesis of cointegration at one percent level suggesting that series are not cointegrated. We also 

perform the Johansen (1988; 1991) cointegration tests to determine whether non-housing CPI and 

house price index cointegrate with each other. The result reported in Table 3D reports show evidence 

of no cointegration between non-housing CPI and house price index, implying that the two series do 

not maintain a long-run relationship in log-levels. So, based on the cointegration results, the Engle 

and Granger (1987) test imply possible cointegration between non-housing CPI and house price 

index, while the Phillips and Ouliaris (1990), Park (1992), and Johansen (1988; 1991) cointegration 

test results show evidence of no cointegration between the two series. Therefore, these conflicting 

conclusions caused us to apply the parameter stability test of Hansen (1992) based on the Fully 

Modified Ordinary Least Squares (FM-OLS) estimation of the cointegrating vector. As shown in 

Table 3E, the null of parameter stability is overwhelmingly rejected, which implies that the long-run 

relationship between the two variables of concern are unstable. This result differs from the findings of 

Anari and Kolari (2002), who find evidence of a stable long-run relationship between these data 

series, though over a different sample period (1968:M1-2000:M6), which does not of course include 

the recent financial crisis. The existence of instability was further vindicated when we applied the 

6 In cases where cointegration holds, for instance in the case of the Engle and Granger (1987) and Kuriyama 

(2016) tests, we normalize the cointegrating vector on the house price index, since we are interested in the 

inflation-hedging property of house price. But, standard Granger causality tests (available upon request from the 

authors) also indicated that house prices are caused by non-housing CPI, but not the other way round, hence, we 

can treat non-housing CPI as the exogenous variables and normalize the cointegrating vector on the house price 

index. Note however, for the single-equation based cointegration tests, our results were unaffected irrespective 

of which variable was used as the dependent variable. Again complete details of these results are available upon 

request from the authors. 
7 The inflation hedging coefficient in this case was 1.20 (p-value=0.00), suggesting that house prices act as an 

overhedge of inflation. This result was statistically vindicated when we found that this coefficient is 

significantly different from 1, with the coefficient restriction of equal to 1 being rejected at one percent level of 
significance. Complete details of these results are available upon request from the authors.   
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Table 3A: Engle and Granger (1987) cointegration test 

Statistic Value Prob 

Engle-Granger tau-statistic -3.777438  0.0151 

Engle-Granger z-statistic -40.02597  0.0006 

Notes: Tests null hypothesis of no cointegration against the alternative of cointegration.  

Table 3B: Phillips and Ouliaris (1990)  cointegration test 

Statistic Value Prob* 

Phillips-Ouliaris tau-statistic -1.215704  0.8546 

Phillips-Ouliaris z-statistic -3.257794  0.8614 

Notes: Tests null hypothesis of no cointegration against the alternative of cointegration. 

Table 3C: Park (1992) added variables test 

Value df Probability 

Chi-square  60.38389 2  0.0000 
Notes: Tests null hypothesis of cointegration against the alternative of no cointegration. 

Table 3D: Johansen’Cointegration Test 

Series H0
a
 H1 Trace Statistic 

Maximum-Eigen Value 

Statistic 

LHCPI and LNHPI 

r = 0 

r 1 

r> 0 

r> 1 

7.75 

0.49 

5.74 

0.65 

Notes:  
a
One-sided test of the null hypothesis (H0) that the variables are not cointegrated against the alternative (H1) of at least one 

cointegrating relationship. The critical values are taken from MacKinnon et al., (1999) with 5-percent critical values equal to 15.49 for 

testing r = 0 and 3.84 for testing r 1 for the Trace test. The corresponding values for the Maximum Eigenvalue tests are 14.26 and 3.84. 

Table 3E: Hansen Parameter Instability Test 

  Statistic Stochastic 

Trends(m) 

Deterministic 

Trends (k) 

Excluded Trends 

(p2) 

Prob* 

3.047 1 0 0 <0.01 
Notes:Hansen (1992b) Lc(m2=1, k=0) p-values, where m2=m-p2 is the number of stochastic trends in the asymptotic distribution. Test null 

hypothesis of parameter stability against the alternative of instability.  
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Table 3F:  Quantile Unit Root Test 

Τ 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

Panel A: LNHCPI (1953:M1 – 2016:M2) 

 ̂    0.9990 0.9995 0.9999 1.0001 1.0002 1.0001 1.0000 0.9998 0.9999 1.0003 1.0003 

t(τ) -1.7230** -1.3660** -0.4056** 0.7668** 1.2113** 0.9785** -0.0932** -0.9163** -0.3156** 1.1149** 0.5271** 

critical value -2.3560 -2.3481 -2.4604 -2.5149 -2.5359 -2.5633 -2.5718 -2.5787 -2.4404 -2.1903 -2.1954 

KS test QKS  = 1.7230**      critical value =2.8434 

DQ-test 1
st
 break: 1968:M9  2

nd
 break: 1982:M6 

Panel B:  LNHPI (1953:M1 – 2016:M2) 

 ̂     1.0007 1.0006 1.0004 1.0003 1.0001 1.0000 0.9997 1.9995 0.9992 0.9989 0.9990 

t(τ) 2.3036** 2.0121** 2.2878** 2.1682** 0.5680** -0.4690** -2.5755** -2.5416** -2.4736** -2.2681** -2.4746** 

critical value -2.4305 -2.6038 -2.7456 -2.7834 -2.7838 -2.8093 -2.8299 -2.7391 -2.8477 -2.6241 -2.5891 

KS-test QKS = 2.5755 **   critical value = 2.7565 

DQ-test 1977:M7 

Notes: ** indicates acceptance of the unit root hypothesis at the 5% significance level.   ̂     is the point estimate of the coefficient       in   QAR:                     ∑              
 
   .  t(τ)  and  QKS  

stand  for the t-ratio and Kolmogorov-Smirnov (KS) Koenker and Xiao (2004) statistics, respectively.   Breaks dates are estimated using the DQ-test (Qu; 2008, Oka and Qu; 2011).   Critical values correspond to the 

5% significance level and are calculated using resampling methods.  
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Table 3G:  Quantile Breaks and sSubsample Unit Root Test  

Τ 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

Panel A:  LNHCPI 

Subsample:  1953:M1 – 1968:M9 

 ̂     1.0041 1.0081 1.0000 1.0000 1.0063 1.0000 1.0032 1.0047 1.0038 1.0022 0.9957 

t(τ) 1.4121** 1.7193** 0.0018** 0.0001** 2.2942** 0.0092** 0.7380** 1.0211** 0.7981** 0.3586** -0.9923** 

critical value -2.1200 -2.3070 -2.5177 -2.5344 -2.3966 -2.6463 -2.6387 -2.6401 -2.5863 -2.5596 -2.5743 

KS-test QKS = 2.2942**  critical value =2.8328 

Subsample:  1968:M10 – 1982:M5 

 ̂     1.0002 1.0010 1.0001 1.0000 0.9997 0.9999 0.9999 1.0007 1.0006 0.9983 0.9976 

t(τ) 0.2275** 0.6369** 0.0914** 0.0185** -0.2538** -0.0897** -0.0615** 0.4056** 0.3333** -0.6179** -1.6179** 

critical value -2.2034 -2.4791 -2.5139 -2.6092 -2.7540 -2.7363 -2.7538 -2.7257 -2.6354 -2.6115 -2.4196 

KS-test QKS = 1.1591**  critical value =2.8348 

Subsample:  1982:M6 – 2016:M2 

 ̂     0.9949 0.9950 0.9968 0.9972 0.9978 0.9987 0.9990 0.9993 1.0010 1.0033 1.0026 

t(τ) -1.6743** 0.6369** -2.8201 -2.8664 -2.5436 -2.2453** -0.15504** -0.8185** 0.9669** 2.2223** 0.8831** 

critical value -2.4771 -2.2488 -2.4060 -2.4384 -2.4178 -2.3503 -2.2645 -2.2887 -2.1949 -2.1200 -2.1200 

KS-test QKS = 2.8664  critical value =2.8662 

Panel B:  LNHPI 

Subsample:  1953:M1 – 1977:M6 

 ̂     1.0067 1.0055 1.0044 1.0027 1.0026 1.0014 1.0028 1.0065 1.0071 1.0075 1.0092 

t(τ) 2.2988** 1.6868** 1.8427** 1.2458** 1.4165** 0.6487** 1.2438** 2.5880** 2.2036** 1.9393** 2.5303** 
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critical value -2.1468 -2.3384 -2.4203 -2.5657 -2.5967 -2.6064 -2.6187 -2.5491 -2.4420 -2.1993 -2.1200 

KS-test QKS = 2.5880**  critical value = 2.8625 

Subsample: 1977:M7 – 2016:M2 

 ̂     0.9994 0.9992 0.9992 0.9996 0.9997 0.9997 0.9999 0.9999 1.0001 1.0008 1.0016 

t(τ) -1.5279** -1.9323** -2.6508 -2.4960** -1.6252** -1.7454** -0.4931** -0.3377** 0.3904** 1.7054** 2.0276** 

critical value -2.3207 -2.5832 -2.5557 -2.7208 -2.8076 -2.7787 -2.7395 -2.7231 -2.7164 -2.6188 -2.4545 

KS-test QKS = 2.6508**  critical value = 2.8142 

Notes: ** indicates acceptance of the unit root hypothesis at the 5% significance level.   ̂     is the point estimate of the coefficient       in   QAR:                     ∑              
 
   .  t(τ)  and  QKS  

stand  for the t-ratio and Kolmogorov-Smirnov (KS) Koenker and Xiao (2004) statistics, respectively.   Critical values correspond to the 5% significance level and are calculated using resampling methods.  



22 

powerful WDmax test of 1 to M globally determined breaks proposed by Bai and Perron (2003) to the 

FM-OLS estimated regression, and obtain five breaks at: 1968:M2, 1977:M7, 1986:M12, 1997:M4, 

and 2006M:10. 

4.3 Quantile regression analysis 

The mixed evidence on the cointegration relationship between non-housing CPI and house price index 

and that of parameter instability motivates us to continue with quantile regression analysis. 

Specifically, we apply the Kuriyama’s (2016) quantile cointegration analysis which examines the 

equilibrium relationships across different quantiles of the distribution of the response variable, namely 

the house price in our case. The methodology allows the long-run relationship among time series 

which contains unit root to be non-uniform across the various conditional quantiles of the dependent 

variable. 

We start our analysis by testing the unit root hypothesis in quantiles.  Koenker and Xiao (2004) 

propose quantile regression-based inference for the unit root hypothesis. The quantile unit root tests 

are based on the quantile autoregression (QAR) approach. The authors introduce the so-called  QAR 

model as follows: 

    (  |    )       ( )    ( )     ∑   ( )       
 
      (15) 

where   (  |    ) is the τ-th conditional quantile and      is the σ-field generated by *       

 +. If   ( )   , then   is persistent and contains a unit root at quantile  . Koenker and Xiao (2004) 

suggest testing the unit root hypothesis      ( )   , using the following t-ratio statistic: 

 ( )  
 (   ( ))̂

√ (   )
(   

      )
 

 ( ̂ ( )   )   (16) 

where  (   ( ))̂  is a consistent estimator of  (   ( )),  ( ) and  ( )   are the density and the 

distribution function of *  + , respectively,      is the vector of lagged dependent variables, and    is 

the projection matrix onto the space orthogonal to   (                ). Like the augmented 

Dickey-Fuller statistic, the limiting distribution of   ( ) is not standard and depends on nuisance 
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parameters. Xiao and Koenker (2004) suggest calculating critical values using resampling methods. In 

addition to the t-ratio statistic  ( ) which focuses on a single selected quantile, the authors also 

introduce a Kolmogorov-Smirnov (KS) type statistic which tests the unit root property over a range 

quantiles     : 

       ⏟
    

| ( )|.  (17) 

We apply the QAR-based tests,  ( ) and    , to the  non-housing CPI  (      ) and house price 

index (     ). Table 3F  reports the quantile unit root test results for        (Panel A) and      

(Panel B) and the bootstrapped critical values.  We first apply the quantile unit root test  ( ) for a 

sequence of quantiles. Results indicate that the unit root hypothesis cannot be rejected at the 5% 

significance level, at each one of the selected quantiles.  Next, we apply the KS-type test, QKS, over 

the range of quantiles       *                          +. QKS results also support the unit 

root hypothesis. 

However, it is well known that in the presence of structural breaks, standard unit root tests are biased 

towards the non-rejection of the unit root hypothesis. In order to examine the robustness of the 

quantile unit root results reported in Table 3G, we test for the presence of breaks in regression 

quantiles. Specifically, we test for structural stability and estimate the break dates (if breaks are 

present) across a range of quantiles   *                          +, using the DQ-test introduced 

by Qu (2008) and Oka and Qu (2011).   Oka and Qu (2011) argue that it can be more informative to 

consider a range of quantiles as opposed to a single one.  DQ-test results reported in Table 3G suggest 

the existence of two and one breaks in the LNHCPI and LNHPI time series, respectively. Following 

Wolters and Tillman (2014), we further investigate whether LNHCPI and LNHPI time series follow a 

unit root process by repeating the analysis of persistence in different subsamples, which are chosen 

based on the break points suggested by the DQ-test. The results and the 5% critical values are are 

reported in Table 3G. In the case of the LNHCPI time series,   ( ) and     tests results support the 

unit root hypothesis in the first two subsamples (1953:M1-1968:M9 and 1968:M10-1982:M5). In the 

third subsample covering the period 1982:M6 – 2016:M2, the ratio t-test  ( ) rejects the unit root 
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hypothesis at three quantiles, 0.20, 0.30 and 0.40. The QKS test marginally rejects the unit root null 

over the range of quantiles   *                          +. In the case of the LNHPI time 

series,   ( ) and     tests results support the unit root hypothesis in the first subsample (1953:M1-

1977:M6). In the second subsample (1977:M7 – 2016:M2) the ratio t-test  ( ) rejects the unit root 

hypothesis only at      . Contrary, the QKS test accepts the unit root null over the range of 

quantiles   *                          +. 

Having examined the persistence of our time series, we proceed with the quantile cointegration 

analysis, given that we establish that the two series are indeed I(1). Note that, the break dates in the 

conditional distribution of LNHPI and the sub-samples created in the process, already includes the 

break dates and the sub-samples of the conditional distribution of LNHCPI. And given that, the 

quantile cointegration approach of Kuriyama (2016) allows us to test for the existence of 

cointegration and also estimate the cointegrating parameters, at each point of the conditional 

distribution of the dependent variable, it is inherently a time-varying approach to detecting and 

estimating long-run relationships, we do not need to conduct sub-sample analysis of quantile 

cointegration based on the breaks in the distributions of the two variables of concern identified in 

Table 3G. Test results are reported in Table 4, Panel A. For each quantile the intercept term ( ), the 

fully modified coefficient estimate ( ) and the CUSUM test statistic (CST()) are reported. We also 

report the t-test statistics for testing whether  is significantly different from zero and one. While the 

former allows us to test whether, the relationship between house price and non-housing CPI is 

significant, the latter tells us if housing under-hedges, serves as a perfect hedge or over-hedges 

inflation. The results provide evidence that non-housing CPI and house price index are cointegrated at 

the lower quantiles of 0.05 to 0.20 at 5 percent significance level. However, there is no evidence of a 

cointegration relationship over the quantile range of 0.30 to 0.90 even at the 10 percent level of 

significance. The response of house price to non-housing CPI is always positive and statistically 

significant over the entire conditional distribution of house price. In addition,   is also statistically 

greater than one over the entire conditional distribution, suggesting that house prices over-hedges 
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Table 4: Kuriyama’s (2016) Quantile Cointegration Test 

=0.05 =0.10 =0.20 =0.30 =0.40 =0.50 =0.60 =0.70 =0.80 =0.90 =0.95 

Panel A: Full sample 

 ̂ -1.40*** -1.37*** -1.17*** -1.19*** -1.26*** -1.30*** -1.37*** -1.42*** -1.47*** -1.61*** -1.74 

 ̂ 1.16*** 1.15*** 1.11*** 1.12*** 1.15*** 1.16*** 1.18*** 1.20*** 1.23*** 1.28*** 1.31*** 

 p-value 

H0: =1 

  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

CST()  
H0:cointegration 

0.74 0.82 1.02 1.48*** 1.76*** 1.65*** 1.84*** 1.74*** 1.83*** 1.30** 2.82*** 

Panel B: Sample below the  quantile 0.10 of  LNHCPI 

 ̂ 0.20 0.27 0.21 0.21 0.37 0.34 0.45 0.61 0.66 0.61 0.68 

 ̂ 0.71*** 0.70*** 0.72*** 0.72*** 0.68*** 0.69*** 0.66*** 0.61*** 0.60*** 0.61*** 0.60*** 

 p-value 

H0: =1 

  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

CST()  

H0:cointegration 

1.26** 2.41*** 3.03*** 3.11*** 4.54*** 4.18*** 3.73*** 3.78*** 3.14*** 8.32*** 1.29** 

Panel C: Sample above the  quantile 0.90 of  LNHCPI 

 ̂ -1.37*** -1.28*** -1.14*** -1.11*** -1.13*** -1.21*** -1.92*** -1.37*** -1.48*** -1.67*** -1.76 

 ̂ 1.15*** 1.13*** 1.10*** 1.10*** 1.11*** 1.13*** 1.17*** 1.18*** 1.23*** 1.29*** 1.31*** 

 p-value 

H0: =1 

  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

CST()  
H0:cointegration 

0.79 0.86 0.92 1.38** 1.82*** 1.84*** 1.86*** 1.89*** 1.95*** 1.39** 2.91*** 

Notes: *** and ** denote statistical significance (rejection of the null hypothesis) at the 1% and 5% levels respectively.  ̂ and    ̂ are the estimates of the parameters of the

regression                              , where        and         are the logarithms of house price index and  non-housing CPI, respectively.  
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inflation. But given that the cointegration exists only over the quantile range of 0.05 to 0.20, we need 

to restrict our discussion of the overhedging characteristic of house prices to only these quantiles, over 

which one percent increases in inflation, leads to between 1.11 to 1.16 percent increases in nominal 

housing returns. As pointed out by Anari and Kolari (2002), the fact that the coefficients are greater 

than one is indicative of the fact that they may be incorporating the impact of tax (see also, Darby 

(1975), Carrington and Crouch (1987), and Crowder and Wohar (1999)). The fact that majority of the 

conditional mean based cointegration fail to pick up cointegration is possibly due to the fact that 

cointegration does not hold over the majority of the conditional distribution of house prices. But at the 

same time, our results highlight the importance of using the quantile-based approach, since if we 

would have just relied on the conditional-mean based tests, we would have wrongly concluded that 

house price does not hedge inflation, when in fact it overhedges inflation, but only at certain lower 

quantiles.
8
 Understandably, overhedging suggests that the real value of the investment in housing is 

retained in the presence of inflation, as it ensures a positive real rate of return. 

 In order to further qualify our results, and the fact that the hedging ability of asset prices depends on 

the level of inflation rate (Hong and Lee, 2013), we categorize lower and higher inflationary 

situations by looking at lower and upper quantiles of the distribution of LNHCPI, and re-conducting 

the quantile cointegration test.
9
 Specifically speaking, we look at the part of the distribution of the 

LNHCPI below 0.10 and above 0.90 categorizing relatively lower and higher general price levels. The 

results are reported in Panels B and C of Table 4. We can draw two main observations
10

: (a) The 

overall results which considers the entire distribution of LNHCPI, as reported in Panel A of Table 4, 

8 We also tested for quantile cointegration using Xiao’s (2009) methodology and detected evidence of quantile 
cointegration and over-hedging, but we prefer the Kuriyama (2016) approach for reasons already discussed in 

the methodology segment. Similar results in terms of overhedging were also obtained under the quantile 

Autoregressive Distributed Lag (QARDL) approach of Cho et al., (2015). Note that, Anari and Kolari (2002) 

had used an ARDL model, which in turn, is also a conditional mean-based model with existence or non-

existence of cointegration being often sensitive to the appropriate choice of lag-lengths like many of the 

cointegration tests discussed in the main text. But, for the sake completeness and comparability, we also applied 

the test to our dataset, but failed to detect cointegration at conventional levels of significance, which should not 

be surprising given the evidence of parameter instability discussed in the main text. Complete details of all these 

results are available upon request from the authors. 
9 We would like to thank an anonymous referee for guiding us in this direction. 
10 When we look at other possible break-ups of the distribution of LNHCPI, i.e., below 0.25 and above 0.75, and 

below 0.50 and above 0.50, we obtained similar results, complete details of which are available upon request 
from the authors. 
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is basically driven by the upper quantiles-based results obtained under the LNHCPI. In other words, 

housing acts as an overhedge of inflation, when LNHPI is relatively lower given that LNHCPI is 

comparatively higher, and; (b) Secondly, while there is no evidence of quantile cointegration when we 

look at the part of the distribution of LNHCPI that is below 0.10, we do find that the response of 

LNHPI to LNHCPI is stronger when the latter is restricted to its upper quantiles, i.e., part of the 

distribution above 0.90 relative to the case of the distribution of LNHCPI being below the quantile of 

0.10. 

5. Conclusion

In this paper, we analyse whether house prices provide a good hedge against inflation in the US by 

investigating the long run relationship between non-housing CPI and houses prices using quantile 

cointegration analysis. Monthly data covering the period 1953:M1 to 2016:M2 is used. Before 

proceeding with the quantile cointegration analysis, standard and quantiles-based unit root tests were 

performed, and our results conclude that both non-housing CPI and house price index are  ( ) series. 

Allowing for the possibility of structural breaks, we perform unit root test with both one and two 

structural breaks, and also with breaks of the conditional distribution, and find evidence that we 

cannot reject the null hypothesis of unit root. Evidence from non-linear unit root test also concludes 

that the series are non-stationary. Next, when we conduct standard cointegration tests, we find mixed 

evidence of a cointegration relationship between non-housing CPI and house price index, which 

motivates us to perform a stability test on the cointegrating vector. Results from the stability test 

conclude that the cointegration relationship is unstable, therefore we use a time-varying approach by 

applying Kuriyama’s (2016) quantile cointegration which test for the existences of a long-run 

relationship across the conditional quantiles of the dependent variable, thus capturing various phases 

of the US housing market. Empirical results using quantile cointegration suggest that the U.S non-

housing CPI and house price index series are cointegrated at lower quantiles, but show evidence of no 

long-run relationship at the middle and upper quantiles. Our results also imply that at lower levels, 

house prices over-hedge against inflation. In addition, when we categorize lower and higher 
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inflationary situations by looking at lower and upper quantiles of the distribution of non-housing CPI, 

and re-conduct the quantile cointegration test, we find that the above result only holds at the upper 

quantiles of the non-housing CPI. In other words, housing acts as an overhedge for inflation when the 

former is relatively lower and the latter is comparatively higher. But given that there is no long-run 

relationship at moderate to high levels, our results are possibly indicative of bubbles that exists in an 

overheated housing market, captured by housing prices deviating from a fundamental, namely non-

housing CPI in our case. As part of future research, it would be interesting to extend our analysis to 

REITs. 
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