Technification

Figure 7.1 Entrance to Pretoria City Hall (Hoffman 2017)
The Transparent Nature of Architecture
7.1 - Introduction

The premise in which the technical argument is grounded carries on from the core design concept of architecture’s role in facilitating transparency in a democratic society as established in the urban vision as well as supported by Nikitin (2009) when discussing the value of civic centres. From the macro scale of the immediate context of the new Local Government Square, to the facilitation of protest in the design to how the new connects to the existing, it is argued that, in order for architecture to be transparent in its approach, it is proposed that rigour between these varying scales is required. To achieve this goal, the technical approach is handled at three different scales: that of the macro building climate, the tripartite structural system, and through the debate of junctions.

Figure 7.2 Transparent Nature of Architecture (Author 2017)
7.2 - The building as an Engine for change

Pretoria city hall was further investigated as a starting point for the technical resolution, in an attempt to uncover the original technical advancements that were utilised during its construction. What was identified led to the new being regarded as an engine for change. Pretoria city hall was constructed with two main systems. The first being an advanced air circulation system intended to keep internal air temperatures constant, and the second being the inclusion of a small distribution plant positioned in the basement of the northern wing (Herring 1935). Pretoria City Hall was able to appropriately facilitate its needs through the use of these systems further cementing its position as a symbol of progress.

Central to the initial technological investigation of the project was the continuation and completion of the design intention of reactivating Pretoria City Hall as a civic centre, rather than the basic technification of the building. Therefore, looking at the building as a new engine is an extension of this line of thought as well as of the existing structure’s self-reliance. The technical resolution will therefore focus on the ventilation of the design as well as introduce a new function of water collection in response to the current water shortages experienced in South Africa (The Water Project 2017).

Figure 7.3 Above; The building as an engine for change (Author 2017)
Figure 7.4 Right; Engine layers (Author 2017)
7.2.1 - Ventilation Systems

The ventilation for the design was divided into three zones so to best respond to the existing as well as move towards creating a greener building. The three zones are passive, assisted and mechanically serviced. Each zone was determined as a response to several established issues.

The first was that of the occupation of the design, which was determined through the programming of the building. Passive ventilation is positioned in the zone with the lowest occupation; assisted ventilation is positioned where the building is designed around public occupation; and the controlled mechanical zone (existing) is positioned in the debate arena which is to contain the highest concentration of people.

Through the establishment of the zones and the application of the principles required to allow for efficient passive ventilation, it was noted that Pretoria City Hall was designed in such a way that it, too, meets the requirements of passive ventilation systems. Therefore, the mechanical system would be controlled so as to prevent its unnecessary use when the hall is not fully occupied.
Passive Ventilation

Aluminium Screen heated up preventing internal solar gain. Service walkway between screen and museum helps encourage ventilation pulling internal air through.

Cooler air from Expression Square pulled into the museum.

Assisted Ventilation

Lecture hall utilises rock store and earth to maintain temperature

Mechanical Ventilation

High use
7.2.2 - Water Systems

Through the development of Pretoria City Hall, it is given a prominent seat in the political climate and therefore is required to act as an indicator of both political attitudes and responsible design. South Africa is currently experiencing its worst drought in over two decades (Da Silva 2017). The drought, coupled with infrastructure poorly managed by government (The Water Project 2017), has resulted in a widespread crisis that affects many aspects of daily life, ranging from increased food prices due to the loss of crops, to certain areas experiencing water-shedding (Da Silva 2017).

The lack of management of the country's water systems by government supports the argument for transparency in our political environment to prevent this from happening in the future, and is therefore an appropriate system for the New City Hall to address.

Storm water will be collected from all hard surfaces on the City Hall block and rain water will be harvested from City Hall. All the water will be stored in a newly constructed water tank underneath the external expression square.
Water Budget

TANK CAPACITY (m³):
- 3200

MIN VOLUME (m³):
- 0

C1 WATER BUDGET

<table>
<thead>
<tr>
<th>MONTH</th>
<th>YIELD (m³/month)</th>
<th>DEMAND (m³/month)</th>
<th>MONTHLY BALANCE</th>
<th>POTENTIAL VOLUME (m³)</th>
<th>VOLUME IN TANK (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>September</td>
<td>448.7</td>
<td>976.0</td>
<td>-527.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>October</td>
<td>1448.1</td>
<td>994.8</td>
<td>453.3</td>
<td>453.3</td>
<td>453.3</td>
</tr>
<tr>
<td>November</td>
<td>1998.7</td>
<td>985.8</td>
<td>1012.9</td>
<td>1466.2</td>
<td>1466.2</td>
</tr>
<tr>
<td>December</td>
<td>2202.7</td>
<td>1004.6</td>
<td>1198.1</td>
<td>2664.3</td>
<td>2664.3</td>
</tr>
<tr>
<td></td>
<td>6098.2</td>
<td>3961.2</td>
<td>2137.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C2 WATER BUDGET

<table>
<thead>
<tr>
<th>MONTH</th>
<th>YIELD (m³/month)</th>
<th>DEMAND (m³/month)</th>
<th>MONTHLY BALANCE</th>
<th>POTENTIAL VOLUME (m³)</th>
<th>VOLUME IN TANK (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>2773.8</td>
<td>1004.6</td>
<td>1769.2</td>
<td>4433.4</td>
<td>3200.0</td>
</tr>
<tr>
<td>February</td>
<td>1019.8</td>
<td>967.8</td>
<td>52.0</td>
<td>4689.4</td>
<td>3200.0</td>
</tr>
<tr>
<td>March</td>
<td>1672.4</td>
<td>975.2</td>
<td>697.2</td>
<td>5182.6</td>
<td>3200.0</td>
</tr>
<tr>
<td>April</td>
<td>1040.2</td>
<td>956.4</td>
<td>83.7</td>
<td>5266.3</td>
<td>3200.0</td>
</tr>
<tr>
<td>May</td>
<td>265.1</td>
<td>757.5</td>
<td>-492.3</td>
<td>4775.0</td>
<td>2707.7</td>
</tr>
<tr>
<td>June</td>
<td>142.8</td>
<td>685.9</td>
<td>-543.1</td>
<td>4230.8</td>
<td>2164.5</td>
</tr>
<tr>
<td>July</td>
<td>61.2</td>
<td>604.9</td>
<td>-638.7</td>
<td>3587.1</td>
<td>1530.8</td>
</tr>
<tr>
<td>August</td>
<td>122.4</td>
<td>912.6</td>
<td>-790.2</td>
<td>2808.8</td>
<td>749.5</td>
</tr>
<tr>
<td>September</td>
<td>448.7</td>
<td>976.0</td>
<td>-527.3</td>
<td>2279.5</td>
<td>213.2</td>
</tr>
<tr>
<td>October</td>
<td>1448.1</td>
<td>994.8</td>
<td>453.3</td>
<td>2732.8</td>
<td>666.5</td>
</tr>
<tr>
<td>November</td>
<td>1998.7</td>
<td>985.8</td>
<td>1012.9</td>
<td>3745.7</td>
<td>1679.4</td>
</tr>
<tr>
<td>December</td>
<td>2202.7</td>
<td>1004.6</td>
<td>1198.1</td>
<td>4945.8</td>
<td>2877.5</td>
</tr>
</tbody>
</table>

Initiation Phase

![Chart showing Initiation Phase]

Operational Phase - Y1

![Chart showing Operational Phase - Y1]
7.3 - Structural Systems

The structural approach is a response to the existing system of City Hall and an extension of Machado’s (1976) idea of old buildings as palimpsest. It adopts a three-tiered approach, in which the substructure is an extension of the stereotomic nature of the existing, the superstructure is a response to the tectonic nature of society, and the skin is a response to the identity created through the interaction of all tiers.
7.3.1 - Substructure

The design of the substructure and its materiality was approached as a response to the existing. The response to the stereotomic nature of City Hall was to recreate its longevity and integrity so to respect the heritage along which the new has developed. Furthermore, the stereotomic nature of the substructure is used as a metaphor for society’s ability to learn from the past and use it to create a better future.

It is arranged according to the existing 5000x5000mm grid of City Hall with the stereotomic concrete elements supporting the new. The substructure is intended to respond to the existing in its ordering, yet be removed from it as it acts as the foundation for the new. The existing sandstone and concrete-block exterior walls informed both the thickness and height required by the new system. The structural walls support the tectonic steel superstructure.
1. 400mm Concrete Walls organised along the existing 5000x5000 grid.
2. Brickwork framing walkways in the museum.
3. Concrete paving slabs for market space.
7.3.2 - Superstructure

The design approach to the superstructure and its materiality was chosen as a response to the tectonic nature of society and its rejection of the stereotomic presence of city hall. The superstructure plays an important role in the understanding of the architecture. It is used as a metaphor for the progression of society, where at times it has developed from the past and at other times it has been used to support, protect and reactivate the past.

Steel construction was chosen as an appropriate system, as its slender elements will be in stark contrast to both the existing and the substructure. The use of steel embodies the adaptability of society, a notion that is not present in the stereotomic elements. It responds to the ordering system of the substructure, yet its adaptability allows for the creation of dynamic spaces in response to the dynamic nature of the public.
1. Open web steel trusses.
2. H and I sections for horizontal and vertical structural elements.
3. Mentis grating for walkways.
4. Structural Mullions.
The design approach to the skin and its materiality responds to the identity of our society and its ability to express that which is happening around us. It plays an important role in both the understanding of the architecture and in facilitating the passive ventilation. The skin deals with the physical screen which wraps around the building as well as the roofs.

Euro Steel Aluminium sheet 1200 H14 was selected to be used for the screen and Klip-Lok 406 was chosen as the roof sheeting. The screen is used to suggest the internal movement of protest on the northern elevation and facilitate ventilation in conjunction with the roof.

The layering of the three structures sees a response to Nobel’s (2008) argument towards the hybridisation of architecture, in that it is through the layering of the three systems that the new identity is embodied and becomes established in our understanding of it.
1. Patterned Aluminium Screen supported by Square and Rectangular hollow sections.
2. Patterned Aluminium balustrades.
3. Acoustic panels spaced to expose concrete ceiling.
7.4 - Debate in Junctions

Our understanding of architecture does not end once the user understands the general program or function of the building, but rather, it is developed through the process of exploration. The idea of debate in junctions therefore argues for transparency in junctions. It proposes that, in order to successfully achieve the transparent rigor required of a political building, the junctions which put it together require clearly defined focuses creating an easily understood architecture.

The spatial manifestation of debate in architecture deals with architecture in a manner which all can understand. Different opinions surrounding an issue (i.e. the junction between the floor of the new with the existing) are put forward and discussed, with one of three results becoming the newly created junction. This approach towards the development of junctions creates a clearly defined intention that helps to develop a narrative in support of the surrounding programs and functions of the building.

In order to properly facilitate the clear language created through the debate of junctions and establish the appropriateness of the given result the tectonic approach is organised along the three core functions established for the design: Display, Debate and Spectate.
Figure 7.16 Debate in Junctions (Author 2017)
7.4.1 - Display (Superstructure)

Display deals with the issues of memory in architecture and the appropriation of space in architecture's control of public and private expression spaces (Jarvis 2009). The main programmatic driver of display is that of the Museum of Democracy, which is used as an indicator of the progression of democracy. Display reveals an understanding and control of the existing in its architectural resolution.

Therefore, when applied to the issues of debate in junction, the technical resolution would focus on and highlight the connections of the superstructure as a means to express its ability to learn from the past in its creation and connection to the new.

Figure 7.17 Above; Display Junction (Author 2017)
Figure 7.18 Right; Junction between steel column and concrete floor slab 3D (Author 2017)
203x203x46 mm H-section welded to footing which is to be bolted with M12 bolts to steel plate cast into concrete floor

203x203x10 mm steel flat welded to base of H-section column with 50x10 mm vertical steel flat spacer welded to underside and welded to base of 203x203x10 mm steel flat

M12 rods cast into concrete floor to act as guide for accurate positioning of column.

253x253x10 mm steel flat cast into concrete floor to act as base connector for column footing

M12 bolts connecting IPEaa200 to 203x203x10 mm steel flat welded to top of 203x203x10 mm parallel flange H-section column
7.4.2 - Debate (Substructure)

Debate deals with the issues of verbal and architectural contestation, with the main programmatic driver being the debate arena, which is experienced at direct and indirect levels. Debate reveals an approach to the heritage of the architecture and argues in support of the past in its ability to facilitate the change seen by our society.

Therefore, when applied to the issues of debate in junction, the technical resolution would focus on clearly defined and developed junctions between the existing and the new. It aims to highlight the past, so to respect the existing structure while suggesting the changed societal perception needed for its reactivation.
457x191x67 mm Mild steel parallel flange I-section column to be welded to 457x191x10 mm steel flat

457x191x10 mm Mild Steel flat welded to 210x10 mm vertical steel flat spacers welded to 457x191x10 mm steel flat base plate to be chem. bolted to existing concrete floor

Laminated tempered glass pane held by 25x25x3 mm mild steel equal angle with pre-drilled hole to fix panel lipped channel below

114x22 mm Stinkwood floor panels supported on 114x50 mm timber floor joist
7.4.3 - Spectate (Skin)

Spectate deals with the issues of transparency and the gaining of knowledge through the appropriation of varying platforms along the main protest route as established through the design process. The intention is to help protesters develop and understanding of their social and physical surroundings. Programmatically, spectate is centred between the display and debate functions of the design yet it takes a step back so to simplify the platform and highlight that which the platform engages with.

Therefore, when applied to the issues of debate in junction, the technical resolution would focus on the structural system of the skin and how it connects to the building. The intention is for the junction to be clearly defined and used as a tool to focus the individual on the space that is being framed.
Euro steel sheet 1200 H14 aluminium sheet with 20 Ø machined holes with a 50x50x3 mm SHS to form a frame for new gallery balustrade.

150x75x10 mm mild steel unequal angle welded to IPEaa200 beam to act as closer.

114x22 mm timber floor boards placed and nailed to 150x50x20x2.0 mm cold formed mild steel lipped channel.

IPEaa200 beam to meet and be welded to back of 150x75x10 mm mild steel unequal angle.

150x50x20x2.0 mm cold formed mild steel lipped channel bolted to IPEaa200 beam @ +- 450 mm centers.
7.5 - Steps taken to break through Existing

Step 1.
Angle grind around proposed opening to prevent flacking of the existing plaster during construction.

Step 2.
Temporary supports placed through existing wall to carry load above. I-section supported on either side and placed @ equal increments.

Step 3.
Once I-sections have been stabilised the opening can be created.

Step 4.
Start of new lintle with steel plate spanning new opening.
New concrete floor can be attached to existing.

Step 5.
Form work placed around steel plate and packed with concrete on top of steel plate.

Step 6.
Once base concrete has cured, dry-mix concrete is rammed into space between temporary I-sections and allowed to cure.

Step 7.
Final step is to ram dry-mix concrete into gaps created by the removal of the temporary I-section supports.

Figure 7.23 Above; Steps taken to break through existing walls
Figure 7.24 Right; SBAT (Author 2017)
7.7 - Technical Iteration Process
7.7.1 - First Technical Iteration
Figure 7.25 First iteration of technical sections (Author 2017)
7.7.2 - Second Technical Iteration
Figure 7.26 Second iteration of technical sections (Author 2017)
Figure 7.27 Above; Section between existing and new (Author 2017)
Figure 7.28 Below; Council Chamber Plan (Author 2017)
Figure 7.29 Right Bottom; Section through Figure Council Chambers (Author 2017)

Plan of new Council Chambers
Section Through council chambers
7.7.3 Technical Details

![Diagram of technical details]

- 105x75x6 mm mild steel unequal angle bolted to concrete ramp and welded to 50x50x3 mm SHS frame
- Euro steel aluminium sheet 1200 h14 patterned and welded to 50x50x3 mm SHS for both vertical and horizontal supports
- Edge to be chamfered
- Aluminium framed window fixed to concrete lintel
- Cast in-situ rainwater channel

Figure 7.30 Protest Ramp Edge Detail
Figure (Author 2017)

![Diagram of technical details]

- 100x75x6 mm mild steel unequal angle chem. bolted to concrete @ 300 centers
- Precast concrete bench placed onto mild steel support
- 50x50x3 mm mild steel equal angle welded to 5 mm mild steel plate
- 5 mm mild steel plate cut as indicated and welded to 100x75x6 mm unequal angle
- 300x300x50 mm traditional concrete paving slab placed onto concrete rounds to allow movement of water underneath
- Cast in-situ rainwater channel
- 40x40x2 mm mild steel equal angle chem. bolted to concrete to support 60x40x30 mm gripweld mentis grating

Figure 7.31 Market junction with storage wall (Author 2017)
Figure 7.32 Rood end detail (Author 2017)

Detail C.

105x105 mm purpose bent GMS flashing

105x50x20x2.0 mm mild steel lipped channel purlin laid onto steel truss @ 1200 mm centers to support klip-loc 406 0.7 mm aluminium roof sheeting fastened to purlins with stainless steel by-metal self-drilling wafer head ph2 screw

50 m thick x 400 mm wide isoboard high density rigid extruded polystyrene insulation board nailed to 150x75x10 mm mild steel unequal angle barrier beam

75x75x3 mm SHS mullion welded to underside of steel truss

75x50x20x2.0 mm mild steel lipped channel nailed to 150x75x10 mm unequal angle

Figure 7.33 Roof gutter detail (Author 2017)

Detail D.

105x50x20x2.0 mm mild steel lipped channel purlin laid onto steel truss @ 1200 mm centers to support klip-loc 406 0.7 mm aluminium roof sheeting fastened to purlins with stainless steel by-metal self-drilling wafer head ph2 screw

1.8 GMS bent as indicated and wrapped up to purlin and RHS to form structural gutter

Euro steel aluminium sheet 1400 h14 to be patterned and supported by 50x50x3 mm SHS on the vertical and 75x50x3 mm on the horizontal

150x75x10 mm mild steel unequal angle barrier beam to support 1.8 GMS structural gutter

Steel truss laid onto steel slat plate on top of concrete column

50 m thick x 400 mm wide isoboard high density rigid extruded polystyrene insulation board nailed to 150x75x10 mm mild steel unequal angle barrier beam

© University of Pretoria
Figure 7.34 Catwalk Detail (Author 2017)

Detail E.

60x40x30 mm gripweld mentis grating laid onto unequal and equal angles

5 mm mild steel plate cut as indicated to be welded to 150x90x10 mm unequal angle and 50x50x3 mm equal angle to act as support brace

Euro steel aluminium sheet 1200 H14 to be patterned to act as screen

75x50x3 mm RHS to form top and bottom elements of screen

1.8 GMS bent as indicated and welded to 50x50x3 mm equal angle to form rainwater channel

50x50x3 mm mild steel equal angle welded to 5 m plate to close off support

150x90x10 mm mild steel unequal angle chem. bolted to concrete down stand @ 300 mm centers to support 60x40x30 mm gripweld mentis grating catwalk

Chamfered concrete edge

Figure 7.35 Gallery connection to existing (Author 2017)

Detail F.

114x22 mm Lusagna timber floor boards layed ontop of 105x50x20x2.0 mm mild steel lipped channel

Light junction bolted to 150x50x20x2.0 mm cold formed mild steel lipped channel

Electrical conduit to run through void

IPEea200 beam to be bolted to 150x90x10 mm mild steel unequal angle with M12 bolts @ 300 centers

150x90x10 mm mild steel unequal angle to support IPEea200 beam chem. bolted to wall @ 300 centers
114x22 mm timber floor boards laid onto and nailed to 150x150x20x2.0 mm cold formed mild steel lipped channel

150x150x20x2.0 cold formed mild steel lipped channel nailed to IPEaa200 @ 450 centers

Euro steel sheet 1200 H14 aluminium sheet with 20 mm diameter machined holes with a 50x50x3 mm SHS to form a frame for the gallery balustrade

150x75x10 mm mild steel unequal angle welded to IPEaa200 to act as closer

IPEaa200 beam cut as indicated to meet and be welded to 150x75x10 mm mild steel unequal angle

Pre-drilled hole into laminated glass pane to fix it to lipped channel

25 mm thick and 150 mm wide translucent glass pane

25x25x2 mm cold formed mild steel equal angle to house translucent laminated glass pane

Lasagna timber floor (existing)

Silicon beading layed between tempered glass and mild steel angle

Gasket between mild steel angle cold formed lipped channel

144x50 mm timber joist to carry timber floor

150x50x20x2.0 mm cold formed mild steel lipped channel to go around concrete footing to be plugged and screwed to concrete and fixed to floor joist with self-tapping screw

M6 nut welded to internal flange of 150x50x20x2.0 mm cold formed mild steel lipped channel @ 200 centers
Figure 7.38 Column connection to gallery (Author 2017)

Figure 7.39 Below; New concrete footing in debate arena (Author 2017)

Detail H.

114x22 mm timber flour nailed and supported by 150x50x20x2.0 mm mild steel lipped channel @ 450 mm centers

IPEa200 I-section beam welded to 100x100x10 mm steel flat cut and welded to a second IPEa200 I-section

100x100x4.0 mm SHS column capped with 100x100 steel flat

IPEa200 cut as indicated to form end of gallery

Detail I.

100x100x4.0 mm SHS to support gallery above welded to 120x120x10 mm steel plate

120x120x10 mm steel plate bolted with M12 bolts cast into 120 mm concrete slab

114x22 mm Lusagna floor boards to create new seat on concrete footing

20x20 mm timber spacer to support reclaimed Lusagna timber floor boards

120 mm concrete slab to be cast in-situ onto 220 mm brick wall

Callout A

220 mm brick wall to be built up to underside of 120 mm concrete slab

Existing concrete slab shapped away to allow the pouring of new concrete footing
Figure 7.40 Junction between new roof and existing with new lintel (Author 2017)
Figure 7.41 Below; Junction between new and old through new opening (Author 2017)

Detail J.

150x50x20x2.0 mm mild steel lipped channel to be used as purlins @ 1200 mm centers

150x75x10 mm mild steel unequal angles welded together to form top and base barrer beams of roof truss

150x50x20x2.0 mm cold-formed equal angle channel bolted to 50x50x3 mm mild steel equal angle chem. bolted to existing @ 300 mm centers

Dry-mix concrete to be compacted into void created by temporary I-section supports

600x12 mm steel plate to form base of new lintel

Detail K.

10 mm silicon strip between new and existing floors

225 mm cast in-situ concrete slab layed on top of steel slip plate
150x50x20x2.0 mm cold-formed mild steel lipped channel cast into concrete floor with LED strip placed along its length

Angle grinder to be used to cut around opening to prevent flaking of plaster during demolition

© University of Pretoria
Figure 7.42 Junction between new floor and existing wall (Author 2017)
Figure 7.43 Below; Junction between steel column and concrete floor slab (Author 2017)

Detail L.

105x50x20x2.2 mm cold formed lipped channel capped with laminated glass held by 25x25x3 mm equal angle

PFC 100x50 mild steel channels chem. bolted to existing and concrete floors slab @ 300 centers bolted to top and bottom 150x50x20x2.0 cold formed lipped channels

150x50x20x2.0 mm cold formed mild steel lipped channel bolted to PFC 100x50 to hold LED light strip

Angle grinder used to cut around opening to prevent flaking of plaster when connecting new floor

Detail M.

M12 rods cast into concrete floor to act as guides for accurate positioning of columns providing continuous connection to column below

Column footing bolted to steel flat base with M12 bolts

203x203x10 mm steel flat welded to base of H-section column with 50x100 mm vertical steel flat spacer welded to underside and welded to base of 203x203x10 mm steel flat

253x253x10 mm steel flat cast into concrete floor to act as base connector for column footing

M12 bolts connecting IPEaa 200 to 203x203x10 mm steel flat welded to top of 203x203x10 mm parallel flange H-section column
Detail N.

Figure 7.44 Detail of new lintel with existing
(Author 2017)
Figure 7.45 Below; Plan through column
connection with existing (Author 2017)
457x191x67 mm mild steel parallel flange L-section column to be welded to 457x191x10 mm steel flat

Laminated glass pane held by 25x25x3 mm mild steel equal angle with pre-drilled hole to fix pane to lipped channel

457x191x10 mm mild steel flat welded to 210x10 mm vertical steel flat spacers welded to 457x191x10 mm steel flat base to be chem. bolted to existing concrete floor

114x22 mm Stinkwood timber floor supported on 114x50 mm timber floor joists

150x50x20x2.0 cold formed mild steel lipped channel bolted to column footing and fixed to floor joist with self tapping screw