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Abstract

This paper develops an optimal control (OC) model of a heat pump water heater (HPWH) supplied
by a wind generator-photovoltaic-grid system. The objective function is energy cost minimization, taking
into account the time-of-use electricity tariff (TOU), which is an important control parameter. The control
variables are the supply switch to the HPWH and the power from the grid, while the hot water temperature
inside the tank is the state variable. The model meets both the HPWH’s technical and operational constraints
in providing hot water at a desired temperature and achieves load shifting. This problem is solved using
a mixed integer linear program. The results show a 70.7% cost reduction upon implementation of this
intervention. A case study is done and the OC shows significant potential in energy and cost saving when
compared to the digital thermostat controller used currently in most HPWHs. The economic analysis is
presented in this paper as well.
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Nomenclature
Pw(t) wind generator power output (kW)
Ppv(t) photovoltaic power output (kW)
Pg(t) grid power (kW)
Php heat pump water heater power demand (kW)
COP coefficient of performance
u(t) heat pump power supply switch control variable (0 or 1)
T (t) hot water temperature inside the tank ( ◦C)
Tlow and Tup lower and upper hot water temperature set points ( ◦C)
Ta ambient temperature ( ◦C)
To initial hot water temperature ( ◦C)
Tin(t) inlet cold water temperature ( ◦C)
R South African Rands (ZAR)
p(t) time-of-use electricity price (R/kWh)
N total number of sampling intervals
ts and k sampling time (hour) and kth sampling interval
QD total losses due to water demand
QL total standby (convectional) losses
WD(t) flow rate (litres/hour)
qloss conventional loss in (W/m2)
4x thickness of the insulation (m)
h surface heat transfer coefficient (W/m2K)
κ thermal conductivity (W/m K)
S area total surface area (m2)
c specific heat capacity of water (J/kg ◦C)
Ṫ derivative of temperature
L mass of water inside the tank (kg)
ηt turbine coupling gearbox efficiency (%)
ηg wind generator efficiency (%)
ρ air density factor of the wind generator
Cp Betz limit
Aw wind generator rotor sweeping area (m2)
Vr wind velocity (m/s)
DPV discounted present value of the future cash flow
FV nominal value of a cash flow amount in a future period
r interest rate or discount rate
n time in years before the future cash flow occurs
MILP Mixed Integer Linear Program

1. Introduction

The energy consumption in buildings accounts for about 42% of global energy production, especially
in developed countries [1]; 60.51% of this energy goes for space heating and 23.60% for water heating at
domestic2 level. Therefore, in order to reduce the high energy consumption, energy-efficient equipment,
such as heat pump water heaters (HPWH), needs to be employed at domestic level as tools for demand
side management (DSM). HPWHs are devices that drive heat energy from a cooler surrounding medium to
a much warmer place using a refrigerant. The refrigerant absorbs the ambient energy of the surrounding
medium in the evaporator and passes through the compressor, where it gains extra heat energy through an

2http://www.dti.gov.uk/energy/inform/
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increase in pressure as a result of compression. This hot working fluid then circulates through the heat
exchanger (condenser), where thermal energy is transferred to the water and the process is repeated. The
past two decades have seen major advances in HPWH technology [2, 3, 4], which has led to their wider
application and improved coefficient of performance (COP). Essen and Yuksel [5] extensively investigated
both ground-sourced and air-sourced HPWHs and made an economic analysis. Various authors [6, 7, 8,
9, 10, 11] have developed models and investigated ways of improving the COP of the HPWH; however,
most of them agree that optimal control (OC), system design, sizing and integration remain a technological
challenge.

The problem of DSM requires a multi-directional approach; the HPWHs alone might not achieve sig-
nificant energy savings, hence the need to integrate them with distributed renewable energy sources (DREs)
such as wind and photovoltaic (PV) power in buildings [12, 13]. On/off-site DRE integration into build-
ings and small communities is a promising technology for DSM. Various hybrid DREs are presented in
[14, 15, 16, 17, 18, 19, 20], though much of the success achieved so far is in the sizing and system design.
More effort and research are required to integrate these DREs optimally into energy-efficient household
loads (e.g. heat pumps) to realize net-zero energy [21], cost-effective billing and positive-energy buildings
[22]. Therefore, future optimal energy-mixing will rely on the successful implementation of OC techniques
[23, 24? ].

This paper proposes the first attempt to provide an optimal switching control model of the HPWH, sup-
plied by wind-PV-grid hybrid systems, that save energy and cost in practice. Many previous works evaluate
the techno-economic benefit [25, 26, 27, 28, 29, 30, 31], i.e, the objective functions are performances over a
year, or multiple years. Operational performances are evaluated at a much shorter period, such as a day, 24h.
A control horizon of one day enable end-users to effectively monitor their daily energy usage. The daily
savings will accumulate into savings over weeks, months, seasons and years allowing end-users to easily
understand their daily energy consumption trends and their cost implications. This is a major difference.
This model meets both the technical and operational constraints of an HPWH powered by DREs and meets
the required hot water demand at a desirable temperature, which is another novelty of this paper. The model
further shows the potential of achieving a cost-effective and near net-zero energy building. The limitations
of the current digital thermostat temperature controller used in HPWH can be alleviated by the application of
the OC. This model can also be adopted for optimal renewable energy feed-in by building owners intending
to achieve positive-energy and cost-effective consumption.

This paper is structured as follows: Sections 2 and 3 present the mathematical model formulation and
Section 4 the simulation results and discussion. The last part, Section 5, is the conclusion.

2. Mathematical model formulation

2.1. Schematic model layout

The optimal switching strategy schematic diagram of the heat pump shown in Figure 1 comprises the
wind generator Pw(t), PV modules Ppv(t), grid Pg(t) and an air-sourced heat pump with tank-wrapped con-
denser Php(t). The switch u(t) controls the power supply to the HPWH. The excess renewable power is fed
into the grid. The grid power Pg(t) accepts power from renewable power sources as well as it supplements
the heat pump whenever their combined output fails to meet the demand.
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Figure 1: Schematic layout of the model.

The time-of-use electricity tariff (TOU) is one of the important control parameters in the optimal switch-
ing strategy of the HPWH, especially in the peak period. T (t) is the state variable, the temperature of the
water inside the storage tank. The hot water demand WD(t) is the flow rate in litres/hour taken from the case
study. The desired hot water temperature is predetermined to lie between Tlow and Tup, which are the lower
and upper temperature respectively. However, these limits may vary from one individual to another. The
control variables in this paper are the grid power Pg(t) and heat pump supply switch u(t).

2.2. Sub-models

2.2.1. Heat pump water heater
The heat pump model is developed according to [32], with a fixed power demand Php rating, operating

at full capacity. The temperature distribution of the hot water is assumed to be uniform and with a constant
water volume, neglecting stratification. The energy loss in the evaporator, refrigerant and compressor is not
considered in this model because it is negligible. Therefore, only energy losses due to the hot water demand
QD(t) and convectional (standby) loss QL(t) are taken into account.

The standby QL(t) are the thermal losses dispatched through the tank’s casing material. These losses can
be minimised through increased thermal insulation and application of low thermal conductivity materials.
The per second convention loss qloss in W/m2 according to [33] is given in equation (1),

qloss (T (t),Ta) =
T (t) − Ta
4x
κ + 1

h

, (1)

where 4x and κ are the insulation thickness and thermal conductivity coefficients respectively, h is the
surface heat transfer coefficient of the tank, T (t), Ta are the hot water and ambient temperature respectively.
Therefore, for a given tank surface area S area, the total standby losses are:

QL (T (t),Ta) = qlossS area. (2)
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The other loss is associated with the hot water demand QD(t), which triggers the inlet cold water into
the tank to maintain volume. T (t) is expected to drop during demand because of the inlet of cold water into
the tank. The losses associated with the hot water demand are given as [34, 35] in equation (3):

QD(t) = cWD(t) (T (t) − Tin) , (3)

where c = 4180J/kg/ ◦C is the specific heat capacity of water. Tin is the municipal inlet water temperature
whereas WD(t) is the flow rate in litres/hour.

Therefore, in order to satisfy the HPWH thermal output requirements, the corresponding electrical power
input is [9, 34]:

Php(t) =
QD(t) + QL(t)

COP
. (4)

The power balance is a dynamic equation. Let QH(t) be the total HPWH heat output kilowatts and L the
water mass in kilograms. Therefore, the power balance becomes a first derivative differential function given
in equation (5) [36].

cLṪ (t) = QH(t) − QL(t) − QD(t), (5)

QH(t) = PphCOPu(t). (6)

By substituting equation (1) to (4) into equation (5), one gets

Ṫ (t) =

PphCOPu(t) − S area

(
T (t)−Ta
4x
κ + 1

h

)
− cWD(t) (T (t) − Tin(t))

cL
, (7)

denoting:

α(t) =
S area

cL
(
4x
κ + 1

h

) +
WD(t)

L
, (8)

β =
PhpCOP

cL
, (9)

γ(t) =
S areaTa

cL
(
4x
κ + 1

h

) +
WD(t)Tin(t)

L
, (10)

then equation (7) becomes:

Ṫ (t) = −α(t)T (t) + βu(t) + γ(t). (11)

2.2.2. Wind generator
The wind power output is given in equation (12) where the wind velocity is taken from the case study

[37, 18]. The excess wind power is fed into the grid using the established wind energy feed-in tariff.

Pw(t) = ηtηg0.5ρaCpAwV3
r , (12)

where ηt and ηg are the mechanical gearbox and generator efficiency respectively, ρ is the air density factor,
Cp is the turbine power coefficient (Betz limit), Aw is the turbine rotor sweeping area and lastly Vr is the
wind velocity. ηt and ηg are deduced through a quadratic fit into the manufacturer’s data.
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2.2.3. Photovoltaic power
The PV power generation Ppv(t), which is input data in this model, is a variable power source from zero

to its maximum rated value written in equation (13). The PV supplies Ppv(t) to the HPWH and the excess
is sold to the grid at the prevailing feed-in tariff. This model excludes the energy storage system in order to
lower the initial investment costs, which hampers the implementation of these systems at household level.
The grid therefore acts as energy storage.

0 ≤ Ppv(t) ≤ Pmax
pv . (13)

2.2.4. Grid power
The grid is modeled as an infinite busbar capable of simultaneously supplying and accepting power from

the solar PV and wind generator. The TOU electricity tariff is one of the most important OC parameters. In
South Africa, Eskom is the main power supply utility company and has both flat and dynamic pricing rates
p(t) or rather a TOU electricity tariff. In this model the TOU electricity tariff is considered: off-peak (po),
standard (ps) and peak (pp). The recent Eskom 3 megaflex active energy-TOU tariff is incorporated as a
control parameter. The Eskom TOU electricity tariff is:

p(t) =


po = 0.3656R/kWh if t ∈ [0, 7] ∪ [23, 24],
ps = 0.6733R/kWh if t ∈ [7, 8] ∪ [11, 19] ∪ [21, 23],
pp = 2.2225R/kWh if t ∈ [8, 11] ∪ [19, 21],

(14)

where R is the South African rand and t is the time of the day with t = 0, . . . , 23.
The grid can accept the excess power from wind and PV, as well as complement the renewable resources

in meeting the heat pump load. The power balance is written as:

Phpu(t) − Pg(t) = Pw(t) + Ppv(t). (15)

3. Discrete model formulation

3.1. Discretized hot water temperature
The water demand flow rate WD(t) and the inlet water, Tin(t), are functions of time taken from the case

study. The general discrete formulation of equation (11) in terms of the k-th hot water temperature is given
in equation (16):

Tk+1 = (1 − tsαk)Tk + tsβuk + tsγk. (16)

Therefore, Tk+1 at each interval can be derived as:

T1 =(1 − tsα0)To + tsβu0 + tsγ0,

T2 =[(1 − tsα1)(1 − tsα0)]To + tsβ [(1 − tsα1)u0 + u1] +
[
(1 − tsα1)tsγ0 + tsγ1

]
,

T3 =[(1 − tsα2)(1 − tsα1)(1 − tsα0)]To + tsβ [(1 − tsα2)(1 − tsα1)u0 + (1 − tsα2)u1 + u2]

+
[
(1 − tsα2)(1 − tsα1)tsγ0 + (1 − tsα2)tsγ1 + tsγ2

]
,

...

Tk+1 =To

k∏
j=0

(
1 − tsα j

)
+ tsβ

k∑
j=0

u j

k∏
i= j+1

(1 − tsαi) +

k∑
j=0

tsγ j

k∏
i= j+1

(1 − tsαi) ,

(17)

where; To and Tk are the initial and k-th water temperatures inside the tank respectively. ts is the sampling
time, whereas uk is the k-th switch status, which is either 1 or 0. The acceptable hot water temperature set
points are given in inequality (18):

3http://www.eskom.co.za/
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Tlow ≤ Tk ≤ Tup, (18)

where, Tlow and Tup are the lower and upper desired temperatures respectively.

3.2. Objective function

The objective function is the grid energy cost minimization under the TOU tariff in discrete time. The
control horizon is one day, with ts being the sampling time and the sampling interval is (1 ≤ k ≤ N).
Objective function:

J = ts

N∑
k=1

Pg,k pk, (19)

subject to the following constraints:

Tlow ≤ To

k∏
j=0

(
1 − tsα j

)
+ tsβ

k∑
j=0

u j

k∏
i= j+1

(1 − tsαi) +

k∑
j=0

tsγ j

k∏
i= j+1

(1 − tsαi) ≤ Tup, (20)

Phpuk − Pg,k = Pw,k + Ppv,k, (21)

0 ≤ Ppv,k ≤ Pmax
pv , (22)

0 ≤ Pw,k ≤ Prated
w , (23)

uk ∈ {0, 1}, (24)

where pk is the TOU electricity tariff (R/kWh) at the k-th sampling interval.

3.3. Algorithm formulation

The proposed model has a binary variable and real number control variables, solved using the OPTI
toolbox SCIP algorithm in MATLAB.

3.3.1. Inequality matrices
The general formulation of the inequality constraint is shown in equation (25):

AX ≤ b. (25)

Vector X comprises all the control variables: switch uk and grid power Pg written in equation (27). Let
matrix A and vector b be:

A =

[
A1
−A1

]
, b =

[
b1
b2

]
, (26)

and,

X =



u0
...

uN−1
Pg,0
...

Pg,N−1


2N×1

. (27)

Then matrix A1 is an N × 2N matrix given in equation (28):
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A1 =

tsβ



1 0 0 0 . . . 0 0 . . . 0

(1 − tsα1) 1 0 0 . . . 0 0 . . . 0

(1 − tsα2)(1 − tsα1) (1 − tsα2) 1 0 . . . 0 0 . . . 0

...
...

...
. . .

...
... 0 . . . 0

(1 − tsαN−2) × . . . × (1 − tsα1) (1 − tsαN−2) × . . . × (1 − tsα2) . . . . . . 1 0 0 . . . 0

(1 − tsαN−1)(1 − tsαN−2) × . . . × (1 − tsα1) (1 − tsαN−1) × . . . × (1 − tsα2) . . . . . . (1 − tsαN−1) 1 0 . . . 0



,

(28)

inequality (20) is reformulated into inequality (29) and inequality (30):

tsβ

k∑
j=0

u j

k∏
i= j+1

(1 − tsαi) ≤ Tup − To

k∏
j=0

(
1 − tsα j

)
−

k∑
j=0

tsγ j

k∏
i= j+1

(1 − tsαi) , (29)

−tsβ

k∑
j=0

u j

k∏
i= j+1

(1 − tsαi) ≤ −Tlow + To

k∏
j=0

(
1 − tsα j

)
+

k∑
j=0

tsγ j

k∏
i= j+1

(1 − tsαi) . (30)

According to inequality (29) and inequality (30), the element of vectors b1 and b2 are:

b1,k = Tup − To

k∏
j=0

(
1 − tsα j

)
−

k∑
j=0

tsγ j

k∏
i= j+1

(1 − tsαi) , (31)

b2,k = −Tlow + To

k∏
j=0

(
1 − tsα j

)
+

k∑
j=0

tsγ j

k∏
i= j+1

(1 − tsαi) . (32)

Vector b1 in equation (31) is the difference in three vectors b3, b4 and b5, as shown in equation (33).

b1 = b3 − b4 − b5, (33)

where,

b3 =


Tup
...

Tup


N×1

, (34)

then vector b4 is given in equation (35),

b4 = To



(1 − tsα0)

(1 − tsα1)(1 − tsα0)

(1 − tsα2)(1 − tsα1)(1 − tsα0)

...

(1 − tsαN−2)(1 − tsαN−3) × . . . × (1 − tsα0)

(1 − tsαN−1)(1 − tsαN−2)(1 − tsαN−3) × . . . × (1 − tsα0)


N×1

, (35)

8



and finally, b5 is given in equation (36) below,

b5 =



tsγo

(1 − tsα1)tsγo + tsγ1

(1 − tsα2)(1 − tsα1)tsγo + (1 − tsα2)tsγ1 + tsγ2

...

(1 − tsαN−2) × . . . × (1 − tsα1)tsγo + (1 − tsαN−2) × . . . × (1 − tsα2)tsγ1 + . . . + tsγN−2

(1 − tsαN−1)(1 − tsαN−2) × . . . × (1 − tsα1)tsγo + (1 − tsαN−1) × . . . × (1 − tsα2)tsγ1 + . . . (1 − tsαN−1)tsγN−2 + tsγN−1



.

(36)

The Tlow vector is given in equation (37), the formulation of b2 vector is analogous to b1 given in
equation (38),

b6 =


Tlow
...

Tlow


N×1

, (37)

b2 = −b6 + b4 + b5. (38)

3.3.2. Equality matrices
The power balance equation (15) constitutes an equality constraint, a sparse matrix Aeq, given in equa-

tion (39):

Aeq =


Php 0 · · · 0

... −1 0 · · · 0

0 Php 0 · · ·
... 0

. . . · · · 0
... 0

. . . 0
...

... 0 −1
...

0 0 · · · Php
... 0 0 · · · −1


N×2N

. (39)

The k-th total PV and wind power constitute element of vector beq is shown in equation (40):

beq =


Pw,1 + Ppv,1

...

Pw,N + Ppv,N


N×1

. (40)

Therefore, the canonical form is AeqX = beq where Aeq is given in equation (39) and beq in equation
(40).
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3.3.3. The objective function
The objective function is the total daily electrical energy cost under the TOU tariff given by,

f T X =
[
0 . . . 0N , p1 . . . pN

]


u0
...

uN−1
Pg,0
...

Pq,N−1


2N×1

. (41)

The limits of the control variables are restricted between the lower and upper bounds, given in equation
(42) and equation (43).
lower bounds

lbT =
[
0 . . . 0N , −∞1 . . . −∞N

]
, (42)

upper bounds
ubT =

[
1 . . . 1N , ∞1 . . . ∞N

]
. (43)

3.4. Case study
The case study is based on a farmhouse situated in the peripheral town of Port Elizabeth in South Africa.

The major intervention of this model proposes an optimal control and renewable power integration solution
to the HPWH installed at this farmhouse. The current (baseline) situation has only the grid supplying the
HPWH controlled by a digital thermostat. Despite this being the normal mode of control/operation, it is far
from optimal from a daily operational point of view. In addition, this intervention develops an integration of
wind and PV generators in order to reduce energy cost.

The sampling time ts = 30 minutes giving the final sampling interval N = 48. The average inlet cold
water temperature4, Tin, in Port Elizabeth in early winter is shown in Figure 2. A typical winter day is chosen
so as simulate the worst case scenario with the highest thermal demand period in South Africa. However,
for precise economic estimation of the payback (break-even) period, simulations are done based on selected
days in each season; summer, autumn, winter and spring in the case study. This accounts for the changing
seasonal hot water demand and variation of inlet cold water temperature that directly affect the annualised
energy and cost savings calculated in 4.6
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Figure 2: Hourly inlet cold water temperature

The hot water demand flow rate WD(k) is shown in Figure 3. There is no hot water usage between
00:00-05:00 and 22:00-00:00 mainly because the occupants are asleep during these periods. Because of

4http://www.wunderground.com/weather-forecast/ZA/Port_Elizabeth.html?MR=1
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lack of accurate hot water demand data from the case study, the average hot water demand used here is in
agreement with that of Meyer [38, 39] in an experiment conducted in South Africa for a town house, except
that the farmhouse does not use hot water in the early and late hours of the day. The preferred hot water
temperatures are set to 55 ◦C ≤ Tk ≤ 65 ◦C; the average country ambient temperature of Ta = 25 ◦C is used.
The initial water temperature is set to To = 60 ◦C. However, the above desirable temperature varies from
one individual to another.
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Figure 3: Flow rate of hot water in winter

3.4.1. Heat pump water heater parameters
The HPWH type is an air source tank-wrapped condenser coil, with following the parameters shown in

Table 1.

Table 1: Heat pump parameters

Power input (kW) COP Storage capacity (l) Compressor (cc) Tank (h/ø) (m) 4x (m) κ (W/m.K) h (W/m2K)
6 3.8 270 39.0 1.41 × 0.66 0.035 0.055 6.3

3.4.2. Wind generator parameters
The wind generator’s technical specifications are given Table 2 . In this paper, ηt is the mechanical

gearbox efficiency only. However, the overall wind-to-turbine power convention coefficient or the Betz limit
Cp is factored in as well.

Table 2: Wind generator parameters

Maximum power (kW) ηt (%) ηg (%) ρa (kg/m3) Cp Aw (m2)
3.5 0.9 0.8 1.22 0.48 11.3

The hourly wind speed at Port Elizabeth5 is presented in Figure 4 below:

5http://www.timeanddate.com/weather/south-africa/port-elizabeth/hourly
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Figure 4: Wind power output and speed for Port Elizabeth

The PV power is input data in this model, measured in the case study. In South Africa the PV feed-in
tariff 6 is 3.94R/kWh, whereas for wind it is 1.25R/kWh.

4. Simulation results and discussion

4.1. Optimal heat pump switching control strategy in winter

In Figure 5 optimal control turns on the HPWH supply switch from 00:00 to 01:00 in the morning;
thereafter, it keeps it off between 01:00-04:00. However, in order to avoid operating in peak TOU, the OC
turns on after 04:00 to heat the water in advance to meet the hot water demand, which starts at 05:30, shown
in Figure 3, using cheaper off-peak energy. It turns off again towards 07:00, avoiding the standard TOU
tariff to save energy cost. The HPWH is off till 16:00, when it turns on again to heat the water before the
evening peak period, as a load-shifting strategy. Subsequently, after evening peak it only comes on for 30
minutes to preheat the water. The OC finally turns off at 21:30 because the hot water demand Wd, Figure 3,
declines to zero and the temperature is still above Tlow, shown in Figure 7.
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Figure 5: Optimal heat pump power supply switching

The OC shows the ability to predict the demand and TOU accurately in order to save energy cost through
load shifting, overcoming the limitation of a digital thermostat control strategy used in most HPWHs, as
shown in 4.3. The TOU electricity tariff legend in Figure 5 applies to all figures in this paper.

6https://energypedia.info/wiki
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4.2. Optimal grid and feed-in power supply strategy in winter

The results of the OC power scheduling are presented in Figure 6, showing wind power Pw, PV power
Ppv, grid power Pg and HPWH Php demand. The grid power assumes negative values during feed-in and
positive ones when supplying the HPWH load. In Figure 6, Pg supplies the HPWH from midnight to 01:00,
with very little supplement from wind power Pw. The slight deviation between HPWH demand Php and Pg

is due to the low amount of power supplied by the wind generator. The grid stops supplying power between
01:00 and 04:00 because the HPWH is off, as shown in Figure 5, and has begun accepting a little wind
power. At 04:00 the OC resumes grid power supply till 06:30 and at this time the PV power generation Ppv

starts increasing power feed-in into the grid.
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Figure 6: Optimal grid and renewable power scheduling strategy

From 07:00 the OC continues power feed-in to the grid till 16:00. At 16:00, the combined wind and PV
power is unable to meet the HPWH demand, causing the OC to bring in Pg to supplement the deficit. The
OC opts to use the cheap renewable power whenever available to supply the HPWH in order to reduce the
energy cost. It manages to schedule load-shifting and avoid using peak TOU expensive energy, giving a cost
benefit to the end-user.

4.3. Comparison between optimal and digital thermostat control strategies

Figure 7 shows the hot water demand flow rate, optimal and digital thermostat switching and lastly the
hot water temperature Tk, which is the state variable. The OC switches on the HPWH from 00:00 - 01:00;
the hot water temperature rises gradually from the initial To = 60 ◦C to 61.5 ◦C. The temperature stays
almost constant between 01:00 and 04:30 with very little drop caused by convectional losses. However, in
Figure 7 the temperature appears constant merely because of axis scaling; the half-hour temperature between
01:00 and 04:30 clearly shows a marginal fall due to standby losses; 61.4726 ◦C, 61.4725 ◦C, 61.4724 ◦C,
61.4724 ◦C, 61.4723 ◦C, 61.4722 ◦C and 61.4721 ◦C respectively. The limited hot water temperature drop
in the absence of flow rate is due to good tank insulation in the case study.

The HPWH again turns on at 04:00, causing the water temperature to rise. The non-linear Tk rise is due
to the resumption of hot water demand causing inlet of cold water into the tank. The temperature after 07:00
shows a steady decline mainly because of the hot water consumption trend. At the same time the HPWH
switches off, so the decline in Tk is caused by the inlet of cold water to balance the volume as a result of
hot water demand. The OC turns on the HPWH at 16:00 to preheat the water before evening peak TOU,
effectively shifting the load. The OC shows the capability of predicting the right time to turn on the HPWH
so that the end-user is not inconvenienced and has hot water available at the right temperature.
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Figure 7: Hot water temperature’s dependency on switching and water usage

The baseline situation is as well simulated to compare the benefits of OC over a digital thermostat
control strategy, which is used in most HPWHs on the market. As shown in Figure 7, the digital thermostat
(uk − digital thermostat) turns on the HPWH from midnight till 03:30 when Tk hits the upper set point,
regardless of whether there is demand for hot water or not, using more energy. At 18:00 the thermostat turns
on upon Tk dropping below the lower desirable limit. Since it has no capability to shift load it runs through
peak TOU, incurring huge energy cost. In the study the switching on frequencies over the control horizon
were 13 and 20 for optimal and digital thermostat control respectively. The OC has a lower switching
frequency, which saves on energy and prolongs the compressor’s life cycle.

However, it is worth pointing out that the desired temperature should not be set so high, beyond the
rated capacity of the HPWH, as it will never reach that required temperature when demand for hot water
occurs. A realistic temperature should be set within the range of the HPWH power rating, else the end-user
has to raise the water temperature inside the tank beforehand by some other means (e.g. by using an in-line
resistive element heater).

4.4. Baseline and optimal energy savings in winter
Table 3 shows the daily energy and cost saving: baseline (digital thermostat control strategy), and opti-
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mal control strategy. The baseline is the current situation in the case study, where the 6 kW HPWH operates
on the digital thermostat control strategy and is supplied by the grid alone. The optimal cost is the energy
cost after implementation of this intervention. The DREs power is treated as free energy or benefit in the
case study upon implementation of this intervention. The feed-in energy is the total PV and wind power
injected into the utility grid, except the power consumed by the load.

Table 3: Daily optimal energy savings

Baseline
(kWh/day)

Optimal
(kWh/day)

Total feed-in
(kWh/day)

Baseline cost
(R/day)

Optimal cost
(R/day)

Energy saving
(%)

Cost saving
(%)

144.00 29.26 14.62 48.83 14.29 85.67 70.74

The OC strategy yields 85.67% on energy saving owing to a substantial benefit from wind and PV free
energy that meets the HPWH load. Hence the proposed model is a near net-zero-energy building. A cost
saving of 70.74% is realised, implying that this model has the potential to be cost-effective with the revenue
from DREs sales.

4.5. Effects of seasonal hot water demand variation on optimal temperature

The model is further simulated on a selected day in each of the four seasons to account for the varying
hot water demand given in the case study as shown in Figure 8. The changing hot water demand shows
an effect on the optimal energy and cost saving, because of the different scheduling strategy. Many factors
affect the consumption of hot water such as behavioral, social, ambient and inlet water temperatures. The
simulation is run in each season to account consumption factor in order to accurately determine the optimal
cost and energy savings. The savings; optimal benefit and DREs sales are further averaged over the season
and annualized for the calculation of break-even period in subsection 4.6
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Figure 8: Effects of seasonal hot water demand on optimal water temperature

The optimal hot water temperature is relatively similar in each season because of the similarity in the
hot water usage in the house. In Figure 8, autumn Tk steadily rises above other seasons due to the hot
water consumption which starts earlier around 02:30 making the OC to turn on the HPWH before the hot
water demand. There is reduction in the switching on frequency in the afternoons in most seasons owing to
the improved inlet water temperature. However, in a typical situation, people still bath the same frequency
regardless of the season, but what reduces is the hot water requirement for mixing during a bath owing to
the improved ambient temperatures.

4.6. Break-even period analysis
In order to ascertain the economic viability of this model, the payback period is calculated based on

DREs sales and OC benefit which reflect the difference between baseline and optimal energy costs due to
the OC intervention. Table 4 below shows the revenue from solar energy sales, wind energy sales and OC
benefit. The simulation is run in each season to account for demand variation, then the costs/revenue of that
day is averaged over the season and annualized to reflect an average amount per annum. The energy cost
saved after intervention is translated as a benefit cost to the end-user.

The payback period is calculated making the assumptions that the solar sales, wind sales, cost saving,
operation and maintenance costs will remain constant throughout the period, as well a discount factor or
interest rate of 4.4% for February 2015 in the case study is used to reflect the time value of money. The
4.4% is indicative of the inflation rate in South Africa. Though, it is expected that there would be an increase
in all these factors, it cannot be reliably estimated at this time. Thus, the discounted present value (DPV)7

7https://en.wikipedia.org/wiki/Discounted-cash-flow
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for one year’s cash flow in one future period is given in equation (44) below:

DPV =
FV

(1 + r)n , (44)

where:
DPV - is the discounted present value of the future cash flow (FV)
FV - is the nominal value of a cash flow amount in a future period
r - is the interest rate or discount rate, which reflects the cost of tying up capital and may also

allow for the risk that the payment may not be received in full
n - is the time in years before the future cash flow occurs.

The

values in brackets indicate the money spent, which presents a negative cash flow and the amounts are in
South African Rand.

Table 4: Discounted cash flows

Years : 0 1 2 3 4 5
Solar photovoltaic (27 500.00)
Wind generator (23 500.00)
Controllers (22 900.00)
Inverters and accessories (15 000.00)
Installation cost (14 000.00)
Maintenance cost (2 500.00) (2 500.00) (2 500.00) (2 500.00) (2 500.00) (2 500.00)
Wind sales 6 638.66 6 638.66 6 638.66 6 638.66 6 638.66 6 638.66
Solar sales 13 568.47 13 568.47 13 568.47 13 568.47 13 568.47 13 568.47
Optimal benefits 12607.10 12607.10 12607.10 12607.10 12607.10 12607.10

(102 900.00) 30 314.24 30 314.24 30 314.24 30 314.24 30 314.24
Discount factor @4.4% 1.00 0.96 0.92 0.88 0.84 0.81
Discounted cash flows (102 900.00) 29 036.63 27 812.86 26 640.67 25 517.88 24 442.42

Table 5: Discounted payback period

Years Discounted cash flows Cumulative cash flows
0 (102 900.00) (102 900.00)
1 29 036.63 (73 863.37)
2 27 812.86 (46 050.51)
3 26 640.67 (19 409.84)
4 25 517.88 6 108.04
5 24 442.42 30 550.46

According to Table 5 the payback period is 3 years and 9 months. The break-even period is shorter owing
to the optimal benefits. The money generated from the feed-in sales can still assist to offset the power utility
bills. Therefore, this optimal switching control has benefit for those intending to transform their homes into
cost-effective and net-zero energy buildings in countries with an attractive feed-in tariff.

5. Conclusions

The TOU based optimal switching control shows the potential to save energy cost, as well as energy-
not-delivered on the utility side, thus a reduction on primary inputs and greenhouse gases. This model
yields a maximum energy saving of 85.67% and has the potential to be cost-effective on energy bills. This
intervention provides a practical optimal integration of wind and other DREs into homes, with the benefit of
energy trade-off and the possibility of achieving a net zero-energy building.
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The economic analysis shows a payback period of 3 years and 9 months. There are other incentives
pertaining to rebates on HPWH, wind power and solar PV application that are not considered in this paper,
which are evident in the case study and could further lower the payback period.

This model is suitable for application in both peri-urban and rural areas, in the generation of hot water,
space heating and renewable energy integration. However, there is a need for future research into the appli-
cation of a predictive control model incorporating other renewable sources, such as biomass and fuel cells.
It can be adopted by home-owners who want to integrate renewable energy sources using energy-efficient
equipment such as HPWH to save energy with the minimum environmental impact. The OC strategy offers
the potential to be cost-effective and to overcome the limitations of digital thermostat control used in most
heat pumps on the market.
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