
A practical implementation of XVA in

the new normal

by

Christopher Kairinos

Submitted in partial fulfillment of the requirements for the degree

Magister Scientiae

to the Department of Mathematics and Applied Mathematics

in the Faculty of Natural and Agricultural Sciences

University of Pretoria

Pretoria

Supervisor: Prof. E Maré
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Abstract

The Great Financial Crisis (GFC) of 2008 left many financial institutions dev-

astated. Despite the practice of advanced risk management at the time, society

witnessed the collapse of the “too big to fail” institutions. Gaping holes within

the existing risk framework lurked, which both regulators and practitioners failed

to detect. This dissertation discusses the symptoms of the crisis that were over-

looked and explores the financial engineering implemented post-2008 to avoid the

next crisis. The author considers the work of Hull, White, Gregory, Brigo, Kenyon,

Green, Morini, Pallavicini, Piterbarg, Burgard, Kjaer, Elouerkhaoui, and Castagna.

A literature review is provided for each of the mentioned names to highlight each

author’s contribution to the field of Total Value Adjustment (XVA) pricing. An

in-depth analysis on the funding invariance principle suggested by Elouerkhaoui is

provided followed by a model implementation. The core aim of this dissertation

is to review XVA valuations from a practitioners perspective using the framework

provided by Elouerkhaoui. A secondary aim of the dissertation is to briefly explore

the work of Aboura and Maillard on the Cornish-Fisher Transformation (CF). The

CF is considered as a parsimonious approach in estimating non-normal distribu-

tions, therefore an interesting alternative to price XVA using Monte Carlo (MC)

simulation.
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Chapter 1

Structure of the Dissertation

The initial objective of this dissertation is to provide perspective on what was con-

sidered best practice pre-GFC to date. Consequently, we discuss the events leading

up to and during the GFC. We then introduce the reader to the most prominent

XVA papers published post-2008 to illustrate how the said events were treated. The

field of XVA pricing is relatively new, resulting in a wide selection of what is consid-

ered to be best practice in the banking industry. In this dissertation, Elouerkhaoui’s

work is believed to be the best framework for practical implementation.

The central goal of this dissertation is to elaborate on the mathematics of Elouerkhaoui’s

framework and demonstrate how it can be implemented using a MC model to be

easily understood by practitioners. A side goal of the dissertation is to also explore

ways to improve the standard MC model’s accuracy and efficiency by implementing

Quasi-Monte Carlo (QMC) techniques and the CF. We then analyse the results

obtained to draw conclusions on Elouerkhaoui’s framework, and to justify whether

variations from the standard MC model do indeed improve the pricing model. At

the point at which conclusions are drawn, we wish to have provided the reader with

a sound knowledge on how pricing has evolved since 2008. Moreover, we aim to

provide clarity on what is the most parsimonious approach one could take without

sacrificing accuracy. We refer to the work of [Aboura and Maillard 2014] often and

demonstrate the ease in which the CF can be used to capture risks typically over-

looked when assuming a normal distribution.

We divide the dissertaion into five parts in order to facilitate a progressive under-

standing of the topic that the dissertation covers. We subdivide each part into
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chapters. The first part of the dissertation is titled Introduction and Context. In

the second chapter we introduce the reader to the GFC of 2008, to provide context

as to how risk was incorrectly priced leading up to 2008, ultimately resulting in

the need for XVAs. Chapter 3 highlights the doubt around the law of one price,

a fundamental assumption in the Black-Scholes-Merton (BSM) theory. Chapter 3

introduces all the XVA terms we analyse in this dissertation. We also touch on the

key frameworks used to price XVAs and list the academics who favour the different

methods. The objective of the abovementioned chapters is to provide context as

to why XVA pricing is needed. We discuss the BSM theory as it is central to all

derivative pricing theory, therefore some knowledge of it is needed by the reader to

fully appreciate the evolution of XVA pricing theory.

The second part of the dissertation is the Literature Review. It discusses all the

papers published by the authors mentioned in the first part of the dissertation. The

objective of part two of the dissertation, is to highlight the most relevant publica-

tions available on XVA pricing. Not all of the frameworks discussed in this part

of the dissertation are key to the mathematics and model implementation provided

in this dissertation, but were included to provide a basic understanding on what

practitioners are currently using. In Chapter 4, we discuss the work of renowned

professors, Hull and White. We consider their argument as to why including Fund-

ing Value Adjustment (FVA) in the pricing of a derivative is not correct. We look

at the framework they provide to price for Credit Value Adjustment (CVA) and

Debit Value Adjustment (DVA).

In Chapter 5, we begin to unpack the Pricing by Hedging framework, one of the two

most prominent frameworks used to price XVAs today. We begin with Piterbarg’s

work to show how the well known BSM Partial Differential Equation (PDE) evolves

when we are no longer funding with one key risk-free rate. We then delve into the

work of Burgard and Kjaer who expand on Piterbarg’s work to include credit risk

between the bank and the counterparty it is dealing with. We later consider Bur-

gard and Kjaer’s work published to address their inital assumptions that a bank can

easily buy its own bonds.

Chapter 6 begins our discussion on the Pricing by Expectation framework which

relaxes the assumption that the price of a derivative can be determined by creating

3



a replication portfolio. The work of Brigo, Pallavicini, and Morini is examined to

determine how to include CVA, DVA, Collateral-Inclusive Bilateral Valuation Ad-

justment (CBVA) and FVA into the final price of a derivative. Chapters 5 and 6

introduce the reader to the frameworks used immediately post-2008, the last two

chapters of part 2 includes the latest additions of the XVA pricing theory. Chapter

7 looks at the inclusion of Margin Value Adjustment (MVA) and Capital Value

Adjustment (KVA) within the replication framework discussed in Chapter 5. The

work we review is provided by Kenyon and Green. Kenyon and Green modify the

framework of Burgard and Kjaer to cater for the new funding and capital costs

practitioners face today.

Chapter 8 introduces the reader to the Funding Invariance Principle by Elouerkhaoui,

the key focus of this dissertation. We begin with his inital work on the funding equa-

tion with the inclusion of CVA and DVA. We also include his latest work with the

addition of KVA and MVA to the funding equation to provide us with a mas-

ter pricing equation. The objective of Chapter 8 is to familiarise the reader with

the basic principles of Elouerkhaoui’s two publications, [Elouerkhaoui 2016a] and

[Elouerkhaoui 2016b]. Our goal for part two of the dissertation is to provide the

reader with a sound footing in the field if XVA pricing.

Where part 2 introduced us to the theorems and definitions of Elouerkhaoui’s work,

part 3, titled Mathematical Preliminaries, works through the derivation of some of

the core pricing formulas we wish to implement later. Chapter 9 provides the deriva-

tion of the funding equation, funding invariance principle, the master equation, as

well as the funded margined CVA formula. Chapter 10 uses similar arguments used

in Chapter 9 to show the derivation of the same formulas mentioned in the chapter,

however, inclusive of MVA and KVA in this instance. We also include the regulatory

capital formulas banks are required to price for as published in Basel II, 2.5, and

III. Chapter 11 is a short summary of how we will account for Probability of Default

(PD) in our pricing models. The aforesaid chapters seek to provide more detail on

the pricing formulas raised in Chapter 8. We include a brief description on how one

can imply PD from market variables for completeness.

Part 4 is titled Pricing Model Implementation. Chapter 12, provides the reader with

the foundation of how to value a derivative using MC and QMC techniques without

4



any consideration of XVA. There are two main objectives for Chapter 12:

1. To establish a basic MC framework which forms the base of all pricing in the

dissertation; also to implement QMC to illustrate how one can improve on

efficiency; and

2. To implement three different models to be applied in the MC and QMC frame-

work; Short-Term Variation and Long-Term Dynamic Model (SL), Geometric

Brownian Motion (GBM) and Ornstein-Uhlenbeck Process (OU).

This approach shows how efficient pricing can be achieved and that pricing changes

significantly when using different models. We choose ICE Brent crude oil data to

calibrate our model. The objective of Chapter 13 is to address how one can use

the CF to account for skewness and kurtosis when pricing a derivative. Standard

BSM theory assumes a normal distribution, which implies the distribution will have

a skewness of 0 and a kurtosis of 3. This is not an accurate assumption when one

considers that most empirical distributions are non-normal. Typically practitioners

default to jump diffusion models to model a non-normal distribution, however, we

find the CF approach a more natural approximation as highlighted by Aboura and

Maillard’s work. Chapters 12 and 13 provide context as to how a derivative was

priced pre-2008; Chapter 14 elaborates on how we incorporate XVAs into our model

to ensure we are correctly pricing our derivative in the new normal. The XVAs ac-

counted for in this chapter are FVA, CVA, DVA, and COLVA using a normal and a

non-normal distirubtion to generate our scenarios. Chapter 15 concludes our pricing

model by applying MVA and KVA to a risky derivative price. Our aim in Chapter

14 and 15 is to show how the pricing models implemented in Chapter 12 and 13 can

be expanded within the Elouerkhaoui framework to include all XVAs. We achieve

this by tabulating our pricing results with references to the pricing formulas listed

throughout the dissertation. Chapter 16 concludes the dissertation with a summary

of our findings as well as a list for the reader to pursue further research on this topic.

Part 5 of the dissertation contains the appendices provided to supplement the un-

derstanding of the main text as well as pseudocode of the model, thereafter the

bibliography can be found.
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Chapter Summary

The aims and objectives of each chapter are listed below:

Chapter 2 - Introduction

• To describe the events of the GFC and provide background as to how and

why derivative pricing needed to evolve.

Chapter 3 - The Law of One Price

• To discuss the divergence between interbank rates and Overnight Index Swap

(OIS) rates.

• To highlight the assumption of using one risk-free rate in the BSM model,

and to discuss how it no longer holds.

• To introduce each of the XVA terms, as well as the two mainstream pricing

frameworks used in the bank industry.

• To illustrate the simplicity of valuing a derivative pre-2008 in comparison to

valuing a derivative post-2008 to date.

Chapter 4 - Hull and White

• To review the work of Hull and White on XVA pricing.

• To discuss the FVA debate between Hull and White, and practitioners with a

particular focus on Castagna’s publications.

• To discuss Hull and White’s version of the Black-Scholes (BS) PDE derived

to price XVAs.

Chapter 5 - Pricing by Hedging - Piterbarg, Kjaer, and Burgard

• To review the XVA pricing by hedging framework presented by Piterbarg,

Kjaer, and Burgard.

• To define the key differences between Merton’s pricing by replication approach,

and pricing by expectation.

6



• To unpack Piterbarg’s version of the BS PDE derived to account for multiple

funding rates.

• To unpack Burgard and Kjaer’s version of the BS PDE, which is similar to

Piterbarg’s PDE but for a risky counterparty. This entails the inclusion of the

CVA, FVA, and DVA terms. This chapter also explores the skepticism around

the model assumption that markets are complete.

Chapter 6 - Pricing by Expectation - Brigo, Morini, and Pallavicini

• To review the XVA pricing by expectation framework presented by Brigo,

Morini, and Pallavicini.

• To clearly demonstrate how Brigo, Morini and Pallavicini’s pricing formulas

evolve as you include various XVAs.

Chapter 7 - Including MVA and KVA in the Semi-Replication Framework

- Kenyon and Green

• To review the work of Kenyon and Green, which involves their adaptation of

Burgard and Kjaer’s work.

• To discuss the pricing formulas Kenyon and Green derived to include MVA

and KVA using the pricing by replication framework.

Chapter 8 - The Funding Invariance Principle with XVA - Elouerkhaoui

• To review the intial work of Elouerkhaoui, which is the funding invariance

principle with and without counterparty risk. We focus on how one can price

a derivative with XVAs without the complexity of using numerous discount

rates. This is the most practical approach one can find in current XVA papers.

• To review the latest work of Elouerkhaoui, which shows how to include the

MVA and KVA terms into the funding invariance framework.

Chapter 9 - The Funding Invariance Principle - Elouerkhaoui

• To show and explain the derivation of the most relevant pricing formulas used

in Elouerkhaoui’s funding invariance principle. This includes mathematical

proofs with explanations.
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Chapter 10 - From FVA to KVA - Elouerkhaoui

• To show and explain the proofs of the pricing formulas Elouerkhaoui derived

which include MVA and KVA terms.

Chapter 11 - The Poisson Process

• To briefly explain how we account for PD calculations in the dissertation.

Chapter 12 - Pricing Commodities without XVA

• To introduce the Schwartz and Smith two factor model for commodity deriva-

tive valuations.

• To implement a MC model calibrated to current data.

• To implement a QMC model to improve model efficiency

Chapter 13 - Accounting for a Non-Normal World

• To introduce the CF as a means to account for non-normal skewness and

kurtosis in a model. This is done to increase accuracy when using the MC or

QMC model.

• To create a working example and provide results for comparison between pric-

ing under the assumption of a normal random number generator and a non-

normal random number generator.

Chapter 14 - Adding CVA, DVA, COLVA, and FVA to the Batch

• To apply the pricing framework introduced in Chapter 12 and 13 to demon-

strate how one can price for FVA, COLVA, DVA, and CVA.

• To tabulate the results and discuss how values change for different derivatives,

under different funding circumstances, and under different collateral agree-

ments.

Chapter 15 - Finishing off with MVA and KVA

• To include MVA and KVA terms in the pricing exercises done in Chapter 14.

The exact same framework implemented in previous chapters is applied here.

8



• To tabulate the results and discuss the trade-off that exists between MVA and

KVA. This is dependent on how much Initial Margin (IM) should be placed

at inception.

Chapter 16 - Conclusion

• To conclude our findings and provide an assessment on how the pricing of

derivatives has evolved since 2008.

• To suggest a number of research topics to be considered in order to further

the field of XVA pricing.
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Chapter 2

Introduction

“Those who do not learn from history are doomed to repeat it.” - George Santayana

Eight years have passed since the collapse of the “too big to fail” 1 institutions,

yet we still find our world leaders scrambling to stimulate economic growth. The

effects of the GFC 2 of 2008 can still be felt by today’s society. Global growth

struggles to gain momentum despite easy monetary policies put in place far longer

than what is deemed comfortable. The United States (US), under the guidance of

the Federal Reserve Bank, is struggling to sustain required Gross Domestic Product

(GDP) growth despite three rounds of Quantitative Easing (QE) with the Federal

funds rate3 at 0% for almost a decade. The majority of the developed world has

followed suit, as the European Central Bank (ECB) and the Bank of Japan (BOJ)

implement their own QE to bolster economic growth.

Much of the blame of the crisis has been placed on financial derivatives, but some

context is needed. The incorrect use of derivatives was the problem, not the deriva-

tives themselves. Like any powerful man-made tool, if abused can be extremely dan-

gerous. The invention of the BSM [Black and Scholes 1973], [Merton 1973] option-

pricing model was a break through in finance and enabled cash flows to be deployed

in very innovative and useful ways. However, the abuse of the ingenious formula

1Too big to fail typically refers to financial institutions that are so large and interconnected

that their collapse would be catastrophic to the broader economy
2Considered to be the worst financial crisis since the Great Depression during the 1930s
3Is the interest rate at which depository institutions lend reserve balances to other depository

institutions, source: https://en.wikipedia.org/wiki/Federal funds rate

10



led to a 23% collapse of US stocks on 19 October 1987, known as Black Monday.

Despite this, Byron Scholes and Robert Merton4 were celebrated by winning the No-

bel Prize for Economic Science in 1997. As the British mathematician Ian Stewart

correctly stated “the equation itself wasn’t the real problem,” it was “one ingredient

in a rich stew of financial irresponsibility, political ineptitude, perverse incentives,

and lax regulation.”5

In more recent times, we once again witnessed the collapse of financial markets due

to excess lending to subprime mortgage applicants. Very much like the Black Mon-

day crash of 1987, it is very easy to pin the blame on derivatives, but one needs

to indentify the real causes. Banks and Government-Sponsored Enterprises (GSE),

Fannie Mae and Freddie Mac 6, used clever financial engineering to package the sub-

prime mortgages into Special Purpose Vehicles (SPV) known as Mortgage-Backed

Securities (MBS). The rationale for this was to make mortgages tradable and inject

liquidty into mortgage lending. At the time, MBSs were rated highly by Moodys,

Standard and Poor’s (SP), as well as Fitch, which implied they were low risk. More-

over, the triple-A rating given to the securities allowed pension funds and money

markets to allocate large amounts of cash to MBSs.

MBSs were a great way for investment banks and other investors to gain attractive

returns, specifically on subprime mortgages. The high ratings of the MBSs made

them appear to be safe investments with attractive returns because of the low inter-

est rate environment leading up to the GFC. When times were good, liquidity did

exist in this opaque market, however, when times were bad there simply were no

buyers to offload the risk to. To add another layer of complexity, banks could hedge

their credit exposure to the subprime mortgages by buying Credit Default Swaps

(CDS) 7 from monoline insurers 8. This was incentivised by two factors:

4Fisher Black had passed away in 1995 and therefore was ineligible for the prize
5Source: https://www.theguardian.com/science/2012/feb/12/black-scholes-equation-credit-

crunch
6GSEs with the sole purpose of expanding the secondary mortgage market by securitising mort-

gages held primarily by retail banks
7A CDS is an insurance contract on a bond or a name where the buyer pays a periodic fee in

exchange for protection from the seller
8Monoline insurers’ sole line of business was to provide insurance to banks on debt, mortgage

debt in particular
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1. Basel II 9 capital relief; and

2. To mitigate credit risk on the trade book.

The monoline insurers were also rated highly by the Credit Rating Agencies (CRA).

This created a moral hazard as the banks saw no reason to place limits on CDS

exposure to their monoline counterparties. Moreover, collateral requirements were

contingent on the insurers losing their triple-A rating instead of the Mark-to-Market

(MTM) of the CDSs. In the latter case, the size of the CDS market might have

been constrained by the amount of cash available to the insurers to be used as col-

lateral. The CRAs methodology was backward looking and spurious, resulting in

a $62 trillion build in CDSs in the Over-the-Counter (OTC) market10. A build of

this magnitude is often referred to as “herd instinct trade where market traders copy

other market traders.”

The excessive inflows of cash into the mortgage market were the symptoms of an

imbalanced global economy, the mortgage market itself was not the problem. The

US economy had problems that were not being properly addressed. This conse-

quently led to huge amounts of cash being invested in what seemed to be low risk

investments which promised good returns. The financial engineering used to design

the MBSs backed by subprime mortgages amplified these imbalances into a global

problem. Years of cheap debt and poor underwriting standards were the true prob-

lems leading to the crisis11. The field of financial engineering considers the said

symptoms and how to best address them. Easily accessible cash will often find the

path of least resistance. The excess cash in the system pre-GFC, followed a path

directly to the mortgage market, which was based on an extremely shaky foundation

over which layers upon layers of complex derivatives were built.

By the end of 2007 the mortgage crisis was in full swing and the US was entering

recession. The US politicians and central bank governors did not manage the eco-

nomic imbalances correctly. In addition, regulators and ratings agencies had simply

9Basel II is a set of banking regulations put forth by the Basel Committee

on Bank Supervision, which regulates finance and banking internationally, source:

www.investopedia.com/terms/b/baselii.asp
10A decentralised market where two counterparties trade directly with each other
11These problems are beyond the scope of this dissertation and would be best suited in an

economic/political research paper

12



overlooked the symptoms until it was too late. The failure of the CRA and the reg-

ulators, to correctly assess the risk associated with MBSs, led to severe mispricing

of risk for investors. Banks were eager to build positions in MBSs without assessing

their risk correctly. Spurious credit ratings were largely to blame, which ultimately

resulted in a severe build up of wrong-way risk 12associated with the monoline insur-

ers. Simply put, complacency was coaxed by the CRAs poor ratings assessments,

incentivising huge concentration risk 13 poorly monitored by banks. These over-

sights ultimately would bring down a number of institutions throughout 2008 and

the years to follow.

In March 2008 Bear Sterns was purchased by JP Morgan Chase at $2 a share when

just a month previously it had been trading at $93 per share. A clear indication

that counterparty risk was not being priced correctly. By September 2008, Fannie

Mae and Freddie Mac were placed into conservatorship14 by the US Treasury. The

two entities accounted for “over half of the outstanding US mortgages”, therefore

posed as a sizable systemic risk to the US economy. The peak of the crisis hit on 8

September 2008, when the fourth largest bank in the US, known as Lehman Broth-

ers, filed for Chapter 11 bankruptcy protection, see [Gregory 2012] page 5. The

credit derivative market did not have a default of this proportion priced nor did the

CRAs anticipate it as Lehman Brothers still held an A rating at default. Over $400

billion worth of CDSs had been written on the Lehamn Brothers entity, meaning a

default of this size carried huge contagion risk. Lehman’s failure was not the last of

the systemic failures. Merrill Lynch, another large US investment bank, would have

suffered a similar fate as Lehman Brothers if Bank of America had not agreed to

provide a $50 billion lifeline. Further to this, four fifths of American International

Group (AIG)15 was bought out by the US government. AIG, like the monoline

insurers, had an excellent credit rating prior to 2008, however, AIG was considered

“too big to fail” and could not be left to default. The toxic combination of CDSs

and MBSs across insurers, GSEs, and banks contained huge amounts of uncaptured

12Wrong-way risk is defined by the International Swaps and Derivatives Association (ISDA)

as the risk that occurs when “exposure to a counterparty is adversely correlated with the credit

quality of that counterparty”.[Travers and Schwob 2009]
13Concentration risk can arise from uneven distribution of exposures (or loan) to its borrowers,

source: http://www.businessdictionary.com/definition/concentration-risk.html
14Short term nationalisation
15A multinational insurance corporation who provided insurance in the mortgage market
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counterparty and wrong-way risk.

The contagion was not only limited to multinational institutions but spread to

countries within Europe. By November 2008 Iceland had received a $4.6 billion

bailout from the International Monetary Fund (IMF) and fellow European coun-

tries. Greece was soon to follow in 2010 by receiving a AC110 billion bailout from the

IMF. Spain, Ireland, Cyprus, and Portugal all joined the ranks of countries in need

of a bailout. All these countries were considered to be “too big to fail” and were

naively thought to have very low counterparty risk. Post 2008, the notion of risk-

free entities was proven to be completely false. Counterparty risk had to be taken

seriously and accounted for correctly. By 2009 regulators were publishing papers to

best address the three issues pertinent to the GFC:

1. Volatility of CVA;

2. Wrong-way risk; and

3. Collateral management.

These papers took form as Basel III global regulatory standard, designed to strengthen

bank capital bases and establish new liquidity and leverage requirements; the US

Dodd-Frank Wall Street Reform, the Consumer Protection Act, as well as European

Market Infrastructure Reform (EMIR) were aimed at ensuring stability in the OTC

market, see [Gregory 2012] page 7. The regulators intended to increase pressure to

account for CVA risk correctly, however, the new regulations had an adverse effect

on the liquidity in the CDS OTC market. CDSs were the only instruments available

for banks to hedge their CVA exposure, but the wrong-way risk inherent in CDS

derivatives made them scarcely available in the market. The only alternative was for

OTC trading to be moved toward central clearing. This required the development

of Central Counterparties (CCP) for the CDS market, a notion not to be realised

anytime soon. A CCP raises the question, what would happen if it were to collapse?

A CCP could certainly be beneficial in mitigating credit risk, but a CCP itself would

then become a “too big to fail” entity.
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Chapter 3

The Law of One Price

“Change is the law of life. And those who look only to the past or present are certain

to miss the future.” - John F.Kennedy

During the build up to the demise of Lehman Brothers, the market witnessed di-

vergences in lending rates that were not common in markets at the time. The

most referred to anomaly was the divergence of the OIS rate and London Inter-

bank Offered Rate (LIBOR), a clear sign that banks were in distress. Banks used

the LIBOR rate to discount future cash flows, which were assumed to be risk-free

pre-2008. The divergence between the OIS rate and LIBOR violated this assump-

tion and indicated banks do indeed carry significant credit risk. This too revealed

a major flaw in the BSM theory, which was widely used to price financial derivatives.

The BSM model assumes that banks can lend to each other using the risk-free

rate, see [Black and Scholes 1973]. The said rate was any of the interbank rates

depending on the region the derivative was traded

1. Euro Interbank Offered Rate (EURIBOR);

2. Tokyo Interbank Offered Rate (TIBOR);

3. LIBOR; and

4. Johannesburg Interbank Agreed Rate (JIBAR).

Pre-2008, it was widely accepted that the fair-price of any derivative can be derived

from the expected cash flows discounted by the perceived risk-free rate. The notion
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of a risk-free rate remained the same, however, it was not certain as to what existing

benchmark could represent it. [Gregory 2012] introduces the Credit Support Annex-

ure (CSA)1, as well as elaborates on the many other techniques of how to mitigate

credit risk. The CSA has become pivotal in the pricing of bilateral derivative trades.

Any trade under a standardised CSA requires both parties to post collateral, typi-

cally in USD, if the MTM is not in their favour. The payer of the collateral would

be compensated at the Federal Reserve funds rate, yet the payer incurs a cost of

funding the USD at their own internal cost of funding. Interest rate benchmarks set

by central banks are widely considered to be the risk-free benchmark.

Typically the Fed Funds rate is lower than a bank’s internal funding rate. A funding

gap manifests that needs to be recouped by the payer of collateral, this funding gap

is now widely known as the FVA2. To be clear, this was never an issue pre-GFC as

all banks could raise funding at LIBOR, and collateralised trades were the exception,

not the rule. The FVA can further be split up into two components:

1. Funding Benefit Adjustment (FBA); and

2. Funding Cost Adjustment (FCA).

The former is the benefit earned by a bank when they receive collateral from a trade

entered into under CSA. The latter refers to the opposite situation, whereby the

bank needs to fund collateral postings with their counterparty. Naturally, if the

client trade is done under CSA with the same clauses as the CSA relating to the

corresponding hedge, then there certainly would not be any form of FVA. FVA is one

of the many new valuation adjustments that is not entirely accepted by academics.

[Hull and White 2012a] strongly argue against the FVA adjustment as they claim it

violates the one price argument which is fundamental to the BSM model.

1An appendage to the ISDA Master Agreement, it stipulates the collateral posting arrangment

between two parties pertaining to a specifc trade
2Adjusting the derivative price to include the dealer’s cost of funding

16



Figure 3.1: The spread between three month LIBOR and OIS during the 2008 crisis.

Source Bloomberg, April 1 2016

In contrast, CVA is far more accepted than FVA. CVA is the cost most banks charge

corporate clients to trade OTC derivatives under no CSA. It reflects the expected

loss as a result of counterparty default. Prior to 2008, Basel II ensured that banks

held capital for credit risk pertaining to default risk. The credit risk inherent in a

derivative trade due to the volatility of CVA was not a core focus for regulators.

This rationale proved to play a major role in the GFC as it was mainly the MTM

of the CVA that caused the liquidity squeeze amongst insurers, not the actual de-

faults of the distressed entities. A sizeable portion of the Basel III 3 document

introduces a CVA capital charge to ensure banks hold a buffer to withstand periods

of pronounced CVA volatility. For their trading books, banks need to use VAR to

account for any unexpected losses incurred by CVA losses. Much of the literature

we consider on CVA, as per [Gregory 2012] page 242 is derived from the work of

Sorensen and Bollier; Jarrow and Turnbull; Duffine and Huang, as well as Brigo and

Masetti. The aforementioned published their work throughout the 90s, illustrating

that CVA is not a new concept. Figure 2.2 elaborates on the increasing importance

of CVA through time within financial markets. The measure of VAR is done under

a P measure4.

3Basel III: A global regulatory framework for more resilient banks and banking systems
4Historical movements of market variables within the real word not under fair value assumption.
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Figure 3.2: The history of counterparty credit risk in financial institution

[Ruiz 2015], page 127

With the misconception that banks were risk-free, corporates never considered what

counterparty risk they were exposed to by the banks. This brought DVA into the

limelight. Like FVA, the topic introduced controversy into the world of deriva-

tive valuing. DVA is the CVA for a corporate client with respect to the coun-

terparty risk they are exposed to when trading with a bank. When considering

CVA and DVA together, a trade’s valuation is then considered to be symmetric and

two default-risky parties can agree on the economically correct price of a deal, see

[Brigo, Morini and Pallavicini 2013] pages 254 and 255.

It is interesting to note that Basel III does not allow for the capital relief associ-

ated with DVA. The aim of the Basel accords is to incentivise prudent behaviour by

banks. Since a bank realises profits on DVA when their credit quality deteriorates,

it does not make any sense for regulators to recognise DVA. In contrast, Financial

Accounting Standards (FAS) 157 and International Accounting Standards (IAS)

39 state that DVA should be fully accounted for in financial reporting. The logic to
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include DVA is underpinned by a fundamental principle associated with accounting:

financial assets and liabilities should be accounted at fair value. This implies that

a deal is only fair valued if Bilateral Value Adjustment (BVA) is applied to the

derivative. Moreover, the hedging mechanics for DVA are not intuitive, this will

become clear in later chapters.

A slightly newer adjustment introduced to the finance world is KVA. This involves

the adjustment of a derivative’s price to account for cost of capital throughout its

existence. We mentioned earlier that CVA generates a VAR value which in turn

consumes capital for a bank. These costs need to be recouped via transfer pricing

to the client at hand. KVA calculations are now used to quantify this cost. We con-

sider the work of [Elouerkhaoui 2016a] and [Kenyon, Green and Dennis 2016]. Both

papers consider how to include KVA into the price of a derivative but by leveraging

off of different frameworks.

[Kenyon 2012], page 138, points out that there are mainly two schools of thought to

price derivatives:

1. Pricing by expectation; and

2. Pricing by hedging (portfolio replication).

[Kenyon, Green and Dennis 2016] leverage their work off the latter framework. With

respect to the first method, we consider the Q5 measure in order to obtain the fair

value of a derivative. Pricing via expectation is a framework central to the discus-

sions by [Brigo, Morini and Pallavicini 2013].

The second method assumes markets are complete, which makes it fundamentally

different to the first method. We draw on the work of [Burgard and Kjaer 2011],

[Burgard and Kjaer 2012a], [Burgard and Kjaer 2012b], [Burgard and Kjaer 2012c]

and [Piterbarg 2010] to demonstrate how to price a derivative via portfolio repli-

cation. Central to this approach is the very well known Feynman - Kac̆ formula,

developed by Richard Feynman and Mark Kac̆, [Björk 2009] page 69, which illus-

trates how today’s derivative price is the discounted expected value of tomorrow’s

5Typically used in pricing where the expected value is taken under the Q measure. Probabilites

under Q are inferred from market prices
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derivative price. It also demonstrates that the derivative price is risk-neutral if the

expected value is taken under the Q measure and discounted using the risk-free rate.

Theorem 3.1. (Feynman-Kac̆) Assume that F is a solution to a boundary value

problem

∂F

∂t
+ µ

∂F

∂x
+

1

2
σ2∂

2F

∂x2
−rF = 0, (3.1)

F (T, x) = Φ(x). (3.2)

Assume furthermore that the process e−rsσ ∂F
∂x
∈ £2, where X is defined as below.

Then F has the representation

F (t, x) = e−r(T−t)EQ
t,x [Φ(XT)] , (3.3)

where X satisfies the Stochastic Differential Equation ( SDE)

dXs = µds+ σdWs, (3.4)

Xt = x. (3.5)

The Feynman and Kac̆ formula is pivotal to the classical approach of pricing by

hedging, refer to [Björk 2009] page 74 for further detail. We will later explore how

it is applied by [Piterbarg 2010] to transform the Black-Scholes PDE to account for

collateral correctly. The most significant critique for Burgard and Kjaer’s approach,

is that in order to create a replication portfolio, an entity needs to be able to trade

their own bonds freely. It is not quite clear how this would work practically as bonds

are issued by a bank to acquire funding, to buy one’s bonds back would consume

the funding required in the first place.

The latest adjustment to be included into derivative pricing is MVA. We have pre-

viously mentioned that client derivatives traded ex-CSA are typically hedged by

derivatives under CSA. This generates a funding differential for the desk at hand
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once a MTM is generated. In the case of MVA, IM is placed upfront and thus

a funding liability exists from inception which needs to be funded from treasury.

This adjustment is currently a growing concern for traders as most of their markets

migrate from OTC to CCP, thus a consistent framework is becoming ever more

necessary. Two papers that stand out in this relatively new aspect of derivative

pricing are [Elouerkhaoui 2016a] and [Kenyon and Green 2015].

Not all trades require an XVA for it to reflect a fair market value. In order to un-

derstand this, we must elaborate on the term risk-free. It is now broadly accepted

that the Fed Funds rate or the Euro Overnight Index Average (EONIA) rate is the

closest real representative for the fictitious BSM risk-free rate. For the purpose of

this dissertation, let us assume this to be the case and that a trade under CSA is

perfectly collateralised whereby rehypothecation6 is permitted. Then, the trade is

risk-free and is therefore discounted using rC . This leads us to the below theorem

taken from [Björk 2009], page 99

Theorem 3.2. The arbitrage free price of the claim of Φ(S(T)) is given by Π(t; Φ) =

F (t, S(t)), where F is given by the formula

F (t, s) = e−rc(T−t)EQ
t,s [Φ(S(T))] . (3.6)

Assume Theorem 3.2 is the starting piece in the puzzle. If we trade a derivative

under CSA and we are able to hedge the derivative using a derivative governed by

the exact same CSA, then there would be no need for any XVA7. Let us make a

few assumptions to build on this point:

1. Π(t; Φ) is the price of a risk-free claim at t;

2. The price of the a contingent claim X = Φ(S(T )) at time T where S is the

underlying stochastic variable; and

3. In order for us to avoid arbitrage Π(T ;X) = X.

then the MTM at t under CSA would be

6The use of assets, posted as collateral, by a bank for their own purposes.
7Provided the Loss Given Default (LGD) and the CDS of the counterparty are not excessively

large, otherwise KVA will need to be considered.
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Riskless MTM= e−rc(T−t)EQ
t,s [Π(T ;X)].

The above definition of a riskless MTM implies there is no need for any form of

adjustment as the client trade and the corresponding hedges are symmetrical. Let

us consider a trade with a typical corporate client who is not setup to post daily

margin. The trade will be done OTC whereby the client will have some degree of

credit risk that the bank will need to consider. To hedge our market risk, we would

need to hedge either in the OTC market or on an exchange. The former implies a

standard CSA trade, the latter implies IM as well as Variation Margin (VM). The

asymmetrical nature of our client trade and its hedge makes what was considered

a relatively simple transaction pre-2008 rather complicated today. From the above

description we now are dealing with a fairly risky trade and the MTM, in a very

simplistic definition, has evolved as follows

Risky MTM= Riskless MTM+CVA+DVA+KVA+FVA+MVA.8

It can get more complicated if you consider that collateral is not always posted as

cash, however, regulators are working hard to standardise what can and cannot be

posted. The below diagrams illustrate the degree of complexity a correct derivative

valuation entails.

Figure 3.3: A simplistic view of the considerations required to price a derivative

pre-2008 accurately.

8If the client leg is hedged on an exchange. We will see in part II that this simplistic equation is

no longer correct, when funding costs are included, as the FVA term makes the equation non-linear

and recursive.
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Figure 3.4: A complicated overview of the many considerations required to accu-

rately price a derivative post-2008 accurately.
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Part II

Literature Review
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Chapter 4

Hull and White

“If you can find something everyone agrees on, it’s wrong.” - Mo Udall

In 2012, Hull and White were the most outspoken against the inclusion of FVA

in the valuation of derivatives. Their argument is underpinned by the risk-neutral

valuation paradigm, which makes it a philosophical one in the world of financial

derivatives. They claim that “we discount at the risk-free rate because this is re-

quired by the risk-neutral valuation principle” [Hull and White 2012a]. Moreover,

they also state that pricing should be kept separate from funding. From a practi-

tioner’s perspective it is difficult to accept this simply because a funding cost can

only be recouped via transfer pricing. Therefore the funding rate is essential in

determining what discount rate should be applied in derivative pricing.

Hull and White elaborate on their definition of FVA and its relationship with DVA.

They define DVA1 as the risk of a dealer defaulting on his derivative portfolio and

DVA2 as the risk he might default on any other liabilites, both increase in value if

the dealer’s default risk rises. They define FVA=∆(DVA2), where ∆(DVA2) is an

increase in DVA2 resulting from the funding requirments of a derivatives portfolio.

Hull and White define CVA and DVA as Economic Value adjustment (EVA) re-

quired to bring a transaction closer to its true economic value, which supports their

view of CVA and DVA as acceptable adjustments in the BSM world of one price. In

contrast to this, FVA is classified as an “anti-EVA”, moving the derivative’s price

away from its economic value toward a model price. The inclusion of FVA implies

each bank will have their own uniqe price for the same derivative. The two main

themes of their paper is that the risk of a derivative, or a project in the corporate
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finance space, should determine the rate of return the bank/dealer should earn, not

the funding cost it is subject to. The second is that the derivative desk should not

be charged a funding cost from their funding centre, as this will incentivise them to

transfer price clients. They claim it would be better for the funding desk to charge

the derivatives desk the risk-free rate for funding. Practically, this theory does not

account for the cost of funding consumed when trading a derivative.

The response from practitioners to [Hull and White 2012a] was profound as their

concern is one of how their bottom line is impacted, not whether the BSM theory

is sound in the new normal. [Laughton and Vaisbrot 2012] provide some practical

counter arguments toward Hull and White’s academic treatment of FVA. They claim

that the BSM theory is based on assumptions that do not hold true in the real

world. The most prominent assumptions are that markets are complete and all

banks can borrow at the risk-free rate. The former suggests that all risk factors

can be hedged and the latter that traders should fund trades at the risk-free rate

only. [Laughton and Vaisbrot 2012] make it clear that since real markets are indeed

incomplete, risk preferences are reintroduced into valuations, therefore the law of

one price is simply not valid. They also state that funding is a real cost to traders

that is certainly no longer set at the risk-free rate. Three central points put forward

by [Laughton and Vaisbrot 2012] are:

1. The BSM theory needs to be modified to be useful to traders;

2. The cost of borrowing is exogenous and is unaffected by a single trade; and

3. Market-makers give no value to their expected profit or loss upon default.

All these points support the FVA being inculded in the derivative price.

Further to the above reponse, [Antonio Castagna 2012] provides a direct response

to each of the statements made in [Hull and White 2012a]. Castagna says that it is

correct to discount at the risk-free rate because it is required by the risk-neutrality

argument. However, this is only valid if we are dealing in a Black and Scholes

economy. Black and Scholes made very specific assumptions 1 in order for portfolio

replication to be possible or for the portfolio to earn the risk-free rate. Castagna

1Refer to [Antonio Castagna 2012] page 2 for detail
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refers to the work of [Rubenstein and Cox 1985] to support his point that the exis-

tence of lending and borrowing rates different to the risk-free rate does not impede

the replication argument. He claims if one considers what the borrowing rate is;

whether they are a buyer or a seller of the option, and whether it is a call or a put;

one can use a closed-form formula to price the option. The “risk-neutral” price is

still obtained using the replication strategy and a rate different to the risk-free rate,

it simply may not be the Black-Scholes risk-free price. Castagna does not discard

the BSM model to price options, but suggests it must be modified to include the

real world costs banks now face.

Castagna also raises some interesting points regarding the comparison between DVA

and FVA. He claims that DVA is the FVA for debt contracts, however, for derivatives

he offers a slightly different definition. Castagna states that DVA is the compen-

sation that a risky entity has to pay to their counterparty in order to compensate

them for the default risk they bear. The remuneration amount is measured as a

CVA on behalf of the counterparty. The FVA related to a derivative’s contract

is the sum of the funding costs that a counterparty needs to pay in order to pay

for the borrowed money required to fund the contract. Therefore, for a derivative

contract, FVA is not DVA. Castagna elaborates on the unproved notion of a share-

holder’s value increasing as a result of a bank’s default. He draws on the work of

[Merton 1974] pages 11 and 12 to disprove this notion. It must be noted Castagna

considers DVA at T, and concludes that indeed it is difficult to monetise the value

of DVA. However, at time t where t ∈ [0;T ], DVA does increase in value due to an

increase in credit spreads, albeit purely a theoretical value it still does exist as a

positive MTM in favour of the bank.

In [Hull and White 2012b] the authors provide an academic response to a practi-

tioners problem. They argue that [Laughton and Vaisbrot 2012] are incorrect in

assuming the existence of a single arbitrage-free price is dependent on the market

being complete. They state that the valuation arguments of the portfolio replication

strategy used in [Merton 1973] yield the same result as the Capital Asset Pricing

Model (CAPM) method used in [Black and Scholes 1973] without the assumption

of any risk-free borrowers. They also state that when considering the credit risk of

the dealer, the bank should still fund at the risk-free rate, and the spread above

the risk-free rate should be compensation for the expected cost of the dealer’s pos-
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sible default. This point reverts back to their case in [Hull and White 2012a], that

FVA=∆(DVA2), hence the inclusion of FVA implies double counting. Hull and

White draw on the logic that if a dealer hedges, they reduce their risk and will

therefore enjoy lower funding costs. In reality, a point Hull and White concede on,

is that the feedback loop of a single trade will not impact the desk’s cost of funding

immediately as the theory suggests. They believe the FVA argument is underpinned

by one’s understanding of DVA1 and DVA2, and how they relate to FVA. Hull and

White claim that if DVA2 is allocated to the funding desk then the funding desk

would recoup the cost of lending to the trading desk, making an FVA charge unnec-

essary.

[Hull and White 2012c] provide a framework which includes the cost of DVA and

CVA. The paper shows a heuristic case as to why including FVA in the replication

argument does not make sense. The paper leverages off the orginal framework of

Black and Scholes using the CAPM as well as Merton’s work on no-arbitrage port-

folio replication. Let us assume that we have two entities, bank B and counterparty

C. Let us further assume that the derivative will be priced from B’s perspective

and that λ as well as R are constant. A positive MTM for the derivative will be

F+ = max(F, 0) and F− = min(F, 0) for the negative part.

Theorem 4.1. The risk-free price of a derivative that satisfies the Black-Scholes

boundary problem is F,

∂F

∂t
+ rx

∂F

∂x
+

1

2
σ2x2∂

2F

∂x2
− rF = 0, (4.1)

F (T, x) = Φ(x). (4.2)

The credit risky price of a derivative that satisfies the following boundary problem is

F̂ ,

∂F̂

∂t
+rx∂F̂

∂x
+ 1

2
σ2x2 ∂2F̂

∂x2 − rF̂ = λC(1−RC)F+ + λB(1−RB)F−, (4.3)

F̂ (T, x) = F (T, x). (4.4)
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In [Hull and White 2012c], the second boundary problem in Theorem 4.1 reflects

the compensation bank B would require, as well as provide, in order to facilitate a

trade with a risky counterparty. By including DVA, bank B concedes they too are

a risky counterparty. From the above, Hull and White define CV A = λc(1−Rc)F
+

and DV A = λb(1−Rb)F
−.
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Chapter 5

Pricing by Hedging - Piterbarg,

Kjaer, and Burgard

“You want a valve that doesn’t leak and you try everything possible to develop one.

But the real world provides you with a leaky valve. You have to determine how much

leaking you can tolerate.” - Obituary of Arthur Rudolph, in The New York Times,

January 3, 1996.

Piterbarg, Kjaer, and Burgard based their work on portfolio replication, a clas-

sical approach to price derivatives. It is the very same approach discussed in

[Merton 1973]. They adapted the fundamental work provided by Merton to accom-

modate for the additional risks associated with derivatives. This enabled traders to

price their risk correctly. Pricing by replication assumes two key points:

1. Markets are complete; and

2. Markets are arbitrage free.

The first point assumes that there exists a tradable instrument to hedge the con-

tingent claim. Moreover, there will be a uniqe price for the contingent claim if the

claim is hedgable. The second point assumes that the contingent claim can only

ever earn the chosen rate of return, any different return would be considered an

arbitrage opportunity. For completeness, consider the below propositions1.

1see [Björk 2009] page 31
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Proposition 5.1. Consider a given claim X. In order to avoid arbitrage, X must

then be priced according to the formula

Π(0, X) =
1

1 + r
EQ [X] , (5.1)

where Q is a martingale measure for the underlying market.

Proposition 5.2. Consider a contingent claim X. If there exists a portfolio h, based

on the underlying assets, such that

V h
T = X, (5.2)

then we say that X is replicated, or hedged by h. If every contingent claim can be

replicated, we can then say the market is complete.

[Piterbarg 2010] shows how the Black-Scholes PDE can be extended to accommo-

date for multiple interest rate curves. He accurately addresses the question of what

funding rate is required when trading under CSA with a zero threshold agreement.

Piterbarg only seeks to address the question of funding post-2008 with regard to

the Black-Scholes PDE, he ignores the possibility of default for either counterparty.

The result of his work is shown in the proposition below.

Proposition 5.3. F is the price of a derivative that satisfies the below boundary

problem

∂F

∂t
+ (rR−rD)x∂F

∂x
+ 1

2
σ2x2 ∂2F

∂x2 =rV F − (rV−rC)C, (5.3)

FT is the payoff of the claim at T.

Proposition 5.3 assumes F 6= C, therefore there exists a funding differential sF =

rV - rC . However, if we assume that C = F, then the above PDE reduces to the

Black-Scholes boundary problem with the risk-free rate being rC . This point plays

a pivotal part in understanding how FVA manifests within derivative pricing as it

is very seldom the case where C = F. Further to the funding differential, Piterbarg

also elaborates on the effects of convexity for CSA valued derivatives. Much like an

exchange traded derivative, cash flows occur between trade initation and T. This
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generates a similar convexity adjustment witnessed between futures and forward

derivatives. The key difference between FCSA and a future is that collateral placed

with an exchange does not earn interest, where FCSA earns the rate rC .

[Piterbarg 2010] provides us with a starting point for pricing derivatives within the

new paradigm financial markets find themselves in. The paper provides us with a

solution to the Black-Scholes PDE inclusive of funding differentials and convexity

adjustments. We now look at the work of [Burgard and Kjaer 2011] to provide a

solution to the PDE when a risky counterparty is involved. Burgard and Kjaer

show two modifed versions of the Black-Scholes PDE determined by the closeout

rules used at default:

1. The recovery rate is applied to the risky value F̂ ; or

2. It is applied to the counterparty-riskless value F.

In the former scenario, the resulting PDE is non-linear and can be solved by solv-

ing a non-linear integral equation. In the latter case, the PDE is linear and can

be shown in a Feynman-Kac̆ representation. [Gregory and German] provides an

in-depth discussion on which exposure to use on closeout. They find that a risky

closeout tends to be more supported by [ISDA 2009] as the documentation states

that a counterparty “may take into account the creditworthiness of the Determining

Party”. This means that the surviving entity may include their DVA value in the

settlement amount upon the default of the other counterparty. [Gregory 2012] page

278 mentions that there is no obvious best solution to the choice in closeout value.

The risk-free choice is the simplest from a theoretical perspective, but causes dis-

continuities in valuations at default as the DVA term falls away. The more natural

yet somewhat complex proxy for a closeout value would be the risky value. A risky

value closeout causes our PDE to be non-linear and recursive in nature, however,

we no longer have a discontinuity in value at default. Below Burgard and Kjaer dis-

tinguish between the counterparty risk-free value; the FVA and the bilateral CVA

for both a risky and risk-free value closeout. Once again, let us assume a derivative

is traded between counterparty C and bank B.

Theorem 5.4. The credit risky price of a derivative that satisfies the following

boundary problem is given by F̂ and the MTM at default is the riskless price F,
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then

∂F̂

∂t
−rRx∂F̂∂x+1

2
σ2x2 ∂2F̂

∂x2−(r+λB+λC)F̂ = −λB(F++RBF
−)−λC(F−+RCF

+)+sFF
+.

(5.4)

However, if we assume a risky closeout, whereby the MTM at default is the risky

value F̂ , then

∂F̂

∂t
−rRx∂F̂∂x + 1

2
σ2x2 ∂2F̂

∂x2 − rF̂ = λC(1−RC)F̂+ + λB(1−RB)F̂−+sF F̂
+, (5.5)

F̂ (T, x) = F (T, x). (5.6)

For equation 5.4 and 5.5, the authors assume that the above replication strategy will

generate the cash required to fund the repurchase of bank B’s own bonds. This is

required to hedge B’s own credit risk, however, this strategy only works if the market

is complete. The idea of a bank buying back their own bonds is counterintuitive as

it defeats the purpose of intially issuing the bonds. The three terms on the right

of equation 5.4 can be interpreted as DVA, CVA, and FVA respectively. Let us

consider a few scenarios:

1. If F is In the Money (ITM) for B, and we assume B defaults then B will

receive the full value of F from C;

2. If F is ITM for B, and we assume C defaults then B will receive RCF ; lastly

3. The first two points are equal, but opposite for C.

[Burgard and Kjaer 2012c] expands on Theorem 5.4 by exploring the relationship

between FCA and the balance sheet. They demonstrate how FCA can be eliminated

through two strategies discussed in the paper. Burgard and Kjaer claim that despite

FCA and DVA being related to the credit position of bank B, including both terms

in the pricing formula is not double counting. To illustrate this clearly, we provide

the following definition from [Burgard and Kjaer 2012c].
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Definition 5.5. U is the adjustment term for a claim on F, by applying Feynman-

Kac̆ to Theorem 5.4 we have

U(t, s) = CV A+DV A+ FCA, (5.7)

with

CV A = −(1−RC)

∫ T

t

λC(u)Dr+λB+λC
(t, u)EQ

tF
+(u, S(u))du, (5.8)

DV A = −(1−RB)

∫ T

t

λB(u)Dr+λB+λC
(t, u)EQ

tF
−(u, S(u))du, (5.9)

FCA = −
∫ T

t

sF (u)Dr+λB+λC
(t, u)EQ

tF
+(u, S(u))du, (5.10)

where Dk(t, u) = e−
∫ u
t k(v)dv is the required discount factor.

It is clear that the FCA and DVA term reflect opposite signs, therefore DVA can be

seen as an FBA for bank B. By using a simple balance sheet model, they demon-

strate that through proper accounting for derivative assets on the balance sheet one

can reduce the funding spread to zero therefore mitigating any need for an FCA.

This would make the valuation between bank B and counterparty C symmetrical.

However, this model is somewhat indirect, thus making it complicated to allocate

the hedge benefit back to the trading desk. [Burgard and Kjaer 2012c] discusses

two other approaches which are more direct in protecting the balance sheet from

derivative induced funding costs.

Burgard and Kjaer propose using the derivative as collateral. In theory this would be

an eloquent solution to the funding question of the derivative, however, a derivative

repo market is uncommon in practice much unlike bond repo markets. Moreover,

a risk-free derivative initially has a zero value with the MTM constantly changing,

making it very difficult to determine how much cash can be advanced against it.

This would lead to a large haircut imposed to the value of the derivative. Their

second proposal involves balance sheet management which uses a similar framework

which provided us with Theorem 5.4 taken from [Burgard and Kjaer 2011]. For this

proposal to work, our entity must be able to freely trade two of it’s own bonds with

different seniority, the entity would need to issue senior bonds and repurchase its
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junior bonds. This strategy monetises any windfall due to the bondholders while

the issuer is still solvent simultaneously reducing sF to zero. The practicality of this

hedge strategy is low, which is why it would be unlikely to reduce sF to zero.

[Burgard and Kjaer 2012b] encompasses most of Burgard and Kjaer’s findings on

BVA, FCA, and Collateral Adjustment (COLVA). Their derivation in this paper

is one of semi-replication, a step away from their previous papers, which assumes

full replication without collateral. Their model makes weak assumptions on the con-

tentious topic of the issuers own bonds availability as well as the freedom the issuer

has in trading them. One of the key differences between [Burgard and Kjaer 2012a]

and [Burgard and Kjaer 2012b] is that in the latter they call the boundary condition

“general” and provide an array of closeout cases to consider, refer to page 3 of their

paper.

Let us consider the PDE proposed by [Burgard and Kjaer 2012b] with a bilateral

closeout with collateral where M is not specified explicitly. We define g as the close-

out function for each of the counterparties.

Theorem 5.6. We define εh, gB and gC as follows

gB(M,C) = C + (MB − C)+ +RB(MB − C)−, (5.11)

gC(M,C) = C + (MC − C)− +RC(MC − C)+, (5.12)

and

εh =gB + PD
B − C, (5.13)

where εh denotes the hedge error between the hedge portfolio and the derivative at

default with PD
B defined as the post issuer default value of counterparty B’s bond

position.
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F̂ satisfies the following boundary problem

∂F̂

∂t
−rRx∂F̂∂x + 1

2
σ2x2 ∂2F̂

∂x2 − (r+λB +λC)F̂ = −λBgB−λCgC+sCC+λBεh, (5.14)

F̂ (T, x) = F (T, x). (5.15)

Consider the right-hand side of equation 5.14. λBεh is the FCA term and can be

interpreted as the expected value of the issuer’s hedge error at own default. FCA

is clearly a by-product of the semi-replication assumption made in

[Burgard and Kjaer 2012b]. When λB = 1 there is a windfall of εh to the issuers’

bondholders, however, whilst B is solvent, B will incur a cost of λBεh which is trans-

fer priced to counterparty C. Equation 5.14 also introduces a COLVA adjusment

which exists so long as sC 6= 0. The CVA and DVA term are denoted by λCgC

and λBgB, respectively. Both are the expected values of the closeout values for

each counterparty with the collateral impact accounted for in the closeout function.

Applying (Feynman-Kac̆) to equation 5.14 provides us with the following.

Definition 5.7. U is the adjustment for the risk-free derivative F, where M=F,

U(t, s) = CV A+DV A+ FCA+ COLV A, (5.16)

where

CV A = −
∫ T

t

λC(u)Dr+λB+λC (t, u)EQ
tF (u)−gC(F (u), C(u))du, (5.17)

DV A = −
∫ T

t

λB(u)Dr+λB+λC (t, u)EQ
tF (u)−gB(F (u), C(u))du, (5.18)

FCA = −
∫ T

t

λB(u)Dr+λB+λC (t, u)EQ
tεh(u)du, (5.19)

COLV A = −
∫ T

t

sC(u)Dr+λB+λC (t, u)EQ
tC(u)du, (5.20)

where Dk(t, u) = e−
∫ u
t k(v)dv is the required discount factor.

Burgard and Kjaer summarise the general form of Theorem 5.6 into three different

examples by varying the selection of bond portfolios in each instance. In the first

instance, they assume that one can trade their own senior and junior bonds freely

and can therefore hedge any windfall/shortfall of the derivative at time of default.
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This reduces equation 5.14 to the PDE active balance sheet management strategy

discussed in [Burgard and Kjaer 2012c]. It also relates to the case put forward in

[Hull and White 2012a] as equation 5.14 is equivalent to equation 4.3 if εh=0 and if

we ignore collateral funding. The second model is equivalent to Theorem 5.4 taken

from [Burgard and Kjaer 2011]. In this model FCA is not negated by a replication

strategy, therefore bondholders would still enjoy a windfall if B were to default ITM.

The third model is an extension of [Piterbarg 2010] whereby the authors assume one

issuer bond exists for balance sheet management.
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Chapter 6

Pricing by Expectation - Brigo,

Morini, and Pallavicini

“Likeness to truth is not the same thing as truth.” - Socrate

The framework proposed by Brigo, Morini, and Pallavicini does not assume that

markets are complete. The authors determine the price of a derivative by taking the

expected future cash flows under EQ and discounting them to today using a suitable

r. The resulting price will be quite different to the method used in Chapter 5 when

the market is not complete, [Kenyon 2012] page 145. For much of the work done on

XVA pricing via expectation, we draw on [Brigo, Morini and Pallavicini 2013], who

have collated much of the relevant papers within the publication. This framework is

found to be more flexible than the framework proposed in Chapter 5, at least from

a practitioners perspective. The authors of [Brigo, Morini and Pallavicini 2013] ex-

tend their framework to different asset classes, which again is testament to its adapt-

ability to the typical products and asset classes traded in the dealing room.

[Brigo, Morini and Pallavicini 2013] define CVA as the difference between a credit

risk-free derivative and a credit risky derivative. They provide a general Unilateral

Credit Value Adjustment (UCVA) pricing formula, page 95. We assume rehypothe-

cation is possible as well as no further credit risk will be induced by rehypothecation.

Let us assume we have two entities, bank B and counterparty C, with the following

theorems written from bank B’s perspective.

Theorem 6.1. The risk-free valuation of a derivative at time t is given by F, then

the credit risky valution of a derivative is given by F̂ , where
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F̂B(t, T ) = FB(t, T )− UCV AB(t, T ), (6.1)

with

UCV AB(t, T ) = EQ [(1−RC)I{t<τC≤T}D(t, tauC)FB(t, τC)+
]

= EQ [(1−RC)I{t<τC≤T}D(t, tauB)EADB

]
.

(6.2)

Expectation is under the risk-neutral measure Q and FB(t, T ) = EQ [ΠB(t, T ))].

Theorem 6.1 is provided under the assumption that one entity is risk-free whilst

the other is credit risky, this we call the Unilateral Default Assumption (UDA). A

discount of FB by the amount of UCVA should incentivise B to trade with C as

opposed to trading with a risk-free entity at value F. Under this assumption, the

framework is in its simplest form. [Brigo, Morini and Pallavicini 2013] introduces us

to the other side of the same coin, Unilateral Debit Valuation Adjustment (UDVA).

In this instance we again assume one entity to be credit risk-free whilst the other

counterparty is credit risky. In Theorem 6.1, entity C was risky; in the next theorem

we assume C to be risk-free.

Theorem 6.2. The risk-free valuation of a derivative at time t is given by F, then

the credit risky valution is given by F̂ where

F̂B(t, T ) = FB(t, T ) + UDV AB(t, T ), (6.3)

with

UDV AB(t, T ) = EQ [(1−RB)I{t<τB≤T}D(t, τB) (−FB(t, τB))+]
= EQ [(1−RB)I{t<τB≤T}D(t, τB) (−EADB)

]
.

(6.4)

Expectation is under the risk-neutral measure Q and FB(t, T ) = EQ [ΠB(t, T ))].

In order for B to trade with credit risk-free entity C, B would have to increase FB

by UDVA to incentivise C to accept a trade with B over a risk-free entity. Both

of these theorems consider the adjustments required to make the trade economi-

cally viable from each entity’s perspective. To make the trade fair and realistic,
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both CVA and DVA need to be considered for the trade to reflect its true eco-

nomic value. We then make the assumption that neither B or C are risk-free en-

tities, therefore we require a symmetric general pricing formula. We provide a few

definitions and assumptions before providing a general pricing formula for BVA.

[Brigo, Morini and Pallavicini 2013] assumes that there is no possibility of simulta-

neous default, Q(τB = τC) = 0. The authors also assume that if one of the entities

were to default, then evaluation stops at τ = min(τB, τC), otherwise stopping time

would be T.

Definition 6.3. Let us define the following events ordering the potential default

times:

I1 = {τB < τC < T} , I2 = {τB < T ≤ τC} , I3 = {τC ≤ τB < T}
I4 = {τC < T ≤ τB} , I5 = {T ≤ τB < τC} , I6 = {T ≤ τC ≤ τB}

Definition 6.4. Let us define BVA as the positive additive adjustment,

BVA(t, T ) = DVA(t, T )−CVA(t, T ), (6.5)

to the risk-free price F, allowing us to define the risky price F̂ as

F̂ (t, T ) = F (t, T ) + BVA(t, T ). (6.6)

Given the above, we now provide a general bilateral counterparty risk pricing for-

mula.

Theorem 6.5. The risk-free valuation of a derivative at time t is given by F, then

the bilateral credit risky valution is given by F̂ where

F̂B(t, T ) = FB(t, T ) +BV AB(t, T ), (6.7)

with

BV AB(t, T ) = EQ [(1−RB)I{I1∪I2}D(t, tauB)(−FB(t, τB)+
]

− EQ [(1−RC)I{I3∪I4}D(t, tauC)FB(t, τC)+
]
.

(6.8)

Expectation is under the risk-neutral measure Q and FB(t, T ) = EQ [ΠB(t, T ))].
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Let us consider the right-hand side of Equation 6.7. FB(t, T ) is the risk-free value

of the claim, with the second and third term being the DVA and CVA. Theorem 6.5

has been formulated with the assumption of a risk-free closeout.

[Brigo, Morini and Pallavicini 2013] page 312 furthers the above general pricing for-

mula to include collateralisation as well as the impact of a replacement closeout on

pricing. To use the on-default exposure for the closeout amount is to use the replace-

ment closeout methodology and is inline with what the ISDA Market Review of OTC

Derivative Bilateral Collaterisation Practices (2010). [Brigo, Morini and Pallavicini 2013]

abbreviate the bilateral counterparty risk adjustment inclusive of collateralisation

as CBVA. The CBVA general formula is provided by the following theorem:

Theorem 6.6. Let F be the risk-free valuation of a derivative at time t, then the

CBVA credit risky valution is given by F̂ where

F̂B(t, T ) = FB(t, T ) + CBV AB(t, T ;C), (6.9)

with

CBV AB(t, T ;C) = − EQ [I{τ<T}D(t, τ)(Fτ − I{τ=τC}MB,τ − I{τ=τB}MC,τ

]
− EQ [(1−RB)I{τ=τB<T}D(t, tau)(MB,τ − Cτ )−

]
− EQ [(1−RC)I{τ=τC<T}D(t, tau)(MC,τ − Cτ )+

]
.

(6.10)

Expectation is under the risk-neutral measure Q with MB and MC being the on-

default exposures.

The first term represents the mismatch in calculating the risk-free exposure and

the on-default exposures. The second and third terms are the Collateral-Inclusive

Credit Value Adjustment (CCVA) and Collateral-Inclusive Debit Value Adjustment

(CDVA) respectively from the point of view of bank B. If we were to assume a risk-

free closeout and no collateral posting, then Theorem 6.6 would reduce to Theorem

6.5. As it is presented above, the first term accounts for the replacment cost either

C or B would have to endure depending on which is first to default.

[Brigo, Morini and Pallavicini 2013] Chapter 16 page 351 considers the addition of

margining costs to the master theorem we have so far shown to be Theorem 6.6.

This cost is equivalent to what most practitioners call COLVA. The adjustment is
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necessary to cater for the differential between rC and r. In their derivation of the

CBVA general formula with margining costs, [Brigo, Morini and Pallavicini 2013]

assume discrete collateral posting intervals whereby any cash flows owing to collat-

eral costs or accruing interest are included in the flows between B and C.

Theorem 6.7. Let F be the risk-free valuation of a derivative at time t, then the

credit risky valution with margining costs is given by F̂ where

F̂B(t, T ) = FB(t, T ) + CBV AB(t, T ;C) + ΓB(t, T ∧ τ ;C), (6.11)

where ΓB(t, T ∧ τ ;C) is the sum of the discrete margining cash flows defined below

ΓB(t, T ∧ τ ;C) = EQ

[
n−1∑
k=1

I{tk<T∧τ}D(t, tk)

(
Ck − C+

k

D(tk, tk+1)

Dr+C (tk, tk+1)
− C−k

D(tk, tk+1)

Dr−C (tk, tk+1)

)]
,

(6.12)

where we define TC := {t1, ...., tn} to be the fixed time grid in which collateral can be

posted. C+
k indicates bank B to be receiving collateral from corporate C. The opposite

situation is indicated by C−k . Further, r+
C assumes that B will earn a different rate

than what it would pay, given by r−C .

Recall that τ = min(τB, τC), therefore if a default has occured, collateral payments

will no longer take place, the I{tk<T∧τ} assures us of this.

The final adjustment [Brigo, Morini and Pallavicini 2013] add to their expectation

framework is the FVA term. When a trading desk requires funding for its daily

operations, it needs to source it from the treasury or the market. As a result, in

both cases a funding cost needs to be included in the pricing of the derivative.

When we include FVA in Theorem 6.7, our pricing formula is no longer linear and

is now of a recursive form. To solve this, the authors suggest using least-square

Monte Carlo techniques, [Longstaff and Schwartz 2001]. The authors elaborate on

two models when dealing with funding costs, one being a single-deal (micro) model

and the second being a homogenous (macro) model. The latter is more common

in practice but it is more difficult to implement with the absence of arbitrage. In

addition, the authors prefer to remain as general as possible and therefore assume
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a micro view. The below theorem provides a formula for pricing in funding costs

generated by acquiring funding from the treasury only.

Theorem 6.8. Let F be the risk-free valuation of a derivative at time t, then the

credit risky valution with margining costs and funding costs is given by F̂ where

F̂B(t, T ) = FB(t, T )+CBV AB(t, T ;C)+ΓB(t, T ∧ τ ;C)+VB(t, T ∧ τ ;C), (6.13)

where RB(t, T ∧ τ ;C) is the sum of the discrete funding cash flows defined below

VB(t, T ∧ τ ;C) = EQ

[
m−1∑
j=1

I{tj<T∧τ}D(t, tj)

(
Vj − V +

j

D(tj, tj+1)

Dr+V (tj, tj+1)
− V −j

D(tj, tj+1)

Dr−V (ti, ti+1)

)]
,

(6.14)

where we define TV := {t1, ...., tm} to be the fixed time grid in which funding is

required. The time grid for margining is different to the time grid where funding is

required, TV 6= TC. V +
j indicates bank B to be have a surplus of cash in the trade.

The opposite situation is indicated by V −j , whereby B will need funding to perform

its operations. Further, r+
V assumes that B will earn a different rate to what it would

pay, given by r−V .

[Brigo, Morini and Pallavicini 2013] discuss the hedging strategy of the cash account

Rt when rehypothecation is permitted and when it is not. For the former, they de-

fine Rt as

Vt = F̂ (C, V )−Ht,

where the derivative’s risky price is a function of the collateral account C and the

cash account V. Ht is a portfolio of hedging instruments for F̂ . For the latter we have

Vt = F̂ (C, V )−Ht − Ct,

where the bank at hand has access to the collateral assets for funding purposes.

They highlight that the value of F̂ at t is dependent on the funding strategy V after

t. Similarly, V after t will depend on the value of F̂ at proceeding points in time.

Theorem 6.8 provides a general pricing formula pivotal to the practisioner when

trading with certain counterparties.
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Chapter 7

Including MVA and KVA in the

Semi-Replication Framework -

Kenyon and Green

“If I have seen further, it is by standing on the shoulders of giants” - Sir Isaac

Newton

Throughout much of the literature, we consider the work published during the pe-

riod of 2010 to 2012, the first wave of pricing solutions to accommodate changes in

the regulatory environment post-GFC. The papers discussed in this chapter draw

on the work of authors who furthered these pricing formulas to include MVA and

KVA. The papers reviewed were published during 2014-2016, and are the latest

pieces to address pricing for MVA and KVA in the framework described in Chap-

ter 5.

[Kenyon, Green and Dennis 2016] extend the formulas presented by Kjaer, Burgard

and Piterbarg in [Burgard and Kjaer 2012b]. They adjust the Black-Scholes PDE

to include pricing for KVA via portfolio semi-replication. The authors highlight

that KVA differs from all other XVAs because the hedges implemented for KVA

generate capital themselves and that capital can be used for funding. Basel III

limits an entity to fully fund certain derivatives through the issuing of capital. We

build onto Theorem 5.6 to include capital costs using a semi-replication approach.

Once again gC , and gB are the closeout functions with M being the closeout value

at default.
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Theorem 7.1. We define εh, gB and gC to be the value of the derivative at default

for counterparty C and B respectively,

gB(M,C) = C + (MB − C)+ +RB(MB − C)−, (7.1)

gC(M,C) = C + (MC − C)− +RC(MC − C)+, (7.2)

and

εh = gB − C + PD
B − ϕK,

= εh0 + εhK ,
(7.3)

where εh denotes the hedge error between the hedge portfolio and the derivative at

default; PD
B is defined as the post issuer default value of counterparty B’s bond po-

sition; and ϕK is the amount of capital available for funding with ϕ ∈ [0, 1].

The credit risky price of a derivative that satisfies the following boundary problem is

given by F̂

∂F̂

∂t
−rRx∂F̂∂x+1

2
σ2x2 ∂2F̂

∂x2−(r+λB+λC)F̂ = −λBgB−λCgC+sCC+λBεh+γK(t)K−rϕK,

(7.4)

F̂ (T, x) = F (T, x). (7.5)

We analyse the right-hand side of the pricing formula in Theorem 7.1. The second

last term, γK(t)K, is the cost of the return shareholders expect for putting their

capital at risk. Most banks have a hurdle rate set for the desks to benchmark how

profitable a particular trade will be. The last term, rϕK is the portion of capital

that can be used to fund the trade. The two terms combined make up the KVA

portion of the price. If ϕ = 0 and γK(t) = 0, the pricing formula would revert

to Equation 5.14. By applying the Feynman-Kac̆ theorem to the above PDE, we

obtain the following results.

Definition 7.2. The adjustment for the risk-free derivative F is given by U, where

M=F,

U(t, s) = CV A+DV A+ FCA+ COLV A+KV A, (7.6)
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where

CV A = −
∫ T

t

λC(u)Dr+λB+λC (t, u)EQ
tF (u)−gC(F (u), C(u))du, (7.7)

DV A = −
∫ T

t

λB(u)Dr+λB+λC (t, u)EQ
tF (u)−gB(F (u), C(u))du, (7.8)

FCA = −
∫ T

t

λB(u)Dr+λB+λC (t, u)EQ
tεh(u)du, (7.9)

COLV A = −
∫ T

t

sC(u)Dr+λB+λC (t, u)EQ
tC(u)du, (7.10)

KV A = −
∫ T

t

Dr+λB+λC (t, u)EQ
t(γK(u)− r(u)ϕ)K(u) + λBεhKdu, (7.11)

where Dk(t, u) = e−
∫ u
t k(v)dv is the required discount factor.

The final adjustment provided in the portfolio semi-replication framework is pro-

vided by [Kenyon and Green 2015], this is the MVA term. Kenyon and Green seek

to expand on Equation 7.4 to include the costs associated with IM. Typically this

is not a feature in standardised CSAs, but if a hedge were to be executed through

a CCP, one would certainly need to consider the cost of posting IM. Kenyon and

Green also note that under the Basel proposal for bilateral IM all non-cleared deriva-

tives will be required to post IM by 2019, further emphasising the importance of

understanding how to price for such a requirement. The authors assume that IM

cannot be rehypothecated and is funded through the issuance of bonds. In the below

theorem, we add the MVA term directly to Equation 7.4 from Theorem 7.1.

Theorem 7.3. We define εh, gB and gC as follows

gB(M,C) = C + (MB − C)+ +RB(MB − C)−, (7.12)

gC(M,C) = C + (MC − C)− +RC(MC − C)+, (7.13)

and

εh = gB − C + PD
B − ϕK

= εh0 + εhK
(7.14)
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where εh denotes the hedge error between the hedge portfolio and the derivative at

default; PD
B is defined as the post issuer default value of counterparty B’s bond po-

sition; and ϕK is the amount of capital available for funding with ϕ ∈ [0, 1].

The credit risky price of a derivative that satisfies the following boundary problem is

given by F̂ ,

∂F̂

∂t
−rRx∂F̂∂x+1

2
σ2x2 ∂2F̂

∂x2−(r+λB+λC)F̂ = −λBgB−λCgC+sCC+λBεh+γK(t)K−rϕK−sII,

(7.15)

F̂ (T, x) = F (T, x). (7.16)

Equation 7.15 now includes the MVA term sII, which is the cost bank B needs to

include in the derivative price to the client. If we were to apply the Feynman-Kac̆

theorem to Equation 7.15, we would get the same result as we got in Definition 7.2

with exception of an adjustment to the COLVA term. Kenyon and Green adjust

this term to include the additional cost of IM. For good measure we define all of

the adjustments:

Definition 7.4. The adjustment for the risk-free derivative F is given by U, where

M=F,

U(t, s) = CV A+DV A+ FCA+ COLV A+KV A, (7.17)

where

CV A = −
∫ T

t

λC(u)Dr+λB+λC (t, u)EQ
tF (u)−gC(F (u), C(u))du, (7.18)

DV A = −
∫ T

t

λB(u)Dr+λB+λC (t, u)EQ
tF (u)−gB(F (u), C(u))du, (7.19)

FCA = −
∫ T

t

λB(u)Dr+λB+λC (t, u)EQ
tεh(u)du, (7.20)
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COLV A = −
∫ T

t

sC(u)Dr+λB+λC (t, u)EQ
tC(u)du

+

∫ T

t

sI(u)Dr+λB+λC (t, u)EQ
tI(u)du,

(7.21)

KV A = −
∫ T

t

Dr+λB+λC (t, u)EQ
t(γK(u)− r(u)ϕ)K(u) + λBεhKdu, (7.22)

where Dk(t, u) = e−
∫ u
t k(v)dv is the required discount factor.

Theorem 7.3 and Definition 7.4 provide the most comprehensive pricing formula

within the semi-replication framework to date. We do not provide proofs for this

framework as the dissertation focus is on the work of Elouerkhaoui. However, we

have provided a fair portion of the literature review to the said framework for

the benefit of the reader to understand the benefits and downfalls to each pric-

ing method.
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Chapter 8

The Funding Invariance Principle

with XVA - Elouerkhaoui

“The role of genius is not to complicate the simple, but to simplify the complicated.”

- Criss Jami

[Elouerkhaoui 2016a] provides us with the funding invariance principle. He states

that if all the funding cash flows are included in the master equation, then the

choice of discounting rate is irrelevant. He seeks to formalise this theory by proving

a universal funding invariance principle which he uses to work out the FVA term.

His approach is to not change the BSM pricing theory, but to adapt it to price a

more complex payoff. For consistency within this dissertation we diverge slightly

from the notation used in [Elouerkhaoui 2016a]. Elouerkhaoui defines the risk-free

value of a derivative as follows:

Definition 8.1. We define F to be the value of the risk-free derivative without de-

fault risk and funding, then

Ft = EQ
t

[∫ T

t

Dr
t,sdXs

]
, (8.1)

where X is the cumulative dividend process of a generic derivative contract.

Before providing the funding invariance principle, we provide the following proposi-

tion.

Proposition 8.2. (The funding equation) The value of the risk-free derivative with

cash flows from treasury and CSA is given by F,
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Ft = EQ
t

[∫ T

t

Dr
t,sdXs +

∫ T

t

Dr
t,s(r − rV )Vsds+

∫ T

t

Dr
t,s(r − rC)Csds

]
, (8.2)

where the cash account is given by Vt = Ft − Ct.

The following theorem introduces the funding invariance principle which displays

the irrelevance of choosing a discount rate.

Theorem 8.3. Let r∗ be any interest rate process, then the funding equation can be

written equivalently using the discounting with r∗ process,

Ft = EQ
t

[∫ T

t

Dr∗
t,sdXs +

∫ T

t

Dr∗
t,s(r∗ − rV )Vsds+

∫ T

t

Dr∗
t,s(r∗ − rC)Csds

]
. (8.3)

Theorem 8.3 builds off of the risk-free case defined in Defintion 8.1 by adding the

CSA collateral cash flows represented by the third term as well as the treasury

funding cash flows shown by the second term. This is very similar to the method

shown in [Piterbarg 2010], however, Elouerkhaoui uses an expectation approach over

a PDE approach. As we have mentioned, the above funding equation does not

consider default risk, the author caters for this in the following proposition:

Proposition 8.4. (The master equation) The value of the risky derivative with cash

flows from treasury, CSA, and the recovery payments at τ = min(τB, τC) is given

by F̂ ,

F̂t = EQ
t

[∫ T

t

I{τ>s}Dr
t,sdXs

]
+EQ

t

[∫ T

t

I{τ>s}Dr
t,s(r − rV )V̂sds+

∫ T

t

I{τ>s}Dr
t,s(r − rC)Csds

]
+EQ

t

[
I{τ≤T}Dr

t,τCτ + I{τ≤T}Dr
t,τ (V̂

R
τ − V̂τ ) + I{τ≤T}Dr

t,τ F̂
R
τ

]
,

(8.4)

where the recovery payoff post collateral netting is

F̂R
τ = I{τ=τC}

(
RC (Fτ − Cτ )+ + (Fτ − Cτ )−

)
+I{τ=τB}

(
(Fτ − Cτ )+ +RB (Fτ − Cτ )−

)
,

(8.5)

and the recovery payoff of the funding from treasury is

V̂ R
τ = V̂ −τ + V̂ +

τ I{τ=τC} +RV
BV̂

+
τ I{τ=τB}. (8.6)

RV
B is the recovery rate on the funding B receives, if B were to default and the

derivative was in the money for B.
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Let us consider the right-hand side of Equation 8.4. The first term represents the

derivatives’ risk-free cash flows as per the ISDA contract; the second and the third

term represent the CSA funding and the treasury funding respectively. The fourth,

fifth, and the sixth terms represent the credit risky portion of the master equa-

tion. More specifically, the fourth term represents the exchange of margin Cτ when

a default occurs and the sixth term represents the CVA and DVA for the trading

desk. The closeout function represented by V̂ R
τ is identical to the closeout function

g shown in [Burgard and Kjaer 2012b] for the risk-free closeout case. The fifth term

represents the Fair-Value Option (FVO) debt CVA for the treasury desk, which is

essentially the DVA term for the treasury desk on their debt issuances.

Proposition 8.4 is the master equation for the entire bank which can be split up

into two parts for the trading desk and the treasury. Elouerkhaoui shows us which

portions of Equation 8.4 are relevant to each division:

Definition 8.5. (The master equation) The value of the risky derivative on the

banks balance sheet defined as F̂ ,

F̂t = F̂Desk
t + F̂ Treasury

t , (8.7)

where F̂Desk
t is given by

F̂Desk
t = EQ

t

[∫ T

t

I{τ>s}Dr
t,sdXs

]
+ EQ

t

[∫ T

t

I{τ>s}Dr
t,s(r − rC)Csds

]
+ EQ

t

[∫ T

t

I{τ>s}Dr
t,s(r − rV )V̂sds

]
+ EQ

t

[
I{τ≤T}Dr

t,τCτ + I{τ≤T}Dr
t,τ F̂

R
τ

]
,

(8.8)

and F̂ Treasury
t is given by

F̂ Treasury
t = − EQ

t

[∫ T

t

I{τ>s}Dr
t,s(r − rV )V̂sds

]
+ EQ

t

[∫ T

t

I{τ>s}Dr
t,s(r − rV )V̂sds+ I{τ≤T}Dr

t,τ (V̂
R
τ − V̂τ )

]
.

(8.9)

RV
B is the recovery rate on the funding B receives if B were to default and the deriva-

tive was in the money for B.
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It is FDesk
t we are most interested in. The following theorem provides the funding

invariance principle with default risk :

Theorem 8.6. Let r∗ be any interest rate process, then the master funding eqaution

with default risk can be written equivalently using the discounting with r∗ process,

F̂Desk
t = EQ

t

[∫ T

t

I{τ>s}Dr∗
t,sdXs

]
+ EQ

t

[∫ T

t

I{τ>s}Dr∗
t,s(r∗ − rC)Csds

]
+ EQ

t

[∫ T

t

I{τ>s}Dr∗
t,s(r∗ − rV )V̂sds

]
+ EQ

t

[
I{τ≤T}Dr∗

t,τCτ + I{τ≤T}Dr∗
t,τ F̂

R
τ

]
,

(8.10)

where the funding account is given by V̂t = F̂Desk
t − Ct.

Elouerkhaoui shows that by assuming a funded Present Value (PV), the funding

invariance principle reduces to the following:

Theorem 8.7. The value of the trade with default risk, margining, CSA funding,

and unsecured treasury funding is provided by

F̂Desk
t = Ft − CV At −DV At, (8.11)

CV At = EQ
t

[
I{τ≤T}I{τ=τC}D

rv
t,τ (1−RC)(Fτ − Cτ )+

]
, (8.12)

DV At = EQ
t

[
I{τ≤T}I{τ=τB}D

rv
t,τ (1−RB)(Fτ − Cτ )−

]
, (8.13)

Ft = EQ
t

[∫ T

t

DrV
t,sdXs +

∫ T

t

Drv
t,s(rV − rC)Csds

]
, (8.14)

where the default-free PV of the trade Vt is the solution to the funding equation.

Elouerkhaoui uses a symmetric treasury funding rate and argues against the use

of asymmetric funding rates. Elouerkhaoui claims that generally asymmetric fund-

ing rates make sense for short-term transactions. The long-term funding rates get

charged at a fixed rate determined by the issuance level at the time of the desks fund-

ing requirements. Both [Brigo, Morini and Pallavicini 2013] and [Burgard and Kjaer 2012b]

choose to use asymmetric funding rates. The author provides insight to FVO debt
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CVA and compares it to FVA. He draws the conclusion that we can treat FVO

debt CVA in a similar fashion to what [Hull and White 2012b] calls DVA2. The key

difference between [Hull and White 2012b] and

[Elouerkhaoui 2016a] on this topic is that DVA2 or FVO debt CVA does not com-

pletely offset FVA, therefore we cannot choose to ignore FVA on the premise pro-

vided by [Hull and White 2012b]. Elouerkhaoui proceeds to show that FVO debt

CVA simply marks the bonds back to market and not back to face value.

[Elouerkhaoui 2016b] expands the master pricing equation by including the MVA

and KVA terms. He then derives the funding invariance principle within this ex-

tended framework. The following proposition builds onto the master equation pre-

sented in Proposition 8.4. Elouerkhaoui includes the cash flows associated with IM

for a CSA or a CCP traded derivative. [Elouerkhaoui 2016b] mainly considers the

value of the derivative from the trading desk’s perspective and not treasury. It must

also be noted that the framework to be presented is applicable to banks following

the Internal Model Method (IMM).

Proposition 8.8. (The master equation) If we are posting or recieving IM on a

derivative, then the value of the risky derivative with cash flows from treasury, CSA,

and the recovery payments at τ = min(τB, τC) is given by F̂ ,

F̂t = EQ
t

[∫ T

t

I{τ>s}Dr
t,sdXs +

∫ T

t

I{τ>s}Dr
t,s(r − rC)(Cs + Is)ds

]
+ EQ

t

[∫ T

t

I{τ>s}Dr
t,s(r − rV )V̂sds

]
+ EQ

t

[
I{τ≤T}Dr

t,τ (Cτ + Iτ ) + I{τ≤T}Dr
t,τ F̂

R
τ

]
,

(8.15)

where the funding account is given by

V̂t = F̂t − (Ct + It), It = Ibt + ICt , (8.16)

and IBt ≤ 0, ICt ≥ 0 ∀t < τ . The recovery payoff, post collateral, and margin

netting is given by F̂ ,

F̂R
τ = I{τ=τC}

(
RC(ατ )

+ + (ατ )
−)

+ I{τ=τB}
(
(ατ )

+ +RB(ατ )
−) , (8.17)

where ατ = Fτ − (Cτ + Iτ ).
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The final adjustment made to the master equation is the addition of the KVA term.

This ensures that the trading desk covers the lifetime cost of capital in the economic

value of the derivative.

Proposition 8.9. If we include the lifetime cost of regulatory capital in the master

pricing equation, then the total value of the trade becomes

F̂t = EQ
t

[∫ T

t

I{τ>s}Dr
t,sdXs +

∫ T

t

I{τ>s}Dr
t,s(r − rC)(Cs + Is)ds

]
+ EQ

t

[∫ T

t

I{τ>s}Dr
t,s(r − rV )V̂sds+

∫ T

t

I{τ>s}Dr
t,s(r − rK)Ksds

]
+ EQ

t

[
I{τ≤T}Dr

t,τ (Cτ + Iτ ) + I{τ≤T}Dr
t,τ F̂

R
τ

]
,

(8.18)

where the funding account is given by

V̂t = F̂t − (Ct + It)−Kt, It = Ibt + ICt , (8.19)

and IBt ≤ 0, ICt ≥ 0 ∀t < τ , and the Basel III regulatory capital is

Kt = KMR
t +KCCR

t +KCV AV AR
t . (8.20)

Elouerkhaoui shows Kt to encompass all aspects of the banks risk capital charges.

MR = Market Risk charge and CCR = Counterparty Credit Risk charge, and

recently added by Basel regulation, the CV AV AR charge. It must also be noted that

the above proposition highlights that debt funding from treasury is now accompanied

by capital funding from shareholders. By replacing all of the r terms above with r∗

terms and discounting, using r∗ brings us to the funding invariance principle inclusive

of MVA and KVA. We provide a proof of this result in Part III of the dissertation.

The solution to the master equation is presented in the following proposition. Once

again we replace r with rV which results in the removal of the FVA term.

Definition 8.10. The value of the derivative with default risk, margining, CSA

funding, and unsecured funding sourced from treasury, IM, as well as regulatory

capital is defined as

F̂t = Ft − CV At −DV At −MVAt −KV At, (8.21)

where
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CV At = EQ
t

[
I{τ≤T}I{τ=τC}D

rV
t,τ (1−RC)(F̂τ − Cτ − Iτ )+

]
, (8.22)

DV At = EQ
t

[
I{τ≤T}I{τ=τB}D

rV
t,τ (1−RB)(F̂τ − Cτ − Iτ )−

]
, (8.23)

MVAt = EQ
t

[∫ T

t

I{τ>s}DrV
t,s (rV − rC)Isds

]
, (8.24)

KV At = EQ
t

[∫ T

t

I{τ>s}DrV
t,s (rV − rK)Ksds

]
, (8.25)

and the default-free present value of the trade is Ft which is the solution of the

following equation

Ft = EQ
t

[∫ T

t

DrV
t,sdXs +

∫ T

t

DrV
t,s (rV − rC)Csds

]
. (8.26)

As we saw in Definition 7.4, [Kenyon, Green and Dennis 2016] provide a very similar

KVA solution to what Elouerkhaoui presents, they simply leave the adjustment as

an FVA term as opposed to altering the discount factor. Elouerkhaoui shows how

to compute the KVA expectation in its three different forms, Kt = KMR
t +KCCR

t +

KCV AV AR
t . We find [Kenyon, Green and Dennis 2016] and [Kenyon and Green 2015]

to be two of the more practical papers of the vast amount of literature in XVA pricing

and have chosen to explore the theory and proofs of Elouerkhaoui’s work in Part III

of this dissertation.
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Part III

Mathematical Preliminaries
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Chapter 9

The Funding Invariance Principle

“No human investigation can claim to be scientific if it doesn’t pass the test of math-

ematical proof.” - Leonardo da Vinci

In this chapter we refer to the work done in [Elouerkhaoui 2016a]. We start by

defining the principals associated with the funding invariance principle:

1. There is no need for a new arbitrage-free pricing theory;

2. The same risk-neutral measure and the same money market account numeraire

is applicable;

3. The final payoff is now more complicated and must be articulated correctly;

and

4. All default contingent legs and funding legs are included in the pricing formula.

We define the cash flows associated with a derivative trade. The three contracts

that determine a derivative’s cash flows are:

1. ISDA contract to govern the standard cash flows associated with the deriva-

tive;

2. CSA agreement to govern the usually daily collateral payments or receipts;

and

3. The internal agreement between treasury and the trading desk.
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To fully appreciate the framework of the funding invariance principle, one must be

aware of all the cash flows associated with a derivative trade within a banks infras-

tructure. With regard to the cash flows governed by the ISDA agreement, the desk

receives F (t) at t and pays F (T ) at T . The desk will deposit F (t) with the money

market and will receive F (t)(1 + rdt) at t + dt. If the trade has a CSA agreement

and considering the cash flows of F (t), then the desk will pay C(t) at t and receive

c(t)(1+rCdt) at t+dt. The desk would receive C(t) from the money market and pay

back C(t)(1 + rdt) at t+ dt. The differential between F (t) and C(t) will determine

the role of treasury in the cash flows of the derivative. The desk pays (F (t)−C(t))

to treasury at t and receives (F (t)− C(t))(1 + rFdt) at t+ dt. Simultaneously, the

desk is funded (F (t) − C(t)) at t and pay (F (t) − C(t))(1 + rdt). Considering the

money market cash flows at time t, we have

−F (t) + C(t) + (F (t)− C(t)) = 0. (9.1)

At time t+ dt we then have

F (t)(1 + rdt)− C(t)(1 + rdt)− (F (t)− C(t))(1 + rdt) = 0. (9.2)

Clearly 1+rdt falls away, leaving us only with the funding and the funding rates paid

or received by the CSA and treasury. Recall Elouerkhaoui assumes that both bank

B and counterparty C cannot default at the same time, therefore τ = min(τB, τC).

Further to this, another assumption we recall is that the closeout value is denoted

by Θτ = Fτ and is considered to be the value of the contract without counterparty

risk but including funding costs at τ . We first consider the funding equation and the

dymanics of the cash accounts that make up its components. We recall the funding

equation from [Elouerkhaoui 2016a]:

Proposition 9.1. (The funding equation) The value of the risk-free derivative with

cash flows from treasury and CSA is given by F,

Ft = EQ
t

[∫ T

t

Dr
t,sdXs +

∫ T

t

Dr
t,s(r − rV )Vsds+

∫ T

t

Dr
t,s(r − rC)Csds

]
, (9.3)

where the cash account is given by Vt = Ft − Ct.
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We start with the derivation of term three in Equation 9.3, the CSA funding com-

ponent. We refer to [Elouerkhaoui 2014] for the proof.

Proof. In order for us to show the derivation of the funding equation we need to

define the cash account and its dynamics. We define the collateral account as the

sum of variation margins and interest paid on the cash in the account

ACt = Ct + EQ
t

[∫ T

t

Dr
t,sdη

C
s

]
, (9.4)

where we have the following boundary problem

dηCt = dCt − rCCtdt,

CT = 0.
(9.5)

By substituting dηCt = dCt − rtCtdt into EQ
t

[∫ T
t
Dr
t,sdη

C
s

]
we get

ACt = Ct + EQ
t

[∫ T

t

Dr
t,sdCs −

∫ T

t

rCD
r
t,sCsds

]
, (9.6)

where we solve
∫ T
t
Dr
t,sdCs using integration by parts. The result is as follows

∫ T

t

Dr
t,sdCs = − Ct +Dr

t,TCT −
∫ T

t

CsdD
r
t,s,

= − Ct +

∫ T

t

rCsD
r
t,sds.

(9.7)

Lastly, we substitute the result of Equation 9.7 into Equation 9.6 which gives us the

CSA funding term shown as the third term in funding Equation 9.3,

ACt =

∫ T

t

Dr
t,s(r − rC)Csds. (9.8)

We now consider term two of Equation 9.3, the treasury funding component. We

define the treasury funding account as

AVt = Vt + EQ
t

[∫ T

t

Dr
t,sdη

V
s

]
, (9.9)
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where we have the following boundary problem

dηVt = dVt − rV Vtdt,

VT = 0,

Vt = Ft − Ct, ∀ t < T.

(9.10)

Following the same reasoning used in the CSA funding proof, we obtain the below

result

AVt =

∫ T

t

Dr
t,s(r − rV )Vsds. (9.11)

The first term is defined as the value of the risk-free derivative as per Definition 8.1 in

Chapter 8. Which concludes our derivation of Elouerkhaoui’s funding equation. We

now look to the funding invariance principle. We work through the proof provided

in [Elouerkhaoui 2014]. Let us first define the risk neutral valuation formula taken

from [Björk 2009] Theorem 10.19 as well as Definition 2.4.

Definition 9.2. A probability measure Q is called a martingale measure if the fol-

lowing condition holds

Π(t,X) = EQ
[
e−

∫ T
t r(s)dsX‖Ft

]
, (9.12)

with the money market account Dr
t,T = e−

∫ T
t r(s)ds as the numeraire.

We provide the funding invariance principle theorem with proof.

Theorem 9.3. Let r∗ be any interest rate process, then the funding equation can be

written equivalently using the discounting with r∗ process,

Ft = EQ
t

[∫ T

t

Dr∗
t,sdXs +

∫ T

t

Dr∗
t,s(r∗ − rV )Vsds+

∫ T

t

Dr∗
t,s(r∗ − rC)Csds

]
, (9.13)

where the funding account is given by Vt = Ft − Ct.
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Proof. To begin we define dX̃r
s as the sum of all the cash flows associated with the

derivative.

dX̃r
s = dXs + (r − rC)Csds+ (r − rV )Vsds. (9.14)

By substituting process dX with dX̃r, we get

dX̃r
s = dXs + (r − rC)Csds+ (r − rV )Vsds, (9.15)

Ft = EQ
t

[∫ T

t

Dr
t,sdX̃

r
s

]
. (9.16)

Which becomes the funding equation if we expand dX̃r. We define process Art as

Art = Dr
0,tFt +

∫ t

0

Dr
0,sdX̃

r
s . (9.17)

We wish to show that Art is a martingale. By substituting Equation 9.16 into 9.17

we get the following,

Art = Dr
0,tEQ

t

[∫ T

t

Dr
t,sdX̃

r
s

]
+

∫ t

0

Dr
0,sdX̃

r
s

= EQ
t

[∫ T

0

Dr
0,sdX̃

r
s

]
= EQ

t [ArT ] .

(9.18)

Therefore in accordance with the condition provided in Definition 9.2, Q is a mar-

tingale measure and Art is a martingale. We now write Art as a differential,

dArt = Dr
0,t

[
−rFtdt+ dFt + dX̃r

t

]
. (9.19)

Given the result of dArt , we can introduce dAr∗t as

dAr∗t = Dr∗
0,t

[
−r∗Ftdt+ dFt + dX̃r∗

t

]
. (9.20)

Recall our definition of dX̃r
t , similarly we define dX̃r∗

t as

dX̃r∗
t = dXs + (r∗ − rC)Ctdt+ (r∗ − rV )Vtdt, (9.21)
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by subtracting dX̃r
t from both sides we get the following result

dX̃r∗
t = dX̃r

t + (r∗ − r)Ctdt+ (r∗ − r)Vtdt. (9.22)

Lastly we are required to show Ar∗t is a martingale ∀ t < T

dAr∗t = Dr∗
0,t

[
−r∗Ftdt+ dFt + dX̃r∗

t

]
= Dr∗

0,t

[
−r∗Ftdt+ dFt + dX̃r

t + (r∗ − r)Ctdt+ (r∗ − r)Vtdt
]

= Dr∗
0,t

[
−r∗Ftdt+ dFt +

[
dX̃r

t + (r∗ − r)(Ct + Vt)dt
]]
,

(9.23)

we now add (r − r)Ftdt to the equation

dAr∗t = Dr∗
0,t

[
−r∗Ftdt+ (r − r)Ftdt+ dFt +

[
dX̃r

t + (r∗ − r)(Ct + Vt)dt
]]

= Dr∗
0,t

[
−rFtdt+ (r − r∗)Ftdt+ dFt +

[
dX̃r

t + (r∗ − r)(Ct + Vt)dt
]]
,

(9.24)

by collecting like terms we have the following result

dAr∗t = Dr∗
0,t

[
(r − r∗) [Ft − Ct − Vt] dt− rFtdt+ dFt + dX̃r

t

]
. (9.25)

Recall Vt = Ft − Ct hence Ft − Ct − Vt reduces to 0. In addition, earlier we defined

dArt = Dr
0,t

[
−rFtdt+ dFt + dX̃r

t

]
, therefore

dAr∗t = Dr∗
0,t

[
(r − r∗)0−

dArt
Dr

0,t

]
=
Dr∗

0,t

Dr
0,t

dArt .

(9.26)

The above result shows Ar∗t is also a martingale. Using Definition 9.2, Ar∗t can be

written as

Ar∗t = EQ
t [Ar∗T ]

= EQ
t

[∫ T

0

Dr∗
0,sdX̃

r∗
s

]
.

(9.27)
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The funding invariance principle we have provided and proved in this chapter only

considers the risk-free price and the funding implications of a derivative under CSA

including funding costs. We now provide the master equation which builds off of

the funding equation from Proposition 9.1.

Proposition 9.4. (The master equation) The value of a credit risky derivative with

cash flows from treasury, CSA, and the recovery payments at τ = min(τB, τC) is

given by F̂ , then

F̂t = EQ
t

[∫ T

t

I{τ>s}Dr
t,sdXs

]
+ EQ

t

[∫ T

t

I{τ>s}Dr
t,s(r − rV )V̂sds+

∫ T

t

I{τ>s}Dr
t,s(r − rC)Csds

]
+ EQ

t

[
I{τ≤T}Dr

t,τCτ + I{τ≤T}Dr
t,τ (V̂

R
τ − V̂τ ) + I{τ≤T}Dr

t,τ F̂
R
τ

]
,

(9.28)

where the recovery payoff post collateral netting is

F̂R
τ = I{τ=τC}

(
RC (Fτ − Cτ )+ + (Fτ − Cτ )−

)
+ I{τ=τB}

(
(Fτ − Cτ )+ +RB (Fτ − Cτ )−

)
,

(9.29)

and the recovery payoff of the funding from treasury is

V̂ R
τ = V̂ −τ + V̂ +

τ I{τ=τC} +RV
BV̂

+
τ I{τ=τB}. (9.30)

RV
B is the recovery rate on the funding B receives if B were to default and the deriva-

tive was in the money for B.

Recall F̂t = F̂Desk
t + F̂ Treasury

t , where F̂Desk
t is given by

F̂Desk
t = EQ

t

[∫ T

t

I{τ>s}Dr
t,sdXs

]
+ EQ

t

[∫ T

t

I{τ>s}Dr
t,s(r − rC)Csds

]
+ EQ

t

[∫ T

t

I{τ>s}Dr
t,s(r − rV )V̂sds

]
+ EQ

t

[
I{τ≤T}Dr

t,τCτ + I{τ≤T}Dr
t,τ F̂

R
τ

]
,

(9.31)

We refer to [Elouerkhaoui 2014] for the proof of F̂Desk
t , but for the sake of simplicity

we refer to F̂Desk
t as F̂t going forward. Further to this, we assume default of both

counterparties is independent and they cannot default simultaneously.
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Theorem 9.5. Let r∗ be any interest rate process, then the master funding equation

with default risk can be written equivalently using the discounting with r∗ process,

F̂t = EQ
t

[∫ T

t

I{τ>s}Dr∗
t,sdXs

]
+ EQ

t

[∫ T

t

I{τ>s}Dr∗
t,s(r∗ − rC)Csds

]
+ EQ

t

[∫ T

t

I{τ>s}Dr∗
t,s(r∗ − rV )V̂sds

]
+ EQ

t

[
I{τ≤T}Dr∗

t,τCτ + I{τ≤T}Dr∗
t,τ F̂

R
τ

]
,

(9.32)

where the funding account is given by V̂t = F̂t − Ct.

Proof. Since we are working with a risky derivative, we need to consider what the

payoff will be at default. We define ξτ as

ξτ = Cτ + F̂R
τ , (9.33)

where Cτ is the margin account and F̂R
τ is the recovery payoff after netting with

the margin. Similar to our proof of the invariance funding principle, we use dX̃r
s to

represent all the cash flows associated with the derivative,

dX̃r
s = dXs + (r − rC)Csds+ (r − rV )Vsds. (9.34)

If we join Equation 9.33 and 9.34 we get the value of the risky derivative F̂t at time

t as

F̂t = EQ
t

[∫ T

t

I{τ>s}Dr
t,sdX̃

r
s

]
+ EQ

t

[∫ T

t

Dr
t,sξsdP

τ
s

]
. (9.35)

The first term of the right-hand side of Equation 9.35 consists of the risk-free and

funding components of the value of Ft. The second term is the credit risky portion of

the derivative where we define dP τ as the instantaneous default probability process

where there is no default up until τ .

We define process Ârt as

Ârt = Dr
0,tF̂t +

∫ t

0

I{τ>s}Dr
0,sdX̃

r
s +

∫ t

0

Dr
0,sξsdP

τ
s . (9.36)
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We wish to show that Ârt is a martingale. We start by substituting Equation 9.35

into 9.36.

Ârt = Dr
0,t

[
EQ

t

[∫ T

t

I{τ>s}Dr
t,sdX̃

r
s

]
+ EQ

t

[∫ T

t

Dr
t,sξsdP

τ
s

]]
+

∫ t

0

I{τ>s}Dr
0,sdX̃

r
s +

∫ t

0

Dr
0,sξsdP

τ
s

= EQ
t

[∫ T

0

I{τ>s}Dr
0,sdX̃

r
s +

∫ T

0

Dr
0,sξsdP

τ
s

]
.

= EQ
t

[
ÂrT

]
(9.37)

Once again we refer to Definition 9.2 to conclude Q is a martingale measure and

therefore Ârt is a martingale. We differentiate Ârt with respect to t

dArt = Dr
0,t

[
−rFtdt+ dFt + dX̃r

t

]
. (9.38)

Given the result of dArt , we can introduce dAr∗t as

dAr∗t = Dr∗
0,t

[
−r∗Ftdt+ dFt + dX̃r∗

t

]
. (9.39)

Recall our definition of dX̃r
t , similarly we define dX̃r∗

t as

dX̃r∗
t = dXs + (r∗ − rC)Ctdt+ (r∗ − rV )Vtdt, (9.40)

by subtracting dX̃r
t from both sides we get the following result

dX̃r∗
t = dX̃r

t + (r∗ − r)Ctdt+ (r∗ − r)Vtdt. (9.41)

Lastly we are required to show Ar∗t is a martingale ∀ t < T

dAr∗t = Dr∗
0,t

[
−r∗Ftdt+ dFt + dX̃r∗

t

]
= Dr∗

0,t

[
−r∗Ftdt+ dFt + dX̃r

t + (r∗ − r)Ctdt+ (r∗ − r)Vtdt
]

= Dr∗
0,t

[
−r∗Ftdt+ dFt +

[
dX̃r

t + (r∗ − r)(Ct + Vt)dt
]]
,

(9.42)

we now add (r − r)Ftdt to the equation,
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dAr∗t = Dr∗
0,t

[
−r∗Ftdt+ (r − r)Ftdt+ dFt +

[
dX̃r

t + (r∗ − r)(Ct + Vt)dt
]]

= Dr∗
0,t

[
−rFtdt+ (r − r∗)Ftdt+ dFt +

[
dX̃r

t + (r∗ − r)(Ct + Vt)dt
]]
,

(9.43)

by collecting like terms we have the following result

dAr∗t = Dr∗
0,t

[
(r − r∗) [Ft − Ct − Vt] dt− rFtdt+ dFt + dX̃r

t

]
. (9.44)

Recall Vt = Ft − Ct hence Ft − Ct − Vt reduces to 0. In addition, earlier we defined

dArt = Dr
0,t

[
−rFtdt+ dFt + dX̃r

t

]
, therefore

dAr∗t = Dr∗
0,t

[
(r − r∗)0−

dArt
Dr

0,t

]
=
Dr∗

0,t

Dr
0,t

dArt .

(9.45)

The above result shows Ar∗t is a martingale. Using Definition 9.2, Ar∗t can be written

as

Ar∗t = EQ
t [Ar∗T ]

= EQ
t

[∫ T

0

I{τ>s}Dr∗
0,sdX̃

r∗
s +

∫ T

0

Dr∗
0,sξsdP

τ
s

]
.

(9.46)

We have provided the proof for the funding invariance principle with and without

default risk. We now use the funding invariance principle to provide the solution to

the master CVA equation with funding. The master CVA equation with funding is

equivalent to the value of a default risky derivative with funding from the trading

desk’s perspective. We refer to [Elouerkhaoui 2014] for most of our workings. We

start by splitting the trading desk’s portion of the funding invariance principle into

two components and substitute r∗ for rV . Which provides us with

Risk-free funded (base) PV

Ft = EQ
t

[∫ T

t

DrV
t,sdXs

]
+ EQ

t

[∫ T

t

DrV
t,s (rV − rC)Csds

]
. (9.47)
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Clearly we no longer have a funding adjustment term and the base PV focuses on

the default free portion of the derivative. We now add the CVA portion to the

funded base PV to get

Risky funded (margined) PV

F̂t = EQ
t

[∫ T

t

I{τ>s}DrV
t,sdXs

]
+ EQ

t

[∫ T

t

I{τ>s}DrV
t,s (rV − rC)Csds

]
+ EQ

t

[
I{τ≤T}DrV

t,τCτ + I{τ≤T}DrV
t,τ F̂

R
τ

]
,

(9.48)

which is referred to as the funded margined CVA in [Elouerkhaoui 2016a] and pro-

vides the price for a funded risky derivative with collateral from the desk’s perspec-

tive. This leads us to the following theorem with proof.

Theorem 9.6. (Funded margined CVA) The price of a credit risky derivative for

the trading desk with margining, CSA funding, and unsecured funding from treasury

is given by F̂t

F̂t = Ft − CV At −DV At, (9.49)

CV At = EQ
t

[
I{τ≤T}I{τ=τC}D

rV
t,τ (1−RC)(Fτ − Cτ )+

]
, (9.50)

DV At = EQ
t

[
I{τ≤T}I{τ=τB}D

rV
t,τ (1−RB)(Fτ − Cτ )−

]
, (9.51)

where Ft is the solution to the default-free funded base PV equation,

Ft = EQ
t

[∫ T

t

DrV
t,sdXs

]
+ EQ

t

[∫ T

t

DrV
t,s (rV − rC)Csds

]
. (9.52)

Proof. Define F rV
t and F

(rV −rC)
t as the value of a derivative without CSA funding

and with CSA funding respectively. Assume both derivative to not carry any default

risk. We then have

F rV
t = EQ

t

[∫ T

t

DrV
t,sdXs

]
, (9.53)

and

F
(rV −rC)
t = EQ

t

[∫ T

t

DrV
t,s (rV − rC)Csds

]
. (9.54)

Then the value of the funded PV without default risk is given by

Ft = F rV
t + F

(rV −rC)
t . (9.55)
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We now include the survival indicator in equations 9.53 and 9.54 to get

EQ
t

[∫ T

t

I{τ>s}DrV
t,sdXs

]
= F rV

t − EQ
t

[
I{τ≤T}DrV

t,τF
rV
τ

]
, (9.56)

and

EQ
t

[∫ T

t

I{τ>s}DrV
t,s (rV − rC)Csds

]
= F

(rV −rC)
t −EQ

t

[
I{τ≤T}DrV

t,τF
(rv−rc)
τ

]
. (9.57)

Sum equation 9.56 and 9.57 together to get

EQ
t

[∫ T

t

I{τ>s}DrV
t,sdXs

]
+EQ

t

[∫ T

t

I{τ>s}DrV
t,s (rV − rC)Csds

]
= Ft−EQ

t

[
I{τ≤T}DrV

t,τFτ
]
.

(9.58)

We substitute equation 9.58 into equation 9.48 to get

F̂t = Ft − EQ
t

[
I{τ≤T}DrV

t,τFτ
]

+ EQ
t

[
I{τ≤T}DrV

t,τCτ + I{τ≤T}DrV
t,τ F̂

R
τ

]
= Ft − EQ

t

[
I{τ≤T}DrV

t,τ (Fτ − Cτ )
]

+ EQ
t

[
I{τ≤T}DrV

t,τ F̂
R
τ

]
.

(9.59)

Recall, F̂R
τ represents the recovery payoff for the risky derivative and is represented

by Equation 9.29. We substitue Equation 9.29 into 9.59

F̂t = Ft − EQ
t

[
I{τ≤T}DrV

t,τ (Fτ − Cτ )
]

+ EQ
t

[
I{τ≤T}I{τ=τC}D

rV
t,τ

(
RC (Fτ − Cτ )+ + (Fτ − Cτ )−

)]
+ EQ

t

[
I{τ≤T}I{τ=τB}D

rV
t,τ

(
(Fτ − Cτ )+ +RB (Fτ − Cτ )−

)]
,

(9.60)

through re-arranging and knowing that (Fτ − Cτ )− = (Fτ − Cτ ) − (Fτ − Cτ )+, we

get

F̂t = Ft − EQ
t

[
I{τ≤T}DrV

t,τ (Fτ − Cτ )
]

+ EQ
t

[
I{τ≤T}I{τ=τC}D

rV
t,τ

(
RC (Fτ − Cτ )+ + (Fτ − Cτ )− (Fτ − Cτ )+)]

+ EQ
t

[
I{τ≤T}I{τ=τB}D

rV
t,τ

(
(Fτ − Cτ )− (Fτ − Cτ )− +RB (Fτ − Cτ )−

)]
= Ft − EQ

t

[
I{τ≤T}DrV

t,τ

(
(Fτ − Cτ )− I{τ=τC}(Fτ − Cτ )− I{τ=τB}(Fτ − Cτ )

)]
+ EQ

t

[
I{τ≤T}I{τ=τC}D

rV
t,τ

(
RC (Fτ − Cτ )+ − (Fτ − Cτ )+)]

+ EQ
t

[
I{τ≤T}I{τ=τB}D

rV
t,τ

(
− (Fτ − Cτ )− +RB (Fτ − Cτ )−

)]
= Ft − EQ

t

[
I{τ≤T}I{τ=τC}D

rV
t,τ

(
(1−RC)(Fτ − Cτ )+

)]
− EQ

t

[
I{τ≤T}I{τ=τB}D

rV
t,τ

(
(1−RB)(Fτ − Cτ )−

)]
,
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(9.61)

which gives the result

F̂t = Ft − CV At −DV At. (9.62)

Theorem 9.6 provides us with with a practical pricing equation for pricing a risky

derivative. The assumptions one must consider when using this formula are:

1. No wrong-way risk is considered;

2. Bank B and counterparty C cannot default simultaneously;

3. The closeout amount at default is the risk-free value; and

4. Default between the two entities is completely independent.

If we had to consider a funded PV for closeout using each bank’s respective cost of

funding, as per [ISDA 2009], then the solution from Theorem 9.6, would be

CV At = EQ
t

[
I{τ≤T}I{τ=τC}D

rV,B
t,τ (1−RC)(FB

τ − Cτ )+
]
, (9.63)

DV At = EQ
t

[
I{τ≤T}I{τ=τB}D

rV,C
t,τ (1−RB)(FC

τ − Cτ )−
]

+ EQ
t

[
I{τ≤T}I{τ=τB}D

rV,C
t,τ (FB

τ − FC
τ )−

] , (9.64)

with the risk-free funded PVs as

FB
t = EQ

t

[∫ T

t

D
rV,B
t,s dXs +

∫ T

t

D
rV,B
t,s (rV,B − rC)Csds

]
, (9.65)

FC
t = EQ

t

[∫ T

t

D
rV,C
t,s dXs +

∫ T

t

D
rV,C
t,s (rV,C − rC)Csds

]
. (9.66)
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Chapter 10

From FVA to KVA

“Small minds are concerned with the extraordinary, great minds with the ordinary.”

- Blaise Pascal

We refer to [Elouerkhaoui 2016b] throughout this chapter for the required proposi-

tions, theorems, and proofs. Before we provide a proof for the invariance principle

with IM and capital costs, let us revaluate some of the propositions that build up to

the invariance principle formula. The following proposition is the master equation

with IM.

Proposition 10.1. (The master equation) If we are posting or receiving IM on a

derivative, then the value of a credit risky derivative with cash flows from treasury,

CSA and the recovery payments at τ = min(τB, τC), is given by F̂

F̂t = EQ
t

[∫ T

t

I{τ>s}Dr
t,sdXs +

∫ T

t

I{τ>s}Dr
t,s(r − rC)(Cs + Is)ds

]
+ EQ

t

[∫ T

t

I{τ>s}Dr
t,s(r − rV )V̂sds

]
+ EQ

t

[
I{τ≤T}Dr

t,τ (Cτ + Iτ ) + I{τ≤T}Dr
t,τ F̂

R
τ

]
,

(10.1)

where the funding account is given by

V̂t = F̂t − (Ct + It), It = IBt + ICt , (10.2)

and IBt ≤ 0, ICt ≥ 0 ∀t < τ . The recovery payoff, post collateral, and margin

netting is given by

F̂R
τ := I{τ=τC}

(
RC(ατ )

+ + (ατ )
−)

+ I{τ=τB}
(
(ατ )

+ +RB(ατ )
−) , (10.3)
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where ατ = Fτ − (Cτ + Iτ ).

Proposition 10.1 is identical to Proposition 9.4 with the exception of replacing all

Ct terms with Ct + It where It = IBt + ICt . This only stands for the case where there

is no segregation of both IM and VM. Next we consider how the master equation

evolves when the cost of regulatory capital is considered

Proposition 10.2. If we include the lifetime cost of regulatory capital in the master

pricing equation, then the total value of the trade becomes

F̂t = EQ
t

[∫ T

t

I{τ>s}Dr
t,sdXs +

∫ T

t

I{τ>s}Dr
t,s(r − rC)(Cs + Is)ds

]
+ EQ

t

[∫ T

t

I{τ>s}Dr
t,s(r − rV )V̂sds+

∫ T

t

I{τ>s}Dr
t,s(r − rK)Ksds

]
+ EQ

t

[
I{τ≤T}Dr

t,τ (Cτ + Iτ ) + I{τ≤T}Dr
t,τ F̂

R
τ

]
,

(10.4)

where the funding account is given by

V̂t = F̂t − (Ct + It)−Kt, It = Ibt + ICt , (10.5)

and IBt ≤ 0, ICt ≥ 0 ∀t < τ , and the Basel III regulatory capital is

Kt = KMR
t +KCCR

t +KCV AV AR
t . (10.6)

The above propositions provide the basis for the invariance principle for funding,

CVA and cost of capital. The theorem is provided as per [Elouerkhaoui 2016b].

Theorem 10.3. Let r∗ be any interest rate process, then the master funding equa-

tion with default risk, IM, and the cost of capital can be written equivalently using

the discounting with r∗ process,

F̂t = EQ
t

[∫ T

t

I{τ>s}Dr∗
t,sdXs +

∫ T

t

I{τ>s}Dr∗
t,s(r∗ − rC)(Cs + Is)ds

]
+ EQ

t

[∫ T

t

I{τ>s}Dr∗
t,s(r∗ − rV )V̂sds+

∫ T

t

I{τ>s}Dr∗
t,s(r∗ − rK)Ksds

]
+ EQ

t

[
I{τ≤T}Dr∗

t,τ (Cτ + Iτ ) + I{τ≤T}Dr∗
t,τ F̂

R
τ

]
,

(10.7)

where the funding account is given by

V̂t = F̂t − (Ct + It)−Kt, It = Ibt + ICt , (10.8)
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and IBt ≤ 0, ICt ≥ 0 ∀t < τ , and the Basel III regulatory capital is

Kt = KMR
t +KCCR

t +KCV AV AR
t . (10.9)

Proof. The proof for Theorem 10.3 shares much of the same reasoning as the proof

we provided for Theorem 9.5. However, in this instance we are required to use Ct+It

for each Ct shown in the proof for Theorem 9.5. Further to this, to accomodate for

the addition of regulatory capital we need to redefine dX̃r
s as

dX̃r
s = dXr

s + (r − rC)(Cs + It)ds+ (r − rV )Vsds+ (r − rK)Ksds. (10.10)

By following the same steps as the proof provided for Theorem 9.5, together with

the newly defined dX̃r
s and the use of Ct + It, we get the required result

Ar∗t = EQ
t [Ar∗T ]

= EQ
t

[∫ T

0

I{τ>s}Dr∗
0,sdX̃

r∗
s +

∫ T

0

Dr∗
0,sξsdP

τ
s

]
.

(10.11)

Recall the Risk-free funded (base) PV and the Risky funded (margined) PV given

by Equation 9.47 and 9.48. We reintroduce Risky funded (margined) PV with IM

and capital as

F̂t = EQ
t

[∫ T

t

I{τ>s}DrV
t,sdXs +

∫ T

t

I{τ>s}DrV
t,s (rV − rC)(Cs + Is)ds+

∫ T

t

I{τ>s}DrV
t,s (rV − rK)Ksds

]
+ EQ

t

[
I{τ≤T}DrV

t,τ (Cτ + Iτ ) + I{τ≤T}DrV
t,τ F̂

R
τ

]
.

(10.12)

Note that that the treasury funding term (r − r∗)V̂t has fallen away since we are

using rV to discount our cash flows. Considering the Risk-free funded (base) PV

and the newly defined Risky funded (margined) PV, we provide the solution to the

invariance principle with proof.

Theorem 10.4. (Funded margined CVA) F̂t is the price of a risky derivative for

the trading desk with margining, CSA funding, and unsecured funding from treasury,

IM and cost of capital, and is defined as

F̂t = Ft − CV At −DV At −MVAt −KV At, (10.13)

72



CV At = EQ
t

[
I{τ≤T}I{τ=τC}D

rV
t,τ (1−RC)(Fτ − Cτ − Iτ )+

]
, (10.14)

DV At = EQ
t

[
I{τ≤T}I{τ=τB}D

rV
t,τ (1−RB)(Fτ − Cτ − Iτ )−

]
, (10.15)

KV At = EQ
t

[∫ T

t

I{τ>s}DrV
t,s (rV − rK)Ksds

]
, (10.16)

MVAt = EQ
t

[∫ T

t

I{τ>s}DrV
t,s (rV − rC)Isds

]
, (10.17)

where Ft is the solution to the default-free funded base PV equation,

Ft = EQ
t

[∫ T

t

DrV
t,sdXs

]
+ EQ

t

[∫ T

t

DrV
t,s (rV − rC)Csds

]
. (10.18)

Proof. The mechanics for this proof are identical to the proof provided for Theorem

9.6, except now we include the MVA and the KVA terms. We use the result of

Equation 9.58 to substitute into Equation 10.12, providing us with

F̂t = Ft − EQ
t

[
I{τ≤T}DrV

t,τFτ
]

− EQ
t

[∫ T

t

I{τ>s}DrV
t,s (rV − rC)Isds

]
− EQ

t

[∫ T

t

I{τ>s}DrV
t,s (rV − rK)Ksds

]
+ EQ

t

[
I{τ≤T}DrV

t,τ (Cτ + Iτ )I{τ≤T}DrV
t,τ F̂

R
τ

]
= Ft − EQ

t

[
I{τ≤T}DrV

t,τ (Fτ − Cτ − Iτ )
]
− EQ

t

[
I{τ≤T}DrV

t,τ F̂
R
τ

]
− EQ

t

[∫ T

t

I{τ>s}DrV
t,s (rV − rC)Isds

]
− EQ

t

[∫ T

t

I{τ>s}DrV
t,s (rV − rK)Ksds

]
,

(10.19)

where

F̂R
τ = I{τ=τC}

(
RC(ατ )

+ + (ατ )
−)

+ I{τ=τB}
(
(ατ )

+ +RB(ατ )
−) , (10.20)

where ατ = Fτ − (Cτ + Iτ ). By following the same re-arranging and logic used in
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Equation 9.61, we get

F̂t = Ft − EQ
t

[
I{τ≤T}I{τ=τC}D

rV
t,τ

(
(1−RC)(ατ )

+
)]

− EQ
t

[
I{τ≤T}I{τ=τB}D

rV
t,τ

(
(1−RB)(ατ )

−)]
− EQ

t

[∫ T

t

I{τ>s}DrV
t,s (rV − rC)Isds

]
− EQ

t

[∫ T

t

I{τ>s}DrV
t,s (rV − rK)Ksds

]
= Ft − CV At −DV At −MVAt −KV At.

(10.21)

Recall Kt = KMR
t +KCCR

t +KCV AV AR
t , the most prominenet of the three is KV ACCRt

as the other two are dynamically hedged and are generally a smaller exposure to

the bank. We refer to the regulatory capital formulas for IMM banks under Basel

III provided in [Elouerkhaoui 2016b].

KMR, as per Basel II and Basel 2.5, is the sum of VAR, SVAR, and the ratio of

the Incremental Risk Charge (IRC) and the Comprehensive Risk Measure (CRM).

The formula is given by

KMR
t = V ARt + SV ARt +

IRCt
CRMt

, (10.22)

where VAR is defined the 99the percentile loss over a ten-day period taken from

the latest sample of data and SVAR is the 99th percentile loss over a ten-day pe-

riod taken from a specific period of data where market stress was abnormally high.

Both IRC and CRM were introduced in March 2008 by the Basel Committee to

address the shortcomings of the current 99% ten-day VAR framework for the trad-

ing book. IRC was specifically introduced to handle default and migartion risks

for non-securitised products. CRM is an incremental charge for correlation trading

portfolio. Both are based on 99.9% loss over a one-year horizon. The dramatically

increased horizon of one year in comparison to the ten-day horizon is to address the

risks associated with illiquid products held on the trading book 1.

KCV AV AR , as per Basel III, is the product of the Risk Weighted Assets (RWA) and

the capital ratio defined as αCapital set to 8 or 10%. We define the RWA as

1The description on the IRC and CRM terms are taken from [BNP Paribas - GRM Risk IM]
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RWACV AV ARt = 12.5× 3× (CV AV ARt + SCV AV ARt), (10.23)

where SCV AV AR is stressed CV AV AR. The sum of the two are grossed up by a

factor of 3 and by a capital ratio of 12.5. KCV AV AR
t is then given by

KCV AV AR
t = αCapitalRWACV AV ARt , (10.24)

where αCapital can be set to 8% minimum. VAR and SVAR is approximated by the

standard Gaussian approximation

V AR =

[∑
i

RCS01i × σ2
i + 2

∑
i<j

RCS01iRCS01j × ρi,jσiσj

] 1
2

×
√

10×
√

Φ−1(0.99),

(10.25)

where

RCS01t = 0.00001× ti × e
−

st,i×ti
LGDmkt × EEt,iDt,i−1 − EEt,i+1Dt,i+1

2
, (10.26)

with σi,j relating to each CDS’s volatility; ρi,j the correlation of the CDSs belonging

to entity i and j and Dt,i the risk-free discount factor in equation 10.26. Further

detail on equation 10.26 can be found in the [Basel III] page 32.

Expected Exposure (EE) is defined as the expected value over the postive future

values of the derivative at a point in time and can be defined as

EE = µΦ(
µ

σ
) + σϕ(

µ

σ
), (10.27)

as seen in [Gregory 2012, Appendix 8]. With µ is the drift of the derivative; σ

the volatility; Φ the cumulative normal distirbution and φ the normal distribution

function. Equation 10.25 is scaled to ten-day VAR and is considered for the 99th

percentile of a normal distribution. Aggregation occurs at the counterparty level

using Equation 10.25 for the IMM approach.
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Lastly we consider the regulatory formula for KCCR, as per Basel III. This can be

considered as a more stringent capital value to KCV AV AR as we derive our RWACCRt

value using the greater of stressed EAD and base EAD. By doing this we are able

to capture a jump-to-default RWA. This is defined as

RWACCRt = 1.06× 12.5× ω × (EADt − CV At), (10.28)

with

KCCR
t = αCapitalRWACCRt . (10.29)

The CV At term for the capital charge is slightly different to the CVA formula

provided by Equation 10.14, in that for the said term we do not conisder the suvival

of bank B, only the probability of default for counterparty C is considered. This is

evident in the CVA formula below provided by [Basel III], page 31:

CV A = (LGDC) .
T∑
i=1

Max

(
0; exp

(
−si−1.ti−1

LGDC

)
− exp

(
− si.ti
LGDC

))
.

(
EEi−1.Di−1 + EEi.Di

2

)
.

(10.30)

We get the value of EAD in Equation 10.28 by using the following IMM based

computation

EADt = 1.4EEPEt, (10.31)

where Effective expected exposure (EEE) is a non-decreasing EE and effective Ex-

pected Positive Exposure (EPE) is the average EE over time. As per [Elouerkhaoui 2016b],

Effective Expected Positive Exposure (EEPE) is defined as

EEPEt = max(EEPEBaset , EEPEStressedt)

=
1Y∑
tk=0

EEEt(t+ tk)∆tk,
(10.32)

with

EEEt(t+ tk) = max(EEEt(t+ tk−1), EPEt(t+ tk)) (10.33)
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and we define EPE under P without wrong-way risk

EPEP
t (s) = EP

t [(Fs − Cs − ICs )+]. (10.34)

Thus concluding the regulatory capital formulas that can be used by IMM approved

banks. Pricing regulatory capital for a bank using the standard method would be a

very different matter and is beyond the scope of this dissertation .
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Chapter 11

The Poisson Process

“The probability of an event is the reason we have to believe that it has taken place,

or that it will take place.” - Siméon-Denis Poisson

A Poisson process calibrated to a firm’s CDS spread is used to best fit the probabiltiy

of default. We refer to [Gregory 2012, Appendix 10] to define the default function.

The cumulative default probability is provided by the definition below.

Definition 11.1. Define G(t) to be a function that describes the default process for

a specific entity

Gt = 1− e−λt, (11.1)

with the instantaneous default probability given by

dGt

dt
= λe−λt. (11.2)

λ is the intensity of default otherwise known as the hazard rate for a specifc entity.

Recall that e−λt provides the probability of survival for an entity, therefore we have

1−e−λt giving us the probability of default. It is useful to understand the relationship

between the hazard rate and the CDS spread relating to a particular entity.

Definition 11.2. Let S(s) = 1− e−λs, then we define a continuous risky cash flow

stream as

∫ T

0

Dr
(s)Ssds. (11.3)
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Again referring to [Gregory 2012, Appendix 10], we see that the value of a CDS is

given by

(1−R)

∫ T

t

Dr
sdGs, (11.4)

by substituting 10.2 into 10.4 we get

(1−R)

∫ T

t

Dr
sdGs = (1−R)λ

∫ T

0

Dr
(s)Ssds, (11.5)

and by rearranging Equation 10.5, leads us to

(1−R)λ =
(1−R)

∫ T
t
Dr
sdGs∫ T

0
Dr

(s)Ssds
, (11.6)

with

CDSSpread = (1−R)λ. (11.7)

This affirms the explanation provided in Chapter 4, regarding the windfall to bond-

holders. The protection seller, or the bondholder, needs to be compensated by an

amount equivalent to the CDSSpread. They forego an amount equivalent to the LGD

to the protection buyer or bond issuer on default of the issuing or buying entity.

For simplicity, and the purpose of this paper, we assume the the hazard rate to be

deterministic despite the volatility associated with the said spread being very high

at times. We will refer to this chapter later on in the dissertation as we include our

XVAs.
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Part IV

Pricing Model Implementation
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Chapter 12

Pricing Commodities without

XVA

“The price of a commodity will never go to zero. When you invest in commodities

futures, you’re not buying a piece of paper that says you own an intangible piece of

company that can go bankrupt.” - Jim Rogers

For each of the various chapters in this part of the dissertation, we will draw on the

work of Youssef Elourkhaoui to provide results of derivative prices with the various

adjustments. We will begin by pricing a commodity derivative with no credit risk

assumed. Here we will explore the different methods and pricing algorithms used

over the years to best describe the price of a derivative. We have chosen to demon-

strate our pricing example through a European call option, however, the theory can

be applied to puts too.

For this chapter, we draw on the work of [Schwartz and Smith 2000] to provide us

with the mechanics to calculate the EAD for a commodity derivative. The authors

develop a two-factor model that allows for mean reversion of short-term prices to

their more stable long-term equilibrium prices, we will refer to this model as the SL

model going forward. The rationale used for this model is that short-term spikes

in commodity prices, although rather large, usually dissipate with time as prices

converge to long-term break-even prices. Typically, a mean reversion model would

be calibrated to the break-even price of a particular commodity, depending on the

subjective analysis from a cost curve publisher. In this case, the authors use the

long-term futures or forward prices to provide us with objective information on
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what the break-even can be. This is possible because producers usually use longer

dated contracts to lock in prices at which they can sell, allowing the back-end of the

curve to be a good proxy for consensus break-even levels. Although the back-end

of the curve is far less volatile than the front-end, it does change more often than

break-even cost curves get published, allowing the SL model to be calibrated more

accurately.

The SL model combines two well known processes to describe the short-term varia-

tions and long-term dynamics of the commodity at hand. For the short-term process,

[Schwartz and Smith 2000] use an OU 1 process. For simplicity, we will use the same

notation from [Schwartz and Smith 2000]. The OU process models the difference

between the spot price and the forward equilibrium price and is calibrated to cap-

ture short disruptions in the near dated future contracts. The GBM process models

the long-term equilibrium prices and is calibrated using further dated future con-

tracts to capture fundamental changes that persist in the market. We now define

the risk-neutral process in [Schwartz and Smith 2000] as the model we will use to

obtain our results.

Definition 12.1. Let ln(St) = χt + ξt, with the short-term process dynamics given

by

dχt = −(κχt + λχ)dt+ σχdzχ, (12.1)

and the long-term process dynamics given by

dξt = (µξ − λξ)dt+ σξdzξ. (12.2)

We can see from the above definition that ξt reverts to −λχ
κ

, which is the ratio of the

reduction in drift and the reversion speed of spot versus long-term equilibrium prices.

The reduction in drift is needed to allow us to calibrate our model to risk-neutral

market prices. Both dzχ and dzξ are correlated increments of standard Brownian

motion processes. The drift term, µξ, in equation 12.2 is adjusted by λξ in order

to fit the drift term required to price the current market futures denoted by FT,0.

[Schwartz and Smith 2000] refers to two methods of calibration, the first they refer

to is a Kalman filter procedure which fits the model’s state variables and parameters

to historical future’s prices, see [Schwartz and Smith 2000] page 901. The second

1See [Héylette Geman 2005], page 64 for more detail.
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method is more applicable for pricing as it is forward looking and suits the risk-

neutral approach used throughout this dissertation. The latter approach implies

the required state variables as well as the required parameters by using the model

to match the observable futures and quoted volatility. In the risk-neutral framework

we have the future’s price equal to the expected future spot price, as defined below

ln (FT,0) = ln
(
EQ [ST ]

)
= EQ [ln(ST )] +

1

2
V ar [ln(ST )]

= e−κTχ0 + ξ0 + A(T ).

(12.3)

where

A(T ) = (µξ − λξ)T − (1− e−κT )
λχ
κ

+
1

2

(
(1− e−2κT )

σ2
χ

2κ
+ σ2

ξT + 2(1− e−κT )
ρχξσχσξ

κ

)
.

(12.4)

Equation 12.3 shows the relationship of the observable future’s prices with the

model’s parameters and initial state variables. The above equation will be used

to match our implied future prices to the observed future prices. To further our

model’s accuracy we can leverage off of observable volatility quotes. We define the

volatility for lnFT,0 as σφ(t, T ) given below

σ2
φ(t, T ) = V ar[ln(FT,t)]

= e−2κ(T−t)V ar[χt] + V ar[ξt] + 2e−κ(T−t)cov(χt, ξt)

= e−2κ(T−t)(1− e−2κt)
σ2
χ

2κ
+ σ2

ξ t+ 2e−κ(T−t)(1− e−κt)ρχ,ξσχσξ
κ

,

(12.5)

where t is the maturity of the option and T is the maturity of the underlying future

of the option, in most cases we assume that the option and the future maturity

coincide.

Appendix A.1 shows the algorithm coded in MATLAB2 to estimate the required

parameters using the Kalman filter method. Appendix A.2 shows the implied pa-

rameters method discussed in detail in [Schwartz and Smith 2000]. Appendix A.3

2MATLAB is a technical computing language developed by the MathWorks, Inc. for program-

ming algorithms; data visualisation and analysis; and numerical computation.
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Table 12.1: Parameters used in the MC Simulation.

Table 12.2: Summary of European call prices for three different processes using the

MC Simulation.

and A.4 provides us with a visual comparison between the more complicated SL

model to the more standard GBM and OU models. All three attempt to estimate

the daily Inter-Continental Exchange (ICE) Brent crude front month price over

time, it is clear from the graph that the SL model is most successful at fitting esti-

mated to actual prices.

It is important for us to show the difference in derivative prices of a standard GBM

model as opposed to a more fitting model. Table 12.2 reflects the difference in value

of a simple European call and put option using the different models, the parameters

used to price the options can be seen in Table 12.13.

As can be seen in Table 12.1, each process uses a different number of parameters.

The GBM process being the most parsimonious and the SL model being the least.

The number of parameters is directly proportionate to the accuracy of each model,

3The parameters used in this example were calibrated to the ICE Brent futures curve and ATM

volatility curve as of the 26 February 2017
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measured by the sum of squared errors each produces during calibration. Mue refers

to the drift term for the GBM model and the long-term mean for the OU process.

Recall, as per the literature for the SL model [Schwartz and Smith 2000], the SL

model is a combination of the GBM process for long-term dynamics and OU for the

short-term price dynamics.

Clearly, each process provides significantly different results with the difference in-

creasing as we increase tenor. This can lead to vastly different results in our XVA

pricing. If we assume GBM pricing, then clearly we must be comfortable in accept-

ing the impact of a drift term, a well known characteristic of the GBM process.

Along with highlighting the differences in price from using different processes, we

must also elaborate on the form of MC we are using. Table 12.2’s results were

produced using an MC process whilst applying the antithetic variate method to re-

duce variance and thus speed up convergence, [Glasserman 2003], page 205. 50,000

paths were used to generate the sample prices. The graph below shows the price of

a one-year European call option with exactly the same parameters used to obtain

Table 12.2’s results. In this case we deploy the QMC technique to achieve our price.

More, specifically we used a low-discrepancy method called the Halton’s sequence

to generate our random numbers. Low-discrepancy methods can improve the rate

of convergence from O
(

1√
n

)
to O

(
1
n

)
where n is the number of paths or points

generated, readers are referred to [Glasserman 2003] pg. 303 for further detail on

Halton’s sequence. The graph below clearly illustrates the superior rate of conver-

gence and stability associated with the QMC in contrast to the standard MC.

The reader is referred to Appendix B.1 for the scenario generation code, these sce-

narios are then used to value the call option discussed above.

In the next chapter we explore what can be done to capture non-normal distribution

behaviour within our derivative price.
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Figure 12.1: Comparison of MC vs QMC techniques when pricing a ICE Brent call

option using T = 0.5 and the same parameters as listed in Table 12.1.
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Chapter 13

Accounting for a Non-Normal

World

“If you hear a “prominent” economist using the word ‘equilibrium’, or ‘normal dis-

tribution’, do not argue with him; just ignore him, or try to put a rat down his shirt.”

- Nassim Nicholas Taleb

Throughout this chapter we refer to [Aboura and Maillard 2014], a unique finding

in the field of pricing derivatives outside of the normal distribution setup. Tradi-

tionally most practitioners would use stochastic volatility models or jump-diffusion

models to include the impact of heavy tails. In our opinion, and as per the findings

of [Aboura and Maillard 2014], the CF approach is just as effective and is a far

more parsimonious approach than the latter, drastically reducing model risk. Our

pricing example in the previous chapter only considered an ATM volatility curve for

the generated scenarios, in this chapter we consider what impact a volatility skew

can have on pricing. Readers are refered to [Gatheral 2006] for detail and volatility

models, and calibration to implied volatility skews.

In order to appreciate the work of [Aboura and Maillard 2014], we must understand

that the market implied volatility surface is nothing more than a forward looking

guess of where the market sees At the Money (ATM) volatility levels and Out the

Money (OTM) levels. The ATM volatility levels tell us what the second moment of

the distribution is, whilst the OTM volatility levels inform us as to what the third

and fourth moments of the distribution are. The CF allows us to effectively capture

the impact of skewness and excess kurtosis in our option price allowing for heavy
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tails. Naturally, we would need to estimate what these moments are if we are to use

them in the pricing framework, this can either be done using historical data, under

P, or they can be estimated under Q using quoted volatility levels, where available.

Definition 13.1. Let z be a normally distributed variable with mean and variance

as N(0,1). We then define the Cornish-Fisher transformation polynomial as Z,

Z = z + (z2 − 1)
s

6
+ (z3 − 3z)

k

24
− (2z3 − 5z)

s2

36
, (13.1)

with s representing the skewness measure and k the excess kurtosis measure , taken

either under Q or P .

If s and k were set to zero, then the Z would reduce to the normally distributed

variable z. The reader is referred to [Aboura and Maillard 2014] pages 8 and 9 to

view how the volatility surface is manipulated as s and k vary. The performance of

the CF approach over time is not in the scope of this paper, but can be found in

[Aboura and Maillard 2014]. We use the CF within our QMC and MC framework

to reflect how s and k can impact option prices; the code can be found in Appendix

B.1. We calibrate using a market implied volatility surface under Q measure.

Figure 13.1: Surface A implies k=0.57 and s=0.21; surface B implies k=4.2 and

s=0.96
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Surface B demonstrates a volatility surface in a distressed market. The distribution

associated with surface B can be described as a leptokurtic distribution skewed to

the right. The impact of s and k on pricing can be seen below:

Table 13.1: Summary of European call prices using MC and QMC techniques across

different strikes and changes in k and s where indicated. Parameters from Table

12.1 were used with T=0.5.

In the instance where k becomes large, we notice prices begin to tend away from

standard Black-Scholes formula pricing, this is clearly explained by the change in

distribution shape. When obtaining Exposure at Default (EAD) values, these fac-

tors become important in order to capture the risk associated with a non-normal

asset class. Readers are urged to look at [Aboura and Maillard 2014] pages 5 and

6, as wel as pages 12 to 15 to further understand the CF shortfalls and specifically

with its performance as kurtosis becomes larger and skewness moves significantly

away from zero.
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Chapter 14

Adding CVA, DVA, COLVA, and

FVA to the Batch

“Valuation is an art not a science.” - Mohandas Pai

Using the framework provided in Chapters 12 and 13, we implement the theory

provided in Chapters 9, 10 and 11 to adjust our pre-GFC pricing in Table 13.1 to

correctly capture typical risks that concern banks and regulators today.

Using the notation provided in Chapter 9, we refer to the equation in Theorem 9.6

to price our risky derivative, F̂t. To maintain some form of simplicity, we will only

use the QMC framework to price our risky price on the premise that it provides

prices closest to the analytic prices shown in Chapter 13. Recall there are two por-

tions of the equation we need to solve for, using QMC; one is the default-free portion,

Ft = EQ
t

[∫ T
t
Dr
t,sdXs

]
+ EQ

t

[∫ T
t
Dr
t,s(r − rC)Csds

]
+ EQ

t

[∫ T
t
Dr
t,s(r − rV )Vsds

]
.

The first portion of the equation will be the MTM of the derivative considering the

cash flows of the derivative itself and the funding component only. The second and

third terms are the COLVA and the FVA respectively.

The risky portion of our derivative is given by

CV At = EQ
t

[
I{τ≤T}I{τ=τC}Dr

t,τ (1−RC)(Fτ − Cτ )+
]
,

DV At = EQ
t

[
I{τ≤T}I{τ=τB}Dr

t,τ (1−RB)(Fτ − Cτ )−
]
.
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The two portions combined provides us with F̂t = Ft − CV At − DV At, with the

COLVA and the FVA included in Ft. Note, we price in accordance to the assump-

tions made on page 69 of this dissertation.

To calculate our PD, we refer to the theory provided in Chapter 11. We use the

cumulative distribution function for the exponential distribution,

PDt = 1− exp(−λt), (14.1)

to generate a PD. One could create default simulations by making t the subject of

the formula in the above equation, this leaves us with

τ =
−ln(1− PDt)

λ
, (14.2)

where we let U = (1−PDt) with U being a random number ∈ [0, 1]. For the results

of this paper, this is not required.

Some futher assumptions we make in our pricing:

1. Bank B and counterparty C do not pay margin to each other;

2. Bank B does pay and receive margin to and from the interbank market, a

by-product of trading under CSA for a hedge with another bank;

3. The CSA is a zero threshold CSA with cash being the only source of collateral;

4. Collateral cash and cash generated from the trade itself are denominated in

the same currency; and

5. Bank B acquires cash from treasury to fund the margin payments.

Based on the above assumptions, we deviate slightly from [Elouerkhaoui 2016a],

not from the framework itself, but from the rationale of the various cash flows. In

the practical world, if a desk does a corporate hedge, typically no margin is paid

between the bank and the counterparty. However, the bank will always need to

hedge their market risk and will do so either on an exchange or with an interbank

counterparty; in both cases margin will be posted or received at some point in time.
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Therefore there is hardly ever a case where we would have an uncollateralised trade

that does not result in indirect margin payments. Uncollateralised refers to an un-

collateralised trade by a client with a consequent collateralised hedge under a zero

threshold CSA. Thus even in the uncollateralised example, COLVA and FVA will

be required. In the instance where we have a collateralised trade between the bank

and the corporate client, then most of the XVAs would reduce drastically. Refer to

Figure 3.4 to better understand the decision tree one must consider.

Let us consider the case of an uncollateralised client trade with a collateralised hedge.

In this instance, we pay and receive margin with the bank providing a hedge, there-

fore all COLVA and FVA costs associated with the trade will be incurred between

bank B and the hedge bank. The corporate, counterparty C, does not exchange

cash flows with bank B before maturity. The only change we make to the frame-

work [Elouerkhaoui 2016a] is to state Vt = −Ct and Vt = Ft−lag. This then allows us

to pay margin to the bank providing a CSA market risk hedge and earn rc, whilst

paying rf to the treasury within the [Elouerkhaoui 2016a] setup.

Table 14.1: Summary of European call prices across different strikes. A normal

distribution was assumed for pricing with RC = 0.3; RB = 0.4; CDSB = 400 bps;

CDSC = 700 bps; rf = 0.05; rc = 0.01 and rv = 0.1. Bank B sells to counterparty

C.

Table 14.1 and Table 14.2 contain the prices of both the risky and risk-free ATM
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Table 14.2: Summary of European call prices across different strikes using the CF

transformation with bank B selling to counterparty C.

call options. The tables then split the prices per model used to generate the values.

The aforementioned prices are to be read as USD per Blue Barrel (bbl) in the first

two columns of the table with the subsequent columns showing the various XVAs

that get added to the risky price in column two. Notice Table 14.2 shows a price

considerably higher than Table 14.1, this is to be expected given the larger tails

associated with a leptokurtic and positively skewed distribution. This behaviour

follows through in the XVA calculations, the reasoning follows the same argument

we use for pricing of risk-free options using the CF trasnformation. In both tables,

the seller of the call, bank B, receives premium upfront from counterparty C. Bank

B will immediatly buy back the option exposure from the hedge bank, thus elimi-

nating any market risk associated with the trade. The hedge, as mentioned earlier

is done under a CSA agreement, implying bank B will receive collateral as soon as

the call option is in ITM for counterparty C and consequently ITM for bank B on

the hedge. Bank B receives free funding on which he will earn rv as we assume

rehypothecation of the collateral. Bank B will need to reimburse the hedge bank

using rc for the collateral they have posted to bank B. These cash flows generate a

funding benefit, FBA, for bank B and a collateral cost, Collateral Cost Adjustment

(COLCA).

Both tables only show a DVA term, this is because of the asymmetric nature of the
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option. If bank B is the seller, it will only ever be exposed to a DVA adjustment,

provided the buyer posts collateral upfront, which in our example, is the case.

Consider Tables 14.3 and 14.4 below, where we make bank B the buyer of the call

option. Again we assume bank B hedges by selling the option to the interbank

market under CSA. Bank B is now faced with managing a CVA term, as well as a

FCA and Collateral Benefit Adjustment (COLBA) term for which it should trans-

fer price to counterparty C.

Table 14.3: Summary of European call prices across different strikes using a normal

distribution with bank B buying from counterparty C.

The large differences between each of the model prices, for both risk-free and risky

can be explained by the model calibration. The GBM model has a drift very close

to 0, for the pricing of the call option, this implies that the spot rate does not drift

away from the strike as we move through time. For both the SL and the OU model,

their mean reversion characteristic pulls the spot rate higher as time passes, causing

the call to be further ITM as time passes. The ICE Brent curve was in contango at

the time of calibration, explaining why the spot price moves higher over time in our

simulations.

Let us consider the above exercises for an uncollateralised put. For this exercise the

key component that requires changing in the pricing is the exposure, in this instance
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Table 14.4: Summary of European call prices across different strikes using the CF

transformation with bank B buying from counterparty C, s=0.97 and k=4.2.

the EAD is calculated using the Negative Expected Exposure (NEE) as an input

as opposed to EE. We start with the scenario where bank B is a seller of the put

option to counterparty C, again we assume bank B buys the hedge from another

bank under CSA. We use the same parameters used to price the calls:

Table 14.5: Summary of European put prices across different strikes using a normal

distribution with bank B selling to counterparty C.
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Table 14.6: Summary of European put prices across different strikes using the CF

transformation with bank B selling to counterparty C, s=0.97 and k=4.2.

The most noticeable change in Table 14.5 and 14.6, in contrast to 14.1 and 14.2, is

that the prices of calls are more expensive for similar levels of moneyness1. This can

be explained by the slight positive drift inherent in the GBM model and the higher

than spot reversion level for both the SL and OU models. However, when using

the CF, both puts and calls become more expensive as a result of excess kurtosis,

yet some of the higher prices on the call is negated by the positive skewness im-

plied by the Brent volatility surface. With bank B, as the buyer of the put options,

the pricing changes considerably. Refer to Tables 14.7 and 14.8. Both tables show

pricing for put options in USD per bbl per model used, the said prices can be seen

in columns one and two, the risky and the risk-free price respectively. As with the

earlier tables, the subsequent columns post column two display the various XVAs

to be added to the risky price.

1Term used to describe the distance of strikes to the forward
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Table 14.7: Summary of European put prices across different strikes using a normal

distribution with bank B buying from counterparty C.

Table 14.8: Summary of European put prices across different strikes using the CF

transformation with bank B buying from counterparty C, s=0.97 and k=4.2.

Once again, the CVA factor comes into play for bank B when they are the buyer

of an uncollateralised option. The CVA is always larger than the DVA portion of

the price becase of the poor credit quality associated with counterparty C relative

to bank B. It can become a little overwhelming thinking about what to include and

what not to include when pricing an uncollateralised trade, Table 14.9 gives some

guidance on what should be included.
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Table 14.9: Summary of XVAs to apply when pricing uncollateralised options.

Lastly, we look at the pricing of a forward contract. For a forward, both the PEE

and the NEE come into play as the exposure is close to symmetrical in comparsion

with an option. The tenor for the forward is T=0.5, as per our previous exercises,

bank B hedges in the interbank market under CSA:

Table 14.10: Brent crude oil forward price with XVAs calculated using a normal

distribution. Bank B sells to counterparty C.

Table 14.11: Brent crude oil forward price with XVAs calculated using the CF

transformation with bank B sellng to counterparty C, s=0.97 and k=4.2.

When we assume bank B to be the buyer of the forward, then the pricing changes

slightly.
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Table 14.12: Brent crude oil forward price with XVAs calculated using a normal

distribution. Bank B buys from counterparty C.

Table 14.13: Brent crude oil forward price with XVAs calculated using the CF

transformation with bank B buying from counterparty C, s=0.97 and k=4.2.

The change in pricing from Tables 14.10 and 14.11 to 14.12 and 14.13, depends on

the difference in NEE and PEE, as discussed earlier. We have only priced for one

strike as this is usually the only choice made when a trade is concluded. Varying

strikes only matter in the situation of closeouts when a forward trade can be ITM

or OTM.

The above tables only consider the case when a trade between bank B and the

counterparty C is uncollateralised. We now consider the case when all aspects of

the trade are collateralised. In this situation, we will see the CVA and DVA terms di-

minish substantially, depending on the lag between collateral payments and MTM.

There is no funding implication in the collateralised case as the collateral paid to or

received from counterparty C funds the interbank hedge, and vice versa. We there-

fore assume that both trades between counterparty C and the interbank market are

under the same CSA terms, we also assume no credit risk on the margin paid and

received on the hedge and the client trade. The below scenarios assume a one day

lag between reported MTM and collateral posted.
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Table 14.14: Collateralised Brent crude oil forward price with XVAs calculated using

a normal distribution. Bank B sells to counterparty C.

Table 14.15: Collateralised Brent crude oil forward price with XVAs calculated using

the CF transformation with bank B selling to counterparty C, s=0.97 and k=4.2.

Table 14.16: Collateralised Brent crude oil forward price with XVAs calculated using

a normal distribution. Bank B buys from counterparty C.

Table 14.17: Collateralised Brent crude oil forward price with XVAs calculated using

the CF transformation with bank B buying from counterparty C, s=0.97 and k=4.2.

Notice how the CVA and the DVA reduce to insignificant quantities. The FVA and

COLVA components do not exist as the combination of the client trade and the

hedge create a self-financing portfolio. Notice how the CVA and DVA terms start

to increase as we increase the time lag on collateral payment.
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Table 14.18: Collateralised Brent crude oil forward price with XVAs calculated using

a normal distribution. Bank B buys from counterparty C, collateral payment lag is

set to 10 days.

Table 14.19: Collateralised Brent crude oil forward price with XVAs calculated using

the CF transformation with bank B buying from counterparty C, s=0.97 and k=4.2,

collateral payment lag is set to 10 days.

Table 14.20: Collateralised Brent crude oil forward price with XVAs calculated using

a normal distribution. Bank B buys from counterparty C, collateral payment lag is

set to 100 days.

Table 14.21: Collateralised Brent crude oil forward price with XVAs calculated using

the CF transformation with bank B buying from counterparty C, s=0.97 and k=4.2,

collateral payment lag is set to 100 days.

To summarise the results of Chapter 14, the inclusion of collateral greatly reduces

the XVA costs associated with a trade. Provided both the counterparty and the
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hedge provider are placing collateral on the same terms. We also see that the CF

transformation makes a significant change to pricing XVAs in all of the derivatives

included in the exercises above. For the case of forwards, unless the credit qual-

ity of one counterparty is significantly better than its counterpart, then the BCVA

term reduces to zero. Further to this, if the NEE and the PEE for a forward are

identical, then we have symmetrical pricing and most of the XVAs listed thus far

are irrelevant, contingent on the condition of equal credit quality. The code used to

generate these scenarios can be found in Appendix B.2.
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Chapter 15

Finishing off with MVA and KVA

“Plans are nothing; planning is everything.” - Dwight D. Eisenhower

As we have shown in Chapter 14, the value of a derivative can change substan-

tially when considering all the post-2008 adjustments that came to the fore. Since

the late 2008 period, market participants were required to include two more three

lettered acronyms, namely MVA and KVA, the former covering the cost of initial

margin typically required to trade on an exchange and the latter a necessity to

cover capital charges to meet return requirements. We refer to the theory provided

in Chapter 10 to implement our MVA and KVA charges, which mostly draws on

[Elouerkhaoui 2016b]. We reuse the pramaters used throughout Chapters 12, 13,

and 14 to obtain our market value price, as well as the XVA we have discussed so

far. For MVA we use the same implied parameters, however, for KVA we need to

look at historical real-world data to obtain our VAR and SVAR numbers.

Recall according to [Basel III], capital held for a derivative trade under the IMM

approach needs to cover three different elements of risk:

1. Counterpary credit risk KCCR
t ;

2. CVA VAR KCV AV AR ; and

3. Market risk KMR
t .

These join to create Kt = KMR
t +KCCR

t +KCV AV AR
t , which is plugged into Equation

10.16 to obtain our KVA add-on. To implement all three, we calibrate our model

using a P-measure. The data set we use is 2007 to 2008 for the stress period and
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2015 to 2016 for a normal market period. The parameters for each model for the

different periods are as follows:

Table 15.1: Model parameters calibrated to real-world data from 2007 to 2008 to

obtain 99th percentile SVAR.

Table 15.2: Model parameters calibrated to real-world data from 2015 to 2016 to

obtain 99th percentile VAR.

Using equations 10.22, 10.23, and 10.24, originally defined in the [Basel III] paper,

we obtain the following results when applied to an oil forward. We assume bank

B buys forward from counterparty C. This is the same scenario depicted in Tables

14.12 and 14.13, with the exception of the inclusion of the MVA and KVA terms.

104



We assume bank B and counterparty C do not post margin and that bank B does

not hedge the market risk. The table below shows how significant the charges can

be despite the tenor of the trade being less than one year.

Table 15.3: Unhedged and uncollateralised forward price, bank B buys from coun-

terparty C. A normal distribution was assumed for pricing with RC = 0.3; RB = 0.4;

CDSB = 400 bps; CDSC = 700 bps; rf = 0.05; rk = 0.12; rc = 0.01 and rv = 0.1.

Clearly this is not favourable and unrealistic. It is unfavourable, because bank B

would most likely be pricing against other banks to win the deal, therefore to reduce

the cost of capital alternative structures need to be considered. It is unrealistic, be-

cause most banks would not leave all of the market risk unhedged. We therefore

introduce an exact hedge whereby bank B sells the forward to the interbank market

under CSA with a zero threshold clause. To mitigate some of the capital costs, the

counterparty could either place IM with the bank or trade under CSA. The former

is more likely than the latter as we assume the client is a corporate entity not ideally

setup to manage daily collateral calls.

The relationship between MVA and KVA is not linear as we will demonstrate in the

table to follow. The amount of IM required to negate the KVA cost would in most

instances incur an MVA cost greater than the intial KVA value. For the exercise

below, we assume there is no segregation between IM and VM, and rehypothecation

is possible. Furthermore we assume there is no additional CVA pricing to be done on

the IM. Counterparty C is required to post IM to bank B for the purpose of reducing

their CVA and KVA charges. We assume the IM to be a predetermined amount,

usually calculated using a historical VAR methodology placed on trade initiation.
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Table 15.4 shows how the cost of capital can be transfered into an IM charge, MVA.

This then becomes an optimisation problem with the goal to determine how much

IM should be placed to decrease KVA without generating a punitive MVA. This is

also dependent on what the bank’s funding rate is compared to its return on capital

rate. Notice the market risk charge has disappeared but has manifested as COLCA

and FCA charges. Even if bank B were not to consider the benefit of receiving

collateral from the hedge placed in the interbank market, the FCA and COLVA

charges are insignificant in comparison to the market risk charge in Table 15.3. The

reason for the marginal decrease in KVA as we significantly increase IM is simply

to prevent banks from using external funds as opposed to their own capital to fund

a trade. One last point to note is the CCR charge is typically much larger than the

other charges, yet in some cases it is smaller than the CVA VAR charge. This can

be explained by the excessively large CDS set for counterparty C.

For the sake of completeness, we run the same exercise using the CF to generate

our exposures, results are shown in Tables 15.5 and 15.6

Table 15.5: Unhedged and uncollateralised forward price, bank B buys from coun-

terparty C. A CF generated distribution was assumed for pricing using the same

parameters as before, s=0.96 and k=4.2.
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The results confirm that the CF does capture the additional risk associated with

skewness and kurtosis measures different to that of a normal distribution, 0 and 3

respectively.
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Chapter 16

Conclusion

“Nature’s music is never over; her silence are pauses, not conclusions.” - Mary Webb

This dissertation provided a high-level view on the most relevant pricing frameworks

of XVA as per Burgard, Kjaer, and Piterbarg as well as Brigo, Pallavicini and Morini.

This was done with the intention of allowing the reader to have a good knowledge

on what is considered good practice in the field and context as to why this is the case.

We use the work of Elouerkhaoui to demonstrate a more current pricing model by

including KVA and MVA. More importantly, Elouerkhaoui’s publications build off

of the pricing by expectations framework, which we favour as a more general ap-

proach unburdened by the unrealistic assumption of a complete market. His theory

is based on the premise that traditional arbitrage pricing theory can still be applied,

all that is required is financial engineering to accommodate for a more complex pay-

off. We demonstrated how to apply this theory in a practical example in Chapters

15 and 16. The results displayed in those Chapters facilitate our goal by illustrat-

ing how pricing has evolved since 2008, a stark contrast to the simplicity associated

with the tables in Chapter 12. Figures 3.3 and 3.4 summarise the shift in complexity.

The results shown in Chapter 12 support the notion that QMC and MC are suf-

ficient to implement an XVA model correctly. In particular, we use QMC because

of its efficiency over MC with variance reduction. Further, QMC provides an easy

platform for us to apply the CF, as we demonstrate in Chapter 13. We show how

the CF can easily be calibrated to an implied volatility skew in order to capture

non-normal skewness and kurtosis to reflect improved accuracy in the pricing. We
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demonstrate in Chapter 14 and 15 that the CF can be applied to a derivative with

XVA.

To summarise, parts one and two provide the reader with a high-level understanding

of what XVA is and why it is necessary to continue considering it. We cover the most

prominent frameworks currently used by well known academics and practitioners in

the industry. Parts three and four show how the theory of Elouerkhaoui is derived

and more importantly how one can implement it to successfully value a derivative

with XVA. The last two parts demonstrate how valuing a derivative in 2008 was

almost comically simple in comparison to what is correct today.

The field of XVA is an exciting one that is evolving at a rapid pace. This makes

it a daunting task for banks, particularly second tier banks, to remain abreast with

industry standards. It would be beneficial for a bank to consider models that are

parsimonious for the purpose of achieving accuracy without increasing model risk.

This dissertation demonstrates a simple framework to address this and attempts to

cover many of the pricing concerns practitioners have today.

Further research topics to be considered in this field:

• Valuing a portfolio rather than only one derivative as in this dissertation, with

XVA;

• Introducing stochastic hazard rates in order to capture the impact of wrong

way risk on a portoflio;

• Determining MVA under a contingent IM agreement;

• Providing an indepth comparison between the CF and various well known

non-gaussian models; and

• Determining the value of a derivative with XVA assuming a replacement cost

at default instead of a risk-free assumption.
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Part V

Appendices
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Appendix A

Model Calibration Code and

Results

A.1 Estimating State Variables and Parameters

using the Kalman Filter and Maximum Like-

lihood Estimation

function Maxln_L = Kalman_Filter(observed_forwards, param_new, dates, dt,_

a0, P0, N, nobs,model)

% Initial parameters

k = param_new(1,1);

sigmast = param_new(2,1);

lambdast = param_new(3,1);

mu = param_new(4,1);

sigmlte = param_new(5,1);

Adjst_mu = param_new(6,1);

pxe = param_new(7,1);

lambdalt = param_new(8,1);

%G applies the mean reversion speed to the long term level for the OU

%and SL process
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G=[exp(-k*dt),0;0,1];

%Calibrating under P-Measure using the Kalman Filter to determine the best

%fit parameters in accordance to Schwartz and Smith 2000.

%SL model parameters calibrated to historical observed futures

if model==1

Sigma11=(1-exp(-2*k*dt))*(sigmast)^2/(2*k);

Sigma12=(1-exp(-k*dt))*pxe*sigmast*sigmalt/k;

Sigma21=(1-exp(-k*dt))*pxe*sigmast*sigmalt/k;

Sigma22=(sigmast)^2*dt;

COV=[Sigma11,Sigma12;Sigma21,Sigma22];

R=eye(size(Q,1));

% Defining mean and variance terms

Sigma1=(1-exp(-2*k.*dates))*(sigmast)^2/(2*k);

Sigma2=(sigmalt)^2.*dates;

Sigma3=2*(1-exp(-k.*dates))*pxe*sigmast*sigmalt/k;

d=(Adjst_mu).*dates’-(1-exp(-k.*dates’))*lambdast/k+.5.*_

(sigma1’+sigma2’+sigma3’);

Ft1=exp(-k.*dates);

Ft2=zeros(size(Z1,2),1)+1;

Ft=[Ft1’ Ft2];

H=diag(s);

H=H(1:end-1,1:end-1);

save_at = zeros(nobs,N);

save_diff1 = zeros(nobs,N);
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save_diff2 = zeros(nobs,N);

save_at = zeros(nobs,m);

save_mt = zeros(nobs,m);

save_Rt = zeros(nobs,m*m);

save_Ct = zeros(nobs,m*m);

save_Qt = zeros(nobs,N*N);

save_dQt = zeros(nobs,1);

save_vQv = zeros(nobs,1);

%Initial state variables

Ct = P0;

mt = a0;

for t = 1:nobs

Rt = G*Ct*G’+R*COV*R’;

Qt = Ft*Rt*Ft’+H;

dQt = det(Qt);

at = G*mt + c;

yt = observed_forwards(t,:)’;

ft = Ft*at+d;

diff1 = yt-ft;

mt = at + Rt*Ft’*inv(Qt)*(diff1);

Ct = Rt - Rt*Ft’*inv(Qt)*Ft*Rt;

ft = Ft*mt+d;

diff2 = yt-ft;

save_ft(t,:) = ft’;

save_diff1(t,:) = diff1’;
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save_diff2(t,:) = (diff2)’;

save_mt(t,:) = mt’;

save_Rt(t,:) = [Rt(1,1), Rt(1,2), Rt(2,1), Rt(2,2)];

save_Ct(t,:) = [Ct(1,1), Ct(1,2), Ct(2,1), Ct(2,2)];

save_dQt(t,:)= dQt;

save_vQv(t,:) = diff1’*inv(Qt)*diff1;

end

%GBM model parameters calibrated to historical observed futures

elseif model==2

Sigma11=0;

Sigma12=0;

Sigma21=0;

Sigma22=(sigmalt)^2*dt;

COV=[Sigma11,Sigma12;Sigma21,Sigma22];

R=eye(size(Q,1));

c=[0;Adjst_mu*dt];

% Defining mean and variance terms

Sigma1=0;

Sigma2=(sigmalt)^2.*dates;

Sigma3=0;

d=(Adjst_mu).*dates+.5.*(sigma1’+sigma2’+sigma3’);

Ft1=zeros(N,1);

Ft2=Ft1+1;

Ft=[Ft1 Ft2];

H=diag(s);

116



save_at = zeros(nobs,N);

save_diff1 = zeros(nobs,N);

save_diff2 = zeros(nobs,N);

save_at = zeros(nobs,m);

save_mt = zeros(nobs,m);

save_Rt = zeros(nobs,m*m);

save_Ct = zeros(nobs,m*m);

save_Qt = zeros(nobs,N*N);

save_dQt = zeros(nobs,1);

save_vQv = zeros(nobs,1);

%Initial state variables

Ct = P0;

mt = a0;

for t = 1:nobs

Rt = G*Ct*G’+R*COV*R’;

Qt = Ft*Rt*Ft’+H;

dQt = det(Qt);

at = G*mt + c;

yt = observed_forwards(t,:)’;

ft = Ft*at+d;

diff1 = yt-ft;

mt = at + Rt*Ft’*inv(Qt)*(diff1);

Ct = Rt - Rt*Ft’*inv(Qt)*Ft*Rt;

ft = Ft*mt+d;

diff2 = yt-ft;
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save_ft(t,:) = ft’;

save_diff1(t,:) = diff1’;

save_diff2(t,:) = (diff2)’;

save_mt(t,:) = mt’;

save_Rt(t,:) = [Rt(1,1), Rt(1,2), Rt(2,1), Rt(2,2)];

save_Ct(t,:) = [Ct(1,1), Ct(1,2), Ct(2,1), Ct(2,2)];

save_dQt(t,:)= dQt;

save_vQv(t,:) = diff1’*inv(Qt)*diff1;

end

%OU model parameters calibrated to historical observed futures

elseif model==3

Sigma11=(1-exp(-2*k*dt))*(sigmast)^2/(2*k);

Sigma12=0;

Sigma21=0;

Sigma22=0;

COV=[Sigma11,Sigma12;Sigma21,Sigma22];

R=eye(size(Q,1));

% Defining mean and variance terms

Sigma1=(1-exp(-2*k.*dates))*(sigmast)^2/(2*k);

Sigma2=0;

Sigma3=0;

d=(1-exp(-k.*dates’))*(log(mu)-(sigmast^2)/(2*k))+.5.*_

(sigma1’+sigma2’+sigma3’);

Ft1=exp(-k.*dates);

Ft2=zeros(size(Z1,2),1)+1;

Ft=[Ft1’ Ft2];
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H=diag(s);

save_at = zeros(nobs,N);

save_diff1 = zeros(nobs,N);

save_diff2 = zeros(nobs,N);

save_at = zeros(nobs,m);

save_mt = zeros(nobs,m);

save_Rt = zeros(nobs,m*m);

save_Ct = zeros(nobs,m*m);

save_Qt = zeros(nobs,N*N);

save_dQt = zeros(nobs,1);

save_vQv = zeros(nobs,1);

%Initial state variables

Ct = P0;

mt = a0;

for t = 1:nobs

Rt = G*Ct*G’+R*COV*R’;

Qt = Ft*Rt*Ft’+H;

dQt = det(Qt);

at = G*mt + c;

yt = observed_forwards(t,:)’;

ft = Ft*at+d;

diff1 = yt-ft;

mt = at + Rt*Ft’*inv(Qt)*(diff1);

Ct = Rt - Rt*Ft’*inv(Qt)*Ft*Rt;
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ft = Ft*mt+d;

diff2 = yt-ft;

save_ft(t,:) = ft’;

save_diff1(t,:) = diff1’;

save_diff2(t,:) = (diff2)’;

save_mt(t,:) = mt’;

save_Rt(t,:) = [Rt(1,1), Rt(1,2), Rt(2,1), Rt(2,2)];

save_Ct(t,:) = [Ct(1,1), Ct(1,2), Ct(2,1), Ct(2,2)];

save_dQt(t,:)= dQt;

save_vQv(t,:) = diff1’*inv(Qt)*diff1;

end

end

MaxlnL = -(N*nobs/2)*log(2*pi)-0.5*sum(log(save_dQt))-_

0.5*sum(save_vQv);

Maxln_L = -MaxlnL;

A.2 Implying Parameters from Current Market

Data by Minimising Squared Errors

function SSE = Implied_Param_State(observed_forwards,

param_new, dates, observed_vols,model,a0)

%Initial parameters

%a0=zeros(2,1);

k = param_new(1,1);
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sigmalt = param_new(2,1);

lambdast = param_new(3,1);

mu = param_new(4,1);

lambdalt = param_new(4,1);

sigmalt = param_new(5,1);

Adjst_mu = param_new(6,1);

pxe = param_new(7,1);

%a0(1,1)=psi_new(8,1);

%a0(2,1)=psi_new(9,1);

a1=a0(1,1)+a0(2,1);

%SL model parameters calibarted to current observed

%ATM volatility term structure and futures

if model==1

G1=exp(-k.*dates);

Sigmast=(1-exp(-2*k.*dates))*(sigmast)^2/(2*k);

Sigma2=(sigmalt)^2.*dates;

Sigma3=2*(1-exp(-k.*dates))*pxe*sigmast*sigmalt/k;

d(:,1)=0.5*(Sigma1+Sigma2+Sigma3);

yt = observed_forwards(:,1);

ft_1 =zeros(size(yt,1),2);

ft_2 =zeros(size(yt,1),1);

ft_1(1,:)= [a0(1,1),a0(2,1)];

ft_1(:,1) = ytt_1(1,1).*T1-(1-exp(-k.*dates))*

lambdax/k; %OU part of E[linS(T)]

ft_1(:,2) = ytt_1(1,2)+(rnmu-lambdae).

*dates; %GBM part of E[linS(T)]

ft_2 = exp(ytt_1(:,1) + ytt_1(:,2) + d);
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diff1 = yt-ft_2;

Sigmat = sqrt(yt.^2.*(exp(observed_vols.^2.*dates)-1));

ft_3 = (ft_1(:,1) + ft_1(:,2))’;

Sigma_1 = sqrt((exp(Sigma1+Sigma2+Sigma3)-1).*_

exp(2.*ft_3’+Sigma1+Sigma2+Sigma3));

diff2 = Sigmat-Sigma_1;

elseif model==2 %GBM model parameters calibarted to current

%observed ATM volatility term structure and futures

yt = observed_forwards(:,1);

ft_1 =zeros(size(yt,1),1);

ft_1(1) = exp(a1);

ft_1 = ft_1(1)*exp(Adjst_mu.*dates);

Sigmat = sqrt(yt.^2.*(exp(observed_vols.^2.*dates)-1));

Sigma_1 = sqrt(ytt_1.^2.*(exp(sigmae^2.*dates)-1));

diff2 = Sigmat-Sigma_1;

diff1 = yt-ft_1;

elseif model==3 %OU model parameters calibarted to current observed_

%ATM volatility term structure and futures

yt = observed_forwards(:,1);

ft_1 = zeros(size(yt,1),1);

Sigma1 = (1-exp(-2*k.*dates))*(sigmast)^2/(2*k);

ft_3 = a1.*exp(-k.*dates)+(1-exp(-k.*dates))*(log(mu)-(sigmast^2)/(2*k));

ft_1 = exp(ft_3 + .5*Sigma1);

diff1 = yt-ft_1;

Sigmat = sqrt(yt.^2.*(exp(observed_vols.^2.*dates)-1));

Sigma_1 = sqrt((exp(p1)-1).*exp(2.*att_2 + Sigma1));

diff2 = Sigmat-Sigma_1;

end

122



SSE = sum(diff1.^2+diff2.^2);

A.3 Kalman Filter Best Fit Results

Figure A.1: The difference between the estimated and actual time series of ICE

Brent crude oil for each model, 24 February 2006 - 20 January 2016.

Figure A.2: The cumulative sum of the squared errors for each model produced via

the Kalman filter parameter estimate, 24 February 2006 - 20 January 2016.
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A.4 Implied Parameter Best Fit Results

Figure A.3: The estimated GBM ICE Brent curve vs actual.

Figure A.4: The estimated OU ICE Brent curve vs actual.
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Figure A.5: The estimated SL ICE Brent curve vs actual.

125



Appendix B

Model Pseudocode

B.1 MC and QMC code for GBM, OU, and SL

processes

% This code prices our options using both Quasi-MC and standard MC with

% Antithetic Variate

% We begin by generating random numbers using both a psuedo-random number

% generator as well as a quasi-random number generator, Glasserman 2003 pg. 303,

% Hlatons’s sequence construction.

% If 1 we use the Cornish-Fisher transformation to generate Z1 numbers to

% account for skewness and kurtosis calibrated off of a volatility

% surface,Aboura and Maillard 2014.

% We begin by generating random numbers using both a psuedo-random number

% generator as well as a quasi-random number generator,

the reader is advised to consider Glasserman 2003 pg. 293

%Initial set of random numbers

p = haltonset(Days*T,’Skip’,1e4,’Leap’,1e2);

p = scramble(p,’RR2’);
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QuasiRandom_int=p(1:Paths/2,:);

QAntiThet=1-QuasiRandom_int;

QuasiRandom=[QuasiRandom_int;QAntiThet];

PseudoRandom_int=rand(round(Paths)/2,Days*T);

AntiThet=1-PseudoRandom_int;

PseudoRandom=[PseudoRandom_int;AntiThet];

% Second set required for bivariate distribution used in the SL model

p = haltonset(Days*T,’Skip’,1e3,’Leap’,1e2);

p = scramble(p,’RR2’);

QuasiRandom_int2=p(1:Paths/2,:);

QAntiThet2=1-QuasiRandom_int2;

QuasiRandom2=[QuasiRandom_int2;QAntiThet2];

PseudoRandom_int2=rand(round(Paths)/2,Days*T);

AntiThet2=1-PseudoRandom_int2;

PseudoRandom2=[PseudoRandom_int2;AntiThet2];

% If Norm is not chosen we use the Cornish-Fisher

approximation to generate Z3 & Z4 numbers to

% account for skewness and kurtosis calibrated

off a volatility surface, Aboura and Maillard 2014.

if strcmp(Type,’Norm’)

Z1=norminv(QuasiRandom,0,1);

Z2=Z1*correl+sqrt(1-correl^2)*norminv(QuasiRandom2,0,1);

Z3=norminv(PseudoRandom,0,1);

Z4=Z3*correl+sqrt(1-correl^2)*norminv(PseudoRandom2,0,1);

else

Z =norminv(QuasiRandom, 0, 1);
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Z1=(Z + ((Z.^ 2) - 1) * Skewness / 6 + ((Z.^ 3) - 3 * Z) * ExcessKurtosis

/ 24 - (2 * (Z.^ 3) - 5 * Z) * (Skewness ) / 36);

Z =norminv(QuasiRandom2, 0, 1);

Z2=Z1*correl+sqrt(1-correl^2) * ((Z + ((Z.^ 2) - 1) * Skewness / 6

+ ((Z.^ 3) - 3 * Z)* ExcessKurtosis / 24 - (2 * (Z.^ 3) - 5 * Z)

* (Skewness) / 36));

Z =norminv(PseudoRandom, 0, 1);

Z3=(Z + ((Z.^ 2) - 1) * Skewness / 6 + ((Z.^ 3) - 3 * Z) *

ExcessKurtosis / 24 - (2 * (Z.^ 3) - 5 * Z) * (Skewness ) / 36);

Z =norminv(PseudoRandom2, 0, 1);

Z4=Z3*correl+sqrt(1-correl^2)*((Z + ((Z.^ 2) - 1) * Skewness / 6 +

((Z.^ 3) - 3 * Z) * ExcessKurtosis / 24 - (2 * (Z.^ 3) - 5 * Z)

* (Skewness ) / 36));

end

for i=1:size(S_GBM_Pseu,2);

%GBM matrix

S_GBM_Pseu(:,i+1)=S_GBM_Pseu(:,i).*exp((Mue_GBM-0.5*Sigma_GBM^2)*dt

+Sigma_GBM*sqrt(dt).*Z3(:,i));

S_GBM_Quasi(:,i+1)=S_GBM_Quasi(:,i).*exp((Mue_GBM-0.5*Sigma_GBM^2)*dt

+Sigma_GBM*sqrt(dt).*Z1(:,i));

%OU matrix

S_OU_Pseu(:,i+1)=S_OU_Pseu(:,i).^exp(-k_OU*dt).*exp((Mue_OU

-0.5*Sigma_OU^2/k_OU)*(1-exp(-k_OU*dt))

+Sigma_OU*sqrt((1-exp(-2*k_OU*dt))/2/k_OU).*Z3(:,i));

S_OU_Quasi(:,i+1)=S_OU_Quasi(:,i).^exp(-k_OU*dt).*exp((Mue_OU

-0.5*Sigma_OU^2/k_OU)*(1-exp(-k_OU*dt))

+Sigma_OU*sqrt((1-exp(-2*k_OU*dt))/2/k_OU).*Z1(:,i));

%SL matrix

S_SLE_Pseu(:,i+1)=S_SLE_Pseu(:,i)+(Mue_SL-LambdaE)*dt

+SigmaE*sqrt(dt).*Z3(:,i);

S_SLE_Quasi(:,i+1)=S_SLE_Quasi(:,i)+(Mue_SL-LambdaE)*dt

+SigmaE*sqrt(dt).*Z1(:,i);

S_SLX_Pseu(:,i+1)=S_SLX_Pseu(:,i).*exp(-k_SL*dt)-(1-exp(-k_SL*dt))
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*(LambdaX/k_SL)+SigmaX*sqrt((1-exp(-2*k_SL*dt))

/2/k_SL).*Z4(:,i);

S_SLX_Quasi(:,i+1)=S_SLX_Quasi(:,i).*exp(-k_SL*dt)-(1-exp(-k_SL*dt))

*(LambdaX/k_SL)+SigmaX*sqrt((1-exp(-2*k_SL*dt))

/2/k_SL).*Z2(:,i);

S_SL_Pseu(:,i+1)=exp(S_SLE_Pseu(:,i+1)+S_SLX_Pseu(:,i+1));

S_SL_Quasi(:,i+1)=exp(S_SLE_Quasi(:,i+1)+S_SLX_Quasi(:,i+1));

end

%Fwds at T

GBMfwdP=mean(S_GBM_Pseu(:,end));

GBMfwdQ=mean(S_GBM_Quasi(:,end));

OUfwdP=mean(S_OU_Pseu(:,end));

OUfwdQ=mean(S_OU_Quasi(:,end));

SLfwdP=mean(S_SL_Pseu(:,end));

SLfwdQ=mean(S_SL_Quasi(:,end));

%Risk-free MTM of instruments using both expected values from the

%MC and QMC simulations. Further, we include the closed-form solutions

%where available fr comparison to our scenarios.

if strcmp(’Call’,Inst)

%QMC prices

MTM_rf_GBMP=exp(-rf*T)*mean(max(S_GBM_Pseu(:,end)-X,0));

MTM_rf_GBMQ=exp(-rf*T)*mean(max(S_GBM_Quasi(:,end)-X,0));

MTM_rf_OUP=exp(-rf*T)*mean(max(S_OU_Pseu(:,end)-X,0));

MTM_rf_OUQ=exp(-rf*T)*mean(max(S_OU_Quasi(:,end)-X,0));

MTM_rf_SLP=exp(-rf*T)*mean(max(S_SL_Pseu(:,end)-X,0));

MTM_rf_SLQ=exp(-rf*T)*mean(max(S_SL_Quasi(:,end)-X,0));
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if strcmp(Type,’Norm’)

%GBM closed-form

d1=(log((S0*exp(Mue_GBM*T))/X)+(.5*Sigma_GBM^2)*T)/Sigma_GBM/sqrt(T);

d2=d1-Sigma_GBM*sqrt(T);

BS=exp(-rf*T)*(S0*exp(Mue_GBM*T)*normcdf(d1)-X*normcdf(d2));

%OU closed-form

ELnS=exp(-k_OU*T)*log(S0)+(1-exp(-k_OU*T))*(Mue_OU-Sigma_OU^2/2/k_OU);

VLnS=((1-exp(-2*k_OU*T))*Sigma_OU^2/2/k_OU);

F=exp(ELnS+0.5*VLnS);

d1=log(F/X)/sqrt(VLnS)+.5*sqrt(VLnS);

d2=d1-sqrt(VLnS);

BS_OU=exp(-rf*T)*(F*normcdf(d1)-X*normcdf(d2));

%SL closed-form

ELnS=exp(-k_SL*T)*X0+E0+(Mue_SL-LambdaE)*

T-(1-exp(-k_SL*T))*(LambdaX/k_SL);

VLnS=(1-exp(-2*k_SL*T))*SigmaX^2/2/k_SL+SigmaE^2*T+2*(1-exp(-k_SL*T))*

SigmaX*SigmaE*correl/k_SL;

F=exp(ELnS+0.5*VLnS);

d1=log(F/X)/sqrt(VLnS)+.5*sqrt(VLnS);

d2=d1-sqrt(VLnS);

BS_SL=exp(-rf*T)*(F*normcdf(d1)-X*normcdf(d2));

end

elseif strcmp(’Put’,Inst)

%QMC prices
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MTM_rf_GBMP=exp(-rf*T)*mean(max(-S_GBM_Pseu(:,end)+X,0));

MTM_rf_GBMQ=exp(-rf*T)*mean(max(-S_GBM_Quasi(:,end)+X,0));

MTM_rf_OUP=exp(-rf*T)*mean(max(-S_OU_Pseu(:,end)+X,0));

MTM_rf_OUQ=exp(-rf*T)*mean(max(-S_OU_Quasi(:,end)+X,0));

MTM_rf_SLP=exp(-rf*T)*mean(max(-S_SL_Pseu(:,end)+X,0));

MTM_rf_SLQ=exp(-rf*T)*mean(max(-S_SL_Quasi(:,end)+X,0));

if strcmp(Type,’Norm’)

%GBM closed-form

d1=(log((S0*exp(Mue_GBM*T))/X)+(.5*Sigma_GBM^2)*T)/Sigma_GBM/sqrt(T);

d2=d1-Sigma_GBM*sqrt(T);

BS=exp(-rf*T)*(-S0*exp(Mue_GBM*T)*normcdf(-d1)+X*normcdf(-d2));

%OU closed-form

ELnS=exp(-k_OU*T)*log(S0)+(1-exp(-k_OU*T))*

(Mue_OU-Sigma_OU^2/2/k_OU);

VLnS=((1-exp(-2*k_OU*T))*Sigma_OU^2/2/k_OU);

F=exp(ELnS+0.5*VLnS);

d1=log(F/X)/sqrt(VLnS)+.5*sqrt(VLnS);

d2=d1-sqrt(VLnS);

BS_OU=exp(-rf*T)*(-F*normcdf(-d1)+X*normcdf(-d2));

%SL closed-form

ELnS=exp(-k_SL*T)*X0+E0+(Mue_SL-LambdaE)*

T-(1-exp(-k_SL*T))*(LambdaX/k_SL);

VLnS=(1-exp(-2*k_SL*T))*SigmaX^2/2/k_SL+SigmaE^2*T+2*(1-exp(-k_SL*T))

*SigmaX*SigmaE*correl/k_SL;

F=exp(ELnS+0.5*VLnS);
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d1=log(F/X)/sqrt(VLnS)+.5*sqrt(VLnS);

d2=d1-sqrt(VLnS);

BS_SL=exp(-rf*T)*(-F*normcdf(-d1)+X*normcdf(-d2));

end

else

F=S0*exp(Mue_GBM*T);

MTM_rf_GBM=F-X;

ELnS=exp(-k_OU*T)*log(S0)+(1-exp(-k_OU*T))*(Mue_OU-Sigma_OU^2/2/k_OU);

VLnS=((1-exp(-2*k_OU*T))*Sigma_OU^2/2/k_OU);

F=exp(ELnS+0.5*VLnS);

MTM_rf_OU=F-X;

ELnS=exp(-k_SL*T)*X0+E0+(Mue_SL-LambdaE)*T-(1-exp(-k_SL*T))

*(LambdaX/k_SL);

VLnS=(1-exp(-2*k_SL*T))*SigmaX^2/2/k_SL+SigmaE^2*T+2*

(1-exp(-k_SL*T))*SigmaX*SigmaE*correl/k_SL;

F=exp(ELnS+0.5*VLnS);

MTM_rf_SL=F-X;

end

B.2 Generating XVA Numbers for Collateralised

and Uncollateralised trades
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if strcmp(’XVA’,Depth)

% Uncollateralised, both IM and VM between counterparty C and bank B

% We consider costs of CVA, DVA and KVA between C and B. We pass on the

% cost of VM and IM between bank B and hedges counterparties

% Stripping PD curves

Hazard_B=CDS_B/(1-R_B);

PD_B=1-exp(-Hazard_B.*dt);

Hazard_C=CDS_C/(1-R_C);

PD_C=1-exp(-Hazard_C.*dt);

%Change in PD curves from t to t+1

Delta_PD_B=[PD_B(1) PD_B(1,2:end)-PD_B(1,1:end-1)];

Delta_PD_C=[PD_C(1) PD_C(1,2:end)-PD_C(1,1:end-1)];

%Estimating EE(t) and NEE(t)

EE_rf_GBMQ=exp(-rf.*dt).*mean(max(S_GBM_Quasi(:,:)-X,0),1);

EE_rf_OUQ=exp(-rf.*dt).*mean(max(S_OU_Quasi(:,:)-X,0),1);

EE_rf_SLQ=exp(-rf.*dt).*mean(max(S_SL_Quasi(:,:)-X,0),1);

NEE_rf_GBMQ=exp(-rf.*dt).*mean(min(S_GBM_Quasi(:,:)-X,0),1);

NEE_rf_OUQ=exp(-rf.*dt).*mean(min(S_OU_Quasi(:,:)-X,0),1);

NEE_rf_SLQ=exp(-rf.*dt).*mean(min(S_SL_Quasi(:,:)-X,0),1);

%Setting up the Funded Base (PV)

%Calcualte FVA and COLVA portion of the trade
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%Cost of funding from treasury

FCA_GBM=sum(EE_rf_GBMQ*(rf-rv)*dt(1));

FCA_OU=sum(EE_rf_OUQ*(rf-rv)*dt(1));

FCA_SL=sum(EE_rf_SLQ*(rf-rv)*dt(1));

%Benefit from placing with treasury

FBA_GBM=sum(NEE_rf_GBMQ*(rf-rv)*dt(1));

FBA_OU=sum(NEE_rf_OUQ*(rf-rv)*dt(1));

FBA_SL=sum(NEE_rf_SLQ*(rf-rv)*dt(1));

%Cost of funding from CSA

COLVAC_GBM=sum(NEE_rf_GBMQ*(rf-rc)*dt(1));

COLVAC_OU=sum(NEE_rf_OUQ*(rf-rc)*dt(1));

COLVAC_SL=sum(NEE_rf_SLQ*(rf-rc)*dt(1));

%Benefit from placing under CSA

COLVAB_GBM=sum(EE_rf_GBMQ*(rf-rc)*dt(1));

COLVAB_OU=sum(EE_rf_OUQ*(rf-rc)*dt(1));

COLVAB_SL=sum(EE_rf_SLQ*(rf-rc)*dt(1));

%Calcualte CVA and DVA portion of the trade

CVA_GBM=(1-R_C)*dot(EE_rf_GBMQ,(1-[0 PD_B(1,1:end-1)]).*_

[0 Delta_PD_C(1,1:end-1)]);

CVA_OU=(1-R_C)*dot(EE_rf_OUQ,(1-[0 PD_B(1,1:end-1)]).*_

[0 Delta_PD_C(1,1:end-1)]);

CVA_SL=(1-R_C)*dot(EE_rf_SLQ,(1-[0 PD_B(1,1:end-1)]).*_

[0 Delta_PD_C(1,1:end-1)]);
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DVA_GBM=(1-R_B)*dot(NEE_rf_GBMQ,(1-[0 PD_C(1,1:end-1)]).*_

[0 Delta_PD_B(1,1:end-1)]);

DVA_OU=(1-R_B)*dot(NEE_rf_OUQ,(1-[0 PD_C(1,1:end-1)]).*_

[0 Delta_PD_B(1,1:end-1)]);

DVA_SL=(1-R_B)*dot(NEE_rf_SLQ,(1-[0 PD_C(1,1:end-1)]).*_

[0 Delta_PD_B(1,1:end-1)]);

BCVA_GBM=CVA_GBM+DVA_GBM;

BCVA_OU=CVA_OU+DVA_OU;

BCVA_SL=CVA_SL+DVA_SL;

%Calcualte MVA (assume no segregation of initial margin and

%variation margin)

MVAC_GBM=dot((1-[0 PD_B(1,1:end-1)])*(IM_B*(rf-rc)*dt(1)),_

(1-[0 PD_C(1,1:end-1)])); %Cost of funding from CSA

MVAC_OU=dot((1-[0 PD_B(1,1:end-1)])*(IM_B*(rf-rc)*dt(1)),_

(1-[0 PD_C(1,1:end-1)]));

MVAC_SL=dot((1-[0 PD_B(1,1:end-1)])*(IM_B*(rf-rc)*dt(1)),_

(1-[0 PD_C(1,1:end-1)]));

MVAB_GBM=dot((1-[0 PD_B(1,1:end-1)])*(-IM_C*(rf-rc)*dt(1)),_

(1-[0 PD_C(1,1:end-1)])); %Benefit from placing under CSA

MVAB_OU=dot((1-[0 PD_B(1,1:end-1)])*(-IM_C*(rf-rc)*dt(1)),_

(1-[0 PD_C(1,1:end-1)]));

MVAB_SL=dot((1-[0 PD_B(1,1:end-1)])*(-IM_C*(rf-rc)*dt(1)),_

(1-[0 PD_C(1,1:end-1)]));

%Setting up for K calculation for KVA

%Setup for market risk charge (BAsel II & 2.5)

GBM_10dVAR=M_Mult*(exp(-rf.*dt(10:end)).*prctile(S_GBM_Quasi_

(:,10:end)-S_GBM_Quasi(:,1:end-9),MRP));

OU_10dVAR=M_Mult*(exp(-rf.*dt(10:end)).*prctile(S_OU_Quasi_
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(:,10:end)-S_OU_Quasi(:,1:end-9),MRP));

SL_10dVAR=M_Mult*(exp(-rf.*dt(10:end)).*prctile(S_SL_Quasi_

(:,10:end)-S_SL_Quasi(:,1:end-9),MRP));

%Setup for CVA add-on (Basel III)

RCS01_GBM=0.0001*dt.*(1-PD_C).*[(EE_rf_GBMQ(:,1)+EE_rf_GBMQ(:,2))/2_

(EE_rf_GBMQ(:,1:end-2)+EE_rf_GBMQ(:,3:end))/2 (EE_rf_GBMQ_

(:,end-1)+EE_rf_GBMQ(:,end))/2];

RCS01_OU=0.0001*dt.*(1-PD_C).*[(EE_rf_OUQ(:,1)+EE_rf_OUQ(:,2))/2_

(EE_rf_OUQ(:,1:end-2)+EE_rf_OUQ(:,3:end))/2 (EE_rf_OUQ_

(:,end-1)+EE_rf_OUQ(:,end))/2];

RCS01_SL=0.0001*dt.*(1-PD_C).*[(EE_rf_SLQ(:,1)+EE_rf_SLQ(:,2))/2_

(EE_rf_SLQ(:,1:end-2)+EE_rf_SLQ(:,3:end))/2 (EE_rf_SLQ_

(:,end-1)+EE_rf_SLQ(:,end))/2];

%Setup for CCR (Basel III)

%Unilateral CVA portion

CVA_GBM_U=(1-R_C)*EE_rf_GBMQ.*[0 Delta_PD_C(1,1:end-1)];

CVA_OU_U=(1-R_C)*EE_rf_OUQ.*[0 Delta_PD_C(1,1:end-1)];

CVA_SL_U=(1-R_C)*EE_rf_SLQ.*[0 Delta_PD_C(1,1:end-1)];

%EAD portion , 1.4*EEPE

%Calculate the effective expected exposure across time

%and th eexpected positive exposure to get the max of

%the two across all t. Then use the result to get

%time-weighted average.

GBM_EEE=zeros(size(EE_rf_GBMQ,2),1)’;

OU_EEE=zeros(size(EE_rf_GBMQ,2),1)’;

SL_EEE=zeros(size(EE_rf_GBMQ,2),1)’;
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GBM_EEE(1)=EE_rf_GBMQ(1);

OU_EEE(1)=EE_rf_OUQ(1);

SL_EEE(1)=EE_rf_SLQ(1);

for j=1:size(EE_rf_GBMQ,2)-1

if GBM_EEE(j)>=EE_rf_GBMQ(j+1)

GBM_EEE(j+1)=GBM_EEE(j);

else

GBM_EEE(j+1)=EE_rf_GBMQ(j+1);

end

if OU_EEE(j)>=EE_rf_OUQ(j+1)

OU_EEE(j+1)=OU_EEE(j);

else

OU_EEE(j+1)=EE_rf_OUQ(j+1);

end

if SL_EEE(j)>=EE_rf_SLQ(j+1)

SL_EEE(j+1)=SL_EEE(j);

else

SL_EEE(j+1)=EE_rf_SLQ(j+1);

end

end

if strcmp(Stress_Period,’Y’)

%K_MR

GBM_KVA_MR_S=GBM_10dVAR;

OU_KVA_MR_S=OU_10dVAR;

SL_KVA_MR_S=SL_10dVAR;

%K_CVA Add-on

GBM_KVA_CVAV_S=abs(RCS01_GBM).^0.5*CDS_C*10000*Sigma_GBM*_
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(10/Days)^0.5*norminv(MRP/100,0,1);

OU_KVA_CVAV_S=abs(RCS01_OU).^0.5*Sigma_OU*CDS_C*10000*_

(10/Days)^0.5*norminv(MRP/100,0,1);

SL_KVA_CVAV_S=abs(RCS01_SL).^0.5*SigmaX*10000*CDS_C*_

(10/Days)^0.5*norminv(MRP/100,0,1);

%K_CCR

GBM_EAD_CCR_S=1.4*GBM_EEE;

OU_EAD_CCR_S=1.4*OU_EEE;

SL_EAD_CCR_S=1.4*SL_EEE;

GBM_CVA_CCR_S=CVA_GBM_U;

OU_CVA_CCR_S=CVA_OU_U;

SL_CVA_CCR_S=CVA_SL_U;

elseif strcmp(Stress_Period,’N’)

%K_MR

GBM_KVA_MR_N=GBM_10dVAR;

OU_KVA_MR_N=OU_10dVAR;

SL_KVA_MR_N=SL_10dVAR;

%K_CVA Add-on

GBM_KVA_CVAV_N=abs(RCS01_GBM).^0.5*CDS_C*10000*_

Sigma_GBM*(10/Days)^0.5*norminv(MRP/100,0,1);

OU_KVA_CVAV_N=abs(RCS01_OU).^0.5*Sigma_OU*CDS_C*_

10000*(10/Days)^0.5*norminv(MRP/100,0,1);

SL_KVA_CVAV_N=abs(RCS01_SL).^0.5*SigmaX*10000*CDS_C*_

(10/Days)^0.5*norminv(MRP/100,0,1);

%K_CCR
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GBM_EAD_CCR_N=1.4*GBM_EEE;

OU_EAD_CCR_N=1.4*OU_EEE;

SL_EAD_CCR_N=1.4*SL_EEE;

GBM_CVA_CCR_N=CVA_GBM_U;

OU_CVA_CCR_N=CVA_OU_U;

SL_CVA_CCR_N=CVA_SL_U;

end

%Total MR

GBM_KVA_MR=dot((1-[0 PD_B(1,10:end-1)]).*(1-[0 PD_C_

(1,10:end-1)]),(alpha_cap*(GBM_KVA_MR_S+_

GBM_KVA_MR_N)*(rf-rk)*dt(1)));

OU_KVA_MR=dot((1-[0 PD_B(1,10:end-1)]).*(1-[0 PD_C_

(1,10:end-1)]),(alpha_cap*(OU_KVA_MR_S+_

OU_KVA_MR_N)*(rf-rk)*dt(1)));

SL_KVA_MR=dot((1-[0 PD_B(1,10:end-1)]).*(1-[0 PD_C_

(1,10:end-1)]),(alpha_cap*(SL_KVA_MR_S+_

SL_KVA_MR_N)*(rf-rk)*dt(1)));

%Total CVA Add-on

GBM_KVA_CVAV=dot((1-[0 PD_B(1,1:end-1)]).*(1-[0 PD_C(1,1:_

end-1)]),((alpha_cap*12.5*3*(GBM_KVA_CVAV_S+_

GBM_KVA_CVAV_N))*(rf-rk)*dt(1)));

OU_KVA_CVAV=dot((1-[0 PD_B(1,1:end-1)]).*(1-[0 PD_C(1,1:_

end-1)]),((alpha_cap*12.5*3*(OU_KVA_CVAV_S+_

OU_KVA_CVAV_N))*(rf-rk)*dt(1)));

SL_KVA_CVAV=dot((1-[0 PD_B(1,1:end-1)]).*(1-[0 PD_C(1,1:_

end-1)]),((alpha_cap*12.5*3*(SL_KVA_CVAV_S+_

SL_KVA_CVAV_N))*(rf-rk)*dt(1)));
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%Total CCR

GBM_KVA_CCR=dot((1-[0 PD_B(1,1:end-1)]).*(1-[0 PD_C(1,1:_

end-1)]),((alpha_cap*RW*1.06*12.5*(max_

(GBM_EAD_CCR_S,GBM_EAD_CCR_N)-CVA_GBM_U))*_

(rf-rk)*dt(1)));

OU_KVA_CCR=dot((1-[0 PD_B(1,1:end-1)]).*(1-[0 PD_C(1,1:_

end-1)]),((alpha_cap*RW*1.06*12.5*max_

(OU_EAD_CCR_S,OU_EAD_CCR_N)-CVA_OU_U)*_

(rf-rk)*dt(1)));

SL_KVA_CCR=dot((1-[0 PD_B(1,1:end-1)]).*(1-[0 PD_C(1,1:_

end-1)]),((alpha_cap*RW*1.06*12.5*max_

(SL_EAD_CCR_S,SL_EAD_CCR_N)-CVA_SL_U)*_

(rf-rk)*dt(1)));

Funded_Base_GBM=MTM_rf_GBMQ(end)+FCA_GBM+FBA_GBM+_

COLVAB_GBM+COLVAC_GBM+MVAC_GBM+MVAB_GBM;

Funded_Base_OU=MTM_rf_OUQ(end)+FCA_OU+FBA_OU+COLVAB_OU+_

COLVAC_OU+MVAC_OU+MVAB_OU;

Funded_Base_SL=MTM_rf_SLQ(end)+FCA_SL+FBA_SL+COLVAB_SL_

+COLVAC_SL+MVAC_SL+MVAB_SL;

Risky_GBM=Funded_Base_GBM+BCVA_GBM+GBM_KVA_CCR+_

GBM_KVA_CVAV+GBM_KVA_MR;

Risky_OU=Funded_Base_OU+BCVA_OU+OU_KVA_CCR+_

OU_KVA_CVAV+OU_KVA_MR;

Risky_SL=Funded_Base_SL+BCVA_SL+SL_KVA_CCR+_

SL_KVA_CVAV+SL_KVA_MR;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The EE and NEE calcualtions incorporate the impact of collateral

% inherent in trades between bank B and counterparty C

if strcmp(Col,’Y’)
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%Estimating EE(t) and NEE(t) with 0 threshold CSA

%We reduce EAD by the amount of IM and VM is posted. We assume that

%either bank B or counterparty C needs to fund IM between

%eachother. VM is assuemd to be earned/paid from hedge to

%counterpart. No impact on funding VM

%Create Collateral matrices

%For positive exposure, EE(t)

GBM_F_Q=max(S_GBM_Quasi(:,:)-X,0); %Risk-free MTM

GBM_C_Q=[zeros(size(GBM_F_Q,1),Col_lag) _

GBM_F_Q(:,1:end-Col_lag)]; %Collateral matrix

OU_F_Q=max(S_OU_Quasi(:,:)-X,0); %Risk-free MTM

OU_C_Q=[zeros(size(OU_F_Q,1),Col_lag) _

OU_F_Q(:,1:end-Col_lag)]; %Collateral matrix

SL_F_Q=max(S_SL_Quasi(:,:)-X,0); %Risk-free MTM

SL_C_Q=[zeros(size(SL_F_Q,1),Col_lag)_

SL_F_Q(:,1:end-Col_lag)]; %Collateral matrix

EE_rfM_GBMQ=exp(-rf.*dt).*mean(max(GBM_F_Q-GBM_C_Q-IM_C,0),1);

EE_rfM_OUQ=exp(-rf.*dt).*mean(max(OU_F_Q-OU_C_Q-IM_C,0),1);

EE_rfM_SLQ=exp(-rf.*dt).*mean(max(SL_F_Q-SL_C_Q-IM_C,0),1);

%For negative exposure, NEE(t)

GBM_F_Q=min(S_GBM_Quasi(:,:)-X,0); %Risk-free MTM

GBM_C_Q=[zeros(size(GBM_F_Q,1),Col_lag)_

GBM_F_Q(:,1:end-Col_lag)]; %Collateral matrix

OU_F_Q=min(S_OU_Quasi(:,:)-X,0); %Risk-free MTM

OU_C_Q=[zeros(size(OU_F_Q,1),Col_lag)_

OU_F_Q(:,1:end-Col_lag)]; %Collateral matrix

SL_F_Q=min(S_SL_Quasi(:,:)-X,0); %Risk-free MTM
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SL_C_Q=[zeros(size(SL_F_Q,1),Col_lag)_

SL_F_Q(:,1:end-Col_lag)]; %Collateral matrix

NEE_rfM_GBMQ=exp(-rf.*dt).*mean(min(GBM_F_Q-GBM_C_Q+IM_B,0),1);

NEE_rfM_OUQ=exp(-rf.*dt).*mean(min(OU_F_Q-OU_C_Q+IM_B,0),1);

NEE_rfM_SLQ=exp(-rf.*dt).*mean(min(SL_F_Q-SL_C_Q+IM_B,0),1);

%Setting up for K calculation for KVA with IM

%Setup for CVA add-on (Basel III)

RCS01_GBM=0.0001*dt.*(1-PD_C).*[(EE_rfM_GBMQ(:,1)+_

EE_rfM_GBMQ(:,2))/2 (EE_rfM_GBMQ(:,1:end-2)+_

EE_rfM_GBMQ(:,3:end))/2 (EE_rfM_GBMQ(:,end-1)_

+EE_rfM_GBMQ(:,end))/2];

RCS01_OU=0.0001*dt.*(1-PD_C).*[(EE_rfM_OUQ(:,1)+_

EE_rfM_OUQ(:,2))/2 (EE_rfM_OUQ(:,1:end-2)+_

EE_rfM_OUQ(:,3:end))/2 (EE_rfM_OUQ(:,end-1)_

+EE_rfM_OUQ(:,end))/2];

RCS01_SL=0.0001*dt.*(1-PD_C).*[(EE_rfM_SLQ(:,1)+_

EE_rfM_SLQ(:,2))/2 (EE_rfM_SLQ(:,1:end-2)+_

EE_rfM_SLQ(:,3:end))/2 (EE_rfM_SLQ(:,end-1)_

+EE_rfM_SLQ(:,end))/2];

%Setup for CCR (Basel III)

%Unilateral CVA portion

CVA_GBM_U=(1-R_C)*EE_rfM_GBMQ.*[0 Delta_PD_C(1,1:end-1)];

CVA_OU_U=(1-R_C)*EE_rfM_OUQ.*[0 Delta_PD_C(1,1:end-1)];

CVA_SL_U=(1-R_C)*EE_rfM_SLQ.*[0 Delta_PD_C(1,1:end-1)];

%EAD portion , 1.4*EEPE

%Calculate the effective expected exposure across time
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%and th eexpected positive exposure to get the max of

%the two across all t. Then use the result to get

%time-weighted average.

GBM_EEE=zeros(size(EE_rfM_GBMQ,2),1)’;

OU_EEE=zeros(size(EE_rfM_GBMQ,2),1)’;

SL_EEE=zeros(size(EE_rfM_GBMQ,2),1)’;

GBM_EEE(1)=EE_rfM_GBMQ(1);

OU_EEE(1)=EE_rfM_OUQ(1);

SL_EEE(1)=EE_rfM_SLQ(1);

for j=1:size(EE_rfM_GBMQ,2)-1

if GBM_EEE(j)>=EE_rfM_GBMQ(j+1)

GBM_EEE(j+1)=GBM_EEE(j);

else

GBM_EEE(j+1)=EE_rfM_GBMQ(j+1);

end

if OU_EEE(j)>=EE_rfM_OUQ(j+1)

OU_EEE(j+1)=OU_EEE(j);

else

OU_EEE(j+1)=EE_rfM_OUQ(j+1);

end

if SL_EEE(j)>=EE_rfM_SLQ(j+1)

SL_EEE(j+1)=SL_EEE(j);

else

SL_EEE(j+1)=EE_rfM_SLQ(j+1);

end

end

if strcmp(Stress_Period,’Y’)

%K_CVA Add-on
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GBM_KVA_CVAV_S=abs(RCS01_GBM).^0.5*CDS_C*10000*_

Sigma_GBM*(10/Days)^0.5*norminv(MRP/100,0,1);

OU_KVA_CVAV_S=abs(RCS01_OU).^0.5*Sigma_OU*CDS_C*_

10000*(10/Days)^0.5*norminv(MRP/100,0,1);

SL_KVA_CVAV_S=abs(RCS01_SL).^0.5*SigmaX*10000*_

CDS_C*(10/Days)^0.5*norminv(MRP/100,0,1);

%K_CCR

GBM_EAD_CCR_S=1.4*GBM_EEE;

OU_EAD_CCR_S=1.4*OU_EEE;

SL_EAD_CCR_S=1.4*SL_EEE;

GBM_CVA_CCR_S=CVA_GBM_U;

OU_CVA_CCR_S=CVA_OU_U;

SL_CVA_CCR_S=CVA_SL_U;

elseif strcmp(Stress_Period,’N’)

%K_CVA Add-on

GBM_KVA_CVAV_N=abs(RCS01_GBM).^0.5*CDS_C*10000*_

Sigma_GBM*(10/Days)^0.5*norminv(MRP/100,0,1);

OU_KVA_CVAV_N=abs(RCS01_OU).^0.5*Sigma_OU*CDS_C_

*10000*(10/Days)^0.5*norminv(MRP/100,0,1);

SL_KVA_CVAV_N=abs(RCS01_SL).^0.5*SigmaX*10000*_

CDS_C*(10/Days)^0.5*norminv(MRP/100,0,1);

%K_CCR

GBM_EAD_CCR_N=1.4*GBM_EEE;

OU_EAD_CCR_N=1.4*OU_EEE;

SL_EAD_CCR_N=1.4*SL_EEE;
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GBM_CVA_CCR_N=CVA_GBM_U;

OU_CVA_CCR_N=CVA_OU_U;

SL_CVA_CCR_N=CVA_SL_U;

end

%Total CVA Add-on with IM and collateral

GBM_KVA_CVAV=dot((1-[0 PD_B(1,1:end-1)]).*(1-[0_

PD_C(1,1:end-1)]),((alpha_cap*12.5*3*_

(GBM_KVA_CVAV_S+GBM_KVA_CVAV_N))*(rf-rk)*dt(1)));

OU_KVA_CVAV=dot((1-[0 PD_B(1,1:end-1)]).*(1-[0_

PD_C(1,1:end-1)]),((alpha_cap*12.5*3*_

(OU_KVA_CVAV_S+OU_KVA_CVAV_N))*(rf-rk)*dt(1)));

SL_KVA_CVAV=dot((1-[0 PD_B(1,1:end-1)]).*(1-[0_

PD_C(1,1:end-1)]),((alpha_cap*12.5*3*_

(SL_KVA_CVAV_S+SL_KVA_CVAV_N))*(rf-rk)*dt(1)));

%Total CCR with IM and collateral

GBM_KVA_CCR=dot((1-[0 PD_B(1,1:end-1)]).*(1-[0_

PD_C(1,1:end-1)]),((alpha_cap*RW*1.06*12.5_

*(max(GBM_EAD_CCR_S,GBM_EAD_CCR_N)_

-CVA_GBM_U))*(rf-rk)*dt(1)));

OU_KVA_CCR=dot((1-[0 PD_B(1,1:end-1)]).*(1-[0_

PD_C(1,1:end-1)]),((alpha_cap*RW*1.06*12.5_

*max(OU_EAD_CCR_S,OU_EAD_CCR_N)-CVA_OU_U)_

*(rf-rk)*dt(1)));

SL_KVA_CCR=dot((1-[0 PD_B(1,1:end-1)]).*(1-[0_

PD_C(1,1:end-1)]),((alpha_cap*RW*1.06*12.5_

*max(SL_EAD_CCR_S,SL_EAD_CCR_N)-CVA_SL_U)_

*(rf-rk)*dt(1)));
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%BCVA with IM and collateral

CVA_GBM=(1-R_C)*dot(EE_rfM_GBMQ,(1-[0 PD_B(1,1:end-1)])_

.*[0 Delta_PD_C(1,1:end-1)]);

CVA_OU=(1-R_C)*dot(EE_rfM_OUQ,(1-[0 PD_B(1,1:end-1)])_

.*[0 Delta_PD_C(1,1:end-1)]);

CVA_SL=(1-R_C)*dot(EE_rfM_SLQ,(1-[0 PD_B(1,1:end-1)])_

.*[0 Delta_PD_C(1,1:end-1)]);

DVA_GBM=(1-R_B)*dot(NEE_rfM_GBMQ,(1-[0 PD_C(1,1:end-1)])_

.*[0 Delta_PD_B(1,1:end-1)]);

DVA_OU=(1-R_B)*dot(NEE_rfM_OUQ,(1-[0 PD_C(1,1:end-1)])_

.*[0 Delta_PD_B(1,1:end-1)]);

DVA_SL=(1-R_B)*dot(NEE_rfM_SLQ,(1-[0 PD_C(1,1:end-1)])_

.*[0 Delta_PD_B(1,1:end-1)]);

BCVA_GBM=CVA_GBM+DVA_GBM;

BCVA_OU=CVA_OU+DVA_OU;

BCVA_SL=CVA_SL+DVA_SL;

Funded_Base_GBM=MTM_rf_GBMQ+MVAC_GBM+MVAB_GBM;

Funded_Base_OU=MTM_rf_OUQ+MVAC_OU+MVAB_OU;

Funded_Base_SL=MTM_rf_SLQ+MVAC_SL+MVAB_SL;

Risky_GBM=Funded_Base_GBM+BCVA_GBM+GBM_KVA_CCR+GBM_KVA_CVAV;

Risky_OU=Funded_Base_OU+BCVA_OU+OU_KVA_CCR+OU_KVA_CVAV;

Risky_SL=Funded_Base_SL+BCVA_SL+SL_KVA_CCR+SL_KVA_CVAV;

end
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