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aDepartment of Mathematics, Government College University-54000 Lahore, Pakistan
bDepartment of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
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Abstract. In this paper, the concept of (α − ψ)-generalized rational contraction multivalued operator is
introduced and then the existence of common fixed points of such mapping in complete dislocated quasi b-
metric spaces is obtained. Some examples are presented to show that the results proved herein are potential
generalization and extension of comparable existing results in the literature. We also study Ulam-Hyers
stability of fixed point problems of (α − ψ)-generalized rational contraction multivalued operator. We also
obtain some common fixed point results for single and multivalued mappings in a complete dq b-metric
space endowed with a partial order. As an application, the existence of a continuous solution of an integral
equation under appropriate assumptions is obtained.

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction and Preliminaries

Fixed point theory results are widely used in the economics, computer science, engineering and other
related disciplines. The most remarkable result in metric fixed point theory is Banach fixed point theorem
[8] . This result has been extended and generalized in different directions (see, [1, 4, 7, 31]). Recently,
Klin-eam and Suanoom [18] introduced the concept of dislocated quasi b-metric spaces which generalize
abstract spaces such as quasi b-metric spaces [31], b-metric-like spaces [1], b-metric spaces [7] and metric
spaces.

In the sequel, the letters, R+,R,N and N0 will denote the set of all nonnegative real numbers, the set of
all real numbers, the set of all natural numbers and the set of all nonnegative integer numbers, respectively.

Definition 1.1. [18] Let X be a nonempty set and s ≥ 1 a real number. Suppose that for any x, y, z ∈ X, the mapping
d : X × X→ R+ satisfies the following conditions:
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The second author is supported by Grant No. 174025 of the Ministry of Education, Science and Technological Development,

Republic of Serbia.
Email addresses: abbas.mujahid@gmail.com (Mujahid Abbas), vrakoc@sbb.rs (Vladimir Rakočević), tsegayebah@gmail.com

(Bahru Tsegaye Leyew)



M. Abbas et al. / Filomat 31:11 (2017), 3263–3284 3264

(b1) d(x, y) = d(y, x) = 0 implies x = y;

(b2) d(x, y) ≤ s
[
d(x, z) + d(z, y)

]
.

The pair (X, d) is called a dislocated quasi b-metric (or simply dq b-metric) space.

Klin-eam and Suanoom [18] proved fixed point theorem for cyclic contractions in dq b-metric spaces.
Since then, fixed point results for various classes of single valued and multivalued operators have been
proved in the framework of dq b-metric spaces ( see [25] and references therein).

Remark 1.2. If s = 1 in the definition 1.1, then dq b-metric space (or quasi b-metric-like space) is a dq metric space
(or quasi metric-like space).

Note that a b-metric is not necessarily continuous in each variable. However, if b-metric is continuous
in one variable, then it is continuous in the other variable (see [2]).

It is obvious that b-metric spaces, quasi-b-metric spaces and dislocated b-metric spaces are dq b-metric
spaces, but the converse does not hold in general.

Example 1.3. [25, Example2.1] Let X = R+ and p > 1. Define d : X × X→ R+ by

d(x, y) =
∣∣∣x − y

∣∣∣p + |x|p for all x, y ∈ X.

Then (X, d) is a dq b-metric space with s = 2p > 1. As, d(1, 1) , 0, (X, d) is not a quasi b-metric space. Also
d(0, 1) , d(1, 0) implies that (X, d) is not a dislocated b-metric space. It is obvious that (X, d) is neither b-metric space
nor dislocated quasi metric space.

In view of the following proposition, some more examples of dq b-metric spaces can easily be con-
structed.

Proposition 1.4. [25] Let X be a nonempty set such that dq is a dq metric and db is a b-metric with s > 1. Then the
function d : X × X→ R+ defined by d(x, y) = dq(x, y) + db(x, y) is dq b-metric on X.

Definition 1.5. [18] Let (X, d) be a dq b-metric space. A sequence {xn} in (X, d) is called:

(a) dq b-convergent if there exists some point x ∈ X such that

lim
n→∞

d(xn, x) = 0 = lim
n→∞

d(x, xn).

In this case x is called a dq b-limit of {xn} and we write xn → x as n→∞.

(b) Cauchy sequence if

lim
n,m→∞

d(xm, xn) = 0 = lim
n,m→∞

d(xn, xm).

The space (X, d) is called complete if every Cauchy sequence in X is dq b-convergent.
Each dq b-metric d generates a topology on X whose base is the family of open balls {B(x0, r) : x0 ∈ X,

r > 0}, where B(x0, r) = {x ∈ X : max{d(x0, x), d(x, x0)} < r}.
Unless stated otherwise from now onwards, X denotes dq b-metric space equipped with dq b-metric d

with s ≥ 1 and we assume that a dq b-metric d is continuous in one variable.
We denote by N(X) the space of all nonempty subsets of X, by CL(X) the space of all nonempty closed

subsets of X, and by CB(X) the space of all nonempty closed and bounded subsets of X.
Let S, T : X→ N(X). A point x∗ ∈ X is called:

(1) a fixed point of T if x∗ ∈ Tx∗.
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(2) a common fixed point of T and S if x∗ ∈ Tx∗ ∩ Sx∗.

We denote by F(T) the set of fixed point of T.
For A,B ∈ CB(X) and x ∈ X, define

δ(A,B) = sup{d(x,B) : x ∈ A},
δ(B,A) = sup{d(y,A) : y ∈ B}, and

H(A,B) = max{δ(A,B), δ(B,A)},

where

d(x,B) = inf{d(x, y) : y ∈ B}.

The function H is called the Hausdorff dq b-metric on CB(X) induced by d.Note that, H(A,B) ≤ s(H(A,C) +
H(C,B)). Also, H(A,B) = 0 implies that A = B. Furthermore, (CB(X),H) is complete if (X, d) is complete.

We need the following analogous lemmas [22] in the framework of dq b-metric spaces. For sake of
completeness, we give the proofs.

Lemma 1.6. Let A, B ∈ CB(X). If a ∈ A, then d(a,B) ≤ H(A,B).

Proof. d(a,B) ≤ sup{d(x,B) : x ∈ A} = δ(A,B) ≤ H(A,B).

Lemma 1.7. Let (X, d) be a dq b-metric space. For A ∈ CB(X) and x ∈ X, d(x,A) = 0 implies that x ∈ A.

Proof. Let d(x,A) = 0. Then x ∈ A = A since A ∈ CB(X).

Lemma 1.8. Let (X, d) be dq b-metric space. Suppose that {An} is a sequence in CB(X) such that lim
n→∞

H(An,A) = 0

for A ∈ CB(X). If xn ∈ An and lim
n→∞

d(xn, x) = 0, then x ∈ A.

Proof. By our assumption that d is continuous in one of the variable, we have

d(x,A) = lim
n→∞

d(xn,A) ≤ lim
n→∞

H(An,A) = 0.

Hence d(x,A) = 0. Then Lemma 1.7 implies that x ∈ A.

Lemma 1.9. Let (X, d) be a dq b-metric space with constant s > 1 and B ∈ CB(X). Assume that there exists x ∈ X
such that d(x,B) > 0. Then for each q > 1, there exists y = y(x) ∈ B such that d(x, y) < qd(x,B).

Proof. Assume on the contrary that there exists q > 1, such that for all y ∈ B, there is d(x, y) ≥ qd(x,B). Then,
d(x,B) = inf{d(x, y) : y ∈ B} ≥ qd(x,B). Hence, q ≤ 1, which is a contradiction.

Lemma 1.10. Let (X, d) be a dq b-metric space, A,B ∈ P(X). If there exists a λ > 0 such that (i) for each a ∈ A, there
exists a b ∈ B such that d(a, b) ≤ λ, then H(A,B) ≤ λ. (ii) for each b ∈ B, there exists an a ∈ A such that d(a, b) ≤ λ,
then H(A,B) ≤ λ.

Recently, Mohammadi et al. [21] introduced the concept of α-admissiblity for a set-valued mapping
different from the notion of α∗-admissible mappings in [3].

We now introduce a new concept of α-closed mappings as follows.

Definition 1.11. Let X be a nonempty set, α : X × X→ R+ and T,S : X→ N(X). A pair (T,S) is called α-closed if
for any x, y ∈ X,

α(x, y) ≥ 1 implies that α(u, v) ≥ 1 for any u ∈ Tx and v ∈ Sy.

Following is the dq b-metric space version of the concept of α-continuity of multivalued mappings introduced in [19].
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Definition 1.12. Let (X, d) be a dq b-metric space, α : X × X → R+ and T,S : X → CL(X). A pair (T,S) is an
α-continuous on (CL(X),H) if, for any sequence {xn} in X,

lim
n→∞

d(xn, x) = 0 and α(xn, xn+1) ≥ 1 for all n ∈N0 imply that lim
n→∞

H(Txn,Sx) = 0.

Note that the continuity implies α-continuity for any mapping α but converse does not hold in general.
Recently, Samet [30] obtained fixed point theorems for (α,ψ)-type contraction mappings in metric spaces.

For more results in this direction, we refer to [4, 30].

Definition 1.13. [28] By Ψ, we denote the set of all functions ψ : R+
→ R+ which have the following properties:

(Ψ1) ψ is monotone nondecreasing;

(Ψ2)
∞∑

n=1
ψn(t) < ∞ for all t > 0, where ψn(t) is the n−th iterate of ψ.

The function ψ ∈ Ψ is known as Bianchini-Grandolfi gauge functions. For some useful properties of
such functions we refer to [28] and the references cited therein.

The following result follows from Definition 1.13.

Lemma 1.14. If ψ ∈ Ψ, then (i) {ψn(t)}n∈N converges to 0 as n→∞ for all t ≥ 0; (ii) ψ(t) < t for all t > 0; and (iii)
ψ(t) = 0 if and only if t = 0.

A mapping ϕ : R+
→ R+ is called a comparison function if it is increasing and ϕn(t) converges to 0 as

n→∞, for all t ≥ 0. We denote the class of the comparison function ϕ by Φ.

Lemma 1.15. If ϕ ∈ Φ, then (i) each iterate ϕn of ϕ ,n ≥ 1, is also a comparison function; (ii) ϕ(t) < t for all t > 0;
and (iii) ϕ is continuous at 0.

Berinde [11] introduced the concept of a (c)-comparison function as follows.

Definition 1.16. A function ϕ : R+
→ R+ is said to be a (c)-comparison function if

(a) it is increasing;

(b) there exist k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms
∞∑

k=1
υk such that ϕk+1(t) ≤

aϕk(t) + υk for k ≥ k0 and any t ≥ 0.

In order to extend some fixed point results to the class of b-metric spaces, Berinde [10] extended the
concept of a (c)-comparison function to (b)-comparison function as follows.

Definition 1.17. [10] Let s ≥ 1 be a real number. A function ϕ : R+
→ R+ is called a (b)-comparison function if

(c) ϕ is monotone increasing;

(d) there exist k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms
∞∑

k=1
υk such that sk+1ϕk+1(t) ≤

askϕk(t) + υk for k ≥ k0 and any t ≥ 0.

The next Lemma is very important in the proof of our main result.

Lemma 1.18. [10, 11] Let ϕ : R+
→ R+ be a (b)-comparison function. Then

(e) the series
∞∑

k=0
skϕk(t) converges for any t ≥ 0;
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(f) the function Sb = R+
→ R+ defined by Sb(t) =

∞∑
k=0

skϕk(t), t ≥ 0 is increasing and continuous at 0.

Note that any (b)-comparison function is a comparison function.
In this paper, by Ψb we denote by the set of (b)-comparison functions.
The aim of this paper is to introduce the notion of (α − ψ)-generalized rational contraction multivalued

mappings and then to study the necessary conditions for existence of a common fixed point of two mappings
in the framework of a dq b-metric space.

Definition 1.19. Let (X, d) be a dq b-metric space, α : X × X→ R+, ψ ∈ Ψb and T,S : X→ CL(X).

(a) A pair (T,S) is called an (α − ψ)-generalized rational contraction if for any x, y ∈ X with α(x, y) ≥ 1, the
following condition holds:

α(x, y)H(Tx,Sy) ≤ ψ
(
MT,S(x, y)

)
, (1)

where

MT,S(x, y) = max


d(x, y), d(x,Tx), d(y,Sy), 1

2s d(x,Sy),
d(y,Sy)[1 + d(x,Tx)]

1 + d(x, y)

 .
(b) A pair (S,T) is called an (α − ψ)-generalized rational contraction if for any x, y ∈ X with α(x, y) ≥ 1, the

following condition holds:

α(x, y)H(Sx,Ty) ≤ ψ
(
MS,T(x, y)

)
, (2)

where

MS,T(x, y) = max


d(x, y), d(x,Sx), d(y,Ty), 1

2s d(x,Ty),
d(y,Ty)[1 + d(x,Sx)]

1 + d(x, y)

 .
(c) A mapping T is called an (α−ψ)-generalized rational contraction if for any x, y ∈ X with α(x, y) ≥ 1, the

following condition holds:

α(x, y)H(Tx,Ty) ≤ ψ
(
MT(x, y)

)
, (3)

where

MT,T(x, y) = max


d(x, y), d(x,Tx), d(y,Ty), 1

2s d(x,Ty),
d(y,Ty)[1 + d(x,Tx)]

1 + d(x, y)

 .
Remark 1.20. (a) if α : X×X→ R+ is defined as α(x, y) = 1 for all x, y ∈ X in Definition 1.19, then the pairs (T,S),
(S,T) and the mapping T are called ψ-generalized rational contraction. (b) if ψ ∈ Ψb is a strictly increasing function
in the Definition 1.19, then the pairs (T,S), (S,T) and the mapping T are said to be strictly (α−ψ)-generalized rational
contraction (c) if α : X × X → R+ is defined as α(x, y) = 1 for all x, y ∈ X and ψ ∈ Ψb is a strictly increasing
function in the Definition 1.19, then the pairs (T,S), (S,T) and the mapping T are called a strictly ψ-generalized
rational contraction on X.



M. Abbas et al. / Filomat 31:11 (2017), 3263–3284 3268

2. Common Fixed Point Results

In this section, we obtain some common fixed point results of (α − ψ)-generalized rational contraction
multivalued mappings in the framework of complete dq b-metric spaces.

We start with the following result.

Theorem 2.1. Let (X, d) be a complete dq b-metric space and T,S : X → CB(X). Suppose that the pairs (T,S) and
(S,T) are strictly (α − ψ)-generalized rational contraction mappings such that

(C1) (T,S) and (S,T) are α-closed;

(C2) there exists x0 ∈ X and x1 ∈ Tx0 with α(x0, x1) ≥ 1;

(C3) (T,S) and (S,T) are α-continuous.

Then there exists a point x∗ ∈ X such that x∗ ∈ Tx∗ ∩ Sx∗.

Proof. If MT,S(x, y) = 0 and MS,T(x, y) = 0 for some x, y ∈ X, then the result is obvious. We assume that
MT,S(x, y) > 0 and MS,T(x, y) > 0 for all x, y ∈ X. By hypothesis, there exist x0 ∈ X and x1 ∈ Tx0 such that
α(x0, x1) ≥ 1. Clearly, if x0 = x1 or x1 ∈ Sx1, then x1 is a common fixed point of T and S. Now, we assume
that x0 , x1 and x1 < Sx1. So, d(x0, x1) > 0 and d(x1,Sx1) > 0. As (T,S) is strictly (α − ψ)-generalized rational
contraction, we have

0 < d(x1,Sx1) ≤ α(x0, x1)H(Tx0,Sx1) ≤ ψ(MT,S(x0, x1))

= ψ

max


d(x0, x1), d(x0,Tx0), d(x1,Sx1), 1

2s d(x0,Sx1),
d(x1,Sx1)[1 + d(x0,Tx0)]

1 + d(x0, x1)




≤ ψ

max


d(x0, x1), d(x0, x1), d(x1,Sx1), 1

2s d(x0,Sx1),
d(x1,Sx1)[1 + d(x0, x1)]

1 + d(x0, x1)




≤ ψ (max {d(x0, x1), d(x1,Sx1)}) . (4)

Indeed,
1
2s

d(x0,Sx1) ≤
1
2

[d(x0, x1) + d(x1,Sx1)] ≤ max {d(x0, x1), d(x1,Sx1)} . Assume that

max {d(x0, x1), d(x1,Sx1)} = d(x1,Sx1).

Then from (4) we have

0 < d(x1,Sx1) ≤ ψ (d(x1,Sx1)) ,

which is a contradiction to our assumption. Thus, max {d(x0, x1), d(x1,Sx1)} = d(x0, x1). Then from (4) we
have

0 < d(x1,Sx1) ≤ ψ (d(x0, x1)) . (5)

By Lemma 1.9, there exists x2 ∈ Sx1 such that

d(x1, x2) < qd(x1,Sx1) ≤ qψ (d(x0, x1)) (6)

where q > 1. As ψ is increasing, from (6) we obtain that

0 < ψ (d(x1, x2)) ≤ ψ
(
qψ (d(x0, x1))

)
. (7)

Put q1 =
ψ

(
qψ (d(x0, x1))

)
ψ (d(x1, x2))

. Then q1 > 1. Since x1 ∈ Tx0, x2 ∈ Sx1, α(x0, x1) ≥ 1, and (T,S) is α-closed, we have

α(x1, x2) ≥ 1. Clearly, if x1 = x2 or x2 ∈ Tx2, then x2 is a common fixed point of T and S. Now, we assume
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that x1 , x2 and x2 < Tx2. So then, d(x1, x2) > 0 and d(x2,Tx2) > 0. As (S,T) is strictly (α − ψ)-generalized
rational contraction, we have

0 < d(x2,Tx2) ≤ α(x1, x2)H(Sx1,Tx2) ≤ ψ(MS,T(x1, x2))

= ψ

max


d(x1, x2), d(x1,Sx1), d(x2,Tx2), 1

2s d(x1,Tx2),
d(x2,Tx2)[1 + d(x1,Sx1)]

1 + d(x1, x2)




≤ ψ

max


d(x1, x2), d(x1, x2), d(x2,Tx2), 1

2s d(x1,Tx2),
d(x2,Tx2)[1 + d(x1, x2)]

1 + d(x1, x2)




≤ ψ (max {d(x1, x2), d(x2,Tx2)}) (8)

Indeed,
1
2s

d(x1,Tx2) ≤
1
2

[d(x1, x2) + d(x2,Tx2)] ≤ max {d(x1, x2), d(x2,Tx2)} . Assume that

max {d(x1, x2), d(x2,Tx2)} = d(x2,Tx2).

Then from (8) we have

0 < d(x2,Tx2) ≤ ψ (d(x2,Tx2)) ,

a contradiction to our assumption. Thus, max {d(x1, x2), d(x2,Tx2)} = d(x1, x2). Now from (8) we have

0 < d(x2,Tx2) ≤ ψ (d(x1, x2)) . (9)

For q1 > 1, Lemma 1.9 gives that there exists x3 ∈ Tx2 such that

d(x2, x3) < q1d(x2,Tx2) ≤ q1ψ (d(x1, x2)) ≤ ψ
(
qψ (d(x0, x1))

)
. (10)

As ψ is increasing, from (10) we obtain that

0 < ψ (d(x2, x3)) < ψ2 (
qψ (d(x0, x1))

)
. (11)

Put q2 =
ψ2 (

qψ (d(x0, x1))
)

ψ (d(x2, x3))
. Then q2 > 1. As x2 ∈ Sx1, x3 ∈ Tx2, α(x1, x2) ≥ 1, and (S,T) is α-closed, we have

α(x2, x3) ≥ 1. Clearly, if x2 = x3 or x3 ∈ Sx3, then x3 is a common fixed point of T and S. Now, we assume
that x2 , x3 and x3 < Sx3. So then, d(x2, x3) > 0 and d(x3,Sx3) > 0. As (T,S) is strictly (α − ψ)-generalized
rational contraction, we have

0 < d(x3,Sx3) ≤ α(x2, x3)H(Tx2,Sx3) ≤ ψ(MT,S(x2, x3))

= ψ

max


d(x2, x3), d(x2,Tx2), d(x3,Sx3), 1

2s d(x2,Sx3),
d(x3,Sx3)[1 + d(x2,Tx2)]

1 + d(x2, x3)




≤ ψ

max


d(x2, x3), d(x2, x3), d(x3,Sx3), 1

2s d(x2,Sx3),
d(x3,Sx3)[1 + d(x2, x3)]

1 + d(x2, x3)




≤ ψ (max {d(x2, x3), d(x3,Sx3)}) . (12)

since
1
2s

d(x2,Sx3) ≤
1
2

[d(x2, x3) + d(x3,Sx3)] ≤ max {d(x2, x3), d(x3,Sx3)} . Assume that

max {d(x2, x3), d(x3,Sx3)} = d(x3,Sx3).

Then from (12) we have

0 < d(x3,Sx3) ≤ ψ (d(x3,Sx3)) ,
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a contradiction to our assumption. Thus, max {d(x2, x3), d(x3,Sx3)} = d(x2, x3). Then from (12) we have

0 < d(x3,Sx3) ≤ ψ (d(x2, x3)) . (13)

For q2 > 1; by Lemma 1.9, there exists x4 ∈ Sx3 such that

d(x3, x4) < q2d(x3,Sx3) ≤ q2ψ (d(x2, x3)) ≤ ψ2 (
qψ (d(x0, x1))

)
. (14)

As ψ is increasing, from (14) we obtain that

0 < ψ (d(x3, x4)) < ψ3 (
qψ (d(x0, x1))

)
. (15)

Following the arguments similar to those given above we construct a sequence {xk} such that x2k , x2k+1 ∈

Tx2k, and x2k+2 ∈ Sx2k+1 with α(x2k, x2k+1) ≥ 1 and

d(x2k+1, x2k+2) < ψ2k(qψ (d(x0, x1))) (16)

for each k ∈N0. As ψ is increasing, from (16) we obtain that

0 < ψ (d(x2k+1, x2k+2)) < ψ2k+1(qψ (d(x0, x1))). (17)

Put q2k+1 =
ψ2k+1 (

qψ (d(x0, x1))
)

ψ (d(x2k+1, x2k+2))
. Then q2k+1 > 1. As x2k+1 ∈ Tx2k, x2k+2 ∈ Sx2k+1, α(x2k, x2k+1) ≥ 1, and (T,S) is

α-closed, we have α(x2k+1, x2k+2) ≥ 1. Assume that d(x2k+1, x2k+2) > 0. As (S,T) is strictly (α − ψ)-generalized
rational contraction, we have

0 < d(x2k+2,Tx2k+2) ≤ α(x2k+1, x2k+2)H(Sx2k+1,Tx2k+2) ≤ ψ(MS,T(x2k+1, x2k+2))

= ψ

max


d(x2k+1, x2k+2), d(x2k+1,Sx2k+1), d(x2k+2,Tx2k+2),
1
2s d(x2k+1,Tx2k+2),
d(x2k+2,Tx2k+2)[1 + d(x2k+1,Sx2k+1)]

1 + d(x2k+1, x2k+2)




≤ ψ

max


d(x2k+1, x2k+2), d(x2k+1, x2k+2), d(x2k+2,Tx2k+2),
1
2s d(x2k+1,Tx2k+2),
d(x2k+2,Tx2k+2)[1 + d(x2k+1, x2k+2)]

1 + d(x2k+1, x2k+2)




≤ ψ (max {d(x2k+1, x2k+2), d(x2k+2,Tx2k+2)}) . (18)

Note that
1
2s

d(x2k+1,Tx2k+2) ≤
1
2

[d(x2k+1, x2k+2) + d(x2k+2,Tx2k+2)] ≤ max {d(x2k+1, x2k+2), d(x2k+2,Tx2k+2)} . As-
sume that

max {d(x2k+1, x2k+2), d(x2k+2,Tx2k+2)} = d(x2k+2,Tx2k+2).

Then from (18) we have

0 < d(x2k+2,Tx2k+2) ≤ ψ (d(x2k+2,Tx2k+2)) ,

which is a contradiction to our assumption. Thus, max {d(x2k+1, x2k+2), d(x2k+2,Tx2k+2)} = d(x2k+1, x2k+2). Then
from (18) we have

0 < d(x2k+2,Tx2k+2) ≤ ψ (d(x2k+1, x2k+2)) . (19)

For q2k+1 > 1 by Lemma 1.9, there exists x2k+3 ∈ Tx2k+2 such that

d(x2k+2, x2k+3) < q2k+1d(x2k+2,Tx2k+2) ≤ q2k+1ψ (d(x2k+1, x2k+2)) ≤ ψ2k+1 (
qψ (d(x0, x1))

)
. (20)



M. Abbas et al. / Filomat 31:11 (2017), 3263–3284 3271

As ψ is increasing, from (20) we obtain that

0 < ψ (d(x2k+2, x2k+3)) < ψ2k+2 (
qψ (d(x0, x1))

)
.

Hence by an induction, we have a sequence {xn} in X with α(xn, xn+1) ≥ 1 such that

d(xn+1, xn+2) < ψn (
qψ (d(x0, x1))

)
(21)

for each n ∈N0. Using the property ψ, it is clear that

lim
n→∞

d(xn+1, xn+2) = 0. (22)

Now using triangular inequality and (21) for m ≥ 1, we obtain that

d(xn, xn+m) ≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + . . . + sm−1d(xn+m−2, xn+m−1) + sm−1d(xn+m−1, xn+m)
≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + . . . + sm−1d(xn+m−2, xn+m−1) + smd(xn+m−1, xn+m)

=

n+m−1∑
i=n

si−n+1d(xi, xi+1) ≤
n+m−1∑

i=n

si−n+1ψi−1 (
qψ (d(x0, x1))

)
=

1
sn−2

n+m−1∑
i=n

si−1ψi−1 (
qψ (d(x0, x1))

)
=

1
sn−2

n+m−2∑
i=n−1

siψi (qψ (d(x0, x1))
)
.

Setting Sn =
n∑

i=0
siψi (qψ (d(x0, x1))

)
, n ≥ 1 we obtain d(xn, xn+m) ≤ 1

sn−2 [Sn+m−2 − Sn−2] , n ≥ 3, m ≥ 1. By the

fact s ≥ 1 and Lemma 1.18 (iii), we conclude that
n∑

i=0
siψi (qψ (d(x0, x1))

)
is convergent. Thus there exists

S = lim
n→∞

Sn which implies that

d(xn, xn+m)→ 0 as n→∞.

Hence {xn} is a Cauchy sequence in X. Since (X, d) is complete, there exists a point x∗ ∈ X such that

lim
n→∞

d(xn, x∗) = lim
n→∞

d(x∗, xn) = 0. (23)

Since the pairs (T,S) and (S,T) are α-continuous, we have, lim
n→∞

H(Tx2n,Sx∗) = 0 and lim
n→∞

H(Sx2n+1,Tx∗) = 0.
By Lemma 1.8, we obtain that x∗ ∈ Tx∗ ∩ Sx∗.

Example 2.2. Let X = R+ and d(x, y) =
∣∣∣x − y

∣∣∣2 for all x, y ∈ X. Define the mappings T,S : X→ CB(X) by,

Tx =

{
[0, x

2 ] if x ∈ [0, 1],
[2x − 3

2 ,∞) if x ∈ (1,∞) and Sx =

{
[0, x

3 ] if x ∈ [0, 1],
[x, 2x] if x ∈ (1,∞).

Note that (X, d) is a complete dq b-metric space with s = 2. Define α : X × X→ R+ by

α(x, y) =

{
1 if x, y ∈ [0, 1],
0 if x < [0, 1] or y < [0, 1].

If x0 = 1
2 and x1 = 1

4 ∈ Tx0, then α(x0, x1) ≥ 1. Also, the pairs (T,S) and (S,T) are α-closed and strictly (α − ψ)-

generalized rational contraction, where ψ(t) =
t
4

for all t ≥ 0. For any sequence {xn} in X with α(xn, xn+1) ≥ 1 for all
n ∈ N0 and xn → x as n → ∞, then x ∈ [0, 1]. Indeed {xn} is a sequence in [0, 1]. Note that, (T,S) and (S,T) are
α-continuous . Thus all the conditions of Theorem 2.1 are satisfied. Moreover, x∗ ∈ {0} ∪ (1, 3

2 ] is the common fixed
point of T and S in X.
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Now, in the next Theorem, we omit the α-continuity condition on the mappings T,S.

Theorem 2.3. Let (X, d) be a complete dq b-metric space and T,S : X→ CB(X). Suppose the pairs (T,S) and (S,T)
are strictly (α − ψ)-generalized rational contraction mappings such that

(C1) (T,S) and (S,T) are α-closed;

(C2) the maps p, h : X→ R defined by p(x) = d(x,Tx) and h(x) = d(x,Sx) are lower semi-continuous;

(C3) there exists x0 ∈ X and x1 ∈ Tx0 with α(x0, x1) ≥ 1;

(C4) if {xn} is a sequence in X with α(xn, xn+1) ≥ 1 for all n ∈ N and lim
n→∞

d(xn, x) = 0 for some x ∈ X, then
α(xn, x) ≥ 1 for all n ∈N.

Then there exists a point x∗ ∈ X such that x∗ ∈ Tx∗ ∩ Sx∗.

Proof. Following similar arguments as given in proof of Theorem 2.1, we obtain that {xn} is a Cauchy
sequence in the complete dq b-metric space X with lim

n→∞
d(xn, x∗) = 0 for some x∗ ∈ X and α(xn, xn+1) ≥ 1

for each n ∈ N0. By hypothesis (C4), we get α(xn, x∗) ≥ 1 for each n ∈ N0. Since the pair (T,S) is strictly
(α − ψ)-generalized rational contraction, we have

H(Tx2n,Sx∗) ≤ α(x2n, x∗)H(Tx2n,Sx∗)
≤ ψ(MT,S(x2n, x∗))

= ψ

max


d(x2n, x∗), d(x2n,Tx2n), d(x∗,Sx∗), 1

2s d(x2n,Sx∗),
d(x∗,Sx∗)[1 + d(x2n,Tx2n)]

1 + d(x2n, x∗)




≤ ψ

max


d(x2n, x∗), d(x2n, x2n+1), d(x∗,Sx∗), 1

2s d(x2n,Sx∗),
d(x∗,Sx∗)[1 + d(x2n, x2n+1)]

1 + d(x2n, x∗)


 .

On taking limit as n→∞ on both sides of above inequality, we have

lim
n→∞

H(Tx2n,Sx∗) ≤ ψ(d(x∗,Sx∗)).

If d(x∗,Sx∗) > 0. Then by definition of ψ and the condition (C2), we obtain

lim
n→∞

H(Tx2n,Sx∗) ≤ ψ(d(x∗,Sx∗))

< d(x∗,Sx∗)
≤ lim inf

n→∞
d(x2n+1,Sx2n+1)

≤ lim
n→∞

d(x2n+1, x2n+2) = 0

a contradiction. Thus d(x∗,Sx∗) = 0 and implies x∗ ∈ Sx∗. Also, since (S,T) is strictly (α − ψ)-generalized
rational contraction, we have

H(Sx2n+1,Tx∗) ≤ α(x2n+1, x∗)H(Sx2n+1,Tx∗)
≤ ψ(MS,T(x2n+1, x∗))

= ψ

max


d(x2n+1, x∗), d(x2n+1,Sx2n+1), d(x∗,Tx∗),
1
2s d(x2n+1,Tx∗),

d(x∗,Tx∗)[1 + d(x2n+1,Sx2n+1)]
1 + d(x2n+1, x∗)




≤ ψ

max


d(x2n+1, x∗), d(x2n+1, x2n+2), d(x∗,Tx∗),
1
2s d(x2n+1,Tx∗),

d(x∗,Tx∗)[1 + d(x2n+1, x2n+2)]
1 + d(x2n+1, x∗)


 .
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On taking limit as n→∞ on both sides of above inequality, we have

lim
n→∞

H(Sx2n+1,Tx∗) ≤ ψ(d(x∗,Tx∗)).

If d(x∗,Tx∗) > 0. Then by definition of ψ and the condition (C2), we obtain

lim
n→∞

H(Sx2n+1,Tx∗) ≤ ψ(d(x∗,Tx∗))

< d(x∗,Tx∗)
≤ lim inf

n→∞
d(x2n+2,Tx2n+2)

≤ lim
n→∞

d(x2n+2, x2n+3) = 0

a contradiction. Thus d(x∗,Tx∗) = 0 and implies x∗ ∈ Tx∗. Hence x∗ ∈ Tx∗ ∩ Sx∗.

Corollary 2.4. Let (X, d) be a complete dq b-metric space. If T,S : X → CB(X) are continuous and the pairs
(T,S) and (S,T) are strictly ψ-generalized rational contraction mappings, then there exists a point x∗ ∈ X such that
x∗ ∈ Tx∗ ∩ Sx∗.

Proof. Define α : X × X → R+ as α(x, y) = 1 for all x, y ∈ X. Then the result follows from Theorem 2.1 and
Theorem 2.3.

The following two Theorems generalize the main results of Samet et. al. [30] and Karapinar et. al. [17,
Theorem 2.3 and 2.4].

Theorem 2.5. Let (X, d) be a complete dq b-metric space. Suppose T : X → CB(X) is strictly (α − ψ)-generalized
rational contraction mapping such that

(C1) T is α-closed;

(C2) there exists x0 ∈ X and x1 ∈ Tx0 with α(x0, x1) ≥ 1;

(C3) T is α-continuous.

Then there exists a point x∗ ∈ X such that x∗ ∈ Tx∗.

Proof. The result follows from Theorem 2.1 by choosing T = S.

Example 2.6. Let X = R+ and d(x, y) =
∣∣∣x − y

∣∣∣3 . Define T : X→ N(X) by

Tx =

{
[0, x

2 ] if x ∈ [0, 1],
{2x} otherwise

and α : X × X→ R+ as:

α(x, y) =


1∣∣∣x2 − y2

∣∣∣ if x, y ∈ [0, 1] and x , y,

1 if x, y ∈ [0, 1] and x = y,
tanh(x + y) otherwise.

Note that (X, d) is a complete dq b-metric space with s = 4 and for any x, y ∈ [0, 1], we obtain that α(x, y) ≥ 1
and Tx,Ty ⊆ [0, 1]. As α(u, v) ≥ 1 for each u ∈ Tx and v ∈ Ty, T is α-closed. If x0 = 1

2 and x1 = 1
4 ∈ Tx0, then

α(x0, x1) ≥ 1. Also, for any sequence {xn} in X with α(xn, xn+1) ≥ 1 for all n ∈N0 and xn → x as n→∞, we obtain

that x ∈ [0, 1]. Note that T is α-continuous since Txn,Tx ∈ [0, 1] and Txn
H
→ Tx as n→∞. It is straight forward to

check that T strictly (α − ψ)-generalized rational contraction with ψ(t) = t
4 for all t ≥ 0. Thus all the conditions of

Theorem 2.5, and T has a fixed point in X. Put x = 2 and y = 1. Then, H(Tx,Ty) = H({4}, [0, 1
2 ]) > λd(x, y) for any

λ ∈ [0, 1). So the Nadler fixed Theorem [22, Theorem 5] is not applicable in this case.
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Now, in the next Theorem, we omit the continuity condition on the mapping T.

Theorem 2.7. Let (X, d) be a complete dq b-metric space. Suppose T : X → CB(X) is strictly (α − ψ)-generalized
rational contraction mapping such that

(C1) T is α-closed;

(C2) the map p : X→ R defined by p(x) = d(x,Tx) is lower semi-continuous;

(C3) there exists x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;

(C4) if {xn} is a sequence in X with α(xn, xn+1) ≥ 1 for all n ∈ N and lim
n→∞

d(xn, x) = 0 for some x ∈ X, then
α(xn, x) ≥ 1 for all n ∈N.

Then there exists a point x∗ ∈ X such that x∗ ∈ Tx∗.

Proof. Follows from Theorem 2.3 with T = S.

Remark 2.8. As every α∗-admissible mapping is α-closed mapping. Thus Theorem 2.7 generalizes the main result of
Asl et. al. [3, Theorem 2.1].

Theorem 2.9. Let (X, d) be a complete dq b-metric space and T : X → CB(X) strictly (α − ψ)-generalized rational
contraction mapping. Suppose the following conditions hold:

(C1) T is α-closed;

(C2) the map p : X→ R defined by p(x) = d(x,Tx) is lower semi-continuous;

(C3) there exists x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;

(C’4) if {xn} is a sequence in X with α(xn, xn+1) ≥ 1 for all n ∈ N0 and lim
n→∞

d(xn, x) = 0 for some x ∈ X, then

there exists a subsequence {xnk } of {xn} such that α(xnk , x) ≥ 1 for all k ∈N0.

Then there exists a point x∗ ∈ X such that x∗ ∈ Tx∗.

Proof. Following arguments similar to those in the proof of Theorem 2.7, we obtain that {xn} is Cauchy
sequence in the complete dq b-metric space X with lim

n→∞
d(xn, x∗) = 0 for some x∗ ∈ X and α(xn, xn+1) ≥ 1

for each n ∈ N0. By assumption (C’4) there exists a subsequence {xnk } of {xn} such that α(xnk , x
∗) ≥ 1 for all

k ∈N0. Since xnk+1 ∈ Txnk for all k ∈N0 and T is a strictly (α−ψ)-generalized rational contraction mapping,
we have

H(Txnk ,Tx∗) ≤ α(xnk , x
∗)H(Txnk ,Tx∗)

≤ ψ(MT(xnk , x
∗))

= ψ

max


d(xnk , x

∗), d(xnk ,Txnk ), d(x∗,Tx∗), 1
2s d(xnk ,Tx∗),

d(x∗,Tx∗)[1 + d(xnk ,Txnk )]
1 + d(xnk , x∗)




≤ ψ

max


d(xnk , x

∗), d(xnk , xnk+1), d(x∗,Tx∗), 1
2s d(xnk ,Tx∗),

d(x∗,Tx∗)[1 + d(xnk , xnk+1)]
1 + d(xnk , x∗)


 .

On taking limit as k→∞ on both sides of the above inequality, we have

lim
k→∞

H(Txnk ,Tx∗) ≤ ψ(d(x∗,Tx∗)).

If d(x∗,Tx∗) > 0. Then by definition of ψ and the hypothesis (C2), we obtain that

lim
k→∞

H(Txnk ,Tx∗) ≤ ψ(d(x∗,Tx∗)) < d(x∗,Tx∗) ≤ lim inf
k→∞

d(xnk ,Txnk ) ≤ lim
k→∞

d(xnk , xnk+1) = 0

a contradiction. Thus d(x∗,Tx∗) = 0 and hence the result follows.
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Corollary 2.10. Let (X, d) be a complete dq b-metric space. Suppose T,S : X→ CB(X) such that α(x, y)H(Tx,Sy) ≤
ψ

(
d(x, y)

)
for any ψ ∈ Ψ, x, y ∈ X with α(x, y) ≥ 1 and the following conditions hold:

(C1) (T,S) and (S,T) are α-closed;

(C2) there exists x0 ∈ X and x1 ∈ Tx0 with α(x0, x1) ≥ 1;

(C3) (T,S) and (S,T) are α-continuous.

Then there exists a point x∗ ∈ X such that x∗ ∈ Tx∗ ∩ Sx∗.

Corollary 2.11. Let (X, d) be a complete dq b-metric space. Suppose T : X → CB(X) such that α(x, y)H(Tx,Ty) ≤
ψ

(
d(x, y)

)
for any ψ ∈ Ψ, x, y ∈ X with α(x, y) ≥ 1 and the following conditions hold:

(C1) T is α-closed;

(C2) there exists x0 ∈ X and x1 ∈ Tx0 with α(x0, x1) ≥ 1;

(C3) T is α-continuous.

Then there exists a point x∗ ∈ X such that x∗ ∈ Tx∗.

Corollary 2.12. Let (X, d) be a complete dq b-metric space. Suppose T : X → CB(X) such that α(x, y)H(Tx,Ty) ≤
ψ

(
d(x, y)

)
for any ψ ∈ Ψ, x, y ∈ X with α(x, y) ≥ 1 and the following conditions hold:

(C1) T is α-closed;

(C2) the map p : X→ R defined by p(x) = d(x,Tx) is lower semi-continuous;

(C3) there exists x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;

(C4) if {xn} is a sequence in X with α(xn, xn+1) ≥ 1 for all n ∈ N and lim
n→∞

d(xn, x) = 0 for some x ∈ X, then
α(xn, x) ≥ 1 for all n ∈N.

Then there exists a point x∗ ∈ X such that x∗ ∈ Tx∗.

Corollary 2.13. Let (X, d) be a complete dq b-metric space. If T : X→ CB(X) is continuous and strictlyψ-generalized
rational contraction mapping, then there exists a point x∗ ∈ X such that x∗ ∈ Tx∗.

Proof. Define α : X × X → R+ by α(x, y) = 1 for all x, y ∈ X. Since α(x, y) = 1 implies α(u, v) = 1 for each
u ∈ Tx, v ∈ Ty. Now, according to Theorem 2.5 and Theorem 2.7, T has a fixed point.

The above corollary generalizes and extends Karapinar [17, corollaries 3.1 and 3.2] and Aydi [5, Theorem
3.2, corollaries 3.5 , 3.6, 3.7, 3.8 ].

We now give some important consequences of the main results presented above. The following corollary
generalizes the main result of Rahman et. al. [25].

Corollary 2.14. Let (X, d) be a complete dq b-metric space and T : X → CB(X). If there exists λ ∈ [0, 1) and
0 ≤ sλ < 1 such that

H(Tx,Ty) ≤ λd(x, y) (24)

for all x, y ∈ X. Then T has a fixed point.

Proof. Define ψ : R+
→ R+ as ψ(t) = λt for all t ∈ R+. Clearly,

H(Tx,Ty) ≤ λd(x, y) = ψ
(
d(x, y)

)
≤ ψ

(
MT(x, y)

)
.

Also, T is continuous. Thus, all the condition of Corollary 2.13 are satisfied and hence the result follows.
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Corollary 2.15. Let (X, d) be a complete dq b-metric space and T : X→ CB(X) a continuous mapping. If there exists
β ∈ [0, 1

2 ) and 0 ≤ sβ < 1
2 such that

H(Tx,Ty) ≤ β
[
d(x,Tx) + d(y,Ty)

]
(25)

for all x, y ∈ X. Then T has a fixed point.

Proof. Define ψ : R+
→ R+ as ψ(t) = 2βt for all t ∈ R+ such that

H(Tx,Ty) ≤ β
[
d(x,Tx) + d(y,Ty)

]
= 2β

(
d(x,Tx) + d(y,Ty)

2

)
= ψ

(
d(x,Tx) + d(y,Ty)

2

)
≤ ψ

(
max{d(x,Tx), d(y,Ty)}

)
≤ ψ

(
MT(x, y)

)
.

Thus, all the conditions of Corollary 2.13 are satisfied and hence the mapping T has a fixed point in X.

Corollary 2.16. Let (X, d) be a complete dq b-metric space and T : X → CB(X) a continuous mapping. If for any
x, y ∈ X, the following condition holds:

H(Tx,Ty) ≤ λd(x, y) + βd(x,Tx) + γd(y,Ty) (26)

where λ + s
(
β + γ

)
∈ [0, 1). Then T has a fixed point.

Proof. Define ψ : R+
→ R+ as ψ(t) = (λ + β + γ)t for all t ∈ R+ such that

H(Tx,Ty) ≤ λd(x, y) + βd(x,Tx) + γd(y,Ty)
≤ λMT(x, y) + βMT(x, y) + γMT(x, y)
≤ (λ + β + γ)MT(x, y) ≤ ψ

(
MT(x, y)

)
.

Thus, all the conditions of Corollary 2.13 are satisfied and hence the mapping T has a fixed point in X.

Remark 2.17. If β = γ in Corollary 2.16, we have

H(Tx,Ty) ≤ λd(x, y) + β
[
d(x,Tx) + d(y,Ty)

]
(27)

where λ + 2β ∈ [0, 1).

Corollary 2.18. Let (X, d) be a complete dq b-metric space and T : X→ CB(X) a continuous mapping. If there exists
λ ∈ [0, 1) such that for any x, y ∈ X, we have

H(Tx,Ty) ≤ λmax{d(x,Tx), d(y,Ty)}. (28)

Then T has a fixed point.

Proof. Define ψ : R+
→ R+ as ψ(t) = λt for all t ∈ R+ such that

H(Tx,Ty) ≤ λmax{d(x,Tx), d(y,Ty)} ≤ λMT(x, y) ≤ ψ(MT(x, y)).

Thus, all the conditions of Corollary 2.13 are satisfied and hence the mapping T has a fixed point in X.

Corollary 2.19. Let (X, d) be a complete dq b-metric space and T : X → CB(X) be a given continuous mapping.
Suppose there exists a function ψ ∈ Ψ, for all x, y ∈ X such that

H(Tx,Ty) ≤ ψ
(
max

{
d(x, y), d(x,Tx), d(y,Ty),

d(x,Ty) + d(y,Tx)
2s

})
.

Then T has a fixed point.
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Corollary 2.20. Let (X, d) be a complete dq b-metric space and T : X → CB(X) be a given continuous mapping.
Suppose there exists a function ψ ∈ Ψ, for all x, y ∈ X such that

H(Tx,Ty) ≤ ψ
(
d(x, y)

)
.

Then T has a fixed point.

Corollary 2.21. Let (X, d) be a complete dq b-metric space and T : X → CB(X) be a given continuous mapping.
Suppose

H(Tx,Ty) ≤ λmax
{
d(x, y), d(x,Tx), d(y,Ty)

}
holds for all x, y ∈ X and λ ∈ [0, 1). Then T has a fixed point.

Remark 2.22. Corollaries 2.14, 2.15, 2.16, and 2.18 generalize and extend Banach contraction principle [8], Kannan
fixed point theorem [16], Reich fixed point theorem [27] and fixed point theorem due to Bianchini [12], respectively in
the setting of dq b-metric space.

Remark 2.23. Note that, dislocated b-metric, quasi b-metric, b-metric, dislocated quasi metric, dislocated metric,
quasi metric, and ordinary metric versions of our main results are also new in the literature.

3. Ulam-Hyers Stability Results in dq b-Metric Spaces

In this section we prove the generalized Ulam-Hyers stability in dq b-metric spaces.
Consider the following class of functions

Ω =
{
σ : R+

→ R+ such that σ is increasing, continuous at 0 and σ(0) = 0
}
.

Definition 3.1. Let (X, d) be a dq b-metric space with s ≥ 1 and T : X → CB(X) an operator. The fixed point
inclusion is to find an x ∈ X such that

x ∈ Tx. (29)

The fixed point problem (29) is said to be generalized Ulam-Hyers stable if there exists a function σ ∈ Ω, such that for
each ε > 0 and for each solution v∗ of the inequality

d(Tv, v) ≤ ε (30)

there exists a solution u∗ of fixed point problem (29) such that

d(u∗, v∗) ≤ σ(ε). (31)

Further if there exists c > 0 such that σ(t) := ct, for each t ∈ R+, then the fixed point inclusion (29) is said
to be Ulam-Hyers stable.

Let F(T) and U be the sets of solutions of (29) and (30) respectively. For more details on Ulam-Hyers
stability of fixed point problems, we refer to [13–15, 20, 24, 29, 32] and references therein.

Let (X, d) be a dq b-metric space and T : X→ CB(X) be a multivalued mapping define

E(T) = {x ∈ X : {x} = Tx}.

Theorem 3.2. Let (X, d) be a complete dq b-metric space and T : X→ CB(X) a multivalued mapping. Assume that
all the hypotheses of Corollary 2.11 hold.

(u1) The fixed point inclusion (29) is σ−1
1 −generalized Ulam-Hyers stable provided that for x ∈ F(T), there exists

z ∈ U such that α(x, z) ≥ 1, where σ1 : R+
→ R+, defined as σ1(t) = t − sψ(t) is strictly increasing and onto.
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(u2) F(T) = E(T) = {x∗}.

(u3) If E(T) , ∅, then the fixed point inclusion (29) is σ−1
2 −generalized Ulam-Hyers stable provided that for x ∈ F(T)

there exists z ∈ U such that α(x, z) ≥ 1, where σ2 : R+
→ R+, defined as σ2(t) = t− sψ(t) is strictly increasing

and onto.

(u4) (Estimate between the fixed point sets of two multivalued mappings) If S : X → CB(X) be a multivalued
mapping such that for x ∈ F(S) there exists z ∈ F(T) such that α(x, z) ≥ 1 and for x ∈ F(T) there exists z ∈ F(S)
such that α(x, z) ≥ 1, η > 0 and H(S(x),T(x)) ≤ η for all x ∈ X, then H(F(S),F(T)) ≤ σ−1

1 (sη), where σ1 is
same as in (u1).

(u5) (Estimate between the fixed point sets of two multivalued mappings) If S : X → CB(X) be a multivalued
mapping such that for x ∈ F(S) there exists z ∈ E(T) such that α(x, z) ≥ 1 and for x ∈ E(T) there exists z ∈ F(S)
such that α(x, z) ≥ 1, and H(S(x),T(x)) ≤ η for all x ∈ X, then H(F(S),F(T)) ≤ σ−1

2 (sη), where σ2 is same as
in (u3).

(u6) (Well-posedness of fixed point problem with respect to dq b-metric d) If {xn} is a sequence in X, and there exists
a unique x∗ ∈ E(T) such that α(xn, x∗) ≥ 1, and limn→∞ d(xn,Txn) = 0. Then limn→∞ d(xn, x∗) = 0.

(u7) (Well-posedness of fixed point problem with respect to Hausdorff dq b-metric H) If {xn} is a sequence in X, and there
exists a unique x∗ ∈ E(T) such that α(xn, x∗) ≥ 1, and limn→∞H({xn},Txn) = 0. Then limn→∞ d(xn, x∗) = 0.

(u8) (Limit shadowing property of the multivalued operators) If {xn} is a sequence in X, and there exists a unique
x∗ ∈ E(T) such that α(xn, x∗) ≥ 1, and limn→∞ d(xn,Txn) = 0, then there exists a sequence of successive
approximation yn such that limn→∞ d(xn, yn) = 0.

Proof. By Corollary 2.11, we have x∗ ∈ F(T), that is, x∗ ∈ X is a solution of the fixed point inclusion (29).
Then by given condition there exists a y∗ ∈ U such that α(x∗, y∗) ≥ 1. Since y∗ ∈ U, for any given ε > 0, we
have d(Ty∗, y∗) ≤ ε. By given assumption on T we get that

d(x∗, y∗) ≤ s
[
d(x∗,Ty∗) + d(Ty∗, y∗)

]
≤ s

[
H(Tx∗,Ty∗) + d(Ty∗, y∗)

]
≤ s

[
α(x∗, y∗)H(Tx∗,Ty∗) + ε

]
≤ s

[
ψ(d(x∗, y∗)) + ε

]
.

Note that σ1
(
d(x∗, y∗)

)
= d(x∗, y∗) − sψ(d(x∗, y∗)). Thus from above inequality we get σ1

(
d(x∗, y∗)

)
≤ sε and

hence d(x∗, y∗) ≤ σ−1
1 (sε) . Consequently the fixed point inclusion (29) is σ−generalized Ulam-Hyers stable

where σ = σ−1
1 .

(u2) From corollary 2.11, we have F(T) , ∅. Let x∗ ∈ E(T). Then E(T) = {x∗}. We need to show that
F(T) = {x∗}. Let y ∈ F(T), that is, y ∈ T(y) with y , x∗. Then by given condition we have α(x∗, y) ≥ 1 and

d(x∗, y) = d(Tx∗, y) ≤ H(Tx∗,Ty)
≤ α(x∗, y)H(Tx∗,Ty)
≤ ψ

(
d(x∗, y)

)
< d(x∗, y),

which implies that d(x∗, y) = 0, and so x∗ = y. Thus F(T) ⊆ E(T). As E(T) ⊆ F(T), we obtain that E(T) = F(T).
(u3) Let E(T) , ∅, then d(x∗, y∗) = d(Tx∗, y∗) ≤ s

[
H(Tx∗,Ty∗) + d(Ty∗, y∗)

]
. Now following the same lines

as in (u1) result follows.
(u4) Let x∗ ∈ F(S), then there exists a y∗ ∈ F(T) such that α(x∗, y∗) ≥ 1. Then by given assumption on T we

get

d(x∗, y∗) ≤ H(Sx∗,Ty∗)
≤ s

[
H(Sx∗,Tx∗) + H(Tx∗,Ty∗)

]
≤ s

[
H(Sx∗,Tx∗) + α(x∗, y∗)H(Tx∗,Ty∗)

]
≤ s

[
η + ψ(d(x∗, y∗))

]
.
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It follows from σ1
(
d(x∗, y∗)

)
= d(x∗, y∗) − sψ(d(x∗, y∗)) and the above inequality that σ1

(
d(x∗, y∗)

)
≤ sη. Conse-

quently for every x∗ ∈ F(S), there exists a y∗ ∈ F(T) such that d(x∗, y∗) ≤ σ−1
1

(
sη

)
. Similarly it can be proved

that for every y∗ ∈ F(T), there exists a x∗ ∈ F(S) such that d(x∗, y∗) ≤ σ−1
1

(
sη

)
.Hence by Lemma 1.10 we obtain

H(F(S),F(T)) ≤ σ−1
1

(
sη

)
.

(u5) This can be proved on the similar lines as in (u3) using the definition of E(T).
(u6) Let {xn}be a sequence in X, there exists a unique x∗ ∈ E(T) such thatα(xn, x∗) ≥ 1,and limn→∞ d(xn,Txn) =

0. Then there exists un ∈ Txn such that limn→∞ d(xn,Txn) = limn→∞ d(xn,un) = 0. Then by given assumption
we have

d(xn, x∗) ≤ s (d(xn,Txn) + d(Txn, x∗))
≤ s (d(xn,Txn) + H(Txn,Tx∗))
≤ s (d(xn,Txn) + α(xn, x∗)H(Txn,Tx∗))
≤ s

(
d(xn,Txn) + ψ (d(xn, x∗))

)
.

This implies that

d(xn, x∗) − sψ (d(xn, x∗)) ≤ sd(xn,Txn).

That is σ2 (d(xn, x∗)) ≤ sd(xn,Txn). Taking limit as n tends to ∞ and taking into account the continuity of σ2
at 0, we get the desired result. (u7) Follows from (u4) as d(xn,Txn) ≤ H({xn},Txn). (u8) From (u6) it is clear
that limn→∞ d(xn, x∗) = 0. Since x∗ ∈ E(T), so there exists a sequence of successive approximations defined as
yn = x∗ for all n such that limn→∞ d(xn, yn) = limn→∞ d(xn, x∗) = 0.

4. Applications on a dq b-Metric Space Endowed with a Partial Order

The aim of this section is to establish the necessary conditions for existence of a common fixed point of
two mappings in the setting of a partially ordered complete b-metric space.

Definition 4.1. Let X be a nonempty set. Then (X, d,�) is called a partially ordered dq b-metric space if (X, d) is a
dq b-metric space and (X,�) a partially ordered set.

Definition 4.2. Let (X, d,�) be a partially ordered dq b-metric space. A sequence {xn} ⊆ X is called � −preserving
if xn � xn+1 for all n ∈N0.

Definition 4.3. Let (X, d,�) be a partially ordered dq b-metric space. A mapping T : X→ N(X) is called �-closed if
for any x, y ∈ X,

x � y implies that u � v for any u ∈ Tx and v ∈ Sy.

Definition 4.4. Let (X, d,�) be a partially ordered dq b-metric space. A mapping T : X→ CL(X) is an α-continuous
on (CL(X),H) if, for any sequence {xn} in X,

lim
n→∞

d(xn, x) = 0 and xn � xn+1 for all n ∈N0 imply that lim
n→∞

H(Txn,Tx) = 0.

Corollary 4.5. Let (X, d,�) be a partially ordered complete dq b-metric space. Suppose T : X → CB(X) is strictly
(� −ψ)-generalized rational contraction, �-closed and �-continuous. If there exists x0 ∈ X such that x0 � x1 for
some x1 ∈ Tx0. Then there exists x∗ ∈ X such that x∗ ∈ Tx∗.

Proof. Define α : X × X → R+ by α(x, y) = 1 whenever x � y and α(x, y) = 0 whenever x � y. Since x � y
implies u � v, α(x, y) = 1 implies α(u, v) = 1 for each u ∈ Tx, v ∈ Ty. Now, by using Theorem 2.5, T has a
fixed point.
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Example 4.6. Let X = {1, 2, 3} and

d(1, 1) = d(2, 2) = 0; d(2, 1) = d(1, 3) = d(3, 2) = 1;
d(1, 2) = d(3, 1) = 0; d(2, 3) = d(3, 3) = 2.

Define x � y by �:= {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3)} ⊆ X2. Since d(3, 3) , 0 so d is not a metric. Note that (X, d,�)
is partially ordered complete dq b-metric space with s = 2. Define the mapping T : X → CB(X) by, T1 = {1},
T2 = {3}, and T3 = {2}, one can show that the mapping T is �-closed, �-continuous and (� −ψ)-generalized rational

contraction where ψ(t) =
t
2

for all t ≥ 0. If x0 = 1 and x1 = 1 ∈ Tx0, then we have x0 � x1. Note that, all the
conditions of Corollary 4.5 are satisfied. Moreover, x∗ = 1 is a fixed point of T.

Remark 4.7. In Example 4.6, the mapping T is not a Banach contraction as

H(T1,T2) = H({1}, {3}) = 1 > λd(1, 2)

for any λ ∈ [0, 1). Hence the Nadler fixed Theorem [22, Theorem 5] is not applicable which shows that our result are
potential generalizations of comparable results in the literature.

Corollary 4.8. Let (X, d,�) be a partially ordered complete dq b-metric space and T : X→ CB(X) a strictly (� −ψ)-
generalized rational contraction. Suppose that the following conditions hold: (i) T is �-closed; (ii) the function
p : X→ R defined by p(x) = d(x,Tx), for x ∈ X, is lower semi-continuous; (iii) there exists x0 ∈ X such that x0 � x1
for some x1 ∈ Tx0; and (iv) if {xn} is �-preserving sequence in X such that lim

n→∞
xn = x, then xn � x for all n ∈ N.

Then there exists x∗ ∈ X such that x∗ ∈ Tx∗.

Remark 4.9. Corollary 4.8 extends and generalizes corollary 2.2 of Asl.et.al [3].

Next, we apply our results for the existence of common fixed point of single valued mappings on a
complete dq b-metric space.

Definition 4.10. Let X be any nonempty set, α : X×X→ R+ and f , 1 : X→ X. A pair ( f , 1) is called α-admissible
if for any x, y ∈ X, with α(x, y) ≥ 1, we have α( f x, 1y) ≥ 1.

The results presented in this section, generalize and extend the comparable results in the literature.

Theorem 4.11. Let (X, d) be a complete dq b-metric space and f , 1 : X → X. A pair ( f , 1) and (1, f ) are strictly
(α − ψ)-generalized rational contraction mappings. Suppose that the following conditions hold:

(i) ( f , 1) and (1, f ) are α-admissible;

(ii) there exist x0 ∈ X such that α(x0, f x0) ≥ 1;

(iii) ( f , 1) and (1, f ) are α-continuous.

Then f and 1 have a common fixed point.

Proof. Define the mappings T,S : X → CB(X) by Tx = { f x} and Sx = {1x}. Then Theorem 2.1 implies the
result.

Theorem 4.12. Let (X, d) be a complete dq b-metric space and f , 1 : X → X. A pair ( f , 1) and (1, f ) are strictly
(α − ψ)-generalized rational contraction mappings. Suppose that the following conditions hold:

(i) ( f , 1) and (1, f ) are α-admissible;

(ii) the maps p, h : X→ R defined by p(x) = d(x, f x) and h(x) = d(x, 1x) for x ∈ X are lower semi-continuous;

(iii) there exist x0 ∈ X such that α(x0, f x0) ≥ 1;
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(iv) if {xn} is a sequence in X with α(xn, xn+1) ≥ 1 such that lim
n→∞

xn = x, then α(xn, x) ≥ 1 for all n ∈N.

Then f and 1 have a common fixed point.

Proof. Define the mappings T,S : X → CB(X) by Tx = { f x} and Sx = {1x}. Then Theorem 2.3 implies the
result.

Corollary 4.13. Let (X, d) be a complete dq b-metric space and f : X → X a strictly (α − ψ)-generalized rational
contraction mapping. Suppose f is α-admissible, α-continuous and there exist x0 ∈ X such that α(x0, f x0) ≥ 1. Then
f has a fixed point.

Corollary 4.14. Let (X, d) be a complete dq b-metric space and f : X → X a strictly (α − ψ)-generalized rational
contraction mapping. Suppose (i) f is α-admissible, (ii) the map p : X → R defined by p(x) = d(x, f x) for x ∈ X
is lower semi-continuous, (iii) there exist x0 ∈ X such that α(x0, f x0) ≥ 1 and (iv) if {xn} is a sequence in X with
α(xn, xn+1) ≥ 1 such that lim

n→∞
xn = x, then α(xn, x) ≥ 1 for all n ∈N. Then f has a fixed point.

Example 4.15. Let X = [0, 2] and d(x, y) =
∣∣∣x − y

∣∣∣3 . Then (X, d) is a complete dq b-metric space with s = 4. Define
f : X→ X, α : X × X→ R+ and ψ : R+

→ R+ as:

f x =


x
2

if x ∈ [0, 1],
1
2 if x ∈ (1, 2],

and α(x, y) =

 1 if x, y ∈ [0, 1],
1
3

otherwise,

and ψ(t) = t
8 . The mapping f is (α − ψ)-generalized rational contraction. Indeed, we have

α(x, y)d( f x, f y) ≤
∣∣∣∣x2 − y

2

∣∣∣∣3 =
1
8

d(x, y) ≤ ψ(M f (x, y))

for all x, y ∈ [0, 1]. For x0 = 1
2 , we have 1

4 = f x0 such that α(x0, f x0) ≥ 1. The mapping f is α-admissible. Indeed,
for any x, y ∈ [0, 1], we have f x, f y ∈ [0, 1] and thus α(x, y) ≥ 1 implies α( f x, f y) ≥ 1. Let {xn} be a sequence in
X such that lim

n→∞
d(xn, x) = 0 and α(xn, xn+1) ≥ 1 for all n ∈ N0. By the definition of α, we have xn, x ∈ [0, 1] for

all n ∈ N. So, α(xn, x) ≥ 1. Also, limn→∞ d( f xn, f x) = limn→∞

∣∣∣ xn
2 −

x
2

∣∣∣3 = limn→∞
1
8 d(xn, x) = 0, implies that f is

α-continuous. Also, f is continuous. Thus, all the conditions of corollaries 4.13 and 4.14 are satisfied. Moreover,
x = 0 is a fixed point of f .

The next corollay generalizes and extends Karapinar [17, Corollary 3.11, 3.12].

Corollary 4.16. Let (X, d,�) be a partially ordered complete dq b-metric space. Suppose f : X → X is a strictly
(� −ψ)-generalized rational contraction, �-closed and �-continuous. If there exists x0 ∈ X such that x0 � f x0, then
there exists x∗ ∈ X such that x∗ = f x∗.

Corollary 4.17. Let (X, d,�) be a partially ordered complete dq b-metric space and f : X → X is a strictly (� −ψ)-
generalized rational contraction and �-closed. Suppose (i) the map p : X→ R defined by p(x) = d(x, f x) for x ∈ X is
lower semi-continuous; (ii) there exists x0 ∈ X such that x0 � f x0; and (iii) if {xn} is a �-preserving sequence in X
such that lim

n→∞
xn = x, then xn � x for all n ∈N. Then there exists x∗ ∈ X such that x∗ = f x∗.

The above result generalizes and extends the result of Ran and Reurnings [26], Nieto and Rodrı́gues-
López [23] and Beg [9].

Corollary 4.18. Let (X, d,�) be a partially ordered complete dq b-metric space. Let f : X→ X such that d( f x, f y) ≤
ψ(d(x, y)) for all ψ ∈ Ψ, x, y ∈ X with x � y. Suppose f is �-closed and �-continuous, and if there exists x0 ∈ X
such that x0 � f x0, then there exists x∗ ∈ X such that x∗ = f x∗.
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5. Application to Integral Equation

Motivated by [6] and the references therein, we apply corollary 4.16 to the existence of a solution of a
nonlinear integral equation.

Let X = C(J,R) be the set of all real continuous functions defined on J = [0,L] where L > 0 and
ρ : X × X→ R+ defined by

ρ(x, y) = sup
t∈J

∣∣∣x(t) − y(t)
∣∣∣ for x, y ∈ X.

Consider the dq b-metric d : X × X→ R+ given as follows:

d(x, y) =
(
ρ(x, y)

)p =

sup
t∈J

∣∣∣x(t) − y(t)
∣∣∣p

= sup
t∈J

∣∣∣x(t) − y(t)
∣∣∣p for all x, y ∈ X and p ≥ 1.

It is well known that (X, d) is a complete dq b-metric space with s = 2p−1. Let ψ ∈ Ψ and (ψ(t))p
≤ ψ(tp)

for all p ≥ 1 and t ∈ J. Also, note that (X, d,�) is a partially ordered complete dq b-metric space, where �
denotes the usual order, that is, x � y if x(t) ≤ y(t) for all t ∈ J. Consider the nonlinear integral equation as
follows:

x(t) = q(t) +

∫ L

0
k(t, s) f (s, x(s))ds for all t ∈ J. (32)

Suppose that the following conditions hold:

(C1) q : J → R and f : J × R → R are continuous functions, such that f (t, x) ≥ 0 for all t ∈ J and for all
a, b ∈ R,∣∣∣ f (t, a) − f (t, b)

∣∣∣ ≤ ψ(|a − b|);

(C2) k : J× J→ R is continuous at t ∈ J for every s ∈ J and measurable at s ∈ J for all t ∈ J such that k(t, s) ≥ 0
and

∫ L

0 k(t, s)ds ≤ 1;

(C3) there exists x0 ∈ X such that for all t ∈ J, we have

x0(t) ≤ q(t) +

∫ L

0
k(t, s) f (s, x0(s))ds.

Let F : X→ X be a mapping defined by

Fx(t) = q(t) +

∫ L

0
k(t, s) f (s, x(s))ds for t ∈ J. (33)

It is clear that x is a solution of integral equation (32) if and only if x is a fixed point of F.

Theorem 5.1. Under assumptions (C1)-(C3), the integral equation (32) has a solution in X.

Proof. Let x, y ∈ X such that x � y and t ∈ J. Then∣∣∣Fx(t) − Fy(t)
∣∣∣ =

∣∣∣∣∣∣q(t) +

∫ L

0
k(t, s) f (s, x(s))ds − q(t) −

∫ L

0
k(t, s) f (s, y(s))ds

∣∣∣∣∣∣
≤

∫ L

0
k(t, s)

∣∣∣ f (s, x(s)) − f (s, y(s))
∣∣∣ ds

≤

∫ L

0
k(t, s)ψ(

∣∣∣x(s) − y(s)
∣∣∣)ds.
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Since ψ is nondecreasing, we obtain that

ψ(
∣∣∣x(s) − y(s)

∣∣∣) ≤ ψ(sup
t∈J

∣∣∣x(t) − y(t)
∣∣∣) = ψ(ρ(x, y)).

This implies that∣∣∣Fx(t) − Fy(t)
∣∣∣ ≤ ψ(ρ(x, y)).

Therefore

d(Fx,Fy) = sup
t∈J

∣∣∣Fx(t) − Fy(t)
∣∣∣p

≤
[
ψ(ρ(x, y))

]p
≤ ψ(

(
ρ(x, y)

)p)
≤ ψ(d(x, y))
≤ ψ(MF(x, y)).

Note that all the conditions of Corollary 4.16 are satisfied and hence the mapping F has a fixed point which
is a solution of the integral equation (32) in X.

Remark 5.2. We can obtain the dq b-metric, quasi b-metric, b-metric, dq metric, quasi metric, and metric version of
our main results which can be viewed as new results in the literature.

Remark 5.3. Similar result as the above theorem can be established if the binary relation � is �-reversing.
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[20] V. L. Lazăr, Ulam-Hyers stability for partial differential inclusions, Electron. J. Qual. Theory Differ. Equ. 21 (2012) 1-19.
[21] B. Mohammadi, S. Rezapour, N. Shahzad, Some results on fixed points of α − ψ -Ciric generalized multifunctions, Fixed Point

Theory Appl. 2013, 24(2013).



M. Abbas et al. / Filomat 31:11 (2017), 3263–3284 3284

[22] S. B. Nadler Jr., Multivalued contraction mappings, Pac. J. Math. 30 (1969) 475–488.
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