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ABSTRACT

Two-unit warm standby systems have been elaborately dealt within the literature. However, the study 
of standby systems with more than two units, though very relevant in state-of-the-art practical 
situations, has received little attention because of mathematical intricacies involved in analyzing 
them. Also, such systems have been studied assuming: (i) the lifetime or repair time of the units to be 
exponential, or (ii) the life-time and repair time to be independent. The present contribution is an 
improvement in the state-of-the-art in the sense that three-unit warm standby system with 
dependent structure is shown to be capable of comprehensive analysis.

1. Introduction

The purpose of this work is to study the system reliability, availability, and to obtain asso-
ciated statistical inference for a three-unit warm standby system with dependent structure.
The present work is an extension of the results obtained by Chandrasekhar et al. (2013) for a
two-unit warm standby system with dependent structure. As pointed out by Srinivasan and
Subramanian (2006), the study of three-unit warm standby systems is challenging because
of the built-in intricacies involved in their analysis. Several authors have extensively studied
two-unit standby redundant systems in the past. Osaki andNakagawa (1976) gave a bibliogra-
phy of the work on two-unit systems. Most of the studies on two-unit warm standby systems
are confined to obtaining expressions for various measures of system performance and do not
consider the associated inference problems. Chandrasekhar and Natarajan (1994) have con-
sidered a two-unit cold standby system and obtained the exact confidence limits for the steady
state availability of the system under the assumption that the lifetime of online unit and the
repair time of a failed unit are independent.

In general, the failure time and repair time need not be independent always. A system or a
component that fails frequentlywithin a short time interval has to be analyzed thoroughly, and
the time taken to repair such a system will be more. The dependency between lifetime/failure
time and repair time can be modeled by assuming a suitable form of a bivariate density
function (see Figure 1). In the past, a number of bivariate exponential distributions have
been proposed and studied well in the literature. But the bivariate exponential distribution of
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Figure . System configuration: three-unit warm standby system with repair.

Marshall and Olkin (1967) is widely accepted among many bivariate exponential distribu-
tions proposed in the statistical literature because of its nice properties. The present work is
an attempt to analyze a three-unit warm standby system under the assumption that the joint
distribution of the lifetimes of online unit, standby units, and the repair time of a failed unit
in the system is quadrivariate exponential. Further, it is assumed that the lifetimes of the units
kept in standby are identical. Themodel and the assumptions, expressions for reliability, avail-
ability, and associated statistical inference together with numerical illustration are discussed
in detail in the following sections.

2. Model (three-unit warm standby system)

2.1. Model and assumptions

The system under consideration is a three-unit warm standby system with a single repair
facility.

Precisely the following are the assumptions.
(i) The units are similar and statistically not independent. One unit is operating online

and other two units are kept as warm standby. The three units have constant failure
rates say (λ1 + λ4) while online and (λ2 + λ4) while in standby. Further, each failed
unit has a constant repair rate say (λ3 + λ4).

(ii) There is only one repair facility.
(iii) Let T1, T2, and T3 denote the lifetimes of the three units and R the repair time of a failed

unit in the system. As the system consists of three units with single repair, it is appro-
priate to consider the following Marshall–Olkin quadrivariate exponential (QVE) dis-
tribution for T1,T2, T3, and R with the survival function given by

F̄ (t1, t2, t3, t4) = e−[λ1t1+
∑3

i=2 λ2ti+λ3t4+λ4.max(t1,t2,t3,t4)],

ti > 0, i = 1, 2, 3, 4; λi > 0, i = 1, 2, 3; λ4 ≥ 0
(1)

and is denoted by (T1,T2,T3,R) ∼ QVE(λ1, λ2, λ2, λ3, λ4) (see Marshall and Olkin,
1967).

(iv) Each unit is new after repair.
(v) Switch is perfect and the switchover is instantaneous.
Note:
1. The lifetimes of units T1, T2, and T3 are exponential random variables each with the

parameters (λ1 + λ4), (λ2 + λ4), and (λ2 + λ4), respectively.
2. The repair time R is exponential with the parameter (λ3 + λ4).
3. E(T1) = 1

(λ1+λ4)
;E(Ti) = 1

(λ2+λ4 )
, i = 2, 3 and E(R) = 1

(λ3+λ4)
,;

Var(T1) = 1
(λ1+λ4 )2

;Var(Ti) = 1
(λ2+λ4)2

, i = 2, 3 and Var(R) = 1
(λ3+λ4 )2

.
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4. The joint distribution of (T1,Tj), j = 2, 3 is bivariate exponential (BVE) with the
parameters (λ2, λ2, λ4) and joint distribution of (T2,T3) is BVE with the parame-
ters (λ2, λ2, λ4). Similarly, the joint distribution of (T1,R) is BVE with the parameters
(λ1, λ3, λ4) and that of (Ti,R), i = 2, 3 is also BVE with the parameters (λ2, λ3, λ4).

5. The covariance between T1 and Tj is given by

Cov(T1,Tj) = λ4

(λ1 + λ4) (λ2 + λ4) (λ1 + λ2 + λ4)
, j = 2, 3.

Similarly, the following results can be established.

Cov(T2,T3) = λ4

(λ2 + λ4)
2 (2λ2 + λ4)

Cov(T1,R) = λ4

(λ1 + λ4) (λ3 + λ4) (λ1 + λ3 + λ4)

Cov(Ti,R) = λ4

(λ2 + λ4) (λ3 + λ4) (λ2 + λ3 + λ4)
, i = 2, 3.

6. The lifetimes T1, T2, and T3 and the repair time R are independent if and only if λ4 = 0.
7. If (Xi,Yi), i = 1, 2, . . . , n is a random sample of size from a BVE population with

parameters(λ1, λ2, λ3) , then covariance between the sample means X̄ and Ȳ is given
by Cov(X̄, Ȳ ) = λ3

n(λ1+λ3 )(λ2+λ3 )(λ1+λ2+λ3 )
.

8. The joint distribution of (T1,T2,T3) is trivariate exponential (TVE) with the
parameters (λ1, λ2, λ3, λ4). Further, the joint distributions of (T1,Tj,R), j = 2, 3
and (T2,T3,R) are (TVE) with the parameters (λ1, λ2, λ3, λ4) and (λ2, λ2, λ3, λ4),
respectively.

2.2. Analysis of system

To analyze the behavior of the system, define X (t ) as the number of failed units at time t. The
stochastic process {X (t ), t ≥ 0}with the state space given by E = {0, 1, 2, 3} denotes the state
of the system at time t. Since quadrivariate exponential distribution has exponentialmarginals
and satisfies lack of memory property, it follows that the stochastic process describing the
behavior of the system is a Markov process with infinitesimal generator Q given by

0
1
2
3

0 1 2 3⎛
⎜⎜⎝

− (λ1 + 2λ2 + 3λ4) (λ1 + 2λ2 + 3λ4) 0 0
(λ3 + λ4) − (λ1 + λ2 + λ3 + 3λ4) (λ1 + λ2 + 2λ4) 0

0 (λ3 + λ4) − (λ1 + λ3+2λ4) (λ1 + λ4)

0 0 (λ3 + λ4) − (λ3 + λ4)

⎞
⎟⎟⎠
(2)

It may be noted that the system upstates are 0, 1, 2, while state 3 is the system downstate.
Let pi(t ) = Pr[X (t ) = i] ∀ i ∈ E represent the probability that the system is in state i at time
t with the initial condition p0(0) = 1. We assume that initially all the three units are operable
and obtain the measures of system performance as follows:
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2.2.1 System reliability
The system reliabilityR(t ) is the probability of failure-free operation of the system in (0, t]. To
derive an expression for the reliability of the system, we restrict the transitions of the Markov
process to the upstates, namely 0, 1, and 2. Using the infinitesimal generator of the pro-
cess given in Equation (2), pertaining to these upstates, we derive the following differential-
difference equations:

dp0 (t )
dt

= − (a + 2b) p0 (t ) + cp1 (t ) (3)

dp1 (t )
dt

= (a + 2b) p0 (t ) − (a + b+ c) p1 (t ) + cp2 (t ) (4)

dp2 (t )
dt

= (a + b) p1 (t ) − (a + c) p2 (t ) (5)

where a = (λ1 + λ4), b = (λ2 + λ4), and c = (λ3 + λ4).
Let Li(s) be the Laplace transform of pi(t ), i = 0, 1, 2. Taking Laplace transforms on

both the sides of the differential-difference equations given in Equations (3)–(5), solving for
Li(s), i = 0, 1, 2, and inverting, we get p0(t ), p1(t ), and p2(t ). Thus, the system reliability is
given by

R (t ) =
∑3

i=1

×
{[

α2
i + (2a + b+ 2c) αi +

(
a2 + ab+ ac + c2

)] + [(a + 2b) (αi + a + c)] + [(a + b) (a + 2b)]
}

∏3
j=1, j �=i

(
αi − α j

) eαit

(6)

where α1, α2, and α3 are the roots of

s3 + (3a + 3b+ 2c) s2 + (
3a2 + 2b2 + c2 + 6ab+ 2bc + 2ca

)
s

+ a
(
a2 + 3ab+ 2b2

) = 0

2.2.2. Mean time before failure (MTBF)

The systemMTBF is the expected or average time to failure and is given byMTBF = R∗(0) =
L0(0) + L1(0) + L2(0) where R∗(s) is the Laplace transform of R(t ) at s. Hence,

MTBF =
(
3a2 + 2b2 + c2 + 6ab+ 2bc + 2ca

)
a (a2 + 3ab+ 2b2)

(7)

The system availability A(t ) is the probability that the system operates within the tolerances 
at a given instant of time t and is obtained by solving for pi(t ), i ∈ E. The following system 
of differential-difference equations are obtained by using the infinitesimal generator given in  
Equation (2).

dp0 (t )
dt

= − (a + 2b) p0 (t ) + c p1 (t ) (8)

dp1 (t )
dt

= (a + 2b) p0 (t ) − (a + b+ c) p1 (t ) + c p2 (t ) (9)

dp2 (t )
dt

= (a + b) p1 (t ) − (c + a) p2 (t ) + c p3 (t ) (10)
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dp3 (t )
dt

= ap2 (t ) − c p3 (t ) (11)

Using Laplace transform on both sides of the above differential-difference equations and
solving, the expressions for pi(t ), i = 0, 1, 2, 3 are obtained, respectively, as

−c3

α1α2α3
+ c (a + 2b)

∑3

i=1

[
α2
i + (a + 2c) αi + c2

]
αi (αi + a + 2b)

∏3
j=1, j �=i

(
αi − α j

)eαit (12)

− (a + 2b) c2

α1α2α3
+ (a + 2b)

∑3

i=1

[
α2
i + (a + 2c) αi + c2

]
αi

∏3
j=1, j �=i

(
αi − α j

) eαit (13)

− (a + b) (a + 2b) c
α1α2α3

+ (a + b) (a + 2b)
∑3

i=1

(αi + c)
αi

∏3
j=1, j �=i

(
αi − α j

)eαit (14)

−a (a + b) (a + 2b)
α1α2α3

+ a (a + b) (a + 2b)
∑3

i=1

1
αi

∏3
j=1, j �=i

(
αi − α j

)eαit (15)

where α1, α2, and α3 are the roots of the equation

s3 + 3 (a + b+ c) s2 + [
(a + 2c)(a + 2b + c) + (a + b) (2a + 2b+ c) + c2 ]s+[ c3

+ (a + 2b)
(
a2 + c2 + ab+ bc + ca

)] = 0.

Hence, the system availability is given by

A (t ) = p0 (t ) + p1 (t ) + p2 (t ) (16)

2.2.4. Steady state availability
The system steady state availability is the expected fractional amount of time in a continuum 
of operating time that the system is in upstate and is given by

A∞ = lim
t→∞

A (t )

= c
[
c2 + (a + 2b) (a + b+ c)

]
[c3 + (a + 2b) (a2 + c2 + ab+ bc + ca)]

(17)

Particular case:
The equations for system reliability, MTBF, system availability, and steady state availability
when the lifetimes of online and standby units and the repair time of a failed unit are inde-
pendent can be obtained by taking λ4 = 0 in Equations (6), (7), (16), and (17), respectively.

3. Confidence interval for steady state availability of system

3.1. Moment and CAN estimators for steady state availability of system

Let (Y1i,Y2i,Y3i,Y4i), i = 1, 2, . . . , n be a random sample of size n drawn from a quadri-
variate exponential lifetimes and repair time population with the survival function given
by Equation (1). It is clear that Ȳ1, Ȳ2, Ȳ3(= Ȳ2) and Ȳ4 are the moment estimators of

1
(λ1+λ4)

, 1
(λ2+λ4)

, 1
(λ2+λ4)

, and 1
(λ3+λ4 )

, respectively, where Ȳ1, Ȳ2, Ȳ3(= Ȳ2) andȲ4 are the sam-
plemeans of lifetimes of online and standby units and repair time of a failed unit, respectively.

Let θi = 1
(λi+λ4 )

, i = 1, 2, 3. Using θi, i = 1, 2, 3 in Equation (17) and substituting its cor-
responding moment estimators, the estimator of the steady state availability of the systemA∞
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based on moments is obtained as

Â∞ = Ȳ1
[
Ȳ 2
1 Ȳ 2

2 + Ȳ4
(
2Ȳ1 + Ȳ2

) (
Ȳ1Ȳ2 + Ȳ2Ȳ4 + Ȳ4Ȳ1

)]
[
Ȳ 3
1 Ȳ 2

2 + Ȳ 2
2 Ȳ 3

4 + Ȳ4Ȳ1
(
Ȳ4 + Ȳ1

) (
2Ȳ4Ȳ1 + Ȳ 2

2 + 3Ȳ2Ȳ4
) + 2 Ȳ 3

1 Ȳ2Ȳ4
] (18)

It may be noted that Â∞ given in Equation (18) is a real-valued function in Ȳ1, Ȳ2, and Ȳ4,
which is also differentiable. Consider the following multivariate central limit theorem (see
Radhakrishna Rao, 1974).

3.1.1. Multivariate central limit theorem

Suppose T1′,T2′,T3′, . . . are independent and identically distributed k-dimensional random
variables such that Tn′ = (T1n,T2n, . . . ,Tkn), n = 1, 2, 3, . . . having the first and second
order moments E(Tn) = μ and var(Tn) = �, respectively. Define the sequence of random

variables T̄ ′
n = (T̄1n, T̄2n, . . . , T̄kn), n = 1, 2, 3, . . . where T̄in = 1

n

n∑
j=1

Ti j, i = 1, 2, . . . , k.

Then,
√
n(T̄n − μ)

d−→ Nk(0,)as n → ∞.

3.1.2. CAN estimator

By applying the multivariate central limit theorem given in Section 3.1.1, it is seen that√
n[(Ȳ1, Ȳ2, Ȳ2, Ȳ4) − (θ1, θ2, θ2, θ3)]

d−→ N4(0, σ ) as n ∞, where the dispersion matrix � =
((σ i j)) is given by

Ȳ1

Ȳ2

Ȳ3
(= Ȳ2

)
Ȳ4

Ȳ1 Ȳ2 Ȳ3
(= Ȳ2

)
Ȳ4⎛

⎜⎜⎜⎜⎜⎜⎜⎝

θ1
2 λ4θ

2
1 θ22

(θ1+θ2−λ4θ1θ2)

λ4θ
2
1 θ22

(θ1+θ2−λ4θ1θ2)

λ4θ
2
1 θ23

(θ1+θ3−λ4θ1θ3 )

λ4θ
2
1 θ22

(θ1+θ2−λ4θ1θ2)
θ2

2 λ4θ
3
2

(2−λ4θ2 )

λ4θ
2
2 θ23

(θ2+θ3−λ4θ2θ3)

λ4θ
2
1 θ22

(θ1+θ2−λ4θ1θ2 )

λ4θ
3
2

(2−λ4θ2 )
θ 2
2

λ4θ
2
2 θ23

(θ2+θ3−λ4θ2θ3)

λ4θ
2
1 θ23

(θ1+θ3−λ4θ1θ3 )

λ4θ
2
2 θ23

(θ2+θ3−λ4θ2θ3 )

λ4θ
2
2 θ23

(θ2+θ3−λ4θ2θ3)
θ 2
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(19)

Thus,
√
n(Â∞ − A∞) N4(0, σ 2(θ )), where θ = (θ1, θ2, θ2, θ3) and

σ 2 (θ ) =
[
θ2
1

(
∂A∞
∂θ1

)2

+ 4θ2
2

(2 − λ4θ2)

(
∂A∞
∂θ2

)2

+ θ2
3

(
∂A∞
∂θ3

)2
]

+ 4λ4θ
2
2

×
[

θ2
1

(θ1 + θ2 − λ4θ1θ2)

(
∂A∞
∂θ1

)(
∂A∞
∂θ2

)
+ θ2

3

(θ2 + θ3 − λ4θ2θ3)

(
∂A∞
∂θ2

) (
∂A∞
∂θ3

)]

+ 2
λ4θ

2
1 θ

2
3

(θ1 + θ3 − λ4θ1θ3)

(
∂A∞
∂θ1

)(
∂A∞
∂θ3

)
(20)

By substituting for the partial derivatives ( ∂A∞
∂θi

), i = 1,2,3 in Equation (20), we get an
expression for σ 2(θ ). Thus Â∞ is a CAN estimator of A∞.
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3.2. Confidence interval for steady state availability of system

Let σ 2( θ̂ )  be an estimator of σ 2(θ ) obtained by replacing θ by a consistent estimator θ̂ , namely
θ̂ = Ȳ1, Ȳ2, Ȳ2, Ȳ4. Let σ̂ 2 = σ 2(θ̂ ). Since σ 2(θ ) is a continuous function of θ , σ̂ 2 is a consis-
tent estimator of σ 2(θ ). That is, σ̂ 2 P−→ σ 2(θ ) as n → ∞. By Slutsky theorem, we have

√
n(Â∞ − A∞)

σ̂

d−→ N(0, 1)

that is,

Pr(−k α
2

<

√
n(Â∞ − A∞)

σ̂
< k α

2
) = (1 − α),

where k α
2
is obtained from normal tables. Hence, a 100(1 − α)% confidence interval for A∞

is given by Â∞ ± k α
2

σ̂√
n , where σ̂ is obtained from Equation (20).

3.3. Estimator of system reliability based on moments

We have already seen that Ȳ1, Ȳ2, Ȳ2, and Ȳ4 are the moment estimators of
1

(λ1+λ4)
, 1

(λ2+λ4)
, 1

(λ2+λ4)
, and 1

(λ3+λ4 )
, respectively, where Ȳ1, Ȳ2, Ȳ2, and Ȳ4 are the sample

means of lifetime of online unit, lifetimes of standby units, and repair time of a failed unit,
respectively. Hence an estimator of system reliability can be obtained by using the moment
estimators in Equation (6) and is given by

R̂ (t ) = p̂0 (t ) + p̂1 (t ) + p̂2 (t ) (21)

where

p̂0 (t ) = 1
Ȳ 2
1 Ȳ2Ȳ 2

4

∑3

i=1

×
[
α̂2
i

(
Ȳ 2
1 Ȳ2Ȳ 2

4

) + Ȳ1Ȳ4
(
2Ȳ4Ȳ2 + Ȳ4Ȳ1 + 2Ȳ1Ȳ2

) + (
Ȳ1Ȳ 2

4 + Ȳ 2
1 Ȳ2 + Ȳ2Ȳ 2

4 + Ȳ1Ȳ2Ȳ4
)]

∏3
j=1, j �=i

(
α̂i − α̂ j

) eα̂it

(22)

p̂1 (t ) =
(
2Ȳ1 + Ȳ2

)
(Ȳ 2

1 Ȳ2Ȳ4)

∑3

i=1

[
α̂iȲ1Ȳ4 + Ȳ4 + Ȳ1

]
∏3

j=1, j �=i

(
α̂i − α̂ j

) eα̂it (23)

p̂2 (t ) =
(
Ȳ1 + Ȳ2

) (
2Ȳ1 + Ȳ2

)
(
Ȳ1Ȳ2

)2 ∑3

i=1

1∏3
j=1, j �=i

(
α̂i − α̂ j

)eα̂it (24)

where α̂1, α̂2, and α̂3 are the roots of

Ȳ 3
1 Ȳ

2
2 Ȳ

2
4 s

3 + Ȳ 2
1 Ȳ2Ȳ4

(
2Ȳ1Ȳ2 + 3Ȳ1Ȳ4 + 3Ȳ2Ȳ4

)
s2

+Ȳ1
(
Ȳ 2
1 Ȳ

2
2 + 3Ȳ 2

2 Ȳ
2
4 + 2Ȳ 2

1 Ȳ
2
4 + 6Ȳ1Ȳ2Ȳ 2

4 + 2Ȳ 2
1 Ȳ2Ȳ4 + 2Ȳ1Ȳ 2

2 Ȳ4
)
s

+Ȳ 2
4

(
2Ȳ 2

1 + 3Ȳ1Ȳ2 + Ȳ 2
2

) = 0.

4. Numerical illustration

In this section, numerical illustration of the behavior of the reliability of the system is provided
by generating random samples of size n = 10,000 each from the quadrivariate exponential
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Figure . Line plot of the estimated values of the system reliability based on moments.

distribution using R language, version 3.0.2, by fixing the values of the various parameters as
λ1 = 2, λ2 = 3, λ3 = 3, and λ4 = 1, respectively. The estimated values of the system reliability
(R̂(t )) based onmoments given in Equation (21) is evaluated for various choices of time peri-
ods t = 1.6, 1.4, . . . , 3.2. The following are the values of R̂(t ) obtained for various choices
of t.

t . . . . . . . . .
R̂(t ) . . . . . . . . .

The line plot of (t, R̂(t )) is shown Figure 2.
It is evident from the plot that as t increases, the value of R̂(t ) decreases agreeing with the

theoretical results.

5. Conclusion

In this paper, a three-unit warm standby system with dependent structure, wherein the life-
times of online unit, standby units, and the repair time of failed units is governed by quadri-
variate exponential law is studied. Measures of system performance such as reliability, MTBF,
availability, and steady state availability are obtained. Further, a 100(1 − α)% confidence
interval for the steady state availability of the system and an estimator of system reliability
based on moments are obtained. Numerical work is carried out to illustrate the behavior of
the system reliability based on moments by simulating samples from quadrivariate exponen-
tial distribution. Generalization of the above results to a n(�4) unit warm standby system
with r(�2) repair facilities is being investigated.
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