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Abstract

In this paper, finite-time adaptive consensus problem is investigated for first-
order multiagent systems with unknown nonlinear dynamics. Linearly pa-
rameterized method is introduced to model unknown nonlinear dynamics
of the systems. By only utilizing the local relative position state informa-
tion between each agent and its neighbors, decentralized finite-time adaptive
consensus algorithms are presented with directed fixed and switching net-
work topologies which satisfy detailed balance condition. Based on classical
Lyapunov analysis techniques, both finite-time stability and finite-time pa-
rameter convergence are guaranteed by making use of the proposed control
algorithms. Finally, the results in Simulations part are presented to validate
our main results.

Keywords: Multiagent systems, Unknown nonlinear dynamics, Finite-time
consensus, Finite-time parameter convergence

1. Introduction

The topic of distributed coordinated control of multiple dynamical agents
has received extensively attention by many researchers over the past few
decades [1-7]. This is not only due to an increasing interest in understanding
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thought-provoking animal group behaviors, such as flocking and swarming,
but also due to its broad applications in diverse places, such as multi-vehicles
rendezvous, attitude alignment, formation control of autonomous robots, un-
manned aerial vehicles and so forth. Consensus problem is the fundamental
problem in multiagent systems. The essence of it is to construct proper con-
trol laws so that all agents can attain a consensus decision value by using the
information of each agent and its neighbors. In order to achieve improved
cooperative performances for multiagent systems, various works have been
done in [8-14], to cite only a few.

In recent years, finite-time consensus problem becomes a research hotspot
in multiagent systems. The purpose of it is to construct proper control pro-
tocols such that finite-time consensus can be attained. Although asymptotic
consensus is enough to satisfy practical demand in engineering in general,
finite-time consensus is sometimes more desirable for some engineering ap-
plications, such as in some situations where rigid convergence time and high
precision must be met. Compared with conventional asymptotic consen-
sus, finite-time consensus reveals numerous advantages, for instance, faster
response, higher accuracy, and better robustness and anti-disturbance perfor-
mance against uncertainties and so forth. On account of these superiorities,
several kinds of finite-time consensus protocols have been proposed for first-
order [15, 16], second-order [17, 18] or high-order [19] multiagent systems.

However, most of existing works focus attention on finite-time consensus
algorithms design for multiagent systems without unknown nonlinear dy-
namics. In [20-23], by employing state feedback or adaptive design methods,
finite-time consensus problems are investigated for multiagent systems under
the absence of unknown nonlinear dynamics. On the current situation, it is
a big challenge to construct decentralized finite-time adaptive control laws
for multiagent systems with embedded unknown nonlinear dynamics such
that finite-time consensus is attained. In [24], a class of distributed con-
trollers is developed for solving finite-time leaderless consensus problem of
nonlinear multiagent systems with parametric uncertainties under an undi-
rected graph. In [25], finite-time consensus problem is solved for a group
of high-order agents taking into account unknown nonlinear dynamics under
undirected fixed network topology. The finite-time stability is derived by
employing the homogeneous Lyapunov function, which is too complicated to
find a specific form of it. In addition, the finite-time consensus algorithms
designed in this paper, which base on local consensus errors and relative po-
sition measurements between each agent and its neighbors, are not purely



decentralized.

Motivated by the observations mentioned above, we research the finite-
time consensus problem of first-order leader-following multiagent systems
with unknown nonlinear dynamics under the cases of directed fixed and
switching network topologies which satisfy detailed balance condition in this
paper. It is assumed that the unknown nonlinear dynamics existed in the
systems satisfy linearly parameterized condition. Under some assumptions,
we propose decentralized finite-time adaptive control schemes for the sys-
tems to attain finite-time consensus, meanwhile, the parameter convergence
in finite-time is also guaranteed in both cases of directed fixed and switching
network topologies. The finite-time control laws injected in each agent of net-
works are only dependent on the relative position state information of each
agent and its neighbors. With the help of graph theory, classic Lyapunov
theory, Holder’s inequality and Barbalat’s Lemma, stability results derived
in this paper indicate that both finite-time consensus as well as finite-time
parameter convergence are attained globally.

The innovation of this paper is reflected as the following three aspects:
(1) Purely decentralized finite-time adaptive algorithms for first-order multi-
agent systems with unknown nonlinear dynamics under the cases of directed
fixed and switching network topologies are developed to attain finite-time
consensus and finite-time parameter convergence. Based on developed purely
decentralized schemes, communication links among agents in the systems are
not necessary in this paper. They are greatly improved compared to the al-
gorithms proposed in [25]. (2) Instead of using the complicated homogeneous
Lyapunov functions in [25], conventional Lyapunov functions are used for sta-
bility analysis. By this way, the proofs of our main results are more concise
and understandable compared with these of [25]. (3) Both finite-time con-
sensus and finite-time parameter convergence can be attained for multi-agent
networks under the cases of directed fixed and switching network topologies.
To assure finite-time consensus as well as finite-time parameter convergence
at the same is a challenging work. To the best of our knowledge, few re-
searchers concern this issue, except for the authors of [25].

The configuration of the paper is given as follows. Some preliminaries and
formal statement of the problem are presented in Section 2. Our main results
are given in Section 3 including decentralized finite-time adaptive consensus
control with directed fixed and switching network topologies. Section 4 pro-
vides a numerical example to verify the validity of the algorithms proposed
in Main Results part under the case of directed switching network topologies.



The conclusions are drawn in the final section.

2. Preliminaries and problem statement

2.1. Notations

In this paper, |z[, = Son, @i, lzlls = (272)"? denote 1-norm, Eu-
clidean norm of vector z, respectively. For Vo € RY, it is a basic property
that ||z]|s < ||z|;. For a symmetric matrix P € RN X\ . (P) and Apin(P)
are respectively used to denote its maximum and minimum eigenvalues. I;
is the [ x [ identity matrix. Notation col(z,...,z,) is introduced here to
denote column vector of z1,..., z,.

2.2. Graph theory

The information interaction among agents in multiagent systems can be
described by a graph [26]. Thus, it is necessary to introduce this useful tool
as follows.

A directed graph is denoted by ¥(7, &) consisting of a node set ¥ =
{1,2,...,N} and an edge set & C ¥ x ¥ with ordered pair (i,7) € &,
which indicates that node ¢ can obtain information of node j. Notation
N, =A{j € V|i,j) € &, j #i} is introduced to denote the set of neighbors
of node 7. A path in a directed graph is a sequence of distinct edges in &,
which connect end to end. If a path exists between any two distinct nodes
of a directed graph, this graph is said to be strongly connected. The ijth
item of weighted adjacency matrix &/ € RV*Y of graph ¢ is denoted as a;;,
which is positive if (i, 7) is an edge of graph ¢ and 0 otherwise. The degree
matrix 2 € RV*Y of graph ¢ is a diagonal matrix with diagonal elements
di =, je; @ij for o € V. And the Laplacian matrix of weighted directed
graph ¢ is expressed as ¥ = 9 — o .

Another graph ¢ on node set ¥ = {0,1,2,..., N} is introduced here
to represent the information exchange between N follower agents and the
leader agent labeled as node 0, and its edges including & as well as the edges
between leader agent and follower agents. The connection weight between
agent ¢ € 7, and leader agent is denoted as b; > 0, which is positive when
leader agent is a neighbor of agent ¢ and 0 otherwise.

A graph is said to be detailed balanced if there exist some real numbers
w; > 0,1 € ¥, such that the coupling weights of the graph satisfy w;a;; =
w;ay; for all 4, j € ¥ [27].



Assumption 1. The directed graph ¢ is strongly connected and detailed
balanced, and b; > 0 for at least one ¢ € 7.

Remark 1. From Assumption 1, the leader agent is globally reachable. In
addition, we only extend the case of undirected graphs slightly to that of de-
tailed balance graphs due to the symmetric requirement in designing purely
decentralized parameter adaptive laws. It is a challenging work to consider
the case of directed graphs excluding detailed balance graphs. We will con-
sider this case in our future work.

Let H = £+, % = diag(by, bs, ..., by), diag{w} = diag{w1,ws, ..., wn }.
Then, we have the following lemma based on Lemma 4.1 in [28].

Lemma 1. Under Assumption 1, diag{w}H is symmetric and positive defi-
nite.

Remark 2. According to the definition of detailed balance graph, it is easy
to verify that diag{w}H = HTdiag{w} is symmetric. Based on Lemma 4.1
in 28], we can obtain that diag{w}H is positive definite.

2.8. Problem statement

The dynamics of N follower agents considered in this paper can be mod-
eled as the following form

zi(t) = fi(zi(t),1) +w(t), i€V, (1)

with x; € R denoting the ith follower agent’s position state, u; € R denoting
the ith follower agent’s control input, and smooth function f;(z;(¢),t) denot-
ing the ith follower agent’s unknown nonlinear dynamics. We assume that
filzi(t),t) , i € ¥, are continuous in ¢ and Lipschitz in x;(t) so as to guar-
antee there exists unique solutions. The leader agent’s underlying dynamics
considered in this paper can be modeled as the following form

o(t) = wvo(t), (2)

with z¢ € R denoting position state of the leader agent, and vy € R denoting
unknown control input of the leader agent.

Remark 3. In this paper, it is assumed that the states of all agents are
scalars in R to avoid complicated expressions, which can be easily extended
to R™ by using the Kronecker product.
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For the sake of obtaining our main results, a useful lemma [29] is intro-
duced here.

Lemma 2. Consider a dynamic system i(t) = f(z(t)), f(0) =0, z € RY,
x(0) = . Suppose that there exists a continuous function V(z) : D —
R such that the following conditions hold: (a) V(x) is a positive-definite
function; (b) There exist real numbers ¢, > 0 and o € (0,1), and an open
neighborhood H C I of the origin such that V(z) < —c,V(2)*, = € H\ {0}.
Then the origin is a finite-time stable equilibrium of this system. Moreover,

the settling time T of this system satisfies T < Wl_a)‘/(x)l_“.

We assume that the unknown nonlinear dynamics f;(z;(t),t), i € ¥, are
parameterized as follows

fimi(t), ) = o] (wi(t), 1)0;, (3)

and the unknown control input signal of the leader agent is parameterized as
follows

vo(t) = ¢ (t)0o, (4)

with ¢;(x;(t),t), ¢o(t) € R™ denoting basis function column vectors and
0;, 6o € R™ denoting constant true parameter column vectors, which are
unknown and should be estimated.

As 6y is not commonly attainable to each agent, follower agent ¢ esti-
mates leader agent’s unknown parameter vectors 6, by éOi and v (t) by 0g;(t)
respectively so as to design decentralized controllers. So one has

Doi(t) = oL (t)0g;, i€ V. (5)

And the function f;(z;(t),t) can be similarly estimated as

A~

filwi(t),t) = oF (x:(t),1)0;, i€ V. (6)

Remark 4. In this paper, linearly parameterized method is used to estimate
all the unknown nonlinear dynamics of the system. The readers can refer to
[13, 25, 30-32] for more applications of this method. Of course, there are
some other feasible methods to handle unknown nonlinear dynamics when
finite-time consensus problems of the multiagent systems are considered. The
most widely used methods are to assume all agents’s unknown nonlinear dy-
namics satisfy Lipschitz-type condition [33, 34] or bounded condition [35].
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When the multiagent systems are subject to external disturbances, linearly
parameterized method is also feasible to deal with external disturbances if ex-
ternal disturbances of the systems satisfy linearly parameterized assumption.
The other approach is to assume disturbances of all agents satisfy bounded
condition [21, 36].

Remark 5. There are some practical systems satisfying agent’s dynamics
(1). When the states of all agents are within the scope of R?, the multiagent
systems could be unmanned aerial vehicle systems [37] while the states of all
agents are within the scope of R?, the multiagent systems could be unmanned
vehicle systems in the plane. Terms w;(¢) and f;(z;(t),t) in dynamic equation
(1) are respectively the force linear input, and inherently nonlinear input
which satisfies linear parameterizations assumption, of agent 7 in the latter
situation (see Fig. 1).

fl (X,‘, t) >

—>
Ui

agent i

N\ 0\

_/ \_/
TTTTTTTTT7 77 777777777777 777777777777

Figure 1: Unmanned vehicle.

Before continuing, a vital assumption should be made to assure parameter
convergence in finite-time, that is, the regressor matrix ® must satisfy the
following peresistently exiciting (PE) [31] condition.

PE condition: Two positive real numbers g and [y exist here to ensure
that the following inequality holds:

t+do
/ ®dTdr > 1yl >0, Vt>0. (7)
t

Remark 6. As a standard assumption in classical adaptive control [30, 31],
the PE condition is very helpful to ensure parameter convergence and the
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richness of the regressor matrix ® information throughout the system time.
For more typical applications of PE condition in multiagent systems, the
readers can refer to [13, 25, 32].

The control purpose in this paper is to design effective decentralized finite-
time adaptive consensus schemes to obtain leader-following finite-time con-
sensus while ensuring finite-time parameter convergence, namely

lim ||z;(t) — zo(t)]| = 0, (8)
t—Ts
and
tlggl 100; — Ool| = O’tlg% 10; — 6s]| =0, 9)

with 2;(0) being any initial condition of z;(t), i € ¥, Ty > 0 being the
settling time.

3. Main results

3.1. Decentralized finite-time adaptive consensus with directed fixed topology
Decentralized finite-time adaptive consensus problem for the leader-following
multiagent system (1)-(2), whose network topology is directed and fixed while
satisfying detailed balance condition, will be studied in this part.
For directed fixed network topology, decentralized finite-time adaptive
consensus control schemes proposed here consist of the following two parts.
Decentralized finite-time feedback laws:

JEN
+ 376,

and decentralized finite-time parameter adaptive laws:
A kq
Ooi = _Eﬁbo(t)(ﬂix

|: Z CLij<SCi — ili'j) + bz(l'l — %0):| ,
JES:

éi = %gbz(xz,t)wzx

|: Z aij(xi — ZEj) + bz(ZEZ — 130>:| s

JEN

(10)

(11)



with (I)z = C01(¢0, _¢z)7 éz = COl(éOZ‘, éz), w; > 0 1€ % o € (0
k1, ko being positive constants. Let y; = wj [Zjem a;j(x; — ;) +
[yi|* = |yi|“sgn(y;), i € ¥, where sgn(-) is the sign function.

1), k> 1,
z(ﬂfi—%)],

Remark 7. In [25], based on local consensus errors and relative position
measurements between each agent and its neighbors, the authors presented
a finite-time adaptive consensus algorithm for a multiagent system. In fact,
it is not purely decentralized. In this regard, purely decentralized laws (10)
and (11), which only depend on the local relative position state information
between each agent and its neighbors, are proposed here for the systems under
the case of fixed network topology. Unlike [25], communication links among
agents in the systems are not necessary in terms of purely decentralized laws
(10) and (11) in this paper. And these information can be measured by the
on-board sensor of each agent, such as ultrasonic or infrared-based relative
positioning sensors [38].

Letting u = col(uy, ug, ..., uy), x = col(xy,xs, ..., xn), T(t) = (1) —1y®
zo(t), M = diag{w}H, ¢ = col((1,Ca, .-, Cn) = MZ, [G]* = [G]*sgn(G),
L€ ?/a [CJQ = CA01(|—<'1JOC7 ’—CQJ(X)' ) [CNJOL% o = diag{®1)¢27' . '7®N}7 © =
col(©1,0,,...,0y), we have

u=—k[¢]*+ dT6. (12)

With (12)7 letting f = col(f1, f2, .-+, fn), ©i = col(by, 0;), © = col(O1, Os,
., 0n), © =0 — 0, and noting that @(t) = f + u, the error system can be
written as follows:

z(t) = —k[¢|™ + @7\, (13)
and
0= -7 (IN ® K)®Mz, (14)
where K = < 0 )
For the system ( ) under the case of directed fixed network topology,

the following main theorem can be obtained.

Theorem 1. Consider the multiagent system (1)-(2). Suppose that Assump-
tion 1 holds, ¢;(t), i € ¥, are uniformly bounded and continuous, and the PE
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condition given in (7) is met. Then, there ezists e1 € (0, 1), such that, for
every a € (1 — ey, 1), under feedback laws (10) and parameter adaptive laws
(11), we have: (a) global consensus for this system is obtained in finite-time;

(b) global parameter convergence is assured in finite-time; (c) the settling
2(3704)/2Na>\1(r};;(a)/2(M)
(1—a)k(+a)/2)Iteyry -

time T, <

For purpose of proving Theorem 1, the following two lemmas are necessary
to be proved first.
Before going on, the following Lyapunov candidate function is constructed.

V(t) = %‘TMJ:. (15)
Let Q, £ {7 : V(t) < o}.

Lemma 3. Consider the error system (13)-(14). If Assumption 1 holds, there
exists €1 € (0,1), such that, for every a € (1—e1,1), one has: (a) this system
is uniformly stable; (b) for Vt > to, VZ(ty) € RY, O(tg) € R*™  the solution
(z,0) of this system is uniformly bounded; (c) for ¥Vt > to, VZ(ty) € RY,
O(ty) € RP™ limy_,o.||Z(t)|| = 0; (d) there exists t; such that z(t) € Q for
any t > t7.

Proof. Lyapunov candidate function is selected as follows:

W(t):%TM:er Lo (v K1)8. (16)

Taking the time derivative of W along the solution of the system (13)-(14)
yields

W= —C"[¢)" (17)

For (17), we use the same method as Proposition 1 in [39]. By selecting
p=1+a,q= (14 «a)/ain Holder’s inequality, we have

N

I¢lh =D (G x 1)

i=1

N
Z\wa JEE (1)
=1

N (T [¢ )T
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Applying the above inequality follows that (7 [¢|* > N=¢||¢||iT*. Noting
that ( = Mz, we have
W < —N~|¢lli*
< —N7¢ll
< N7 M) [z] (18)

min

Applying the same arguments as in [31], (a) and (b) hold.
From (18), we have lim;_,,, W(t) = W(o0) and

/\1+a
Aumin (M) hm / |2(0) |52 dr < W (k) — W (00).

With Barbalat’s Lemma [31], it follows that lim; . [|Z(¢)[5T® = 0, which
means that (c) holds.
From sign-preserving theorem of continuous function, it follows from (18)
that
Ain (M) 7

lim W < —Zmin\ 7/ 2T 5
a—1 - N

Thus, there exists e; € (0, 1) such that, for every a € (1 — &y, 1), we have
. 22
W< %fiﬂf. (19)

When Z(t) is outside the set Qy, from the definition of ;, we have 1 <
7 Mz < ’\m"k(M)x Z. Then, it follows that
__ 2k

T T > —)\maX(M)' (20)

Integrating (19) with respect to time ¢, we have W (t)—W (ty) < —M [, #"adr.
From (16) and (20), it gives that

V() SW(Et) < Wi(ty) —li(t —ty), T€RY\Q, (21)
where [; = ?@m—f% From (21), there exists ¢} = to + (tO) ! such that
V(t) <W(t) <W(to) = h(t —to) <1 (22)
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as t > t], namely, z € Q) as t > 7.
Therefore, there exists t7 > tg,

Wi(ty) —1 .
to+ —2 "W (L) > 1,
=0 I it Wito) (23)
to, otherwise,
so that 7 € Q; as t > t}. From (16) and (22), we also have
070 < 2max{k;, ky}, t>1ti. (24)

This finishes the proof of (d). W

Lemma 4. Consider the error system (13)-(14). Suppose that Assumption
1 holds, ¢;(t), i € ¥, are uniformly bounded and continuous, and the PE
condition given in (7) is met. Then, for every a € (1 —e1,1), under feedback
laws (10) and parameter adaptive laws (11), this system is finite-time stable
on set ;.

Proof. Taking the time derivative of V' along the solution of the system
(13)-(14), it follows that

. 1 _

vV =-CT[¢) + E:ﬂM«pT@. (25)
Applying the same method as in Lemma 3, and noting that V' < ﬁ)\maX(M 12Tz,
we have

) | _
V<LV + LT MPT, (26)

(2h) 20 L2 (M)
NeAGE 2 ()

From Lemma 3, there exists ¢] such that z € €y for any ¢ > ¢j. Denote
the non-trivial solution of (13) as Z(t, g, Z(tp)). Three different cases will be
analyzed as follows:

Case 1 : There exists a time interval [t1,ts] C [t7,t] + T3] such that

_ _ . 2(3—&)/2]\7&)\[(1};;&)/2 M
T(t,to, T(ty)) = 0 for any ¢ € [tr, to] with t2 > 1, T1 = T e Ay ((M)).

In this case, it is obvious that z(t) = 0 for any ¢ > ¢;. From (14), we
obtain © = 0 for any ¢ > ¢,. Then, for any ¢ > ¢, it can be obtained that ©
is a constant vector.

where [, =

12



For any t > t;, we show that © = 0 by a contradiction method. Define
function

(1]

[OT(t + T)0(t + T) — 67 ()6 ()],

[\Dlr—\

O(t).1) =

where T5 > 0.

For Vt > t,, it is obvious that Z(O(t),t) = 0 as O(t) is a constant vector,
then 2 = 0. Supposing O(t) # 0 and taking the time derivative of Z(6(t), t),
we have

d=(6(t),1)

671+ T)O( + ) - 67 (06 ()

t+T15 d . .
- [ 2@ b

k dr

_w / " 6T a e 6dr
t

1 [ d
- ——/ [@T(]NQ@K)(I)M% dr
¢

t+T5 _ B
< —l4 / OTed"Odr
_t t+T2 —
= ;07 ( / <I><I>Td7) e, (27)
t

where [ = mintks kQ})‘mm . Applying the PE condition defined in (7), (27)
becomes

d=(0(1),t -

which contradicts that <= d“ =0, Vt > t;. Hence, for Vt > t;, © = 0. Therefore,
this error system is ﬁmte time stable under this case.

Case 2 : Z(t,to, Z(tp)) only goes through the value of 0 at some time
points, but doesn’t remain this value as t € [t], ¢} + T1].

Let {t; : 1 € £} C [t],t7 + T3] be a time sequence that Z(t, to, T(to)) passes
through 0 at each time point ¢;, where ¢ is an index set. For convenience, we
assume that ¢; < t;41, 4, i + 1 € £. Note that {t; : ¢ € £} must be a finite
set. If not, a infinite subsequence {t;, : i, € £} of {t; : i € ¢} would exist
such that lim,,_,.t;, = t*, t* € [t],¢; + T1]. Then, there exists n* > 0 such

13



that as n > n*, |t;, — t*| < € for any € > 0. Hence, for any t € (t* — ¢€,t*),
it follows Z(t,ty, Z(tp)) = 0 on account of the continuity of Z(t, ¢y, Z(t)) and
z(t,to, T(to)). This contradicts Case 2. Based on the above analysis, let
{t;}1, be a finite set that z(t,to, Z(ty)) passes through 0 at each ¢;. There
exists e; > 0 such that set T = [J;_,(t; — €0, t; + €) is nonempty open set
for any ¢¢ > 0, 0 < € < €;. Then, on the compact set [t],t5 + T1]\ T,
Z(t,to, T(to)) # 0. Since the continuity of Z(t, 9, Z(t9)) on [t],t5 + T1\Y, a
constant [, > 0 exists here such that V' > 1,, Vt € [t,¢7 + T1]\ Y.
From (24), we obtain that there exists k > 1, such that for k > £k,

1 -2
ﬁ@T@ <<V, Vtelt,t;+TI\T, (29)
and
OkVIAZ (M
2N\ A (M)

with Ag > 0 based on the fact that @ M7 MIT < A2T due to ® being uni-
formly bounded. From (26), (29), (30) and noting that V > - Ay (M)z7 7,
we obtain that

14+a A(I)

V<LV 4+ ?(fo)%(éTé)%
e (2K)2)
< —LVE 4 <)—‘I’v
>\§HH<M)
1 1+
< —§z2v%, Vt € [ti 4 To, tF + T1), (31)

with 0 < Ty < Ti. Due to Lemma 2, this error system is finite-time stable
and the settling time of it satisfies

225 Noie (M) o
max( ) VlTa
(1— )k 5 Ao (M)

3 1+a
2°3% N\l (M)
14 :

(1 —a)k = ALto(M)

min

(32)
This implies Z(t, to, Z(tp)) = 0 for any t € [t} + Ty, t; + T4], which is not in
accord with our assumption of this case. Therefore, the second case does not

exist.

14



Case 3 : Z(t, to, T(to)) # 0 for any t € [t},t7 + T1].

Employing the approach mentioned above, it can also be derived that the
last case does not exist.

In conclusion, there exist k > /;:, 0 < € < €1 such that, for any a € (g1, 1),

the error system (13)-(14) is finite-time stable on §; and the settling time
2(8-a)/2Nap(red /2 )
T (I_ayk(ta)/2)IFa ) - |

Remark 8. Parameters k; and ky are chosen according to the practical
demand. Parameter k is determined by the inequalities (29) and (30).

Proof of Theorem 1. Applying Lemma 3 and 4, we can easily derive
Theorem 1. W

3.2. Decentralized finite-time adaptive consensus with directed switching topolo-
gies

Decentralized finite-time adaptive consensus problem for the leader-following
multiagent system (1)-(2), whose network topology is directed and switching
while satisfying detailed balance condition, will be discussed in this part.

Note that the network topology of the system is time variant through-
out the system time. A bounded contiguous time sequence [tx,tgi1), k =
0,1,2,...,withtg =0, J < tpy1 —tr < 7 for two positive constants .7, and
T, is introduced here. Suppose that time varying network topology switches
at time points tx, £ = 0,1,2,..., and is unchanged in each time interval
[tr,tx+1). The notations {%|s € 7} and {%,|s € .#} are introduced here
to respectively denote all possible graphs on node set ¥ and corresponding
subgraphs on node set ¥ with .# being a finite index set. For convenience’s
sake, a piecewise constant switching signal o(t) : [0, 00) — . is defined here
to to depict the time dependence of graphs. Then, the possible graphs at
time ¢ on node set ¥ and node set ¥ can be respectively denoted as gz,(t)
and ¥,). Notations A{(t), a;;(t), b;(t) and £, are used here to describe
the time varying versions of neighbor sets .4; of all follower agents, all ijth
items a,; of adjacency matrix 27, all weighting coefficients b;, and Laplacian
matrix &, respectively. Throughout this paper, signal o(t) is assumed to
switch finite times in any bounded time interval.

Assumption 2. The directed graph %, is strongly connected and detailed
balanced, and b;(t) > 0 for at least one ¢ € 7.
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For directed switching network topologies, decentralized finite-time adap-
tive consensus control schemes proposed here can be split into the following
two parts.

Decentralized finite-time feedback laws:

w= k[t 3 a0~ )

JEA(2)
and decentralized finite-time parameter adaptive laws:

éOi = —%¢0(t)wz(t) X

S a2+ bl - )]

JEA(t)
where 1 € 7.
Letting Moy = diag{w}o)Howy, 1 = col(n1,m2,...,0n) = Moy, the
error system for the case of directed switching network topologies can be
written as follows:

z(t) = —k[n|* + 70O, (35)

and
1

é:—#m®K@wa (36)

For each s € ., define s = Apin(Ms) and vs = Apax(Ms). Depending
on Lemma 1, it follows that

Omin = min{ps|s € L}, Omax = max{vs|s € .7} (37)

are positive and not dependent on time ¢.
For the system (1)-(2) under the case of directed switching network
topologies, another main theorem can be obtained.
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Theorem 2. Consider the multiagent system (1)-(2). Suppose that Assump-
tion 2 holds, ¢;(t), i € ¥, are uniformly bounded and continuous, and the PE
condition given in (7) is met. Then, there ezists eo € (0, 1), such that, for
every o € (1 — e9,1), under feedback laws (33) and parameter adaptive laws
(34), we have: (a) global consensus for this system is attained in finite-time;
(b) global parameter convergence is assured in finite-time; (c) the settling

. 2(3—&)/2]\[(}4&&};‘@)/2
time T < (ko) /25T -

Proof. The proof of this theorem is similar to that of Theorem 1. W

4. Simulations

To validate the proposed decentralized finite-time adaptive consensus
schemes, an example of a system consisting of 5 follower agents and 1 leader
agent, whose network topology is directed and switching while satisfying de-
tailed balance condition, is given in this section. The dynamics of follower
agents are modeled as

filzi(t),t) = %sint + exp(z;)

Il

=

=

\.@F

0]

]

k)

—

8
VR
— N[
~~

. B sint o i .
with ¢; = exp(:) ), 0;, = ( i ), 1 = 1,2,3,4,5, and the leader agent
described by
To(t) = Tcost,
where control input vy (t) = —Cost Ot ()0y with ¢y = cost, Oy = \/T?:,

In this example, a finite set of graphs {G1, G2, G3, G4} described in Fig.2
shows different underlying network topologies of the system considered in
this part. The network topology of this system automatically switches every
four time steps in the following way: Gy — Gy — G5 — G4 — Gy — - -+,
to the next graph. In the Fig. 2, the numbers next to the edges are the
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coupling weights, which are chosen in [0.5, 1.5] randomly. In order to ensure
that the above four graphs are detailed balanced, we select

diag{w}es, = diag{15/7,1,3/2,81/182,9/13},
diag{wle, = diag{1,9/11,6/11,144/91,12/13},
diag{wle, = diag{1,3/2,35/11,15/11, 1},
diag{w}e, = diag{1,5/3,3/4,26/9,13/7},

respectively. By a straightforward calculation, the smallest nonzero eigen-
value Oyin and biggest eigenvalue dyax of My = diag{w} o) Ho () are respec-
tively 0.1253 and 6.3524.

Figure 2: Switching graphs

For the system (35)-(36), all the agents are static at ¢t = 0. The initial
consensus error vector is Z(0) = (—3.9,4.6,—4.9,2.7,3.2)T and vector ©(0) =
(—2.5,-2.7,0.2,1.7,2.6, —2.2,0.4, —0.2, —2.9, — 1.0, —2.0, 1.8, —1.1,0.2, —2.0)”
is the initial parameter estimate error. Under decentralized feedback laws
(33) and decentralized parameter adaptive laws (34) with o = 0.7, k = 2.0,
ki = 0.7, ky = 0.7, simulation is conducted in 300s. By simple computation,
we get Ty < 2082.4s. Let Apg(t) be the minimum eigenvalue of ftt+ °oPTdr.
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Figure 3: The PE condition is satisfied.
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Figure 4: Five components of consensus error vector Z(t).

By choosing 0y = 4, Fig. 3 shows that Apg(t) > 0 for all ¢ > 0. From
Fig. 3, we can obtain that the smallest value of Apg is lo = 0.1476, which
shows that the PE condition (7) is satisfied. Five components of the vector
Z(t) = x(t) — 1y ® x2o(t) are shown in Fig. 4. The parameter estimate errors
éOi — 6y and éz —0;,1=1,2,3,4,5, are shown in Figs. 5 and 6, respectively.
As illustrated in Fig. 4, all follower agents follow the leader agent in finite-
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Figure 5: Parameter estimate error éOi —6y,1=1,2,3,4,5.
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Figure 6: Parameter estimate error 6, — 0;,1=1,2,3,4,5.

time. Figs. 5 and 6 demonstrate that the parameters can be converged in
finite-time.
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5. Conclusions

In this paper, finite-time adaptive consensus problem was researched for
first-order multiagent systems with unknown nonlinear dynamics. Linearly
parameterized method was introduced to model unknown nonlinear dynamics
of the systems. By only utilizing the local relative position state information
between each agent and its neighbors, decentralized finite-time adaptive con-
sensus algorithms were presented with directed fixed and switching network
topologies which satisfy detailed balance condition. Based on classical Lya-
punov analysis techniques, both finite-time stability and finite-time parame-
ter convergence were assured by employing the proposed control algorithms.
Finally, the results in Simulations part were presented to validate our main
results.
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