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Abstract 

 

The implanted profile in an isotropic substrate of a mono-energetic ion species is 

usually very near a Gaussian profile.  An exact solution to the time-dependent Fick 

diffusion equation of an initially Gaussian profile is presented.  This solution is a 

general one also covering the diffusion within the two limiting cases usually 

considered in solutions to the Fick equation, viz. a perfect sink at the surface and a 

perfectly reflecting surface plane at the surface.  An analysis of the solutions for these 

two cases shows that at small diffusion times the main effect of annealing is a nearly 

symmetric broadening of the implanted profile.  At the origin and for longer diffusion 

times the profile deviates significantly from Gaussian.  A review is also given of past 

attempts to extract diffusion coefficients by fitting experimental data to approximate 

equations based on simplified initial profiles. 
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INTRODUCTION 

 

There are several applications for ion implantation into solid substrates.  The most 

common application is in the semiconductor industry for doping semiconductors [1]   

Despite its higher cost, the main advantage that doping via ion implantation has over 

the in-diffusion process is better control over the doping level and uniformity of the 

dopant over the surface of the wafer.  These result in a significant improvement in the 

quality of the ICs. To electrically activate the implanted dopants (i.e. to allow them to 

move into substitutional sites in the substrate crystal structure) and to repair the 

radiation damage, the substrate must be annealed, either thermally (typically about 

1000 °C for 30 minutes) or by rapid thermal annealing.   

 

Although the applications of ion implantations are traditionally mainly limited to the 

semiconductor industry, there are also some applications where ion implantations and 

subsequent annealing are being investigated and employed in insulators – see Ref. [2] 

for some examples.  There are also limited applications of nitrogen and other ions 

implantations in metals (e.g. drill bits) and in some medical applications (e.g. 

prosthetic devices such as artificial joints) for the purpose of hardening, increasing 

wear resistance and preventing crack propagation [3, 4].   An additional benefit of this 

implantation is often also an increase in corrosion resistance of the substrate. 

 

In all of these applications it is usually important to know the extent by which the 

implants will diffuse by thermal annealing.  In the semiconductor applications 

diffusion of the dopants is, for obvious reason, usually detrimental.  However, for 

many of the other applications, e.g. hard, anti-corrosive layers on metals, diffusion is 

an advantage because it increases the depth of the layer.  Consequently, there are 

numerous studies investigating the diffusion of implanted elements in metals [5, 6], 

semiconductors like Si [7, 8] and SiC [9, 10], and insulators [11, 12]. 

 

Due to the statistical nature of the collisions between energetic impinging ions with 

the substrate atoms, the implanted profile is usually very near a Gaussian.  

Consequently, for most calculations and most practical examples it is usually assumed 

that the implanted profile is purely Gaussian – an assumption also made in this paper.   
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It is only in exceptional cases (e.g. channeling) that there is a large deviation from a 

Gaussian profile. 

 

In this paper, an exact general solution to the time-dependent Fick diffusion equation 

is given for an originally Gaussian implanted profile is given.  A review is also given 

of past attempts to extract diffusion coefficients by fitting experimental data to 

approximate equations based on simplified initial profiles.  It is shown that some of 

these can result in diffusivity values which are very near the real ones. 

 

  

THEORY 

 

The time-dependent Fick diffusion differential equation [13, 14] is given by  
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where D is the diffusion coefficient (usually taken as a constant) and N (x, t) is the 

number of diffusing particles per unit volume at time t and distance x.  In order to 

obtain a general and correct solution for a pure Gaussian implanted profile, we follow 

Boltaks [14] which gives a general solution in the limit of low impurity concentration, 

for an isotropic, non-time dependent, semi-infinite body (i.e.  0 < x < ∞) and t > 0 to 

the Fick diffusion differential equation 
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where N( ,0) is the original distribution of the impurity and NI( ,0) is a function that 

must be determined from the boundary conditions.  Suppose the number of implanted 

particles per unit volume at x = 0 for t > 0 is a constant N0, i.e.   
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An elementary relationship which still satisfies the other boundary condition for the 

above solution to (1), viz. N(x, t)  0 as x  , is  
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with k a constant and 
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Note that the two extreme cases for k in (5) are general solutions given in Boltaks 

[14].   k = - 1 represents the case of a perfectly reflecting boundary at x = 0 with zero 

flux at the origin, i.e. 
00 |),(|),( 




 xx txN

x
Dtxj  = 0 and therefore no loss of 

impurity material from the substrate); while k = 1 represents in the case of a perfect 

sink at the surface of the substrate meaning that any impurity arriving at the surface 

will immediately sublimate [14].  The general solution with -1 < k < 1, will lead to a 

time dependent surface concentration 
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Equation (4) determines the function )0,( IN .  For an isotropic medium implanted 

with mono-energetic impurity atoms, the initial profile is assumed to be purely 

Gaussian with projected range Rp and range straggling ΔRp, i.e. 

 




















2

2

0
2

)(
exp)0,(

p

p

R

R
AN


                (7) 

 

Substituting (7) for )0,(N in (5) and calculating the integrals by completing the 

squares in the arguments of the exponential functions and then using the identity [15] 

for a ≠ 0 
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one eventually obtains the solution 
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and 
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The solution (9) was also derived by Strohm [16] but only for the much simpler 

limiting cases where either k = 1 or k = -1, i.e. that of a perfect sink at the surface and 

of a perfect reflecting surface.  The general solution (9) together with (10) represents 

the more usual case for shallow implants where some of the impurity reaching the 

surface is released into the environment (i.e. loss of the diffusant/impurity) leaving a 

non-zero surface concentration of the impurity, given by 
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Although, equation (4) determines the function )0,( IN , equation (11) is the more 

practical parameter to use when fitting experimental data to the general solution (9 – 

10).   

 

In the following simulated diffusion profiles are considered for the two limiting cases, 

k = 1 and k = - 1.  For all the model simulations typical implantation parameter values 

were used for the initial Gaussian profile, viz. Rp = 120 nm, ΔRp = 30 nm, A0  = 0.66 

atomic percent, and also a realistic diffusion coefficient D = 1 x 10
-19

 m
2 

s
-1

 = 0.1 nm
2 

s
-1

.  The implantation parameters were chosen to depict a deep implanted profile 

where the surface concentration of the implanted material is effectively zero.  

Furthermore, the concentration of the implanted impurity is low to comply with 

Fickian diffusion conditions. 
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Figure 1.  A simulated diffusion profile, i. e. equations (9) and (10), for the case k = -1 (i.e. a perfectly 

reflecting boundary at x = 0), is given for different diffusion times t (in hours) indicated in the figure.  

Typical implantation values were used for initial Gaussian profile: Rp = 120 nm, ΔRp = 30 nm, A0  = 

0.66 atomic percent, and a diffusion coefficient D = 0.1 nm
2 

s
-1

. 
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In Figure 1 a simulated diffusion profile, for the case k = -1, is given at different times 

t.  At the two lowest diffusion times the diffused profile is still fairly Gaussian.  The 

main visible effect of the diffusion is the fairly symmetric broadening of the original 

Gaussian profile and a lowering of the maximum peak height due to this broadening 

of the peak.  The (depth) position of maximum peak height has not really shifted away 

from the Rp value of the original Gaussian profile. For larger diffusion times, the peak 

becomes increasingly asymmetric with the maximum peak height position shifting 

towards the surface to eventually coincides with x = 0, i.e. the surface of the substrate.  

These two effects occur because the implanted (impurity) atoms that diffuse towards 

and reach the surface are reflected back with no material being lost from the substrate.  

Due to the diffusion process being fundamentally a random walk process, there is 

conglomeration at the surface.  For increasingly long diffusion times the impurity 

atoms diffuse deeper inside the surface with an increasing lowering of the peak 

concentration at the surface.  
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Figure 2.  A simulated diffusion profile, i. e. equations (9) and (10), for the case k = 1 (i.e. a perfect 

sink at the surface), is given for different diffusion times t (in hours) indicated in the figure.  Typical 

implantation values were used for initial Gaussian profile: Rp = 120 nm, ΔRp = 30 nm, A0  = 0.66 

atomic percent, and a diffusion coefficient D = 0.1 nm
2 
s

-1
.  
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In Figure 2 the same parameters used in Figure 1 are used in a simulated diffusion 

profile, for the case k = 1.   This case represents a perfect sink for the impurity at the 

surface.  In practical terms it illustrates the diffusion of an impurity with a high 

vapour pressure at the annealing times leading to a complete sublimation of the 

impurity atoms into the environment when they reach the surface of the substrate.  

This is a more common occurrence than the previous example considered in Figure 1.  

The same observations as seen in Figure 1, can be made here for the lower diffusion 

times, i.e. a symmetric broadening of the peak, lowering of the peak height and nearly 

no change in the maximum peak height position.  For values near x = 0, the boundary 

condition of a sink, forces the diffused profile to become 0 and the diffused profiles 

deviate from Gaussian, especially for larger diffusion times.  For the three lowest 

times there was insignificant loss of impurity material.  At the largest diffusion time, 

i.e. t = 25 h, there is clearly a loss of impurity material (about 40 %) with the profile 

now obviously no longer Gaussian but significantly skewed.  The position of 

maximum peak height has also shifted away from the Rp value to deeper values inside 

the substrate.  These tendencies are enhanced (not shown) at even longer diffusion 

times (i.e. larger Dt values).    

 

DISCUSSION 

 

That both diffused profiles for the two limiting cases for the parameter k in (10) 

remain largely Gaussian in shape at the lower diffusion times, is due to the fact that 

the error function 1zerf  for x >> 1.   Thus, the pre-(square) bracket term in (9), i.e. 
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is the dominating term in (9) except for small x and large t values.  This is a Gaussian 

function, which is broader than the original implanted distribution, due to factor 4Dt 

in the quotient of the argument in the exponential function.  Consequently, it is 

convenient to fit the experimental values first to such a Gaussian function to obtain an 

approximate solution for the diffusion coefficient D, which then together with the 

estimates for N0 and A0, result in an efficient fitting of the full equation (9 -10). 



9 

 

 
Note that the notation 
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represents the second moment of the Gaussian fit, with 
2

2 DRDt   representing the 

increased broadening of the profile due to diffusion. 

 

The above solution(s) only apply for Fickian diffusion, i.e. a random walk diffusion 

process.  When there is an addition force mechanism influencing causing a 

preferential direction for the diffusion atoms, such as Gibbsian segregation, then the 

solution is no longer valid. 

 

The energetic bombarding ions can cause several effects in the substrate material 

which can influence the diffusion kinetics and mechanisms.  The most obvious of 

these effects is radiation damage which can lead to radiation enhanced and/or 

radiation induced diffusion [17].  The above solution(s) can handle these cases as long 

as the diffusion is still Fickian diffusion.  Radiation damage can also result in the 

trapping of the implanted species by defect complexes [18].  These diffusion traps are 

temperature dependent, usually causing no or little diffusion below the trap releasing 

temperature, and then normal diffusion above that temperature.  The above solution(s) 

can then be applied to determine the diffusion coefficients above at these higher 

temperatures.  Another phenomenon which also acts as a kind of diffusion trap is the 

chemical compound formation between the implanted atoms and substrate atoms.  

Sputtering of and substrate topography development on the substrate, due to the ion 

bombardment, do not affect the diffusion mechanisms but can lead to erroneous depth 

profiles [17, 19].   

 

An example of the diffusion of 200 keV implanted Sr
+
 ions into a glassy carbon 

substrate to a fluence of 2 x 10
16

 Sr
+
 cm

-2
 is shown in Figure 3 to illustrate the 

application of the above solution(s).  Since glassy carbon is basically a semi-

amorphous material, the implanted strontium profile is very near a Gaussian profile 

[20].   The implanted glassy carbon was heated for 1 h in vacuum.  Both the as-

implanted Sr profile and the diffused profiles were determined by Rutherford 
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backscattering (RBS). Since the Sr signals at the surface (x = 0) for both profiles were 

zero, the diffused profile was fitted to the solution for a sink at the surface.  In fitting 

the Sr profile, the projected range RP was also used as a fitting parameter because 

dynamic annealing resulted in a shift of the whole profile towards the bulk of the 

glassy carbon.  The fitting gave a diffusion coefficient of  D = 5.7 x10 
-19 

m
2
 s

-1
. 
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Figure 3.   Diffusion of 200 keV implanted strontium ions into glassy carbon aand annealed at 300 °C 

for 1 h.  The as-implanted Sr RBS measurements (full blue circles) were fitted to a Gaussian function 

(blue curve) while the diffused profile (open red circles) were fitted to (9) and (10) for k = 1, i.e. the 

sink solution (red curve).  

 

COMPARISONS WITH OTHER EQUATIONS 

 

There had been a few approaches in the past for analysing the diffusion of a Gaussian 

implanted species in a substrate.  In the one approach, simplified initial conditions are 

chosen where the impurity profile is assumed to have a constant concentration.  

Typically, a finite or infinite layer is assumed for the impurity profile – see for 
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example [6, 21, 22].  We shall consider both these two cases below for parameters 

relevant to the implanted profile (6).    

 

For an finite embedded layer of width 2ΔRp centred around Rp, i.e. the region (Rp - 

ΔRp, Rp +  ΔRp) where N(x, 0) = N0 in an infinite substrate, the following error 

function solution is obtained [13, 14] 
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In (14) we added the subscript E (for embedded layer) to distinguish it from our 

solution N in (8).   Note that N0 must be within the solubility limit of the impurity in 

the medium.  In Figure 4 the original embedded layer profile and the equivalent 

original implanted profile are given.  Both these two profiles represent the same 

number of impurity atoms, i.e. the areas under the two curves are the same.  For the 

exact diffusion equation we assumed a perfect sink at the surface, i.e. k = 1.  Both 

diffused profiles (i.e. (9) and (14)) are also shown for a constant diffusivity D (= 10) 

and different time t values.   
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Figure 4.  The diffusion of an embedded layer (broken lines), i.e. equation (14), compared to the 

diffusion of a Gaussian profile (solid lines) with a perfect sink at the surface, i.e. k = 1 in (9), for 

different times t as indicated in the figure legend.  The parameters are D = 0.1 nm
2 

s
-1

; for the Gaussian 

profile (6) Rp = 120 nm, ΔRp = 30 nm, N0 =  A0  = 0.66 atomic percent. 

 

From a comparison of the profiles in Figure 4, it can be seen that the two tails of (14) 

overlap with the exact diffused profile (9) for large t (i.e. large Dt) values.  This 

supports the practice that only the tails of (original Gaussian) experimental diffused 

profile can be used for fitting to the embedded layer solution (14) to obtain a value for 

the diffusivity D.  As t increases (cf. t = 2), the whole profile can be fitted.  For most 

experimentally determined diffusion profiles, with scatter in the measurements, the 

differences would be too small to make a difference.  

 

Consider now the diffusion of a uniform layer in an semi-infinite isotropic medium, 

where the original profile is given by 

 

 N(x, 0) = N0      for x < Rp + ΔRp               (15) 

N(x, 0) = 0         for  x > Rp + ΔRp 
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and its solution to (1) is given in the standard references [13, 14] 
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Figure 5.  The diffusion of a semi-infinite layer (broken lines), i.e. equation (16), compared to the 

diffusion of a Gaussian profile (solid lines) with a perfect sink at the surface, i.e. k = 1 in (9), for 

different times t as indicated in the figure legend.  The parameters are D = 0.1 nm
2 

s
-1

; for the Gaussian 

profile (6) Rp = 120 nm, ΔRp = 30 nm, N0 =  A0  = 0.66 atomic percent. 

 

In Figure 5 this solution is compared to (9) for a perfect sink at the surface.  As with 

the previous case, the tail of (16) overlaps with the exact diffused profile (9) for large 

t (i.e. large Dt) values.  This supports the practice that only the tail of the (original 

Gaussian) experimental diffused profile can be used for fitting to the semi-infinite 

layer solution (16) to obtain a value for the diffusivity D.  However, it is clear that 

only a very small portion of the profile can be fitted.  This together with the difficulty 
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in choosing the appropriate parameters (e.g. N0) for the semi-infinite layer, makes this 

fitting procedure rather unreliable for obtaining good values for the diffusivity D. 

 

The reason why there is agreement between these two approximate solutions and the 

exact diffusion profile for large Dt values follows from using only the first term of the 

asymptotic expansion of the error function, viz.. equation 7.1.23 in Abramowitz & 

Stegun [15] 
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1~ ze
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zerf 


                (17) 

The proof shall only be given for the semi-infinite layer.  For the embedded layer a 

very similar method is followed with same end result.  For large argument values (16) 

becomes 
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Using the similar approximations as above, for x >> Rp + ΔRp, the exponential term in 

(18) becomes  
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and 
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Since the exponential term dominates the pre-exponential term for large x values (i.e. 

x >> 1),  
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In the previous section it was shown that for large x values, the exact solution (9) can 

be approximated by (12). For x >> Rp and 4Dt >> 2 ΔRp and using the binomial 

expansion, (12) becomes  
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There is another equation often used to extract the diffusivity D from experimental 

data.  Myers et al. [5] incorrect derived a solution to the Fick diffusion differential 

equation for the following (initial) Gaussian profile 
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where K and t0 are adjustable parameters.  Note that this equation is slightly different 

to the normal Gaussian equation in lacking a factor ½ in the pre-exponential constant 

term.  For their solution, Myers et al. used the boundary condition for a perfectly 

reflecting boundary.  The incorrect solution is then given by 
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This diffused profile is still Gaussian but broader than the original.  A simple linear fit 

to the square of the widths of the profiles yields the diffusion coefficient D.  The 

width W(t) of the diffused profile is defined by  

    

),0(
2

1
)( tNtW M               (25) 

 

From (24) follows the relation  

 

)0()2ln(4)( 22 WDttW                 (26) 

 

The slope of W
2
(t) against t yields D.    
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The latter equation has been used very successfully in numerous publications to 

obtain the diffusion coefficients of implanted materials [5, 9, 10, 18 22 - 25].    

 

It is interesting to compare dominating term (12) of the exact solution (9) to the Myers 

solution (24) when one makes the translation x  x – Rp, i.e. to the equation 
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where we have used the relationship
2

02 pRDt  .  By choosing an appropriate value 

for K (or A0) it is clear that the two expressions in (12) and (27) are equal to each 

other.  This is the reason why the Myers et al. [5] equations (24) – (26) have been so 

successfully applied in the past to determine the diffusion coefficient of implanted 

species.   

 

SUMMARY 

For many practical reasons, the diffusion of an implanted element in a substrate often 

needs to be investigated.  The implanted profile in an isotropic substrate of a mono-

energetic ion species is usually very near a Gaussian profile.  None of the standard 

textbooks give a solution to the Fick diffusion differential equations for an initially 

Gaussian profile.   

 

In this paper an exact solution of an initially Gaussian profile is presented.  In general, 

most solutions to the Fick diffusion equation are usually limited to two cases viz. that 

of a perfect sink at the surface and that of a perfectly reflecting surface plane at the 

surface origin.  The solution presented here, is a general one, also covering the 

diffusion within the abovementioned two limiting cases.  An analysis of the solutions 

for these two limiting cases shows that at low diffusion times the main effect is a 

nearly symmetric broadening of the implanted profile.  At the origin and for longer 

diffusion times the profile deviates significantly from Gaussian.  Naturally, this exact 

solution does not hold when there is an additional driving force such as surface 

segregation [17, 19, 20].   
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In the literature often only approximate solutions to the Fick diffusion differential 

equation are used in diffusion studies of implanted materials.  A short review was 

given of such approximate equations and methods.   This analysis also shows why the 

approximate (incorrect) equation by Myers et al. [5] has been so successfully 

employed in the past; also by our group. 
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