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Abstract

The existing models of Bayesian learning with multiple priors by Marinacci

(2002) and by Epstein and Schneider (2007) formalize the intuitive notion that

ambiguity should vanish through statistical learning in an one-urn environment.

Moreover, the multiple priors decision maker of these models will eventually learn

the �truth�. To accommodate non-vanishing violations of Savage�s (1954) sure-

thing principle, as reported in Nicholls et al. (2015), we construct and analyze

a model of Bayesian learning with multiple priors for which ambiguity does not

necessarily vanish. Our decision maker only forms posteriors from priors that sur-

vive a prior selection rule which discriminates, with probability one, against priors

whose expected Kullback-Leibler divergence from the �truth� is too far o¤ from

the minimal expected Kullback-Leibler divergence over all priors. The �stubborn-

ness�parameter of our prior selection rule thereby governs how much ambiguity

will remain in the limit of our learning model.
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1 Introduction

1.1 Motivation

In a seminal contribution, Savage (1954) provides an axiomatic foundation for subjec-

tive expected utility (SEU) theory which resolves a decision maker�s uncertainty through

a unique additive (subjective) probability measure. However, starting with Ellsberg�s

(1961) one-urn experiment, several experimental studies report systematic violations of

Savage�s key axiom, the sure-thing principle (STP) (cf. Wu and Gonzales 1999; Wakker

2010 and references therein). As a reaction to this �nding, descriptive decision theories

have been developed which explain violations of the STP through ambiguity attitudes.

Central to this paper are multiple priors models which use sets of subjective additive

probability measures rather than a unique measure to describe a decision maker�s un-

certainty (cf. Gilboa and Schmeidler 1989; Ja¤ray 1994; Ghirardato, Maccheroni, and

Marinacci 2004).1 Multiple priors models o¤er a straightforward interpretation of ambi-

guity as a lack of �probabilistic�information: �[:::] the subject has too little information

to form a prior. Hence (s)he considers a set of priors.� (Gilboa and Schmeidler 1989,

p. 142). By this interpretation, one would intuitively expect that violations of the STP

must vanish if the decision maker observes an unlimited amount of statistical informa-

tion. Our intuition is thereby informed by standard models of Bayesian learning accord-

ing to which a Savage (1954) decision maker�who holds a unique subjective prior�will

(under some regularity condition) almost certainly learn the �true�probability measure

if he observes a large amount of data which was i.i.d. generated by this measure.

A recent experimental study by Nicholls, Romm, and Zimper (2015) has put the no-

tion to the test that STP violations should tend to decrease through statistical learning.

These authors were running a sequence of Ellsberg-type one-urn experiments such that

the test group received an increasing amount of statistical information about the urn�s

true composition whereas the control group did not receive such information. Quite sur-

prisingly, the authors �nd that �... statistical learning has, at best, no impact on STP

violations. At worst, it might even be causing STP violations to increase.�(Nicholls et

al. 2015, p. 14)

This paper constructs a model of Bayesian learning with multiple priors that can

accommodate this empirical �nding in a plausible way. As the key feature of our model,

the decision maker rejects priors in the light of observed data by an application of the

1An alternative (and under speci�c circumstances formally equivalent) class of models that accommo-

date ambiguity attitudes are models of Choquet decision making/Choquet expected utility (Schmeidler

1989; Gilboa 1987). These Choquet models express ambiguity attitudes through non-additive proba-

bility measures.
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-maximum expected loglikelihood prior selection rule, which we newly introduce to the

literature. We interpret 
 as a �stubbornness�parameter because it measures the deci-

sion maker�s reluctance to dismiss prior beliefs in the light of new data. While ambigu-

ity typically decreases through statistical learning in our model, it does not necessarily

vanish to the e¤ect that STP violations may occur after arbitrarily many statistical

observations.

1.2 Existing results on Bayesian learning

Consider an indexed family of probability measures such that, unbeknownst to the de-

cision maker, one measure in this family (e.g., given by the composition of an urn) is

the true data-generating measure. A standard Bayesian learner would resolve his uncer-

tainty about the true measure through a unique prior de�ned on an index space. In the

one-urn environment relevant to this paper, the index space is in an one-one relationship

with the family of measures. When this decision maker observes an i.i.d. data sample

generated by the true measure, he uses this statistical information to update his prior

to a posterior by an application of Bayes�rule. If the prior is well-speci�ed, i.e., if the

true index belongs to its support, standard consistency results imply that the decision

maker�s posteriors will almost surely converge towards a Dirac measure concentrating at

the true index/measure when he can observe an unlimited amount of statistical informa-

tion.2 More generally, for well- and misspeci�ed priors, Berk�s (1966) theorem implies

that the posteriors will almost surely concentrate at the indices in the prior�s support

that minimize the Kullback-Leibler (1951) divergence from the true measure.

Turn now to a multiple priors decision maker who resolves his uncertainty about

the true index/measure by a set of priors rather than a unique prior. Existing formal

models of Bayesian learning with multiple priors by Marinacci (2002) (=M-2002) and

by Epstein and Schneider (2007) (=ES-2007) establish formal conditions such that all

multiple posteriors concentrate at the true index/measure. Under the assumptions of

these models, STP-violations will thus vanish through Bayesian learning in the single

likelihood environment relevant to the Ellsberg one-urn experiment. More speci�cally,

M-2002 proves convergence to the true index/measure under the assumption that all

priors are well-speci�ed. ES-2007 assume that the decision maker applies a speci�c prior

selection rule�which we call the �-expected maximum likelihood rule�according to which

he rejects priors that are implausible in the light of the observed data. Posteriors are then

only formed from priors that are not rejected. Restricted to the one-urn environment,

2The seminal contribution is Doob�s (1949) consistency theorem. For generalizations and further

references see, e.g. Diaconis and Freedman (1986), Chapter 1 in Gosh and Ramamoorthi (2003), and

Lijoi, Pruenster and Walker (2004).
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ES-2007�s Theorem 1 implies that all multiple posteriors will concentrate at the true

index/measure if there is (at least) one well-speci�ed prior.

1.3 New results

Our approach follows ES-2007 in that we also assume that a multiple priors decision

maker applies a prior selection rule according to which he might reject priors as implau-

sible in the light of the observed data. We argue, however, that the ES-2007 �-expected

maximum likelihood rule might be too strong for some decision makers because it im-

plies vanishing ambiguity in the single-urn environment. Because we want to establish

the possibility of non-vanishing STP violations, we introduce the 
-maximum expected

loglikelihood rule as a plausible alternative to the �-expected maximum likelihood rule.

Formally, ES-2007�s �-expected maximum likelihood rule rejects priors whose ex-

pected likelihood for a given data sample is not �-close to the maximal expected like-

lihood for some �xed parameter � 2 (0; 1]. In contrast, our 
-maximum expected

loglikelihood rule rejects, for a �xed 
 2 [1;1), priors that are not 
-close to the
maximal expected loglikelihood. Both rules are equivalent if all priors are degenerate

(i.e., Dirac) probability measures since likelihood and loglikelihood maximization are

identical. However, if expectations of likelihoods versus loglikelihoods are taken with

respect to non-degenerate priors, our 
-maximum expected loglikelihood rule punishes

more strongly priors that support indices with small likelihoods. We therefore interpret

our decision maker as more cautious (i.e., more risk averse with respect to likelihood

outcomes) than the ES-2007 decision maker.

The following �ndings emerge for Bayesian learning with multiple priors under the


-maximum expected loglikelihood rule.

1. In the limit, posteriors are only formed from priors whose expected Kullback-

Leibler divergence from the true index/measure is 
-close to the minimal expected

Kullback-Leibler divergence from the true index/measure over all priors.

2. For the special case of the maximum expected loglikelihood rule (i.e., 
 = 1),

posteriors are only formed from priors that minimize the expected Kullback-Leibler

divergence from the true index/measure. In contrast to ES-2007�s �-expected

maximum likelihood rule, these posteriors are not necessarily concentrating at the

true index/measure even if there is a well-speci�ed prior.

3. Greater values of the stubbornness parameter 
 imply greater sets of posteriors

in the limit whereby we can always �nd su¢ ciently large values of 
 such that
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(for su¢ ciently rich sets of priors) some posterior will concentrate at any given

index/measure.

4. In line with the experimental �ndings of Nicholls et al. (2015), we can therefore

generate non-vanishing STP violations for su¢ ciently large values of the stubborn-

ness parameter 
.

The remainder of the paper is organized as follows. Motivated by the experimental

�ndings of Nicholls et al. (2015), we present in Section 2 a wish list for a prior selection

rule. Section 3 recalls the formal set-up of Bayesian learning with a unique prior. Sec-

tion 4 extends this framework to Bayesian learning with multiple priors. In Section 5

we derive new results for Bayesian learning with multiple priors under the 
-maximum

expected loglikelihood prior selection rule. Section 6 revisits the Ellsberg one-urn ex-

periment whereby we illustrate the possibility of non-vanishing STP violations. Section

7 concludes with an outlook on possible economic applications.

2 The Ellsberg experiment and a wish list for a prior

selection rule

As our theoretical motivation, we want to explore a plausible alternative to the existing

Bayesian learning models with multiple priors proposed by M-2002 and by ES-2007, re-

spectively. As our empirical motivation, we would like to accommodate the experimental

�ndings of Nicholls et al. (2015) in a convincing way. This section elaborates in some

detail on this empirical motivation.

2.1 STP violations in the static Ellsberg one-urn experiment

As our point of departure, let us recall the original Ellsberg one-urn experiment as well

as the proposal of Gilboa and Schmeidler (1989) to explain STP violations through max

min expected utility (MEU).

Consider some state space 
 and some �-algebra �. Savage (1954) describes a

decision maker who has preferences� over Savage acts which are �-measurable mappings
from the state space 
 into a set of consequences, denoted Z. By imposing several

structural and behavioral axioms, Savage derives the celebrated subjective expected utility

(SEU) representation of � such that, for all Savage acts f; g,

f � g ,
Z
!2


u (f (!)) d' �
Z
!2


u (g (!)) d', (1)
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whereby the subjective probability measure ' de�ned on (
;�) and the utility function

u : Z ! R are uniquely3 pinned down by the decision maker�s preferences. We introduce
the following notational convention for the SEU of act f with respect to probability

measure '

EU (f; ') �
Z
!2


u (f (!)) d'. (2)

Savage�s key behavioral axiom is the sure-thing principle (STP) which states that, for

all Savage acts f; g; h and events E 2 �,

fEh � gEh , fEh
0 � gEh0 (3)

whereby

fEh (!) =

(
f (!) for ! 2 E
h (!) for ! 2 :E

(4)

Starting with Ellsberg (1961), several experiments have reported systematic viola-

tions of the sure-thing principle, also dubbed �Ellsberg paradoxes�. Let us focus on

Ellsberg�s (1961, p. 654) original one-urn experiment. The Ellsberg urn contains 30 red

balls and 60 black or yellow balls of unknown proportion. De�ne the relevant state space


 = f!1; !2; !3g (5)

where !1 (resp. !2, !3) stands for the state in which a red (resp. black, yellow) ball will

be drawn. Next consider the following four Savage acts where E � f!1; !2g

!1 !2 !3

fEh 1 0 0

gEh 0 1 0

fEh
0 1 0 1

gEh
0 0 1 1

The majority of decision makers express the preferences

fEh � gEh and gEh0 � fEh0. (6)

Note that this �Ellsberg paradox� (6) constitutes a violation of the STP (3) and can

therefore not be accommodated by SEU theory.

3Of course, the utility function u is only unique up to some positive a¢ ne transformation.
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To accommodate the Ellsberg paradox (6), Gilboa and Schmeidler (1989) propose a

maxmin expected utility with non-unique prior (=MEU) representation such that, for all

Savage acts f; g,

f � g , min
'2P

Z
!2


u (f (!)) d' � min
'2P

Z
!2


u (g (!)) d' (7)

for some non-empty set of probability measures P.4 If P reduces to a singleton, i.e.,

P = f'g for any subjective probability measure ', MEU reduces to SEU. However, if P
does not reduce to a singleton, the decision maker�s preferences express ambiguity in the

sense that he cannot pin down his uncertainty through a unique probability measure.

The MEU concept assumes that ambiguity is always resolved in a very pessimistic way:

Each act is evaluated with respect to the probability measure in P that gives the minimal
expected utility for the act in question.

Although this assumption of extreme ambiguity aversion is rather extreme5, we follow

here Gilboa and Schmeidler (1989) and consider a MEU decision maker. In what follows,

we write

MEU (f;P) � min
'2P

EU (f; ') (8)

for the decision maker�s maxmin expected utility from act f with respect to the set of

probability measures P.
To see that MEU can indeed accommodate the Ellsberg paradox (6) suppose (quite

naturally) that P is non-empty and satis�es

P �
�
' =

�
1

3
; ' (!2) ;

2

3
� ' (!2)

�
j ' (!2) 2

�
0;
2

3

��
(9)

That is, P only contains probability measures ' de�ned on
�

; 2


�
that attach probabil-

ity 1
3
to the event that a red ball will be drawn. Without loss of generality, set u (z) = z

for z 2 f0; 1g. By (9),

MEU (fEh;P) =
1

3
and MEU (gEh0;P) =

2

3
. (10)

Note that

MEU (gEh;P) <
1

3
(11)

4Gilboa and Schmeidler (1989) axiomatize MEU within an Anscombe-Aumann (1963) framework

where the set of consequences Z contains all lotteries over some non-degenerate set of deterministic

prizes. Under this Gilboa and Schmeidler (1989) axiomatization, P is uniquely pinned down as a non-
empty, closed and convex set of �nitely additive probability measures. We ignore here this speci�c

axiomatic foundation and also allow for, e.g., non-convex P.
5For a more realistic generalization of MEU, see the �-MEU concept of Ghirardato et al. (2004).
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if, and only if, there is some ' 2 P such that ' (!2) < 1
3
. Conversely, we have that

MEU (fEh
0;P) < 2

3
(12)

if, and only if, there is some '0 2 P such that '0 (!2) > 1
3
.

Collecting the above arguments gives us the following su¢ cient and necessary condi-

tion for STP violations in the Ellsberg one-urn experiment by an MEU decision maker.

Proposition 1. The MEU decision maker violates the STP, i.e.,

MEU (fEh;P) > MEU (gEh;P) , (13)

MEU (gEh
0;P) > MEU (fEh

0;P) , (14)

if, and only if, there are '; '0 2 P such that

' (!2) <
1

3
and '0 (!2) >

1

3
. (15)

2.2 Non-vanishing STP violations in the Ellsberg one-urn ex-
periment with statistical information

Nicholls et al. (2015) report an experimental study in which subjects had to make 30

consecutive choices, structured as 15 choice pairs, such that every choice pair resembled

a payo¤-variant of Ellsberg�s static one-urn experiment. The elicited choices for any

given pair were thus either consistent with the STP or they constituted a violation

thereof. Whereas the test group received increasing statistical information about the

urn�s composition in the form of drawings with replacement after each choice, the control

group did not receive any such information. At the end of the experiment each subject

in the test group had thus observed statistical information in the form of 30 data points

independently generated by the true distribution corresponding to the urn�s composition.

Since a Bayesian decision maker would use this statistical information to update his

prior belief(s) about the composition of the urn, one would intuitively expect that this

decision maker�s ambiguity should decrease in the amount of the statistical information

he received. In line with this intuition, the working hypothesis of Nicholls et al. (2015)

was that the occurrence of STP violations should become less frequent for the test group

than for the control group over the course of the experiment. Contrary to this hypothesis,

however, the experiment did not show a decrease in STP violations for the test group

compared to the control group.
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Even under the (strong) assumption that the subjects resembled Bayesian learners

with multiple priors, there might exist a number of possible �explanations�for the ex-

perimental �ndings of Nicholls et al. (2015). For example, there might not have been

enough statistical information for driving out STP violations for the test group. Nev-

ertheless, a model of Bayesian learning for which ambiguity does not necessarily vanish

looks like a better candidate for �explaining�the experimental �nding of non-decreasing

STP violations for the whole test group than a model for which STP violations would

completely vanish in the long run.

To formally describe non-vanishing STP violations, we now recast the Ellsberg one-

urn experiment within a set-up of increasing statistical information about the urn�s

composition. As before let 
 = f!1; !2; !3g and de�ne the relevant �-algebra as the
powerset of 
, i.e., � = 2
. Next consider the following set of indexed probability

measures de�ned on (
;�)

� =

�
'� =

�
1

3
; '� (!2) ;

2

3
� '� (!2)

�
j '� (!2) =

�

90
, � 2 �

�
(16)

where � denotes an index set such that

� = f1; :::; 59g . (17)

The indices in � correspond to the possible numbers of black balls in the urn whereby

we assume that there is at least one black (and one yellow) ball in the urn.6 That is, �

contains all probability measures with full support on 
 that correspond to all possible

ratios of black versus yellow balls in the Ellsberg urn. Denote by �� 2 � the actual

number of black balls in the urn so that the �true�probability measure '�� determines

the distribution according to which balls are drawn from the urn. By assumption, the

decision maker does not have any knowledge about the urn�s actual composition (i.e.,

about the true index value) beyond the trivial fact that �� 2 �.
Consider at �rst the a priori decision situation in which the decision maker has

not yet received any statistical information about �� in the form of ��-i.i.d. drawings.

If the decision maker was a standard Savage decision maker he would resolve his a

priori uncertainty about the urn�s composition by a unique prior (=additive probability

measure), denoted �0, de�ned on the index space (�;F) where F denotes the powerset

of �. More generally, we consider a multiple priors decision maker who resolves his

uncertainty about the urn�s composition by a non-empty set of priors, denoted M0,

6We exclude � = 0 and � = 60 out of convenience since we do not want to make a stand about

Bayesian updating in the light of events that the decision maker perceives as impossible. E.g., we want

to avoid the case that a prior attaches probability one to zero yellow balls in the urn but the decision

maker observes a yellow ball drawn from the urn.
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de�ned on the index space (�;F). For a MEU decision maker the set of probability

measures P in (8) then becomes the set of reduced compound measures in M0 � �
de�ned on (
;�) such that, for any Savage act f ,

MEU (f;M0 � �) = min
'02M0��

X
!2


u (f (!))'0 (!) (18)

where

'0 (!) �
X
�2�

'� (!)�0 (�) . (19)

Note that this a priori MEU decision maker reduces to an a priori SEU decision maker

if, and only if, the set of priorsM0 contains a unique prior.

Now consider the a posteriori decision situation in which the decision maker had

started out with priors inM0 and subsequently observed arbitrarily many �
�-i.i.d. draw-

ings. After receiving this statistical information, a multiple priors decision maker resolves

(with probability one) his uncertainty about the true parameter value through some set

of emerging posteriors de�ned on the index space (�;F). For the moment being, let us
denote this set of posteriors by �1 with generic element �1. In this a posteriori deci-

sion situation, the set of probability measures P in (8) then becomes the set of reduced
compound measures P = �1 � �, de�ned on (
;�), implying, for any Savage act f ,

MEU (f;�1 � �) = min
'12�1��

X
!2


u (f (!))'1 (!) (20)

where

'1 (!) �
X
�2�

'� (!)�
1 (�) . (21)

De�nition 1. We speak of non-vanishing STP violations if, and only if, the decision
maker violates the STP in the a priori as well as in the a posteriori decision

situation. More precisely, we say that STP violations do not vanish if, and only if,

MEU (fEh;M0 � �) > MEU (gEh;M0 � �) and (22)

MEU (gEh
0;M0 � �) > MEU (fEh

0;M0 � �) (23)

as well as

MEU (fEh;�
1 � �) > MEU (gEh;�

1 � �) and (24)

MEU (gEh
0;�1 � �) > MEU (fEh

0;�1 � �) . (25)
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An a priori MEU decision maker becomes an a posteriori SEU decision maker if,

and only if, there is a unique emerging posterior in the set �1. Non-vanishing STP

violations can thus only be accommodated by a Bayesian learning model that allows for

multiple emerging posteriors in �1 for a given set of multiple priorsM0.

2.3 A wish list for a prior selection rule

To generate non-vanishing STP violations is actually quite trivial for a model of Bayesian

learning such that emerging posteriors are formed from all priors in M0. To see this,

denote by �� the Dirac measure that attaches probability one to the index value � 2 �
and suppose that �1; �59 2 M0. That is, one prior attaches probability one to the

occurrence of one black ball in the urn whereas another prior attaches probability one

to 59 black balls. For these degenerate priors we have that

'01 (!2) =
X
�2�

'� (!2) �1 =
1

90
<
1

3
, (26)

'059 (!2) =
X
�2�

'� (!2) �59 =
59

90
>
1

3
(27)

so that the STP is, by Proposition 1, violated in the a priori decision situation. Because

Bayesian updating of degenerate priors does not change these priors at all, we end up

with emerging posteriors �1; �59 2 �1. By the same argument that gave us (26) and
(27), we obtain

'11 (!2) =
1

90
, (28)

'159 (!2) =
59

90
. (29)

Consequently, the STP is also violated in the a posteriori decision situation, which gives

us non-vanishing STP violations.

The above updating of all priors in M0 is, however, highly problematic because

it precludes the possibility that a decision maker might critically revisit his multiple

priors in the light of new data. Suppose, for example, that we have as true index value

�� = 30 and that one of the decision maker�s priors attaches probability one to this true

value, i.e., �30 2 M0. In the a posteriori decision situation, a decision maker will have

observed with probability one that a black ball was drawn with frequency 1
3
. We regard

it as plausible�at least for some decision makers�that the �correct�prior �30 should be

able to drive out the highly incorrect priors �1 and �59 as it is highly unlikely that either

of these priors has generated the observed data.
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For this reason, we follow ES-2007 who argue that Bayesian learning with multiple

priors should be a combination of standard Bayesian updating with a prior selection

rule. The decision maker would then not form posteriors from all priors in M0 but

only from those priors that survive a data likelihood test speci�ed by a prior selection

rule. The �-expected maximum likelihood prior selection rule proposed by ES-2007 is

indeed able to drive out the incorrect priors �1 and �59 in favor of the correct prior �30.

As a drawback, however, the ES-2007 prior selection rule is so strong that it can never

generate non-vanishing STP violations because it results in a unique emerging posterior

(here �30).

In the light of the above considerations, we state the following wish list for a prior

selection rule.

1. As ES-2007, we would like to come up with a plausible prior selection rule that

allows the decision maker to reject priors in favor of other priors which are more

likely to have generated the observed data.

2. In contrast to ES-2007 (and in line with the experimental �ndings of Nicholls et

al. 2015), however, we want to keep this prior selection rule su¢ ciently weak to

allow for the possibility of non-vanishing STP violations.

3. Preferably, the prior selection rule should also allow for the possibility that di¤erent

decision makers may exhibit di¤erent learning behavior in the limit; that is, the

question whether two decision makers who start out with the same set of priors

will exhibit non-vanishing STP violations should be determined by some parameter

that comes with the prior selection rule.

3 Preliminaries

3.1 Formal set-up

This section develops our general set-up which will nest the Ellsberg one-urn experiment

with increasing statistical information as a special case. Denote by (
;�) a measurable

space with state space 
 and �-algebra �. This paper is exclusively concerned with two

special cases of measurable spaces. First, we we speak of the continuous case if 
 is

some subset of the Euclidean line R and � is the corresponding Borel �-algebra. Second,
we speak of the �nite case whenever 
 is �nite with #
 > 1 and � is the power-set of


.

Unbeknownst to the decision maker, there exists a �true�/�objective�probability mea-

sure de�ned on (
;�), denoted '��. To capture this lack of knowledge, we consider a
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set of probability measures on (
;�) that are indexed by � 2 �, i.e.,

� = f'� j � 2 �g . (30)

We assume that � is �nite with #� = n � 2 and that �� 2 �. Because we want to
avoid Bayesian updating in the light of events that were ex ante perceived as impossible,

we further assume that all measures in � have full support on 
. Denote by (�;F) the
index space such that F is the powerset of �.7

Next we consider a �-measurable function (random variable) X : 
 ! R which

satis�es, for all '� 2 � and all B 2 �, the following equality

E
�
IX�1(B); '�

�
=

Z



IB (!) d'� (!) (31)

= '� (B) (32)

where IB denotes the indicator function of B. Since the distribution function (=cdf) of

X on the probability space (
;�; '�) fully speci�es the measure '�, we slightly abuse

notation by identifying X�s cdf, denoted '� : R! [0; 1], on (
;�; '�) with the corre-

sponding probability measure '� : �! [0; 1]. That is, X satis�es, for any '� 2 �,

'� ((a; b]) = '� (X = b)� '� (X = a) for all (a; b] 2 �, (33)

in the continuous case; and

'� (f!mg) = '� (X = b)� '� (X = a) for all !m 2 
 (34)

with X (!m) � b < X (!m+1), X (!m�1) � a < X (!m) in the �nite case, respectively.
By the above set-up, the decision maker�s uncertainty about the true probability

measure in � on (
;�) is equivalent to his uncertainty about the true distribution of

X. Furthermore, both notions of uncertainty are equivalent to the decision maker�s

uncertainty about the true index in �. We refer to this one-one correspondence between

probability measures and indices as the �one-urn�or �single-likelihood�environment.8

We will frequently use the Radon-Nikodym derivative of measure '� with respect to

a dominating measure m on (
;�), denoted d'�
dm
. This derivative is de�ned such that,

for all B 2 �,
'� (B) =

Z
!2B

d'�
dm

(!) dm. (35)

7In the literature, (�;F) is also called the (possibly multiple) parameter space.
8As a generalization of the single-likelihood environment, ES-2007 consider a �multiple-likelihoods�

environment where an index � in � corresponds to a set of �-conditional probability measures. Although

the formal results of this paper will be exclusively derived for the single-likelihood environment, compare

Section 6 for an outlook on future research.
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In the continuous case, we assume that m is given as the Lebesgue measure so that, for

any absolutely continuous distribution function '�,
d'�
dm
: R!R+ stands for the familiar

probability density function (=pdf) such that

'� ((a; b]) =

Z
x2(a;b]

d'�
dm

(x) dx. (36)

In the �nite case, we assume that m is given as the counting measure, implying, for all

! 2 
,

'� (!) =

Z
!02f!g

d'�
1
(!0) 1 (37)

=
d'�
1
(!) (38)

= d'� (!) . (39)

In the �nite case, d'�
dm
(!) as well as d'� (!) thus become equivalent notions for the

probability '� (f!g) of the singleton event f!g.

Example 1. Continuous case �Family of normal distributions�. Let


 = R and X (!) = !. Suppose that the probability measures '� in � are
speci�ed by the cdf�s of a normal distribution N (��; ��) with mean �� and

standard deviation ��, � 2 �. That is, the decision maker�s uncertainty

about the true measure '�� in � is equivalent to his uncertainty about the

true normal distribution N (��� ; ���) which, in turn, is equivalent to his

uncertainty about the true index �� 2 �. The Radon-Nikodym derivative
d'�
dm

is here the pdf of N (��; ��).�

Example 2. Finite case �Coin tossing�. Let 
 = f!0; !1g and X (!k) =
k. Further suppose that

!0 = Heads

!1 = Tails

and

'� (X = 1) = '� (!1) = �. (40)

Here the decision maker�s uncertainty about the true probability measure

'�� in � is equivalent to his uncertainty about the true probability �� of

the event fTailsg resulting from a coin toss. The index set � thus contains

the parameters of a Bernoulli distribution. The Radon-Nikodym derivative
d'�
dm
(!), as well as d'� (!), gives the probability of event f!g, ! 2 
.�
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In a next step, we assume that the decision maker can observe data generated by a

sequence of independently '��-distributed coordinate random variablesX1; X2; ::: de�ned

on the probability space (
1;�1; P��) such that 
1 = �1t=1
; �1 denotes the standard
product algebra generated by �;�; :::; and P�� is the product measure generated by the

'���s. Each Xt : 

1 ! R is thereby a time t version of the �-measurable function

X : 
! R in the sense that

Xt (:::; !t; :::) = X (!) for !t = !. (41)

(
1;�1) is called the sample space because every realization of X1; X2; ::: corresponds

to a data sample that might be possibly observed by the decision maker.

In the absence of ambiguity, the decision maker�s uncertainty about the true proba-

bility measure on (
;�) is modeled through a unique additive probability measure��the

prior��de�ned on the index space (�;F). In contrast, ambiguity with respect to the true
probability measure on (
;�) will be modeled through a non-degenerate set of additive

probability measures��multiple priors��de�ned on the index space (�;F).

3.2 Bayesian learning with a unique prior

Models of Bayesian learning investigate how the decision maker forms posteriors from

his prior(s) in the light of new statistical information drawn from the sample space.

In this subsection we recall the standard case of a Bayesian decision maker who holds

a unique prior �0 2 4n de�ned on the index space (�;F) where 4n denotes the n-

simplex equipped with the Euclidean topology.9 Through Bayesian updating we obtain

the (conditional) probability space
�
�;F ; �t�0

�
such that one version of the posterior

��0 (� j X1; :::; Xt) 2 4n, formed from the prior �0 after observing a data sample drawn

from X1; :::; Xt, is formally given as

��0 (�
0 j X1; :::; Xt) =

P
�2�0

tY
i=1

d'�
dm
(Xi) � �0 (�)

P
�2�

tY
i=1

d'�
dm
(Xi) � �0 (�)

(42)

9Since there is an one-one correspondence between all probability measures on (�;F) and the points
in 4n, we slightly abuse notation and write �0 �

�
�10; :::; �

n
0

�
2 4n for the additive probability measure

�0 : F ! [0; 1] such that, for all non-empty �0 2 F ,

�0 (�
0) = �f�j2�0g�

j
0.
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for any �0 2 F . Recall that, in the continuous case, d'�
dm
(Xi = x) denotes the evaluated

pdf d'�
dm
(x) whereas, in the �nite case, d'�

dm
(Xi (!) = x) denotes the probability of state

! with respect to measure '�. Note that, by the martingale convergence theorem, the

posterior ��0 (� j X1; :::; Xt) converges with probability one to some emerging10 posterior

�1�0 , i.e.,

�1�0 � lim
t!1

��0 (� j X1; :::; Xt) a.s. (43)

A prior �0 is well-speci�ed if, and only if, the true parameter belongs to the support

of �0, i.e., for our �nite �, i¤ �0 (�
�) > 0. Denote by �� 2 4n the Dirac measure

that attaches probability one to the index value � 2 �. By Doob�s (1949) consistency
theorem11, the emerging posterior of a well-speci�ed prior concentrates at the true index

value, i.e.,

�1�0 = ��
� (44)

or, equivalently,

Support
�
�1�0

�
= f��g . (45)

A seminal result by Berk (1966) generalizes Doob�s consistency theorem to the case

of not necessarily well-speci�ed priors. To state Berk�s Theorem, we need the following
de�nition due to Kullback and Leibler (1951).

De�nition 2. The Kullback-Leibler (KL) divergence of '0 from ' (also called the

relative entropy of ' with respect to '0) is de�ned as

DKL('jj'0) =

Z
Support(')

d'

dm

�
ln
d'=dm

d'0=dm

�
dm (46)

= E'

�
ln
d'

d'0

�
. (47)

Note that the KL-divergence (46) can take on values in [0;1) such thatDKL('jj'0) =
0 if, and only if, ' = '0. The KL-divergence of '0 from ' gives us thus some notion

about �how far '0 is away from '�without being a fully �edged metric.12

10Whenever we henceforth speak of emerging posteriors or emerging priors, the quali�cation �with

probability one�is implicitly included.
11An accessible proof can be found in Section 1.3.3. of Gosh and Ramamoorthi (2003).
12The KL-divergence is asymmetric and does not satisfy the triangle inequality.
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Theorem 0. (Berk 1966). The emerging posterior �1�0 of any prior �0 concentrates at
the non-empty subset ���0 � Support (�0) consisting of the KL-divergence mini-

mizers '� from the true measure '��. That is,

Support
�
�1�0

�
� ���0 (48)

such that

���0 = arg min
�2Support(�0)

DKL('��jj'�). (49)

According to Berk�s Theorem, Bayesian learning results in an emerging posterior

that attaches probability one to measures in the prior�s support that minimize the KL-

divergence from the true measure. Since the KL-divergence of some '� from the true

measure, i.e., DKL('��jj'�), will play a prominent role in the formal results of this paper
(cf. Theorem 2), let us recall the original motivation of Kullback and Leibler (1951) for

their divergence concept in terms of �information-based hypothesis discrimination�. Let

H�, � 2 �, be the hypothesis that observation x was drawn in accordance with the

probability measure '� so that H�� stands for the actually true hypothesis. These

authors then de�ne

ln
d'�� (x)

d'� (x)
(50)

�as the information in x for discrimination between H�� and H��(p. 80, with adjusted

notation). Note that (50) is mathematically equivalent13 to

ln
��0 (�

� j x)
��0 (� j x)

� ln �0 (�
�)

�0 (�)
(51)

where �0 (�) is the decision maker�s prior and ��0 (� j x) his posterior belief that hypoth-
esis H� is the true one. From the di¤erence (51) it is straightforward to see that (50)

measures (in logs) how much the information in form of the observed data point x pushes

the decision maker towards the true hypothesis (measured by his posterior beliefs) in

comparison to from where he started (measured by his prior beliefs). The de�nition of

the KL-divergence DKL('��jj'�) is then just the �mean information for discrimination
between H�� and H� per observation from '���(p. 80, with adjusted notation).

13By Bayes�rule, we have that

d'�� (x)

d'� (x)
=
��0 (�

� j x) =�0 (��)
��0 (� j x) =�0 (�)

.
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Remark. While Berk (1966) does not explicitly mention the notion �KL-divergence�,
which is implicit in his analysis by his De�nition (b) of � (�), Kleijn and Vaart (2006)

do. To see that Berk�s Theorem entails Doob�s Theorem just observe that, for any

well-speci�ed prior �0,

f��g = arg min
�2Support(�0)

DKL('��jj'�) (52)

so that (48) becomes (45).

4 Bayesian learning with multiple priors

4.1 Prior selection rules

Turn now to a Bayesian decision maker who expresses ambiguity attitudes through

multiple priors over the parameter values in �. Instead of a unique prior �0, we now

consider a non-empty set of priors M0 � 4n. Suppose, for the moment, that the

decision maker forms posteriors from all his priors inM0. Then he will end up with the

following set of emerging posteriors after observing an unlimited amount of statistical

information

�1 =
[

�02M0

n
�1�0

o
. (53)

If all priors inM0 are well-speci�ed, we can immediately restate, by Doob�s Theo-

rem, M-2002�s main �nding according to which all emerging posteriors concentrate with

probability one at the true measure '��, i.e.,

�1 = f���g . (54)

For the more general case of not-necessarily well-speci�ed priors, we obtain, by Berk�s

Theorem 0, that every �1�0 in (53) has support on some non-empty subset of KL-

divergence minimizers (49). In particular, if �� 2 M0, then also �� 2 �1. As a

consequence, the set of emerging posteriors (53) might become quite implausible if not

all priors are well-speci�ed (also recall our argument from Section 2.4).

Example 3. Revisit the �Coin tossing�Example 2. Suppose that the
parameter space is given as

� = f0:01; 0:99g (55)

such that �� = 0:99. In the long run the decision maker will thus observe,

by the law of large numbers, about 99% of all coin tosses resulting in Tails.
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Further suppose that the set of priors is given as all probability measures on

(�;F), i.e.,M0 = 42. By Berk�s Theorem 0, we obtain the following set of

emerging posteriors

�1 = f�0:01; �0:99g (56)

because all mixed priors as well as �0:99 converge to �0:99 whereas �0:01 trivially

converges to �0:01. That is, after unlimited Bayesian learning the decision

maker regards it still as possible that the objective probability of Tails might

be only 1% despite having observed Tails in 99% of all coin tosses.�

On the one hand, we regard the set of emerging posteriors in the above example as

highly unrealistic; i.e., we do not believe that there are many real-life decision makers

who would end up with �0:01 2 �1. On the other hand, we regard it as too restrictive to
consider only decision makers with well-speci�ed priors as M-2002. In particular, we do

not see any plausible reason why multiple priors decision makers should not hold some

misspeci�ed before they observe any data.

To resolve this �plausibility dilemma�, we follow the seminal approach of ES-2007 and

assume that the decision maker tests the plausibility of his priors against the observed

data in accordance with some prior selection rule. Formally, the set of emerging (=non-

rejected) priors in the light of any observed data sample drawn from X1; :::; Xt is thereby

determined by some prior selection rule R, i.e.,

X1; :::; Xt 7�!Mt
0;R, t = 1; 2; :::, (57)

such that the set of R-emerging priors at t, denotedMt
0;R, is, for all t, non-empty and

satis�es

Mt
0;R �M0. (58)

Note that, by (58), previously rejected priors might reappear later on if they are sup-

ported by new data. To illustrate the concept of a prior selection rule, consider the

following two (extreme) examples of perceivable rules.

Example 4. If the decision maker applies the maximum expected like-

lihood rule, he rejects each prior as implausible that does not maximize the

expected likelihood for the observed data sample, i.e.,

Mt
0;ML = arg max

�02M0

X
�2�

tY
i=1

d'�
dm

� �0 (�) . (59)

�
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Example 5. Now consider the maximum expected loglikelihood rule. By

this rule, the decision maker rejects each prior as implausible that does not

maximize the expected loglikelihood for the observed data sample, i.e.,

Mt
0;MLL = arg max

�02M0

X
�2�

ln

tY
i=1

d'�
dm

� �0 (�) . (60)

�

If M0 only contains Dirac (i.e., degenerate) measures, both rules are equivalent

because likelihood and loglikelihood maximizers are identical. This equivalence is no

longer the case if the expectation is taken with respect to non-degenerate priors inM0.

More speci�cally, compared to the maximum expected likelihood rule the maximum

expected loglikelihood rule punishes more strongly priors �0 that have ��s with small

likelihoods in their support.

Remark. The above rules are very restrictive in that they (typically) reject all priors
except for one. As a consequence, both rules generate a sequence of singleton sets of

priors to the e¤ect that any ambiguity already vanishes after observing the �rst drawing,

i.e., data-point. In the remainder of this paper, we therefore consider two families of less

extreme prior selection rules�the ES-2007 �-maximum expected likelihood, on the one

hand, and the 
-maximum expected loglikelihood rule, on the other hand�which nest

the maximum expected likelihood (resp. loglikelihood) rule as respective special cases.

4.2 Emerging priors de�ned as cluster points

To describe the long-run learning behavior of a multiple priors decision maker who

applies a prior selection rule, we have to make a stand about how to de�ne the set of priors

that almost surely survive this prior selection rule if the number of data observations

gets arbitrarily large. More precisely, we have to decide whether we either consider the

(a.s. P��) cluster or the (a.s. P��) limit points of sequences
�
Mt

0;R

	
t2N as the priors in

M0 that emerge under the prior selection rule R.

Denote by limMt
0;R the set that contains all cluster points in 4n of the sequence�

Mt
0;R

	
t2N. Formally, � 2 4

n is a cluster point of
�
Mt

0;R

	
t2N if, and only if, for every

open set V around � there are in�nitely many t such that V \Mt
0;R 6= ;.14 Conversely,

14The set of all cluster points of a given sequence of sets is also called the topological lim sup of this

sequence (Aliprantis and Border 2006, p. 114) or the upper limit of this sequence (Berge 1997, p. 119).
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denote by limMt
0;R the set of all limit points of the sequence

�
Mt

0;R

	
t2N such that � 2 4

n

is a limit point of
�
Mt

0;R

	
t2N if, and only if, for every open set V around � there exists

some T such that, for all t � T , V \Mt
0;R 6= ;.15 Whereas every limit point is a cluster

point the converse is not true, implying

limMt
0;R � limMt

0;R. (61)

To see the di¤erence between both concepts of topological set limits applied to the

notion of emerging priors consider the following example.

Example 6. Let '� be the normal distribution with mean � and variance
1 and suppose that � = f��; �1; �2g with �� = 0; �1 = �1; �2 = 1. Further,
suppose thatM0 = f�00; �000g with

�00 = ��1, �
00
0 = ��2 : (62)

That is, the decision maker will observe a sample that is generated by a sym-

metric (unbiased) random walk whereas he assumes that the data was either

generated by a negatively or by a positively biased random walk. Further

suppose that the decision maker applies the maximum expected likelihood

rule16 as prior selection rule. Observe that

X
�2�

tY
i=1

d'�
dm

� �00 (�) �
X
�2�

tY
i=1

d'�
dm

� �000 (�), (63)

tY
k=1

d��1
dm

(Xk) �
tY

k=1

d��2
dm

(Xk), (64)

ln

Yt

k=1

d��1
dm

(Xk)Yt

k=1

d��2
dm

(Xk)
� 0, (65)

ln
exp

�
�1
2

Pt
k=1 (Xk � �1)2

�
exp

�
�1
2

Pt
k=1 (Xk � �2)2

� � 0, (66)

ln exp

"
(�1 � �2)

tX
k=1

Xk �
t

2

�
�21 � �22

�#
� 0, (67)

�2
tX

k=1

Xk � 0 (68)

15The set of all limit points of a given sequence of sets is also called the topological lim inf of this

sequence (Aliprantis and Border 2006, p. 114) or the lower limit of this sequence (Berge 1997, p. 119).
16Which is here, due to the degenerate priors, equivalent to the maximum expected loglikelihood rule.
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implying that

Mt
0;ML =

8><>:
f�00g if

Pt
k=1Xk < 0

f�00; �000g if
Pt

k=1Xk = 0

f�000g if
Pt

k=1Xk > 0

(69)

By the recurrence theorem (Chung and Fuchs 1951), we will almost surely

observe that
Pt

k=1Xk crosses the zero line in�nitely many times if t gets

arbitrarily large. Consequently, there do not exist any limit points for the

sequence
�
Mt

0;ML

	
t2N so that (a.s. P��)

limMt
0;ML = ;. (70)

On the other hand, we (a.s. P��) obtain the non-empty set of cluster points

limMt
0;ML = f�00; �000g . (71)

�

To take f�00; �000g rather than the empty set as the set of emerging priors in the above
example appears to us as the natural thing to do. Since �00 as well as �

00
0 will always be

supported (almost surely) by some data, a cautious (conservative) decision maker should

not rule out any prior in f�00; �000g as impossible. Motivated by these considerations, we
introduce the following de�nition of R-emerging priors.

De�nition 3. We de�ne set of R-emerging priors, denoted M1
0;R, as the set of (a.s.

P��) cluster points of
�
Mt

0;R

	
t2N inM0, i.e.,

M1
0;R �M0 \ limMt

0;R a.s. P��. (72)

In words: The set of R-emerging priors consists of all priors inM0 that will almost

surely recur�either as elements or arbitrarily close to elements�in in�nitely many sets

of the sequence
�
Mt

0;R

	
t2N.

4.3 Emerging posteriors and vanishing ambiguity

Fix some prior selection rule R. We stipulate that all emerging posteriors must have

been formed from R-emerging priors only.
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De�nition 4. The set of emerging posteriors under the prior selection rule R, denoted
�1R , is de�ned as

�1R �
[

�02M1
0;R

n
�1�0

o
. (73)

Instead of the above de�nition, one might alternatively de�ne the set of emerging

posteriors as the set of cluster points of the sequence f�tRgt2N that emerge whereby

�tR �
[

�02Mt
0;R

�
��0 (� j X1; :::; Xt)

	
. (74)

Jan Werner had asked us whether both de�nitions are equivalent. The following propo-

sition (proved in the Appendix) shows that this equivalence holds for closed sets of

priors.

Proposition 2. LetM1
0;R be non-empty. If the set of priorsM0 is closed, then the

set of emerging posteriors �1R and the set of (a.s. P��) cluster points of f�tRgt2N
coincide, i.e., [

�02M1
0;R

n
�1�0

o
= lim

[
�02Mt

0;R

n
�t�0

o
a.s. P��. (75)

To ensure the equivalence (75), we will henceforth restrict attention to closed sets of

priors only.

De�nition 5. We say that ambiguity vanishes (with probability one) if, and only if,
�1R is a singleton, i.e.,

�1R =
n
�1�0

o
. (76)

Suppose, for example, that every prior inM1
0;R has a unique KL-divergence minimizer

in its support. Then (73) becomes, by Berk�s Theorem, the following collection of Dirac

measures

�1R =
[

�02M1
0;R

�
��̂ j

n
�̂
o
= arg min

�2Support(�0)
DKL('��jj'�)

�
. (77)

In that case, vanishing ambiguity means

�1R = f��̂g (78)

for some �̂ 2 � whereby we allow for the possibility that �̂ 6= ��. That is, vanishing

ambiguity does not necessarily imply that the decision maker also learns the truth.
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4.4 The Epstein and Schneider (2007) �-maximum expected
likelihood rule

The �-maximum expected likelihood rule, introduced by ES-2007, relaxes the maximum

expected likelihood rule by allowing the decision maker to keep priors that are �-close

to the expected likelihood maximizing prior. Restricted to the one-urn environment, the

formal de�nition of this rule is given as follows.

De�nition 6. The �-maximum expected likelihood rule (ES-2007). Fix some � 2 (0; 1].
The set of �-emerging priors after observing a sample drawn from X1; :::; Xt is

given as

Mt
0;� =

(
�00 2M0 j

X
�2�

tY
i=1

d'�
dm

� �00 (�) � � � max
�02M0

X
�2�

tY
i=1

d'�
dm

� �0 (�)
)
. (79)

Under some regularity assumptions17, ES-2007 derive their Claim 3 (p. 1301) ac-

cording to which all �-emerging priors will be well-speci�ed if there exists at least one

well-speci�ed prior inM0.

Claim 3 in ES-2007. If �0 (�
�) > 0 for some �0 2 M0, then �0 (�

�) > 0 for all

�0 2M1
0;�.

To see that this result by ES-2007 is surprisingly strong, consider the following ex-

ample.

Example 7. Revisit the coin tossing situation of Example 2 and suppose
that the parameter space is given as

� = f0:49; 0:5; 0:99g (80)

where � 2 � is the probability of event fTailsg. Further suppose that the
coin is slightly unfair such that �� = 0:49. Next consider the set of priors

17ES-2007 restrict attention to a �nite state space 
. Because ES-2007 admit for non-�nite index

sets �, they impose weak compactness of M0 and they also require that �0 (�
�) has to be uniformly

bounded away from zero if �� is in the support of �0. For our �nite index sets,M0 is weakly compact

if, and only if, it is closed whereby the bounded-away-from-zero condition is automatically satis�ed for

�nite index sets. For further details about their regularity assumptions see Theorem 1 (ES-2007, p.

1288).
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M0 = f�00; �000g such that

�00 = " � �0:49 + (1� ") � �0:99, (81)

�000 = �0:5, (82)

for some small " > 0. Note that �00 is well-speci�ed but a very incorrect belief

because it attaches the large probability 1 � " to the very false parameter
value � = 0:99. On the other hand, �000 is misspeci�ed but very close to the

true value. If the decision maker applies the �-maximum expected likelihood

rule, he will, by Claim 3 in ES-2007, eventually reject the prior �000 so that �
0
0

remains the only emerging prior from which he forms posteriors. That is, the

�-maximum expected likelihood rule drives out the almost true parameter

value 0:5 in favor of the prior " � �0:49 + (1� ") � �0:99, which�as a belief�is
quite o¤-the-mark.�

Based on Claim 3 in ES-2007, we can immediately derive, by an application of Doob�s

Theorem, ES-2007�s Theorem 1 (p. 1288) for our one-urn environment.

Theorem 1 (ES-2007). Suppose that 
 is �nite. If �0 (�
�) > 0 for some �0 2 M0,

then the set of posteriors that emerge under the �-maximum expected likelihood

rule is given as

�1� = f���g . (83)

5 New results

5.1 The 
-maximum expected loglikelihood rule

Neither does the ES-2007 �-maximum expected likelihood rule allow for non-vanishing

STP violations nor does the �convergence to the truth�result (83) depend on the para-

meter value �. To tick all the boxes of our wish list for a prior selection rule in Section

2.3, we therefore introduce a new prior selection rule as an alternative to the ES-2007

�-maximum expected likelihood rule.

De�nition 7. The 
-maximum expected loglikelihood rule. Fix some 
 2 [1;1). The
set of emerging priors after observing a sample drawn from X1; :::; Xt is given as

Mt
0;
 =

(
�00 2M0 j

X
�2�

ln

tY
i=1

d'�
dm

� �00 (�) � 
 � max
�02M0

X
�2�

ln
tY
i=1

d'�
dm

� �0 (�)
)
(84)
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whenever the maximal expected loglikelihood is not strictly positive, i.e.,

max
�02M0

X
�2�

ln

tY
i=1

d'�
dm

� �0 (�) � 0, (85)

and

Mt
0;
 =Mt

0;MLL = arg max
�02M0

X
�2�

ln

tY
i=1

d'�
dm

� �0 (�) , (86)

else.

If (85) holds, the decision maker judges, by (84), priors as plausible whose expected

loglikelihood is su¢ ciently close to the expected loglikelihood of the maximizing prior.

The exact meaning of �su¢ ciently close� is driven by the value of 
 whereby greater

values of 
 will result in greater sets of priorsMt
0;
 for �xed values of expected loglikeli-

hoods. We are grateful to Daniele Pennesi who suggested to us to call 
 a �stubbornness

parameter�since it measures a decision maker�s reluctance to give up on priors in the

light of new statistical evidence.

To see the intuition behind the formal di¤erence between the ES-2007 �-maximal ex-

pected likelihood, on the one hand, and our 
-maximal expected loglikelihood rule, on the

other hand, consider the analogy to risk-neutral versus strictly risk averse EU maximiza-

tion with respect to multiple priors. If likelihoods are taken as prizes/outcomes/currency,

expected likelihood maximization corresponds to risk neutral expected utility (=ex-

pected value) maximization. In contrast, expected loglikelihood maximization corre-

sponds to strictly risk averse expected utility maximization such that the utils are given

as the logs of the prizes. By this interpretation, our decision maker who uses loglike-

lihoods as utils is more cautious (risk-averse) than the ES-2007 decision maker who

instead uses likelihoods as utils. In particular, priors that put positive weight on likeli-

hoods that are close to zero will be considered as highly unfavorable from the perspective

of the�more cautious�
-maximal expected loglikelihood rule decision maker.

Remark. Inequality (85) always holds for the �nite but not necessarily for the

continuous case (e.g., let argmax�02M0 = �� such that '� is the uniform distribution

on [a; b] with 0 < a; b < 1). If (85) is violated to the e¤ect that the decision maker

deals with a strictly positive maximal expected loglikelihood, we simply suppose, by

De�nition 7, that the 
-maximum expected loglikelihood rule reduces to the maximum

expected loglikelihood rule (86).
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5.2 Emerging posteriors under the 
-maximum expected log-
likelihood rule

The following Theorem constitutes our main formal result.

Theorem 2. The set of posteriors that emerge under the 
-maximum expected log-

likelihood rule is given as

�1
 =
[

�02M1
0;


n
�1�0

o
(87)

such that

M1
0;
 =

(
�00 2M0 j

X
�2�

DKL('��jj'�) � �00 (�) � min
�02M0

X
�2�

DKL('��jj'�) � �0 (�)

+

�
1� 1




�X
�2�

E'��

�
� ln d'�

dm

�
� �00 (�)

)
(88)

whenever the expected cross-entropyX
�2�

E'��

�
� ln d'�

dm

�
� �00 (�) (89)

is positive18, or

M1
0;
 = arg min

�02M0

X
�2�

DKL('��jj'�) � �0 (�) (90)

else.

Recall from Section 3.2 that the KL-divergence DKL('��jj'�) can be interpreted as a
measure for the �mean information for discrimination under '���between the hypothesis

that �� is the true index value versus the hypothesis that � is the true value. By Theorem

2, the emerging posteriors under the 
-maximum expected loglikelihood rule are formed

from priors that give rise to an expected KL-divergence which is su¢ ciently close to the

minimal expected KL-divergence over all priors inM0.

The 
-maximum expected loglikelihood rule thus selects (with probability one) priors

that put large probability mass on indices which are not strongly discriminated against

by information in the form of data generated by the true distribution '��. The possible

interpretation of the 
-maximum expected loglikelihood rule in terms of �information-

based discrimination of priors� is, in our opinion, a strong argument in favour of the

18A negative expected cross-entropy is impossible for the �nite but not for the continuous case.
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plausibility of this prior selection rule. In what follows, we further explore how the set

of emerging posteriors (87) depends on di¤erent values of the stubbornness parameter


.

5.3 The role of the stubbornness parameter 


The only index that the 
-maximum expected loglikelihood rule does not discriminate

against (with probability one) is the true index ��. As a consequence, priors that are

well-speci�ed will be particularly rewarded by the 
-maximum expected loglikelihood

rule.

Suppose, for example, that the Dirac measure which attaches probability one to the

true index �� is one of the priors, i.e., ��� 2M0. In this case, we have that

f���g = arg min
�02M0

X
�2�

DKL('��jj'�) � �0 (�)

whereby the expected KL-divergence evaluated at ��� becomes zero. Consequently, the

set of emerging priors under the 
-maximum expected loglikelihood rule (88) becomes

M1
0;
 =

(
�00 2M0 j

X
�2�

DKL('��jj'�) � �00 (�) �
�
1� 1




�X
�2�

E'��

�
� ln d'�

dm

�
� �00 (�)

)

whenever ��� 2M0.

Rewrite now the cross-entropy as the sum of the KL-divergence of '� from '�� and

the Shannon entropy of '��, i.e.,

E'��

�
� ln d'�

dm

�
= DKL('��jj'�) + E'��

�
� ln d'��

dm

�
.

Since we always have that

arg min
�02M0

X
�2�

DKL('��jj'�) � �0 (�) � 0,

a su¢ cient condition for �0 2M0 surviving as an emerging prior inM1
0;
 is thatX

�2�

DKL('��jj'�) � �00 (�) �
�
1� 1




�X
�2�

�
DKL('��jj'�) + E'��

�
� ln d'��

dm

��
� �00 (�) .

This gives us immediately the following result about the emerging priors under the


-maximum expected loglikelihood rule in terms of the stubbornness parameter 
.
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Proposition 3. Suppose the Shannon entropy of '�� is strictly positive, i.e.,

E'��

�
� ln d'��

dm

�
> 0. (91)

Then there exists for every �0 2M0 some su¢ ciently large 
̂ such that �0 2M1
0;


for all 
 � 
̂.

The following result about the emerging posteriors under the 
-maximum expected

loglikelihood rule follows from a combination of Proposition 3 and Berk�s Theorem.

Corollary 1. Suppose that (91) holds.

(i) If n
�̂
o
= arg min

�2Support(�00)
DKL('��jj'�) (92)

for some prior �00 2 M0, then there exists some su¢ ciently large 
̂ such that

��̂ 2 �1
 for all 
 � 
̂.

(ii) In particular, if ��̂ 2 M0 for any �̂ 2 �, then there exists some su¢ ciently large 
̂
such that ��̂ 2 �1
 for all 
 � 
̂.

5.4 Special case 
 = 1: The maximum expected loglikelihood
rule

Whereas ambiguity vanishes under the ES-2007 �-maximum expected likelihood rule

for arbitrary values of �, ambiguity does not vanish under the 
-maximum expected

loglikelihood rule whenever the value of 
 is su¢ ciently large. Consider now the opposite

case where 
 is as small as possible, i.e., 
 = 1. In this case, the 
-maximum expected

loglikelihood rule becomes the maximum expected loglikelihood rule of Example 5, i.e.,

(88) becomes

M1
0;
=1 = arg min

�02M0

X
�2�

DKL('��jj'�) � �0 (�) . (93)

That is, under the maximum expected loglikelihood rule, the emerging priors are the

priors that minimize the expected KL-divergence from the true measure.

Corollary 2. Suppose that 
 = 1. If �00 (�
�) > 0 for some

�00 2 arg min
�02M0

X
�2�

DKL('��jj'�) � �0 (�) , (94)
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then the set of posteriors that emerge under the maximum expected loglikelihood

rule is given as

�1
=1 = f���g . (95)

In particular, we have (95) whenever ��� 2M0.

In contrast to the mere existence of a well speci�ed prior in Theorem 1 for the ES-

2007 model, the well-speci�ed prior �00 of Corollary 1 must also minimize the expected

KL-divergence. The following example demonstrates that our decision maker does not

necessarily learns the truth if there is some well-speci�ed prior but ��� =2M0.

Example 8. Revisit the coin tossing Example 8 where

� = f0:49; 0:5; 0:99g (96)

with �� = 0:49 andM0 = f�00; �000g such that

�00 = " � �0:49 + (1� ") � �0:99, (97)

�000 = �0:5. (98)

By continuity of the KL-divergence, we can always �nd " > 0 su¢ ciently

small such thatX
�2�

DKL('��jj'�) � �000 (�) <
X
�2�

DKL('��jj'�) � �00 (�) (99)

,
E'�� [ln d'�� ]� E'�� [ln d'0:5] < " �

�
E'�� [ln d'�� ]� E'�� [ln d'�� ]

�
(100)

+(1� ") �
�
E'�� [ln d'�� ]� E'�� [ln d'0:99]

�
,

E'�� [ln d'0:5] > " � E'�� [ln d'�� ] + (1� ") � E'�� [ln d'0:99]

since

E'�� [ln d'�� ] > E'�� [ln d'0:5] > E'�� [ln d'0:99] . (101)

To be concrete observe that

E'�� [ln d'0:5] = (1� 0:49) � ln (1� 0:5) + 0:49 � ln 0:5 � �0:693147
E'�� [ln d'�� ] = (1� 0:49) � ln (1� 0:49) + 0:49 � ln 0:49 � �0:692947

E'�� [ln d'0:9999] = (1� 0:49) � ln (1� 0:99) + 0:49 � ln 0:99 � �2:35356
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so that any " > 0 satisfying

" <
E'�� [ln d'0:5]� E'�� [ln d'0:99]
E'�� [ln d'�� ]� E'�� [ln d'0:99]

(102)

,
" < 0:99988 (103)

would do. �

Note that we obtain in the above example for " < 0:99988 that

�1 = f�0:49; �0:5g ,
�1� = f�0:49g ,
�1
=1 = f�0:5g .

Without any prior selection rule ambiguity will not vanish. Under the ES-2007 �-

maximum expected likelihood rule ambiguity will, for all � > 0, vanish whereby the

decision maker learns the true probability measure '0:49. Ambiguity will also vanish

under the maximum expected loglikelihood rule (i.e., 
 = 1). However, in the above

example the decision maker learns the almost true measure '0:5 rather than the true

measure '0:49. The well-speci�ed prior "��0:49+(1� ")��0:99 is here rejected as implausible
because the positive weight on the unlikely parameter � = 0:99 pulls down the expected

loglikelihood of this prior.

6 The Ellsberg one-urn experiment revisited

To show that the 
-maximum expected loglikelihood rule indeed ticks all the boxes of

the wish list from Section 2.3, we now revisit the Ellsberg one-urn experiment with

increasing statistical information.

Assumption 1. We assume that �� = 30; that is, we set '�� (!2) =
1
3
as the true

probability that a black ball will be drawn from the urn.

The following result (proved in the Appendix) combines Proposition 1 with Corollary

1.
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Proposition 4. Suppose that Assumption 1 holds. If there are two misspeci�ed priors
�00; �

00
0 2 M0 such that �00 has support only on indices � < 30 and �

00
0 has support

only on indices � > 30, then there exists some su¢ ciently large 
 < 1 such that

STP violations do not vanish.

To focus our analysis, we next impose the following assumption on the a priori

decision situation in the Ellsberg one-urn experiment.19

Assumption 2. We assume that the set of priors includes all Dirac measures on

(�;F), i.e., �� 2M0 for all � 2 �.

Because of Assumption 2 we can easily calculate the value of 
 that is needed for

ensuring that these degenerate priors also emerge as posteriors (cf. Appendix).

Proposition 5. Suppose that Assumptions 1 and 2 hold. For any � 2 �, we have that

�� 2 �1
 (104)

if, and only if,


 �
1
3
� ln �

90
+ 1

3
� ln
�
60��
90

�
2
3
� ln 1

3

. (105)

Obviously, the right side of the inequality (105) must take its minimum at the true

value � = �� = 30 so that ��� 2 �1
 holds for all possible values of 
, including the

maximum expected loglikelihood rule where 
 = 1. If the distance j� � ��j from the true
value increases, however, greater values of 
 are required to ensure �� 2 �1
 whereby

these values are, by the symmetry of (105), identical for parameters � and �0 = 60� �.
To be concrete, Table 1 lists, for all index values in �, the (approximate) values of


 such that (105) holds with equality.

19Note that this assumption holds under Gilboa and Schmeidler�s (1989, p. 142) �extreme case�.
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�; �0 


1; 59 2:24014

2; 58 1:93245

3; 57 1:75583

4; 56 1:63296

5; 55 1:5396

6; 54 1:46497

7; 53 1:40332

8; 52 1:35122

9; 51 1:30645

10; 50 1:26751

11; 49 1:23333

12; 48 1:20311

13; 47 1:17627

14; 46 1:15233

15; 45 1:13093

�; �0 


16; 44 1:11178

17; 43 1:09466

18; 42 1:07935

19; 41 1:06571

20; 40 1:05361

21; 39 1:04292

22; 38 1:03357

23; 37 1:02548

24; 36 1:01858

25; 35 1:01282

26; 34 1:00816

27; 33 1:00457

28; 32 1:00203

29; 31 1:00051

30 1

Table 1: The impact of 
 on the set of emerging posteriors

The interpretation of Table 1 is straightforward whereby we restrict, for convenience,

attention to the subset of emerging posteriors, denoted �1
 \ D, that only contains
emerging Dirac measures.20 I¤

1 � 
 < 1:00051, (106)

then

�1
 \ D = f���g ; (107)

i¤

1:00051 � 
 < 1:00203, (108)

then

�1
 \ D = f�29; ��� ; �31g ; (109)

20Note that, for all � and �0 = 60� �,

DKL('�� jj'�) = DKL('�� jj'�0)

so that there might be priors inM0, e.g.,

0:5�� + 0:5��0 ,

with two di¤erent KL-divergence minimizers in their support. Emerging posteriors formed from such

priors are not necessarily Dirac measures.
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and so forth until 
 � 2:24014 results in

�1
 \ D = f�1; �2; :::; �59g . (110)

In this latter case, �1
 \ D � � = � so that the decision maker regards all '� in �

as possible despite the fact that he had observed an unlimited amount of drawings

with replacement from the urn. If, and only if, 
 < 1:00051, ambiguity vanishes in

the a posteriori decision situation to the e¤ect that the decision maker learns the true

value. Furthermore, the decision maker will violate the STP in the a posteriori decision

situation if, and only if, 
 � 1:00051 because

�29; �31 2 �1
 (111)

ensures, by Proposition 1, that the STP violations do not vanish.

Table 1 illustrates the general relationship that 
0 � 
 implies �1
 � �1
0 so that

�1
 expresses less ambiguity than �
1

0 in the sense of set-inclusion of emerging posteriors

for a �xed set of priors. The degree of ambiguity that remains after Bayesian learning

under the 
-maximum expected loglikelihood rule is thus sensitive with respect to the

stubbornness parameter 
.

7 Concluding remarks and outlook

Nicholls et al.�s (2015) report an experiment in which the number of STP violations does

not decline in the amount of statistical information. Motivated by this experimental

�nding, we have developed a Bayesian learning model with multiple priors such that

STP violations do not necessarily vanish. Our approach thereby follows Epstein and

Schneider (2007) who convincingly argue that a multiple priors decision maker should

test the plausibility of his priors against the observed data. In contrast to the ES-2007

model, however, we consider a more cautious prior selection rule which is governed by

a �stubbornness� parameter measuring the decision maker�s reluctance to dismiss his

priors in the light of statistical evidence.

The possibility of non-vanishing ambiguity is a potentially attractive feature for

future economic applications. Consider, for example, the class of theoretical models

that establish the possibility of speculative trade under the assumption that the decision

makers express ambiguity attitudes (e.g., Dow, Madrigal, and Werlang 1990; Halevy

2004; Zimper 2009; Werner 2014). In contrast to the speculative trade model of Harrison

and Kreps (1978), which is based on heterogenous additive beliefs, speculative trade in

these ambiguity-driven models might become persistent under non-vanishing ambiguity

even if the agents are Bayesian learners.
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As another example, consider macro-economic models which deviate from Muth�s

(1961) rational expectations paradigm. Here, the sensitivity of non-vanishing ambiguity

with respect to the stubbornness parameter 
 might be especially relevant. Similar to

di¤erent values of a personal risk-aversion parameter (as, e.g., in CRRA or CARA utility

functions), di¤erent values of the 
-parameter can be used to describe a personal feature

of economic agents. In dynamic models where multiple priors agents update their priors

in the light of a large amount of statistical information, agents with small values of 
 will

closely resemble a rational expectations EU decision maker whereas agents with large

values of 
 might express strong ambiguity attitudes.

The 
-sensitivity of non-vanishing ambiguity thus admits for a comparative statics

analysis or/and for heterogenous agents models. For example, the �risk-free rate�and the

�equity premium�puzzles put forward by Mehra and Prescott (1985; 2003) are based on

the assumption that the representative agent�s belief about the consumption growth rate

coincides with its objective distribution. This assumption is in turn justi�ed by existing

consistency results for Bayesian learning with single as well as with multiple prior(s)

combined with the large amount of statistical data on consumption growth available

to the representative agent. We consider it an interesting avenue for future research

to investigate in how far multiple priors decision making embedded into our Bayesian

learning model might contribute towards an explanation of these asset pricing puzzles

for plausible values of 
.
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Appendix: Formal proofs

Existence of an emerging posterior. To see that the limit (43) exists, rewrite, for
any �0, ��0 (�

0 j X1; :::; Xt) as conditional expectation of the indicator function of �0

with respect to the induced probability measure P on the joint index and parameter

space (�� 
1;F
�1). To be precise, for the notation of our set-up it holds that, for
all � 2 � and B 2 �1,

P� (B) � P (B j �) � P (��B j f�g � 
1)

as well as, for all �0 2 F ,

�0 (�
0) � P (�0) � P (�0 � 
1) .

By Theorem 35.6 in Billingsley (1995) (which is an implication of the martingale con-

vergence theorem), we obtain

��0 (�
0 j X1; :::; Xt) � E [I�0 (�) ; P (� j X1; :::; Xt)]

! E [I�0 (�) ; P (� j X1; X2; :::)] � �1�0 (�
0)

whereby convergence happens with P probability one.��

Proof of Proposition 2. For notational convenience, we write

�t�0 � ��0 (� j X1; :::; Xt) .

Step 1. Suppose that there exists some �1��0 2 �
1
R but

�1��0 =2 lim
[

�02Mt
0;R

n
�t�0

o
, a.s. P��. (112)

Since ��0 2 M1
0;R and M0 is compact, there must be (a.s. P��) some subsequence�

�tk0
	
k2N such that �

tk
0 2 Mtk

0;R for all k = 1; 2; ::: which converges to ��0. But then

�t
�
tk
0

2 �tR for all k = 1; 2; :::, implying

�1��0 2 lim
[

�02Mt
0;R

n
�t�0

o
, a.s. P��, (113)

a contradiction to (112).

Step 2. Next suppose that there exists some

�1 2 lim
[

�02Mt
0;R

n
�t�0

o
, a.s. P�� (114)
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but

�1 =2 �1R : (115)

By (114), there must be (a.s. P��) some subsequence
n
�tk
�
tk
0

o
k2N

such that �tk
�
tk
0

2 �tkR
for all k = 1; 2; ::: which converges to �1. By compactness of M0, we can extract a

subsequence
n
�
tk0
0

o
k02N

from
�
�tk0
	
k2N which converges to some �

�
0 2 M0. As this ��0

is a cluster point of
�
Mt

0;R

	
t2N, we have that �

�
0 2 M1

0;R so that �
1
��0
2 �1R . Since�

�
tk0

�
tk0
0

�
k02N

converges to �1��0 as well as to �
1, we must have that �1��0 = �

1, a contra-

diction to (115).

Collecting Steps 1 and 2 proves the observation.��

Proof of Theorem 2. Step 1. By De�nition 7, the expected loglikelihood maxi-
mizing prior(s) will be inMt

0;
 for all t, i.e.,

arg max
�02M0

X
�2�

ln
tY
i=1

d'�
dm

� �0 (�) �Mt
0;
. (116)

By a similar formal argument as under Step 3 below, it can be shown that M1
0;
 (a.s.

P��) is never empty since

arg min
�02M0

X
�2�

DKL('��jj'�) � �0 (�) �M1
0;
 a.s. P��, (117)

i.e., the expected Kullback-Leibler divergence minimizers belong asymptotically to the

expected 
-loglikelihood maximizers for any value of 
.

Step 2. Observe that any

�00 2 arg min
�02M0

X
�2�

DKL('��jj'�) � �0 (�) (118)

belongs to (88) if (88) is non-empty.

Step 3. Suppose now that
�00 2M1

0;
 (119)

but

�00 =2 arg min
�02M0

X
�2�

DKL('��jj'�) � �0 (�) . (120)
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This is only possible if there exists some subsequence ftkgk2N � ftgt2N such that

X
�2�

tkX
i=1

ln
d'�
dm

� �00 (�) � 
 � max
�02M0

X
�2�

tkX
i=1

ln
d'�
dm

� �0 (�), (121)

X
�2�

1

tk

tkX
i=1

ln
d'�
dm

� �00 (�) � 
 � max
�02M0

X
�2�

1

tk

tkX
i=1

ln
d'�
dm

� �0 (�)) (122)

lim
tk!1

X
�2�

1

tk

tkX
i=1

ln
d'�
dm

� �00 (�) � lim
tk!1


 � max
�02M0

X
�2�

1

tk

tkX
i=1

ln
d'�
dm

� �0 (�) . (123)

Focus on the l.h.s. term of (123). Because � is �nite, we can switch the sum and

the limit to obtain

lim
tk!1

X
�2�

1

tk

tkX
i=1

ln
d'�
dm

� �00 (�) =
X
�2�

lim
tk!1

1

tk

tkX
i=1

ln
d'�
dm

� �00 (�) . (124)

Turn now to the r.h.s. term of (123). We are going to argue, via Berge�s (1997)

maximum theorem, that we can switch the max and the limit. To this purpose, de�ne

the following inner product

f (ytk ; �0) �
X
�2�

1

tk

tkX
i=1

ln
d'�
dm

� �0 (�) (125)

= ytk � �0 (126)

where

ytk =

 
1

tk

tkX
i=1

ln
d'�1
dm

; :::;
1

tk

tkX
i=1

ln
d'�n
dm

!
(127)

and

�0 = (�0 (�1) ; :::; �0 (�n)) . (128)

Next de�ne the value function of (125) as

M (ytk) = max
�02M0

f (ytk ; �0) . (129)

Since M0 is, as a closed subset of 4n, compact and f is continuous, we know from

Berge�s (1997, p. 116)21 maximum theorem that the value functionM (ytk) is continuous.

Consequently, if limtk!1 ytk exists, then

lim
tk!1


 �M (ytk) = 
 �M
�
lim
tk!1

ytk

�
. (130)

21Also see p. 570 in Aliprantis and Border (2006).
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In other words, if

lim
tk!1

1

tk

tkX
i=1

ln
d'�
dm

(131)

exists (a.s. P��) for all �, which we will show in a moment, then

lim
tk!1


 � max
�02M0

X
�2�

1

tk

tkX
i=1

ln
d'�
dm

� �0 (�) (132)

= 
 � max
�02M0

lim
tk!1

X
�2�

1

tk

tkX
i=1

ln
d'�
dm

� �0 (�) (133)

= 
 � max
�02M0

X
�2�

lim
tk!1

1

tk

tkX
i=1

ln
d'�
dm

� �0 (�) . (134)

Recall that the law of large numbers implies for the i.i.d.

ln
d'�
dm

(X1) ; :::; ln
d'�
dm

(Xn) (135)

that

lim
tk!1

1

tk

tkX
i=1

ln
d'�
dm

= E'��

�
ln
d'�
dm

�
a.s. P�� (136)

for any �. By (136) and using (124) and (134), we obtain that (123) is (a.s. P��)

equivalent to

X
�2�

E'��

�
ln
d'�
dm

�
� �00 (�) � 
 � max

�02M0

X
�2�

E'��

�
ln
d'�
dm

�
� �0 (�), (137)

X
�2�

E'��

�
ln
d'�
dm

�
� �00 (�) � 
 �

 
� min
�02M0

X
�2�

�E'��
�
ln
d'�
dm

�
� �0 (�)

!
(138)

,

�
X
�2�

E'��

�
ln
d'�
dm

�
� �00 (�) + 
 � E'��

�
ln
d'��

dm

�
(139)

� 
 � min
�02M0

X
�2�

�E'��
�
ln
d'�
dm

�
� �0 (�) + 
 � E'��

�
ln
d'��

dm

�
,


 �
X
�2�

DKL('��jj'�)d�00 (�)� (1� 
)
X
�2�

E'��

�
ln
d'�
dm

�
� �00 (�) (140)

� 
 � min
�02M0

X
�2�

DKL('��jj'�)d�0 (�)

,
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X
�2�

DKL('��jj'�) � �00 (�) (141)

� min
�02M0

X
�2�

DKL('��jj'�)d�0 (�) +
(1� 
)



X
�2�

E'��

�
ln
d'�
dm

�
� �00 (�) .

This proves that

�00 =2 arg min
�02M0

X
�2�

DKL('��jj'�) � �0 (�) (142)

is inM1
0;
 if, and only if, �

0
0 is in (88).

Step 4. Combining the last argument with Step 1 shows that

arg min
�02M0

X
�2�

DKL('��jj'�) � �0 (�) =M1
0;
 (143)

whenever (88) is empty.

Collecting results proves the proposition.��

Proof of Proposition 4. Step 1. Consider the a priori decision situation. Anal-
ogous to the argumentation for Proposition 1, we have that

MEU (fEh;M0 � �) =
1

3
and MEU (gEh0;M0 � �) =

2

3
. (144)

Further, note that

MEU (gEh;M0 � �) � MEU

 
gEh;

X
�2�

'� (!)�
0
0 (�)

!
(145)

� EU

 
gEh;

X
�2�

'� (!) �29

!
(146)

= EU (gEh; '29) (147)

=
29

90
<
1

3
(148)

as well as

MEU (fEh
0;M0 � �) � MEU

 
fEh

0;
X
�2�

'� (!)�
00
0 (�)

!
(149)

� EU

 
fEh

0;
X
�2�

'� (!) �31

!
(150)

= EU (fEh
0; '31) (151)

=
1

3
+
29

90
<
2

3
. (152)

Consequently, the inequalities (22)-(23) hold.
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Step 2. Consider the a posteriori decision situation. Note that

MEU
�
fEh;�

1

 � �

�
=
1

3
and MEU

�
gEh

0;�1
 � �
�
=
2

3
. (153)

The speci�cations of �00 and �
00
0 imply, by Corollary 1, for some su¢ ciently large 
 the

existence of some

��0 ; ��00 2 �1
 (154)

such that �0 < 30 < �00. Consequently,

MEU (gEh;�
1
Z � �) � EU

 
gEh;

X
�2�

'� (!) ��0

!
(155)

� EU

 
gEh;

X
�2�

'� (!) �29

!
(156)

<
1

3
(157)

as well as

MEU (fEh
0;�1Z � �) � EU

 
fEh

0;
X
�2�

'� (!) ��00

!
(158)

� EU

 
fEh

0;
X
�2�

'� (!) �31

!
(159)

<
2

3
, (160)

which proves the inequalities (24)-(25).��

Proof of Proposition 5. By the proof of Theorem 2 (cf., inequality (137) as well

as Step 2.), �00 2M1
0;
 if, and only if,X

�02�

E'��

�
ln
d'�0

dm

�
� �00 (�0) � 
 � max

�02M0

X
�02�

E'��

�
ln
d'�0

dm

�
� �0 (�0) . (161)

By Assumption 2, we have, for any � 2 �,

�� 2 �1
 (162)
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if, and only if, X
�02�

E'��

�
ln
d'�0

dm

�
� �� � 
 �

X
�02�

E'��

�
ln
d'�0

dm

�
� ��� (163)

,

E'��

�
ln
d'�
dm

�
� 
 � E'��

�
ln
d'��

dm

�
(164)

,
E'��

h
ln d'�

dm

i
E'��

h
ln d'��

dm

i � 
 (165)

,

d'�� (!2) � ln d'� (!2) +
�
2
3
� d'�� (!2)

�
� ln
�
2
3
� d'� (!2)

�
d'�� (!2) � ln d'�� (!2) +

�
2
3
� d'�� (!2)

�
� ln
�
2
3
� d'�� (!2)

� � 
 (166)

,
1
3
� ln �

90
+ 1

3
� ln
�
60��
90

�
2
3
� ln 1

3

� 
, (167)

which proves the proposition.��
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