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ABSTRACT 

A healthy road transport system is essential for any country’s social and economic 
development. It is generally observed that if road deterioration is allowed to increase, the 
economy will need significantly larger expenditures in subsequent years to keep the road 
maintenance backlog constant. This paper is part of a larger study whose main purpose is 
to investigate the dynamic behaviour of vehicles on the roads and how the observed 
behaviour can be effectively combined with other factors measured on the road and driver 
to assess the integrity of road and vehicle infrastructure. In this paper, vehicle vibration 
data are applied to an artificial neural network to reconstruct the corresponding road 
surface profiles. The results show that the technique is capable of reconstructing road 
profiles within an error margin of 45 percent while with careful control of principal error 
sources, the technique may achieve 20 percent error margin. This is considered to be 
reasonable enough for application to condition monitoring of unpaved roads servicing 
heavy vehicles. 
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1. INTRODUCTION 

The problems associated with safety, economy, and overall quality of road transportation 
are influenced by the characteristics of both roads and vehicles and by the manner in 
which these two systems interact. The vehicle-road interaction problem has been largely 
used as a platform for investigations into the mechanics of vehicle-induced road damage, 
road-induced vehicle damage and ride comfort. The nature of the interaction is also 
perceived to negatively affect the vehicle’s fuel consumption and driver performance. 
Studies show that these problems increase with more roughness on the road surface 
(OECD Expert Group, 1994 & 1998; Cebon, 1999). Thus a critical issue has always been 
to avoid serious deterioration of road infrastructure by implementing a condition-triggered 
maintenance schedule.  
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Highway Design and Maintenance (HDM) model was developed to optimize the economic 
benefits given by road maintenance. However, HDM cannot be applied directly within any 
local operating conditions for the first time without some sort of calibration (Rohde, Zooste, 
Sadzik, Henning, 1998; Caroff, Freneat, Riviere, Spernol, 2001; Jain, Aggarwal, Parida, 
2005). Secondly, HDM is largely viewed as World Bank tool for evaluating the viability of 
road maintenance, rehabilitation and construction projects, and as such, it might be largely 
used in situations where justification is required to solicit World Bank funds. Besides, HDM 
model still require road condition parameters obtained from good road inventory 
(Tsunokawa, Ul-Islam, 2007) often collected through visual inspections or using one of a 
limited number of instrumented vehicles. It is therefore necessary to develop alternative 
methods of assessing the integrity of roads.  

In order to achieve that, it is necessary first to obtain a correct road surface profile. There 
are many methods reported in the literature for obtaining road profiles by direct 
measurements of the road itself (Sayers, Gillespie, Paterson, 1986; Cundill 1991; Sayers, 
Karamihas, 1998). However, Gonzalez, O’brien, Li, Cashell (2007) argue that such 
methods are expensive hence they present a numerical validation of a method for 
estimating road roughness using the accelerations obtained on the vehicle body and axles. 
The road roughness is expressed as a power spectral density (PSD) function according to 
International Standards Organisation (ISO) classification (ISO 8608, 1995). The recent 
developments in vehicle design where accelerometers are being mounted on chassis 
systems in order to improve suspension performance makes this technique relatively 
inexpensive. 

This paper presents a numerical verification of a technique that is developed from earlier 
work by Hugo, Heyns, Thompson, Visser (2007). In their work, Hugo et al. (2007) 
developed a condition-triggered maintenance system for mine haul roads based on profile 
reconstruction. Their approach was based on inverting a multi-body dynamics model of the 
haul truck which was developed from extensive characterization of the truck. The haul 
road profile was then generated by applying responses measured on the truck to the 
inverse model. Gonzalez et al. (2007) adopted almost a similar approach with the 
exception that they employed a transform function which related the PSD function of the 
vehicle’s accelerations to the PSD function of the road profile. Both approaches involve 
characterizing the system, formulating the system dynamic models, determining their 
inverses and applying the vehicle responses to the inverses. This could become onerous 
where vehicle manufacturers’ data are not readily available and desired accuracies 
demand using more degrees-of-freedom and more expensive tyre models.  

In order to avoid such problems, this work employs an artificial neural network (ANN) to 
reconstruct the road profile. Typically, the ANN is trained with vehicle responses (as input 
data) and road profiles (as target data) obtained from known road roughness classes on 
the ISO classification scale shown in Figure 1. Road roughness increases with the letters 
hence class A represents a very good road profile while class H represents badly 
deteriorated road. Taylor, Zongwane, Thompson, Visser (2001) and Thompson, Visser, 
Miller, Lowe (2003) used ANN to assist them in recognizing specific mine haul road defects 
qualitatively. Thompson et al. (2003) realize need for an ability to analyse, recognize and 
interpret various forms of the same defect signature and need for use of multi-sensor data 
to isolate faults from different sources.  This paper lays a foundation to such work via a 
numerical analysis of the capabilities of the ANN to reconstruct road profiles and their 
attendant road defects.  
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Figure 1 Road roughness classification according to ISO 8608 1995(E) 

In this paper, the road roughness classification is done using both PSD and the widely 
used roughness indicator the International Roughness Index (IRI). IRI helps to determine 
overall road condition, road serviceability level and prioritizing maintenance while PSD 
detects presence of road dependent faults and the existence of any periodic defects in the 
road profile. This is necessary since IRI is merely a statistic that summarizes the 
roughness qualities of a road network that impacts vehicle response and cannot in itself 
reveal existence of destructive frequencies in the road profiles.  

This paper is structured as follows. Section 2 describes, via a simple diagram, the road 
profile reconstruction and roughness classification procedure. Relevant theory is covered 
under section 3, comprising vehicle modelling, generation of road surface topography, 
calculation of IRI and road profile reconstruction using ANN. Section 4 presents the two 
numerical examples used to verify the technique. The discussions of the results are 
presented separately in Section 5. The work is concluded in Section 6. 

2. PROPOSED METHOD OF ROAD CONDITION MONITORING 

The proposed technique is outlined in Figure 2. The technique begins by computing road 
profiles corresponding to each roughness class as given in Figure 1. The resulting road 
profiles are applied to a vehicle model which calculates vehicle responses. These vehicle 
responses and their corresponding road profiles are processed and used to create and 



train the ANN. The decision block examines correlation between the outputs from ANN and 
the processed road profiles. It is important to note that the correlation is necessary during 
network creation and training. 
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Figure 2 Layout of the simplified reconstruction and roughness 

classification procedure 

During testing, different road profiles from the ones used in training the ANN are generated 
and applied to the vehicle model to obtain corresponding vehicle displacement responses. 
These displacement responses are used to simulate the network while their corresponding 
road profiles (if available as it is here) are merely used in verifying the accuracy of the 
reconstructed road profiles. The test data are applied to similar data processing system as 
the training data before they could be used in simulating the ANN. Typically that involves 
low pass filtering and mapping the data onto the normalized coordinate plane since most 
implementations of ANN perform better with normalized data.  



The ANN produces reconstructed road profiles, displacement PSD and IRI. These results 
may be sent directly to a real-time road maintenance management system to trigger 
maintenance and/or may be stored in a databank for access by any interest groups. The 
reconstructed profile may be very useful in locating the damage and identifying road 
sections that require urgent attention.  

The class of road roughness, as obtained from the displacement PSD and IRI may be 
helpful where the conditions for various road networks are required and there is need for 
maintenance prioritization especially on more severely damaged road networks. 
Displacement PSD can further be used to investigate offending frequencies (if any) and/or 
transmitted dynamic forces to the cab, pay load and road surface.  

3. THEORY 

1.1 Vehicle Modelling 
The mathematical equations used for representing vehicle-road interaction may be written 
in matrix form as follows (Gillespie, 1992; Cebon, 1999): 

+ + =Mz Cz Kz f&& &          (1) 

where M is a matrix representing vehicle body mass; C is a matrix of vehicle damping  

K is the stiffness matrix of the vehicle; z is a vector of vehicle dynamic responses, and f is 
a vector of force inputs acting on the vehicle.  

A quarter-car model shown in Figure 3 is commonly used to investigate dynamics of heavy 
vehicles without trailers. In steady-state vibration the dynamic behaviour of the model may 
be determined by (Gillespie, 1992), 

s s s s s s b s us s usM z C z K z F C z K z+ + = + +&& & &       (2) 
( ) ( )us us s t us s t us w s s t r s s t rM z C C z K K z F C z C z K z K z+ + + + = + + + +&& & & &   (3) 

However, as an initial investigation, the study assumes that tyre non-uniformities and 
driveline inputs are limited to minimal levels so that they may not influence the final sprung 
mass responses as significantly as road roughness. This assumption is fair considering 
the current state of wheel balancing technologies and a general awareness in ride quality. 
Tire non-uniformities that would cause similar vibrations to the sprung mass as road 
unevenness can be easily picked up during any vehicle service. Similarly, most vehicle 
vibrations caused by driveline inputs may be detected in standby mode and can easily be 
filtered out during data processing.  
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Figure 3 Quarter-car model excited by on-board forces (Fb), wheel non-uniformity 

(Fw) and road roughness (zr) 

3.2 Road Roughness Classification 
The International Organization for Standardization (ISO) proposed a road roughness 
classification based on road displacement PSD (ISO 8608, 1995). The classification 
identifies eight road roughness levels ranging from Class A to Class H in increasing order 
of roughness. In the ISO classification, the relationships between the displacement PSD 
and the spatial frequency for different classes of road roughness may be approximated by 
(ISO 8608, 1995; Cebon, 1999). 
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where Su(κ) is the displacement spectral density, expressed in m3/cycle, κ is the 
wavenumber expressed in cycles/m, Su(κ0) is the displacement spectral density at κ0.  
(Values >128 m3/cycle for poor/very poor roads) κ0 is the datum or cut-off wavenumber. 

The constants n1, n2 and κ0 being equal to 3.0, 2.25 and 1/(2π) cycles m-1, respectively.  

The spectral density as given in (4) is usually calculated from measurement of surface 
roughness described by heights of equally spaced points along the road. However, in the 
absence of such measurements, pseudo-random profiles can be generated to fit those 
spectral densities. Cebon (1999) presents a formula for generating a single-wheel track 
random profile as, 
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where Sk = (2π/NΔ)S11(γk), and S11(γk) is the target spectral density, γk = 2πk/NΔ is 
wavenumber in rad m-1, Δ is the distance interval between successive ordinates of the 
surface profile and θk

(1) is a set of independent random phase angles uniformly distributed 
between 0 and 2π. 



3.3 Calculation of IRI  
International Roughness Index (IRI) is a standardized roughness measurement related to 
those obtained by the response-type road roughness measurement systems usually 
expressed in m per km or mm per m (Sayers et al., 1986).  IRI is computed from a quarter-
car simulation in which a ratio of the accumulated suspension motion of a vehicle is 
divided by the distance travelled by the vehicle at a standard velocity of 22.2 m s-1 during 
the test. It is a characteristic of the longitudinal road profile and therefore requires the 
availability of the road profile itself.  

A scale for IRI covers roughness descriptions for airport runways through rough unpaved 
roads. Each type of track (whether airport runway, paved or unpaved road) has its own 
range on the IRI scale most of which overlap. However, most practical road ways can be 
represented between 0 and 16 m per km. Unpaved roads emerge from IRI values of 
around 3 m per km.    

The calculation of IRI is accomplished by computing four variables as functions of the 
measured profile. The IRI statistic is the average of rectified slope (RS) variable over the 
entire length of the road under test (Sayers et al., 1986).  
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where N is the total number of elevation points in the road profile. 

3.4 Road profile reconstruction using ANN 
The problem of reconstructing the profile from given sets of vehicle responses is treated 
here as an inverse problem which is solved by ANN. Neural networks are composed of 
simple elements operating in parallel. The elements are inspired by biological nervous 
systems. As in nature, the network function is determined largely by the connections 
between elements.Figure 4 shows a generalized layout of a single-layer artificial neural 
network. Typically, neural networks work by adjusting the values of weights w and biases 
b, a process which is referred to as a learning rule or training algorithm.  

In this work, a back-propagation network with a Levenberg-Marquardt training function is 
used. The Levenberg-Marquardt algorithm was designed to approach second-order 
training speed without having to compute the Hessian matrix (Hagan, Menhaj,1994; 
Mathworks Inc., 2007). The Levenberg-Marquardt algorithm adjusts the weights by using 
the following equation (Bishop, 1995). 

( ) 1
(T T

new old oldλ
−

= + +w w J J I J ε w )        (7) 
where I is the identity matrix, ε(wold) is an error vector at the current point, wnew is the 
weight at the next point in the training procedure, J is the Jacobian matrix given by the 
partial derivative ∂ε(wold)/∂wold and λ is a parameter that governs the step size. The value 
of λ varies during network training. 
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Figure 4 Generalized layout of a single-layer neural network with r 

inputs and c outputs 

A nonlinear autoregressive with exogenous inputs (NARX) neural network is used to 
approximate the desired road profiles. It works in such a way that the next value of the 
output z’r is regressed on its previous values and previous values of an independent 
(exogenous) input signal zs. Thus the network output may be given by Equation (8) 
(Mathworks Inc., 2007).  

( )( 1), ( 2),..., ( ), ( 1), ( 2),..., ( )
r sk kr r r r z s s s zk k k k k k kz f z t z t z t n z t z t z t n′′ ′ ′ ′= − − − − − −  (8) 

The NARX network is recurrent dynamic, with feedback connections enclosing several 
layers (Mathworks Inc., 2007).  

4. NUMERICAL EXAMPLES 

The methodology is verified via a quarter-car model having the following physical 
properties as used in reference (Cebon, 1999): Mass of sprung mass, Ms = 8900 kg; Mass 
of unsprung mass, Mus = 1100 kg; Shock spring stiffness, Ks = 2 MN m-1; Tire stiffness, Kt = 
3.5 MN m-1; and Shock damping constant, Cs = 40 kN s m-1. It is assumed that tire 
damping, Ct is negligible and that the vehicle is driven at an average speed of 80 km h-1 
(approximately 22.2 m s-1). Thus the system’s equation of motion at the sprung mass is 
similar to (2) while that at the unsprung mass can be modified as: 

( )us us s us s t us w s s s s t rM z C z K K z F C z K z K z+ + + = + + +&& & &     (9) 

The vehicle model has sprung mass and unsprung mass natural frequencies of 1.98 and 
11.3 Hz, respectively. In order to capture the prominent frequencies, road profiles were 
generated using wave number range between 0.01 and 2 cycles m-1. This corresponds to 
frequencies between 0.22 and 44 Hz. Inclusion of higher frequencies than 44 Hz for the 
system under study is simply extravagant since the response gain due to road roughness 



input at such frequencies is negligible. 

Thereafter, road surface profiles zr corresponding to each class boundary shown as 
dashed lines in Figure 5, are generated using Equation (5). The resulting road 
displacement inputs are applied to the quarter-car model to calculate vehicle displacement 
responses, zs. The vehicle responses are used as inputs while the surface profiles as 
targets for training the ANN. Thus the training data typically covers the entire range of 
surface roughness (from Class A to Class H). This is to make the ANN adapt well to the 
vector space covered by the roughness classes.  
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Figure 5 Road surfaces used in the test numbered according to testing sequence 

A two layer NARX network with ten tan-sigmoid neurons in its hidden layer and one linear 
neuron in its output layer was chosen for the simulation. It uses the Levenberg-Marquardt 
algorithm as the training function owing to its superior performance in regression problems 
such as this one.  

Two case studies are presented in this work. The first case study involves reconstruction 
and identification of the profiles per se, while the second study deals with the 
reconstruction of emerging road surface defects such as potholes, humps or ditch-hump. 
In the first study, we apply the road displacement PSD, shown in Figure 5 as solid lines, to 
the quarter-car model. The calculated vehicle responses are used to simulate the ANN for 
reconstruction of the road profiles. The numbers on the road displacement PSD represent 
the sequence in which the tests are performed.  

In the second case study, we place two surface defects of known geometry along the road. 



The road roughness classes, in this case, are only known in terms of the underlying 
roughness. The purpose of the case study is to demonstrate that the technique can 
reconstruct the road surface defects and establish expected accuracies.  

5. RESULTS AND DISCUSSIONS 

5.1 First case study: Identifying plain road roughness profiles 
The results for the first case are displayed in Error! Reference source not found. The 
plots generally show good fit between the reconstructed and actual road profiles for all test 
roads though with varying degrees of accuracy as shown by the percent error plot in 
Figure 7. These plots show that the most accuracy is obtained in test profile (4) while test 
profiles (1) and (2) give the least accuracy. Inspection of Figure 5 reveals that the trend is 
related to the proximity of the PSD curve to any class boundary.  However, that is a simple 
algorithmic anomaly that can easily be rectified by generating more training vectors within 
any particular class.  
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Figure 6 Reconstructed profiles (dotted red) plotted over Actual profiles (solid blue) 
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Figure 7 Errors between target and reconstructed road surface profile 

In Figure 8 (a) profile reconstruction errors are calculated at various displacement PSD 
from 0.5 to 8 m3 cycle-1, typically from under the lower boundary up to the upper boundary 
of class A while in Figure 8 (b), the plot spans classes E and F. In both plots the network 
shows that errors diminish towards the class boundaries. Specifically, the plots show that 
the reconstructed profile falls within a 20 percent error margin for 25 percent proximity to 
the class boundary displacement PSD. In higher classes, the errors remain below 35 % as 
depicted by Figure 8 (b). However, correlation values are still above 99.9 % for all 
displacement PSD. 
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Figure 8 PSD proximity error around a displacement PSD in (a) class A (b) 

class E and F 

5.2 Second case study: Identifying road roughness profiles containing prominent defects 
The second case study investigates the ability of the technique to reconstruct and classify 
a road segment having local defects like ditches, humps or their combination. Firstly, a 5 m 
long 10 mm deep half-sine ditch is located between 210 and 215 m along roads of varying 
roughness classes. The vehicle is assumed to travel along the road at a constant speed of 
22.2 m s-1.  

The results in Figure 9 and Figure 10 show the reconstructed defects in test roads (1) and 
(4). The sizes of the defects make them more noticeable in these two test roads than in the 
others. The defects are accurately located between 210 and 215 m, and between 470 and 
475 m from start. The network accurately reconstructs both the half-sine ditch and the full-
sine ditch-hump. This may enable detection and location of localised defects.  
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Figure 9 Defect reconstruction in test road (1) (a) ditch between 210 and 215 m (b) 

ditch-hump between 470 and 475 m 
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Figure 10 Defect reconstruction in test road (4) (a) ditch between 210 and 215 m (b) 

ditch-hump between 470 and 475 m 

Accurate defect reconstruction, like in Figure 10, may be used to estimate longitudinal 
dimensions of the defect though its exact geometry in the transverse direction may require 
more data. It is envisaged that use of digitized road images may assist in achieving that 
goal. Although such data might not be enough for a final road maintenance decision, the 
data may still be useful in quantifying road damage.  

5.3 Road roughness classification: combined use of displacement PSD – IRI 
Road roughness classification is performed on the previously reconstructed profiles to 
examine how they compare with the actual classifications. In Table 1, we tabulate actual 
road classifications with classifications as obtained from computations of the roughness 
indicator IRI. It is noted that IRI classifies correctly four out of six roads. At the bottom of 
the table the calculated values of IRI for each test profile are given and they confirm the 
classification when compared with the IRI class boundaries at the top.  

Figure 11 shows the computed PSD functions of the first three test roads only for clarity. 
The plotted results somewhat agree with the IRI classifications in Table 1. Since the added 
defects were constructed from periodic functions, it is observed that the PSD for test road 
(1) has a slight dimple in the middle around the affected frequencies. This is the added 
advantage of using the PSD with IRI classification. However, PSD classification may not 
be easy to use especially at upper end of the classes where lines that are numerically 
distinct by IRI measure may look superimposed on the plot. It can be a poorer tool for 
comparing roughness levels of different test roads within the same class of damage or 
even belonging to neighbouring classes.  



Table 1 Test road profile data and their classifications 

 ISO CLASSES WITH THEIR IRI EQUIVALENTS 
ISO A B C D E F G H 

IRI 0.3 – 
0.6 

0.6 – 
1.2  

1.2 – 
2.4 

2.4 – 
4.7  

4.7 – 
9.5  

9.5 – 
19.0  

19 – 
37.8  

37.8 – 
76.0  

TEST 
ROAD  CLASSIFICATION: A = ACTUAL, I = IRI  

(1) A, I        
(2)       A, I  
(3)   A I     
(4) A, I        
(5)      A I  
(6)     A,I    

CALCULATED IRI VALUES 
 (1) (2) (3) (4) (5) (6)   
 0.3526  20.8378  2.8069  0.5290  20.8939  5.2740   
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Figure 11 Road displacement PSD functions of test roads (1), (2) & (3)  

plotted over the ISO PSDs 

 



Finally, the technique was simulated with data contaminated by different levels of noise 
from 0 to 50 percent of the vehicle’s RMS response value. The errors shown in Figure 12 
were averaged over ten numerical tests for each noise level. However if errors from other 
sources may be kept below 15 %, noise levels might not be permitted to exceed 4 % of the 
profile RMS values if a 20 % error margin is desired. This goal can be achieved by 
implementation of appropriate filters.  
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Figure 12 Errors in the presence of noise averaged for 10 tests 

6. CONCLUSIONS 

The technique for assessing road condition through reconstruction of road profiles and 
road defects is numerically verified. It avoids the use of expensive system characterization 
by employing ANN in the reconstruction procedure. It is shown that with enough training 
data and careful noise control, the technique has potential to achieve accuracies within 20 
percent error.  

The technique draws its advantages from the combined use of IRI, PSD and road profiles. 
IRI assists in determining roughness classification, road serviceability and maintenance 
prioritization while PSD assesses existence of periodic faults which might be very 
detrimental to vehicle frame and the road profiles can assist in pinpointing deteriorated 
sections. The knowledge of the geometry and geographical location of the road defect may 
assist in making a better maintenance decision. 

The availability of vehicles mounted with accelerometers and global positioning systems 
(GPS) also makes this work worthwhile. Thus the work has potential for development of 
inexpensive real-time condition-triggered maintenance systems. The technique can 
provide a way of acquiring relevant road condition data useful for making fast road 



management decisions or to act as input into more comprehensive maintenance models 
like the HDM.  
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