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Rodent populations living in their natural environments have very diverse ecological

and life history profiles that may differ substantially from that of conventional laboratory

rodents. Free-living rodents show species-specific neurogenesis that are dependent

on their unique biology and ecology. This perspective aims to illustrate the benefit of

studying wild rodent species in conjunction with laboratory rodents. African mole-rats

are discussed in terms of habitat complexity, social structures, and longevity. African

mole-rats are a group of subterranean rodents, endemic to Africa, that show major

differences in both intrinsic and extrinsic traits compared to the classical rodent models.

Mole-rats exhibit a spectrum of sociality within a single family, ranging from solitary

to eusocial. This continuum of sociality provides a platform for comparative testing

of hypotheses. Indeed, species differences are apparent both in learning ability and

hippocampal neurogenesis. In addition, social mole-rat species display a reproductive

division of labor that also results in differential hippocampal neurogenesis, independent of

age, offering further scope for comparison. In conclusion, it is evident that neurogenesis

studies on conventional laboratory rodents are not necessarily representative, specifically

because of a lack of diversity in life histories, uniform habitats, and low genetic variability.

The observed level of adult neurogenesis in the dentate gyrus is the result of an intricate

balance between many contributing factors, which appear to be specific to distinct

groups of animals. The ultimate understanding of the functional and adaptive role of

adult neurogenesis will involve research on both laboratory animals and natural rodent

populations.

Keywords: African mole-rats, breeding, laboratory rodents, neurogenesis, non-breeding, social, solitary

INTRODUCTION

It is widely accepted that adult neurogenesis is restricted to two neurogenic regions in the
mammalian brain, the subventricular zone of the lateral ventricles and the subgranular zone of
the hippocampus (Gage, 2000). Adult hippocampal neurogenesis (AHN) is a dynamic process
that has been implicated in hippocampus dependent cognitive functions and both positive and
negative regulators of AHN have been described (Aimone et al., 2014). However, the majority of
our knowledge originates from studies performed on a few laboratory species that are highly inbred
and are maintained in stable laboratory conditions (Kempermann, 2012). Intrinsic and extrinsic
traits of wild rodents that were not raised in the laboratory, may differ significantly from that
of conventional laboratory animals in factors such as genetic variability, social structure, habitat
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complexity, and longevity, all of which can influence AHN (Kuhn
et al., 1996; Kempermann et al., 1997a; Kozorovitskiy and Gould,
2004). Hence, the main drivers of AHN may interact in diverse
and unpredictable ways to produce opposite patterns of AHN in
wild rodents compared to conventional laboratory rodents, or the
drivers may be altogether different.

Since laboratory rodents are frequently used as models for
disease-related medical research, it is imperative to understand
their limitations and appreciate that life history may influence
experimental results. Although the functional significance
of AHN may overlap in diverse taxonomic groups, the
adaptive value thereof may differ considerably across taxa.
Indeed, substantial differences in the extent and magnitude of
neurogenesis between mice and humans have been revealed
(Jessberger and Gage, 2014). Hence, the investigation of species
other than conventional laboratory animals with different traits
may provide a useful comparative framework to investigate the
adaptive advantage of AHN.

The aim of this work is to highlight that both intrinsic and
extrinsic traits of non-conventional rodent species can deviate
significantly from that of conventional laboratory animals, and
may affect the modulation of AHN very differently depending on
species specific requirements. A relevant example is the African
mole-rats, a group of subterranean rodents, endemic to Africa.
African mole-rats are rodent moles that belong to the family
Bathyergidae, which differ radically from laboratory rodents
in a number of contexts such as environmental niche, social
structures, behavior, and longevity (Figure 1). These factors
will be compared between laboratory rodents and mole-rats to
provide a perspective on differences in the adaptive value of
neurogenesis in the two groups of rodents.

NEUROGENESIS IN CONVENTIONAL
LABORATORY RODENT MODELS

Adult hippocampal neurogenesis (AHN) has been extensively
studied in laboratory rodents, both in the context of basal and
experimentally manipulated levels of AHN. Both positive and
negative regulators of neurogenesis have been identified, some
factors are context dependent and may serve as positive, and
negative regulators. The factors mentioned below is by no means
a complete survey of all potential regulators, merely ones deemed
relevant for the ensuing discussion.

Habitat Complexity
Laboratory animals frequently live in a relatively constant habitat,
lacking many of the external factors that can influence their
biology. Several studies have demonstrated increased AHN
in laboratory rodents in response to enriched environments
(Kempermann et al., 1997b, 1998; Nillson et al., 1999; Brown
et al., 2003). Habitat complexity increases the need for behavioral
flexibility (Amrein, 2015), thus free-living rodent species living in
very complex habitats have been shown to exhibit much higher
neurogenesis compared to animals that inhabit less complex
habitats (Amrein et al., 2007; Garthe et al., 2009; Cavegn et al.,
2013).

Social Environment
The social environment of laboratory animals can exert both
positive and negative effects on neurogenesis, depending on the
circumstances. Laboratory rodents such as mice and rats are
typically communal species and social interactions have been
shown to significantly affect the regulation of adult neurogenesis
in the hippocampus (Fowler et al., 2008; Lieberwirth and Wang,
2012). Social status can influence the rate of neurogenesis where,
in laboratory rodents, animals with a higher status typically
show more neurogenesis than the ones with a lower social
status (Gould et al., 1997, 1998; Kozorovitskiy and Gould, 2004;
Thomas et al., 2007; Wu et al., 2014). Variation in estrogen levels
may be the underlying mechanism responsible for differences
in AHN between dominant and subordinate animals. Dominant
animals typically have a higher probability of breeding, and
breeding individuals usually exhibit higher levels of estrogen.
Estrogen has been shown to play a role in proliferation, the
survival as well as the activation of the new neurons (Fowler et al.,
2008). Following ovariectomy, AHN was reduced but this could
be reversed by estrogen replacement (Tanapat et al., 1999). Cell
proliferation in the dentate gyrus (DG) of the hippocampus of
laboratory rat females also fluctuates according to the estrous
cycle, with higher cell proliferation when more estrogen is
present (Tanapat et al., 1999).

Stress hormones can have positive or negative effects on
AHN, depending on the type of stressor and whether the
stress is acute or chronic (Schoenfeld and Gould, 2012). High
levels of corticosterone in response to social isolation causes
a reduction in neurogenesis and also decreases performance
in other behavioral tests (Stranahan et al., 2006). This effect
seems to be larger in females compared to males (Westenbroek
et al., 2004). In contrast, exercise (running) induces lower levels
of corticosterone and is associated with an increase in AHN
(Stranahan et al., 2006).

Age
Age is commonly viewed as a potent negative regulator of AHN
since there is a dramatic decline in neurogenesis that appears
to be age related in most mammals investigated, laboratory
rodents included (Kuhn et al., 1996; Amrein et al., 2004; Ben
Abdallah et al., 2010). This downregulation of neurogenesis is
not correlated with the environment or other species-specific
traits such as longevity or developmental strategy (Amrein et al.,
2004). Technically, this decrease occurs relatively early in life,
after which the level of neurogenesis remains relatively stable.

Cognitive Activity
A vast number of studies suggest a link between learning,
memory, and adult neurogenesis. Initial studies showed that
learning increases hippocampal neurogenesis (Gould et al.,
1999a,b) which accordingly enhances spatial memory (Snyder
et al., 2005; Winocur et al., 2006). In turn, learning impairments
are associated with a reduction in hippocampal neurogenesis
(Lemaire et al., 2000). However, more recent evidence suggests
that this is highly species and context dependent and the results
are not always consistent (Dobrossy et al., 2003; Jaholkowski
et al., 2009; Groves et al., 2013; Duarte-Guterman et al., 2015).
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FIGURE 1 | (A) Solitary Cape mole-rat. (B) A colony of social Damaraland mole-rats.

In some cases, neurogenesis has no effect on spatial memory at
all (Groves et al., 2013). The mixed results may be attributed to
the type of behavioral tests performed or the history and age of
the animals, or a combination of factors.

COMPARING LABORATORY MODELS
WITH THE MOLE-RAT MODEL

Some factors that can influence AHN in rodents exhibit parallel
features in laboratory rodent models and the mole-rat model,
with the difference that it occurs naturally in mole-rats but are
human induced in laboratory rodents. Other factors are distinctly
different for the two models.

Habitat Complexity
Habitat complexity, or the lack thereof, can influence AHN
in rodents depending on the need for behavioral flexibility
(Amrein, 2015). Laboratory rodents have probably adapted to
their relatively uniform and confined laboratory habitat over
many generations in captivity, with accompanying alterations
in behavioral needs (Toth et al., 2011). Although in a different
spatial context, the sealed burrow systems of mole-rats is
devoid of light and lack many other sensory cues available to
aboveground living rodents (Burda et al., 1990). Mole-rats thus
present a model that naturally inhabits a uniform environment.
In addition, even the simplistic environment of mole-rats shows
interspecific variation in terms of length and complexity of
the tunnels, depending on the social structure of the species,
presenting opportunity for comparisons.

Social Structure
Laboratory mice and rats are generally classified as social
and polygamous but the social structure is not rigidly fixed
(Lund, 1975; Hedrich, 2012). As a taxonomic group, mole-
rats show much more diverse and complex social organizations
compared to laboratory animals. Bathyergids exhibit a spectrum
of sociality within a single taxonomic family, ranging from
strictly solitary to highly social species (Faulkes et al., 1997).
Solitary species are typically polygamous whereas social species
tend to be more monogamous. Social mole-rats live in family

groups that exhibit a distinct reproductive division of labor
(Jarvis, 1981; Bennett, 1988). Reproduction is restricted to a
single female and one or two males, while the remainder of
the colony comprises overlapping generations of subordinate
animals that are reproductively suppressed. Mole-rats breed
cooperatively, and the non-breeding individuals assist with the
rearing of offspring andmaintenance of the tunnel system (Jarvis,
1981; Bennett, 1988). Social mole-rat colonies exhibit linear
dominance hierarchies where larger animals are dominant over
smaller animals (Jacobs et al., 1991), but breeding animals are
always dominant over non-breeding animals. In other rodents,
both dominance and reproductive status have been shown to
influence AHN (Tanapat et al., 1999; Kozorovitskiy and Gould,
2004). Therefore, the difference in social structures between
species and the within species status differences in the mole-rat
model provide abundant opportunities for empirical testing of
predictions in a comparative setting.

Age and Longevity
Laboratory mice and rats have maximum lifespans of under
5 years (Gorbunova et al., 2008), whereas their free-living
counterparts may have a much shorter life expectancy. Similar
sized mole-rats, especially the social species, can attain ages
three to six-fold that of laboratory animals. In captivity, the age
of 16 years have been recorded for social Fukomys mole-rats
(Dammann et al., 2011) and the age of 32 years for naked mole-
rats (Heterocephalus glaber) (Buffenstein and Jarvis, 2002). An
exponential decline in AHN is apparent in both long and short-
lived species, but the slower maturation of longer lived species
may offer a larger window for experimental manipulation of the
baseline AHN.

MOLE-RAT NEUROGENESIS

Morphologically, the dentate gyrus of mole-rats is comparatively
smaller than that of other rodents, with fewer granule cells
(Amrein et al., 2014). Mole-rats in general have very low
levels of neurogenesis in the hippocampus (Amrein et al., 2014;
Penz et al., 2015; Oosthuizen and Amrein, 2016). Normalized
proliferating cell numbers of mole-rats are comparable with that
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of other rodents however the normalized young neurons are
lower (Amrein et al., 2014).

Habitat Complexity
The lower survival rate of young neurons in mole-rats
supports a habitat-dependent modulation of neurogenesis. The
habitat complexity of mole-rat burrow systems is very low
when compared to the highly complex three-dimensional
environments of surface dwelling rodents. The sealed burrow
systems of mole-rats lack external cues and therefore present a
very homogenous and stable habitat (Burda et al., 1990).

Despite the overall low habitat complexity, the length and
complexity ofmole-rat burrows differ between species, it depends
on a number of factors including sociality, habitat type, resource
availability, and population density (Le Comber et al., 2002). The
burrow systems of Damaraland mole-rats (Fukomys damarensis)
can reach up to 2 km in length (Bennett and Faulkes, 2000),
while burrow systems of solitary species such as the Cape mole-
rat (Georychus capensis) are generally much shorter (Thomas
et al., 2012). Within the context of the subterranean niche,
interspecies differences in hippocampal neurogenesis that is
consistent with the relative length and complexity of the burrows
of the different species, is evident. The social and solitary species
have similar numbers of granule cells despite size differences in
the species [Cape: 150–200 g; Highveld (Cryptomys hottentotus
pretoriae; intermediately social species): 80–120 g; Damaraland:
120–150 g; Bennett and Faulkes, 2000, pers. obs.], however both
the Highveld and Damaraland mole-rats have more proliferating
cells compared to Cape mole-rats (Ki67 staining) (Amrein et al.,
2014; Oosthuizen and Amrein, 2016). The numbers of young
neurons show large within species variation, thus young neuron
numbers of the individual species show some overlap.

Social Status
Despite the low rate of neurogenesis, a status dependent
amount of hippocampal neurogenesis is evident in the social
Damaraland mole-rats. Seemingly in contrast with results from

laboratory rodents, the breeding females, or queens, have
lower numbers of both proliferating cells and young neurons
compared to subordinate colony members (Oosthuizen and
Amrein, 2016) (Figure 2). A similar occurrence is observed
in the naked mole-rat, where breeding animals were found
to have significantly less young neurons, as visualized by
doublecortin (DCX) immunoreactive neurons, compared to the
non-breeding animals (Peragine et al., 2014). Differential AHN
in breeding and non-breeding mole-rats may potentially have
an endocrinological basis. Both reproductive hormones and
stress hormones have been shown to modulate neurogenesis
in laboratory rodents (Cameron and Gould, 1994; Gould and
Tanapat, 1999; Tanapat et al., 1999).

In highly social species such as the Damaraland mole-rat and
the naked mole-rat, the breeding females have higher estrogen
levels compared to non-breeding animals (Bennett and Jarvis,
1988; Faulkes et al., 1990; Bennett, 1994), thus one would also
expect an upregulation of neurogenic cells, yet the opposite is
true (Peragine et al., 2014; Oosthuizen and Amrein, 2016). In the
case of mole-rats, estrogen appears to rather downregulate AHN.
Similarly, cell proliferation is inhibited in the dentate gyrus of
female meadow voles in the breeding season, when high estrogen
levels are present, compared to females out of the breeding
season, although more cells survive in the reproductively active
females (Galea and McEwen, 1999; Ormerod and Galea, 2001).
A potential mechanism for the disparity in the effect of estrogen
on AHN may be related to the density of the estrogen receptor
α in the dentate gyrus. In voles, estrogen increased the density
of the estrogen receptor α (ERα) (Fowler et al., 2005), however
this increase was region specific and no difference was observed
in the dentate gyrus. In mole-rats, non-breeding Damaraland
mole-rat females express lower levels of ERα compared to the
breeders in brain regions important for reproduction (Voigt
et al., 2014). The density of the ERα has not been investigated
in the DG of mole-rats thus far, but could potentially also
show differential expression between breeder and non-breeder
mole-rats. In naked mole-rats, no significant relationships could

FIGURE 2 | Scatter plots of relative age x body weight, total granule cells × relative age, and proliferation × young neurons in Damaraland mole-rats. (A) The body

weight of Damaraland mole-rats does not increase with relative age, (B) total granule cells remains stable with relative age, and (C) a scatter plot of proliferating cells

(Ki67) and young neurons (PSA-NCAM) in dominant and subordinate Damaraland mole-rats (Modified from (Oosthuizen and Amrein, 2016), with permission from

Elsevier).
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be identified between circulating gonadal steroids and DCX
(Peragine et al., 2014), however this do not exclude potential
differences in proliferating cells or receptors for the hormones.

Stress hormones have not been exhaustively investigated in
mole-rats in terms of social status in the colony. It appears that
when the social structure is stable, there is no difference cortisol
levels between breeding and non-breeding animals (Clarke and
Faulkes, 1998; Clarke et al., 2001), but instability in the social
structure is associated with increased cortisol levels in non-
breeding animals compared to the breeding animals (Clarke and
Faulkes, 1997). In congruence with this, a higher concentration
of CRF receptor binding sites is present in non-breeding naked
mole-rats (Beery et al., 2016). In addition, CRF receptor binding
sites also differ between solitary and social mole-rat species
(Coen et al., 2015), where differences in proliferating cells have
been shown. Stress hormones are also expressed in response to
running and exercise, where it is associated with an upregulation
of AHN (Stranahan et al., 2006). Non-breeding Damaraland
mole-rat females show higher levels of locomotor activity than
the breeding females (Oosthuizen and Bennett, 2015), therefore
increased activity could, at least in part, explain the higher AHN
in non-breeding mole-rats.

Age and Longevity
In agreement with their increased life expectancies, mole-rats
have long gestation times and subsequent postnatal development
is slower than other rodents. Like other animals, mole-rats also
show a steep decline in neurogenesis at a relatively young age
(Penz et al., 2015). A slow postnatal development may increase
the expected window for higher levels of neurogenesis seen in
all young animals between birth and puberty (Penz et al., 2015).
In mole-rats, puberty is reached around the age of 1 year, when
neurogenesis should start to decline exponentially (Bennett and
Faulkes, 2000; Penz et al., 2015), however this has not been tested
empirically.

Cognitive Activity
As a result of their lightless environment, subterranean animals
rely on other mechanisms such as tactile stimuli and memory
to navigate their burrow systems (du Toit et al., 2012). Despite
the relatively uniform habitat of the sealed tunnel systems,
the difference in tunnel length and complexity appears to
be sufficient stimulation to induce learning differences in
the different species. Damaraland mole-rats with longer and
more complex burrow systems, show superior learning abilities

compared to the solitary Cape mole-rat (Costanzo et al.,
2009; Oosthuizen et al., 2013), Oosthuizen, unpublished data).
The enhanced learning abilities of Damaraland mole-rats are
associated with more proliferating cells compared to Cape
mole-rats (Amrein et al., 2014; Oosthuizen and Amrein, 2016).
Although the basal level of neurogenesis differs with social status
in highly social species, there is no corresponding difference in
learning abilities.

CONCLUSIONS

Neurogenesis studies performed on conventional laboratory
rodents by far outnumber those on wild species. Research on
laboratory animals is necessary as laboratory models are very
useful and convenient tools for the fundamental understanding
of the molecular basis and the regulation of neurogenesis,
however they have limitations. Laboratory animals live in a
completely uniform habitat without natural predators and are
bred to minimize variability. To comprehend the functional
and adaptive significance of neurogenesis, the environmental,
genetic and physiological variation of natural populations
is essential. It is important to appreciate that the adaptive
value of neurogenesis is species specific. In many instances,
natural animal populations show very different and more varied
physiological and neurological responses compared to their
laboratory counterparts.

This perspective primarily illustrates the diversity in
environmental conditions, social structures and longevity in
rodent species. Animal models that display a different set of
species-specific features may provide insight into the functional
and adaptive significance of adult neurogenesis. Mole-rats
differ from conventional laboratory animals in a number of
important ways, specifically social structure and longevity.
Mole-rats (and indeed other natural rodent populations) are not
suggested as a replacement for conventional laboratory rodents
in neurogenesis research, but rather to complement the existing
body of information. Ultimately, understanding the functional
and adaptive context of adult neurogenesis will require research
on both laboratory animals and natural rodent populations.
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