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Abstract

This project concerns the understanding of the thermodynamic properties of higher spin black
holes in AdS3. Through the conjectured Minimal Model/Higher Spin duality, the partition

functions of such black holes should be equal to partition functions in the presence of
chemical potentials in an appropriate dual 2d CFT. In the well-understood spin-2 case, the

modular properties of partition functions play a major role in understanding their behaviour
at high and low temperatures, and the goal of this dissertation is to obtain an analogous

understanding of modular properties in the higher-spin case.
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1 Introduction

Black hole thermodynamics is a subject that has continued to fascinate physicists ever since
the suggestion, by Bekenstein in 1972, that black holes carry entropy, which was confirmed by
Hawking’s discovery that black holes emit thermal radiation and thus have temperature [1].
The goal is to understand precisely what the micro-states of the black hole are, and why the
entropy scales proportionally to the area of the black hole, unlike all other physical systems,
where it is proportional to the volume.

The AdS/CFT correspondence [2] provides an avenue to address this question, at least for
certain types of black holes residing on Anti-de Sitter (spaces with negative cosmological con-
stant) spaces (AdS). It conjectures that there exists a dual conformal field theory (CFT) living
on the boundary of the AdS space which should describe the same information as the black
hole geometry but where the degrees of freedom are encoded very differently.

The relationship between gravity on AdS3 and 2d conformal field theory was first exhibited
by the work of Brown and Henneaux [4] and used to understand the thermodynamics of the
BTZ black hole by A Strominger [5] and S Carlip [6]. This understanding hinges on the modu-
lar properties of partition functions in the CFT, which allow a transformation from low to high
temperatures which is needed in order to specify the entropy.

Recently, the Brown-Henneaux duality was generalized to Higher Spin theory on AdS3,
which was conjectured to be dual to a specific type of CFT with WN -algebra symmetry [7].
This conjecture has generated intense interest and has led to a better understanding of the
properties of higher spin black holes [9, 10], and matching of their partition functions with
corresponding partition functions with chemical potential on the CFT side [11]. Many of the
results are the outcome of brute-force calculations of expansions in the chemical potential. In
[13] Beccaria and Macorini do these brute force computations up to order O(α18). A better
understanding of their modular properties, which is the goal of this project, would perhaps lead
to a discovery of a closed formula for these partition functions and thus a better understanding
of higher - spin black hole thermodynamics.

In what follows we review some basic techniques of general relativity and make a few com-
ments about (2+1) dimensional gravity, in particular its degrees of freedom. We then proceed
into formulating three dimensional gravity in sl(2, R) as a Chern-Simons theory and write the
solution of the Einstein equations which is asymptotic AdS3 for which with certain identifica-
tions we find the BTZ black hole. In section 3 and 4 we generalize the Chern-Simons formulation
to sl(N,R) and derive a smooth black hole. In section 5 we review the basics of modular in-
variance and consider an example from minimal models and the Cardy formula. In section 6
we consider an infinite number of higher spins by considering a one-parameter family of higher
spin algebras hs[λ]. Lastly, in section 7 we comment about the modular properties of these
higher spin black hole partition functions using the generalized Jacobi forms of Kaneko-Zagier.
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2 A brief introduction to gravity

Gravity was understood to be a pulling force or a force of attraction between two bodies as a
result of their mass and the distance between them. Newton, though he discovered the classical
concept of gravity, did not understand how it was communicated between two bodies. The
formal description of this force was published in 1687, which was a milestone in the history of
Physics, though the manner in which this force of gravity was communicated between objects
was not clear as yet. That task was left to one of the greatest minds of the 20th century, Albert
Einstein. In 1915, Albert Einstein produced a set of equations that predicted how gravity is
communicated between objects. Published in 1916, the theory of general relativity suggested
that gravity was the result of the curvature of space-time, space-time being described as a
manifold which is locally flat, by matter and thus energy. This resulted in a revolutionary un-
derstanding that gravity is communicated by the curvature of space-time. This theory, which
was first tested and verified in 1919 and 1922, also perfectly described the strange orbit of
Mercury which was not closing on itself, a problem that confronted astronomers for decades.

This section begins by describing some of the key concepts of General relativity which are
relevant to describing gravity, i.e. curvature. The degrees of freedom of the key parameter
which describes curvature in Einstein’s equations, the Riemann tensor and its contractions, is
also discussed.

2.1 The Einstein equations

The theory of gravity is described by the Einstein-Hilbert action [14]

I =
1

16πG

∫
d3x
√
−g (R− 2Λ) + LM (2.1)

where Λ is the cosmological constant, LM represents matter fields and R is the Ricci scalar. In
the presence of matter, the Einstein-Hilbert action yields Einstein’s field equations [15]

Rµν −
1

2
Rgµν = 8πGTµν (2.2)

where Rµν is the Ricci tensor (to be defined in the next section) and R is the Ricci scalar; gµν
the metric tensor which gives information about the configuration of space-time. Tµν the energy
momentum tensor which contains information about matter and energy in space-time. Equa-
tion (2.2) describes the reaction of space-time curvature to the presence of energy-momentum.
Since both sides of (2.2) are symmetric two-index tensors, there are ten independent equations
(in 4d) which match the ten unknown functions of the metric components of the Bianchi identity

5µ Gµν = 0 (2.3)

which constrains four of the functions of Rµν [15]. This means that there are six independent
equations in (2.2). This means that of the 10 degrees of freedom, four are non-physical and
have to do with the gauge redundancy of the coordinate system.
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2.2 Riemann tensor

The Ricci tensor is the contraction of the Riemann tensor, as already mentioned above. In
standard notation, it is given by [14, 15]

Rρ
µλν = ∂λΓ

ρ
νµ + ∂νΓ

ρ
µλ + ΓρλσΓσνµ − ΓρνσΓσλµ (2.4)

It associates a tensor value to each point of a manifold; the tensor measures the extent to
which each point on a manifold deviates from that of flat space. Γ is the Christoffel symbol,
defined in terms of the metric tensor as follows [15]

Γσµν =
1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν) (2.5)

In other literature, the Christoffel symbol is called the connection coefficient because it
connects the value of a vector field at one point with the value at another, thus making it possible
to define covariant derivatives on a curved manifold [14]. The Ricci tensor is a symmetric

(
0
2

)
tensor which is the trace of the Riemann tensor on the first and third indices,

Rµν = Rρ
µρν = gρλRρµλν (2.6)

The Ricci scalar or curvature scalar (this means it is the same in all coordinate systems -
unlike Rµν) is the contraction of the Ricci tensor with the metric tensor,

R = gµνRµν (2.7)

The Riemann tensor has another construct, known as the Weyl tensor; given in terms of the
Ricci tensor, the Ricci scalar and the metric tensor [14]

Cρλµν = Rρλµν −
2

n− 2
(gρ[µRν]λ − gλ[µRν]ρ) +

2

(n− 1)(n− 2)
Rgρ[µgν]λ (2.8)

where [µRν] is from the fact that we can symmetrize or anti-symmetrize upper or lower indices
of any given tensor. To symmetrize (anti-symmetrize) respectively

Rσ
(µ1µ2···µn)ρ =

1

n!
(Rσ

µ1µ2···µnρ+ sum over permutations of indices µ1 · · · µn)

Rσ
[µ1µ2···µn]ρ =

1

n!
(Rσ

µ1µ2···µnρ+ alternating sum over permutations of indices µ1 · · · µn)

(2.9)

The Weyl tensor has been constructed such that all contractions of Cρσµν vanish, so it is
traceless, while retaining the symmetries of the Riemann tensor (more will be said about this
later). The Ricci tensor communicates how the volume of the body changes in curved space-
time whilst the Weyl tensor, since it is traceless, does not communicate the distortion of the
volume but only how the shape of the object is changed by curved space-time. The Weyl
tensor is also known as the conformal tensor because of its interesting feature of invariance
under conformal transformations, i.e. scaling of the metric tensor.
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2.3 Symmetries of the Riemann tensor

The Riemann tensor has the following properties [14]

Rρλµν = −Rρλνµ

Rρλµν = −Rλρµν

Rρλµν = +Rµνρλ

3Rρ[λµν] = Rρλµν +Rρµνλ +Rρνλµ = 0

(2.10)

Like any other tensor, the degrees of freedom of the Riemann tensor depend on the space-
time dimension of the manifold it is describing. Since the Riemann tensor is describing a
4-dimensional space-time and has rank 4, we can out-rightly deduce that it has 44 = 256
components but it is not all of these components which are independent. Of the 16 combinations
of the last two indices, only 6 are independent because 4 of them are zero because of the
antisymmetry of the last two indices as showed in the first property. The second property also
gives the same number of independent components. This is because an antisymmetric matrix
has 1

2
d(d− 1), 4× 3

2
= 6 independent components. Now we can write

Rρλµν = RAB

where we have replaced the first and the last pair with A and B respectively. We can think
of RAB as a symmetric 6× 6 matrix which has 21 independent components since a symmetric
matrix has 1

2
d(d + 1). The Riemann tensor is not only antisymmetric in its last two indices

but also in the first two. It is the exchange of the two pairs which is symmetric. A symmetric
matrix has 1

2
d(d + 1) independent components whilst an antisymmetric matrix has 1

2
d(d − 1)

independent components. This means that the Riemann tensor has a total of 1
12
d2(d2 − 1)

independent components because an antisymmetric 4-index tensor has 1
4!
d(d− 1)(d− 2)(d− 3).

The last property imposes only one constraint; that Rλ[ρµν] = −Rρ[λµν], this also holds for other
indices. This means that Rρλµν has only 20 linearly independent components out of a total of
256 components.

2.4 Black holes in (2 + 1) dimensional gravity

The phenomenology of the Universe we perceive is evidently described by standard three spa-
tial and one time dimensions (four dimensional space-time). However, the Einstein-Hilbert
action and its variants that defines the theory of gravity holds in any dimensions. The three
dimensional case (two spatial and one time) is attractive because the quantum theory in this
case has been well understood. The behaviour of gravity in three dimensions is fairly simpler
than in four or higher dimensions. This is due to the fact that three dimensional gravity has
no local degrees of freedom , i.e. it has no local propagating modes - higher spin gauge fields
in 3d also have no propagating degrees of freedom in the bulk. In the absence of a cosmologi-
cal constant, a vacuum, or locally (A)dS in the presence of a (negative) positive cosmological
constant the Einstein equations fix the metric to be locally flat. The important case for our
purpose is the case with negative cosmological constant, i.e. Anti-de Sitter (AdS). The AdS
case admits black hole solutions with thermodynamical properties and plays a defining role in
the AdS/CFT correspondence. In this section we show how 3d gravity has no local degrees of
freedom.

The Weyl tensor, the Riemann tensor with all contractions removed, will be a tool for
showing how 3d gravity has no degrees of freedom. The Weyl tensor is only defined in three
or higher dimensions. It vanishes in three dimensions and is traceless by construction. This
means;

Cρ[µρν] = 0 (2.11)
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Since the Weyl tensor is a symmetric matrix its components are restrained by 1
2
d(d + 1). The

Riemann tensor has a total of 1
12
d2(d2 − 1)) independent components. Therefore, to get the

total number of independent components for the Weyl tensor, which has all the symmetries of
the Riemann tensor we take the following difference;

1

12
d2(d− 1)− 1

2
d(d+ 1) (2.12)

which can be readily seen that for d = 3 the difference yields 0. Meaning the Weyl tensor has
no independent components; thus proving that there are no propagating modes since there are
zero degrees of freedom. We also need to show that the remaining six independent components
of the Riemann tensor in d = 3 are fully constrained by the Einstein equations such that the
independent components of the Riemann tensor do not constitute propagating modes. We
consider the vacuum,Tµν = 0, Einstein equation with non-vanishing cosmological constant;

Rµν −
1

2
Rgµν + Λgµν = 0 (2.13)

Taking the trace of this equation, we find that R = 6Λ because gµνg
µν = 4. Substituting R

back into the Einstein equation, we find that the Ricci tensor becomes

Rµν = 2Λgµν (2.14)

The Ricci tensor and the metric are two index symmetric tensors. This means that the above
expression gives six independent equations that serves as constraints of the Riemann tensor as
anticipated.

2.5 Motivation for higher spin

In the tensionless limit of string theory, all higher spin s > 2 excitations become massless as
will be sketched below. Higher spin gravity, which is a theory of interacting massless fields
deals with fields with spin s > 2. Two words are worth a bit of unpacking in the previous
sentence - interacting and massless. The word interacting means the theory is not free, i.e. it
has to be coupled to gravity. Massless means that we have gauge symmetry, redundant degrees
of freedom in our system. To show that excitations become massless in the tensionless limit of
string theory, we consider the mass-squared of string excitations given by

m2 ∼ N

α′
(2.15)

where α = 1/T , is defined as the inverse string tension. We normally do string theory in the
limit α

′ → 0, but we see that the m2 excitations explode unless we set N → 0. Meaning that
we only have to focus on the massless stringy state. So in the limit α

′ → 0 we truncate our
string theory to super-gravity (massless modes). We can also consider the limit α

′ →∞. It is
trivial to see that we will also have massless excitations, some physicists believe that a theory
at work here is higher spin gravity theories. So Higher spin gravity theories might actually be
string theories.

In the bulk, the gravity theory with spin s > 3 is described by Vasiliev higher spin the-
ory, which has been constructed in various dimensions. In four dimensions, Vasiliev theory is
described by some master equations, for which AdS4 is a solution. Expanding the equation
around the vacuum, we get an infinite tower of excitations with all spins. The holographic dual
is the singlet sector of O(N) vector model as proposed by Klebanov and Polyakov [16]. In three
dimensions, the gravity theory possesses all higher spin fields and some scalar fields with mass
parameterized by a continuous parameter λ - this is usually referred to as higher spin gravity
in AdS3. The CFT dual is conjectured to be the large N limit of WN minimal model (more on
these in chapter 4) by Gaberdiel and Gopakumar [7].

5
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3 Anti-de Sitter space and the BTZ black hole

Anti-de Sitter space (AdS) and de Sitter space (dS) are solutions to the vacuum Einstein
equations (2.13). The Ricci tensor, as shown in (2.14) is proportional to the metric in these
spaces. The difference between AdS and dS is determined by the sign of Λ, the cosmological
constant. The cosmological constant, which Einstein called his biggest blunder, was added by
Einstein to his equation so that they described a static universe. He called it his biggest blunder
because it was later shown that the universe was not static but expanding. But the expanding
universe does not make the cosmological constant useless in the Einstein equations because it
helps account for the unconventional matter which contributes to the measured acceleration of
the expanding universe.

3.1 AdS3 in global coordinates

An (n+ 1) dimensional AdSn+1 can be considered as an embedding in (n+ 2) dimensional flat
space. For AdS3 the embedding equation is [17]

− v2 − u2 + x2 + y2 = −l2 (3.1)

where −l2 = 1/Λ is the measure of the curvature of the space-time, called the radius of curva-
ture, which is always constant for our purposes. It is clear that the corresponding embedded
metric is given by

− dv2 − du2 + dx2 + dy2 = ds2 (3.2)

However, the metric of AdS3 can be derived without making reference to a higher dimensional
space by making the following substitutions

v = l coshµ cosλ

u = l coshµ sinλ

l sinhµ =
√
x2 + y2

Converting to polar coordinates using

x = l sinhµ cos θ, y = l sinhµ sin θ (3.3)

yields the following metric

ds2 = −l2 cosh2 µdλ2 + l2dµ2 + sinh2 µdθ2 (3.4)

where λ is the time-like coordinate; it can also be identified by a negative signature. The above
transformation (3.4), however, makes λ a periodic angle, λ = λ+ 2π. Meaning there are closed
time-like curves in space-time. To correct this and unidentify λ with λ+ 2π; we identify λ with
a time variable.

λ =
t

l
r = l sinhµ (3.5)

Substituting back into (3.2) yields the universal covering space (the space we get when a
coordinate is unrolled) of AdS3

ds2 = −(1 +
r2

l2
)dt2 +

1

1 + r2

l2

dr2 + r2θ2 (3.6)

This is the metric in global coordinates which is called AdS, the general solution of the field
equations up to coordinate transformations and global identifications.

6
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The metric can also be written in another coordinate system, the Poincaré coordinates also
referred to as hyperbolic coordinates (H3). Poincaré coordinates define a model of hyperbolic
space on the upper-half plane. The following substitutions from the embedding metric yields
the Poincaré coordinates

z =
l

u+ x
, β =

y

u+ x
, γ =

−v
u+ x

(3.7)

with metric

ds2 =
l2

z2
(dz2 + dβ2 + dγ2) (3.8)

AdS3 is maximally symmetric with isometry group SO(2, 2) [18], the group of all orientation
and distance preserving linear transformations, rotations. A maximally symmetric space-time
is one which has the largest possible number of Killing vectors (to be explained below). SO(2, 2)
is isomorphic to SL(2, R)L × SL(2, R)R, the group of real, invertible matrices with unit deter-
minant. SL(2, R) acts on the fundamental domain, located in the complex upper-half plane
with the following representation

ad− bc = 1

and transforms like

τ → aτ + b

cτ + b
(3.9)

where τ as a group parameter is used in anticipation of modular transformations which will be
discussed later in this paper.

Killing vectors are infinitesimal generators of a manifold’s isometries. Moving in the direc-
tion of a Killing vector in a manifold preserves the metric. Killing vectors also imply conserved
currents, using Noether’s theorem, associated with the motion of free particles. Killing vec-
tors are related, by a linear transformation, to group generators since both are infinitesimal
generators of a manifold. This linear relationship is the commutation relations between the
symmetries’ infinitesimal generators, the Lie algebra. AdS3 Killing vectors are linear combi-
nations of the generators of SL(2, R)L × SL(2, R)R. We choose an explicit basis for SL(2, R)
generators

L1 =

(
0 0
−1 0

)
, L−1 =

(
0 1
0 0

)
, L0 =

1

2

(
1 0
0 −1

)
(3.10)

and they obey the following commutation relations

[Lm, Ln] = (m− n)Lm+n (3.11)

In [17] the Killing vectors of SO(2, 2) in the space-time coordinates are given to be

Jµν = xν
∂

∂xµ
− xµ

∂

∂xν
(3.12)

They can also be given in terms of the original embedding coordinates as in [17]

Jxy = y∂x− x∂y, Juy = y∂u+ u∂y

Jux = x∂u+ u∂x, Jvy = y∂v + v∂y

Jvu = v∂u− u∂v, Jvx = x∂v + v∂x

(3.13)

The relationship with SL(2, R) generators is given for example in [19], giving only the chiral

7
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Figure 1: quotient torus

sector1, to be

L0 =
1

2
(Jux + Jvy)

L−1 =
1

2
(Jxy − Juv − Jxv + Jyu)

L1 =
1

2
(Jxy − Juv + Jxv − Jyu)

(3.14)

3.2 The BTZ Black hole identifications

To find BTZ (black hole solutions) from AdS3, certain identifications have to be made. By
identification we mean parametrizing the metric patch-way in a certain way and then identifying
a coordinate. These identifications are done by considering a Killing vector ξ that defines a one
parameter subgroup of isometries of anti de-Sitter space [17, 21]

P −→ etξP, t = 0, 2π, 4π, 6π, · · · (3.15)

It is worth noting that the transformations (3.15) are isometries and that the quotient space
obtained by identifying points on a specific orbit of the identification group will inherit from
anti-de Sitter space a well defined metric with negative cosmological constant. Therefore the
quotient space, formed by topologically identifying points with each other (Figure 1.) remains
a solution of the Einstein equations. For the quotient space to preserve causality, these closed
geodesics should only be space-like,

ξ · ξ > 0 (3.16)

the above condition (3.16) is not sufficient because some patches of AdS3 contain regions where
the identification Killing vectors are timelike or null. These regions must be excluded from
our solution to make the identifications permissible. This also means that the resulting space
AdS is ’geodesically incomplete’ because there exists geodesics that are ξ · ξ = 0 and ξ · ξ < 0.
However, from the point of view of AdS, removing the timelike and null regions before we
make the identifications serves no purpose. But when this is done after we have made the
identifications, [17, 21] notes that the frontier of the region ξ · ξ > 0, which is the surface
ξ · ξ = 0 can be identified as a singularity in the causal structure of space-time. Extending
beyond it produces closed time-like geodesics.

ξ =
r+

l
Jux −

r−
l
Jvy

1A chiral sector is a sector which acts in a parity asymmetric fashion [22]
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where r± are parametrizing constants. For the structure of the space-time to be causal, ξ ·ξ > 0
as mentioned earlier. This means

ξ · ξ =
r2

+

l2
(u2 − x2) +

r2
−

l2
(v2 − y2) (3.17)

⇒ ξ · ξ =
r2

+ − r2
−

l2
(u2 − x2) + r2

− (3.18)

⇒ −
r2
−

l2
< (u2 − x2) < 0 (3.19)

The space-like region ξ · ξ > 0 can be partitioned into three different types of regions divided
by null surfaces u2 − x2 = 0 or v2 − y2 = l2 − (u2 − x2) = 0.

These three regions are:
1. Outer regions - u2 − x2 > l2, y and u are of definite sign. The norm of the Killing vector
obeys r2

+ < ξ · ξ <∞.
2. Intermediate regions - 0 < u2−x2 < l2, u and v are of definite sign. The norm of the Killing
vector obeys r2

− < ξ · ξ < r2
+.

3. Inner regions - 0 > u2 − x2 > − r2−l
2

r2+−r2−
, x and v of definite sign. The norm of the Killing

vector obeys 0 < ξ · ξ < r2
−.

We parametrize the regions by (t, r, φ) in the following way:
1. r+ < r

u =
√
A(r) coshχ(t, φ)

x =
√
A(r) sinhχ(t, φ) (3.20)

y =
√
B(r) coshκ(t, φ)

v =
√
B(r) sinhκ(t, φ)

2. r− < r < r+

u =
√
A(r) coshχ(t, φ)

x =
√
A(r) sinhχ(t, φ) (3.21)

y = −
√
−B(r) coshκ(t, φ)

v = −
√
−B(r) sinhκ(t, φ)

3. 0 < r < r−
u =

√
−A(r) coshχ(t, φ)

x =
√
−A(r) sinhχ(t, φ) (3.22)

y = −
√
−B(r) coshκ(t, φ)

v = −
√
−B(r) sinhκ(t, φ)

where

A(r) = l2
r2 − r2

−

r2
+ − r2

−
, B(r) = l2

r2 − r2
+

r2
+ − r2

+

(3.23)

χ =
1

l

(
−r−t
l

+ r+φ

)
, κ =

1

l

(
r2

+t

l

)
(3.24)

y = −
√
−B(r) coshκ(t, φ), v = −

√
−B(r) sinhκ(t, φ) (3.25)
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These three regions give us the same metric

ds2 = −
(r2 − r2

+)(r2 − r2
−)

l2r2
dt2 +

l2r2

(r2 − r2
+)(r2 − r2

−)
dr2 + r2(dφ− r+r−

lr2
dt)2 (3.26)

where r ∈ (0,∞), t ∈ (−∞,∞), and φ ∈ (−∞,∞). Which gives us a space-time with the
metric in the following form

−N2(r)dt2 +N−2(r)dr2 + r2(dφ+Nφ(r)dt)2 (3.27)

which is a rotating black hole solution with singularities at r = r+ and r = r−. To honestly get
the black hole metric as claimed above, the non-periodic coordinate φ must be identified as

φ = φ+ 2π (3.28)

Otherwise, we have a portion of anti de-Sitter space and the horizon that of an accelerated
observer. To test whether our black hole singularity is not a coordinate singularity, we do a
coordinate transformation and observing whether the smoothness of the spacetime is preserved
by the new coordinates. Another test would be observing the behaviour of curvature invariant
scalars, because they are coordinate independent they show when there are singularities in the
curvature. One such scalar, following [18], is the Kretschmann scalar

K = RµνρσRµνρσ (3.29)

The Kretschman scalar for the BTZ black hole is given by

K =
12

l4
(3.30)

which readily shows no curvature singularity. Unlike the Schwarzschild black hole metric

ds2 = (1− rs
r

)dt2 − 1

(1− rs
r

)
dr2 − r2(dθ2 + sin2 θdφ2) (3.31)

Its Kretschmann scalar is given by

K =
48G2M2

c4r6
(3.32)

which shows a curvature singularity for r → 0. So we have seen that our black hole has no
curvature singularity. BTZ is still a black hole, but with singularity in its causality rather than
its curvature. Causal curves that go through the null surfaces at r = r± which separate the
three regions can never return. This feature, known as causality singularity is equivalent to a
black hole.

3.3 BTZ black hole in Euclidean signature

To obtain BTZ in Euclidean signature we make the following transformations

t→ it, r− → ir−, (3.33)

M →ME, J → iJE

with the corresponding metric

ds2 =
(r2 − r2

+)(r2 + r2
−)

l2r2
dt2 +

l2r2

(r2 − r2
+)(r2 + r2

−)
dr2 + r2(dφ+

r+r−
lr2

dt)2 (3.34)
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As we can see, this metric is well posed only for the region r > r+, where r− becomes purely
imaginary. To express the temperature of the black hole in terms of the energy we demand
that the horizon is smooth and that the coordinate possesses no conical singularities in metric
formulation. We examine the near-outer horizon geometry following [23] by considering the
following transformations

t
′

E = r+tE + r−φ, φ
′
= r+φ− r−tE, r

′2 =
r2 − r2

+

r2
+ + r2

−
(3.35)

which after substituting in (3.34) give

ds2
E =

r
′2

l2
dt
′2
E +

l2dr2

1 + r′2
+ (1 + r

′2)dφ
′2 (3.36)

Taking the near horizon limit, r
′ → 0, or r → r+, the non-angular part becomes the metric of

a plane
ds2

E = r
′2dt

′2
E + dr

′2 (3.37)

For t
′
E not to be singular, we need to identify as angular, t w t

′
E + 2π. Considering the fact

that φ does not have to be periodic, we substitute back into the original coordinates we find
that if β and Φ are the periodicities in the tE and φ direction respectively, then

β =
2πlr+

r2
+ + r2

−
, Φ =

2πl2r+

r2
+ + r2

−
(3.38)

Now we have identified two cycles, in the φ and the tE directions, and a radial component -
which is simply a topology of a solid torus. Thus, the Euclidean BTZ black hole has a solid
torus topology with a non-contractible cycle in the φ direction, and a contractible cycle in the
Euclidean time-cycle, tE. The Hawking temperature of the black hole is given by

T =
1

β
=
r2

+ + r2
−

2πlr+

(3.39)

The Bekenstein-Hawking entropy being

S =
A

4G
=

2πr+

4G
(3.40)

where A is the area of the black hole’s event horizon. The metric (3.36) can be cast as a quotient
of the three dimensional hyperbolic plane H3. In [37] the metric in Poincaré coordinates is given
by

ds2 =
l2

z2
(dwdw̄ + dz2), z > 0 (3.41)

with

w =

√
r2 − r2

+

r2 − r2
−
e

{
r+
l
φ+

ir−
l
τ
}

z =

√
r2

+ − r2
−

r2 − r2
−
e

{
r+
l
φ+

ir−
l
τ
} (3.42)

Euclidean AdS3 can be written as a matrix element of SL(2, C) as in [37]

M =

(
z + ww̄

z
w
z

w̄
z

1
z

)
(3.43)

and the metric is given by

ds2 =
l2

2
Tr(M−1dMM−1dM) (3.44)

which is simply (3.41).
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3.4 Chern-Simons formulation of 3d AdS gravity

Three dimensional gravity can be formulated in an alternative way known as Chern-Simons
theory. A Chern-Simons theory is a demo quantum model of 3d gravity that only computes
topological invariants. Witten [26], Achucarro and Townsend [27] were the first to attempt to
find a quantum theory of gravity by interpreting (2+1) dimensional gravity as a Chern-Simons
theory with a level k.

The BTZ solution is a black hole with inner/outer radius horizons at r = r±. We further
make the following identifications to ensure smoothness of the Euclidean signature metric at
r = r+

w ∼= w + 2π, τ =
il

r+ + r−
(3.45)

where w = φ+ it
l
; which makes the conformal boundary of the BTZ black hole to be identified

as a torus of modular parameter τ . To write the BTZ solution in Chern-Simons form we need
to first write it in the Fefferman-Graham form [25], which also makes it easier to read off the
stress tensor; to go to the Fefferman-Graham form we require that (3.34) be written as

ds2 = dρ2 + gij(x, ρ)dxidxj (3.46)

with
gij(x, ρ) = e2ρ/lg

(0)
ij + g2

ij + · · ·, ρ→∞ (3.47)

where g
(0)
ij is the metric at the conformal boundary, g

(2)
ij will turn out to be related to the stress

tensor as will be clear later. We focus on the first term contribution to the metric

g
(0)
ij dxidxj = −(dx0)2 + (dx1)2 = dx+dx−

x+ = ω = φ+
iτ

l
= x1 − x0

x− = ω̄ = φ− iτ

l
= x1 + x0

The metric in Fefferman-Graham form is given by

ds2 = dρ2 + 8πGl(Ldw2 + L̄dw̄2) + (l2e
2ρ
l + (8πG)2LL̄e

−2ρ
l )dwdw̄ (3.48)

where

r2 = l2e2ρ +
e−2ρ

4l2
(r2

+ − r2
−)2 +

r2
+ + r2

−

2
(3.49)

The constants L and L̄, are the rescaled Virasoro2 zero modes related to the horizon r± as

L =
1

2π
L0, L̄ =

1

2π
L̄0 (3.51)

2the Virasoro algebra is the algebra formed by the conserved charges (generators in a quantum field
theory),Ln, in the symmetry of conformal field theories in two-dimensional conformal field theories. The gen-
erators obey the following commutation relations

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n[

L̄m, L̄n

]
= (m− n)L̄m+n +

c

12
m(m2 − 1)δm+n[

Lm, L̄m

]
= 0

(3.50)

where L̄m is the anti-holomorphic part and c is the central charge of the CFT.
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L0 =
(r+ − r−)2

16Gl
, L̄0 =

(r+ + r−)2

16Gl
(3.52)

The area law can be calculated to be S = A
4G

(Appendix A), the black hole entropy (Bekeinstein-
Hawking)

S = 2π

√
c

6
L0 + 2π

√
c

6
L̄0 (3.53)

The Chern-Simons action is given as

SCS[A] =
k

4π

∫
Tr(A ∧ dA+

2

3
A ∧ A ∧ A) (3.54)

where A is a 1-form taking values in the theory’s Lie algebra of SL(2, R), Tr is the matrix
trace in SL(2, R) and k is the Chern-Simons level, upon equating the Chern-Simons action to
the Einstein-Hilbert action we find k to be

k =
l

4G
(3.55)

For computations, however, we consider the difference between Chern-Simons functionals

S = SCS[A]− SCS[Ā] (3.56)

Varying (3.54) with respect to A

δSCS[A] =
k

4π

∫
δTr(A ∧ dA+

2

3
A ∧ A ∧ A) (3.57)

gives us the equations of motion which can be seen to correspond to vanishing field strengths

F = dA+ A ∧ A = 0 (3.58)

which is the holomorphic part. F is also known as the curvature 2-form; therefore if F vanishes
that is indicative of the flatness of the 1-forms (A). To relate 3D gravity to Chern-Simons theory
we need to realize that a Chern-Simons theory is completely described by its topology and global
symmetry group in the same way that 3D gravity is since it has no local degrees of freedom.
We start by writing the geometry of the manifold in a coordinate dependent basis because we
are trying to describe curvature. This basis, for our purposes is the vielbein formalism (frame
formulation) - which assigns for every point on the manifold a set of orthonormal basis vectors
such that the metric, in vielbein formalism can be written as

gµν = eaµe
b
νηab (3.59)

it can be seen from (3.59) that the veilbein e (dreibein in 3d) is the square root of the metric
tensor. Whilst ηab is the Minkowski metric (flat space). We also define differentiation in the
new non-coordinate basis formalism by introducing what is called the spin connection given by

∇µX
a
b = ∂µX

a
b + ωaµcX

c
b −Xa

c ω
c
µb (3.60)

The Latin and the Greek indices denote the coordinate independent basis and the coordinate
dependent, the veilbein formalism, coordinate. The relationship between the spin connection
ω, the coordinate independent basis differentiation, and Γ, the coordinate dependent basis
differentiation comes as a natural question and is given by

ωaµb = eaνe
λ
bΓ

ν
µλ − eλb∂µeaλ (3.61)

It is straightforward, using wedge products and exterior derivatives, to show that the Riemann
tensor in vielbein formulation is given by

R = dω + ω ∧ ω (3.62)
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3.4.1 Chern-Simons action equivalence with Einstein-Hilbert action

The Einstein Hilbert action in three dimensions in metric formulation is given by

SEH =
1

16G

∫ √
−g
(
R +

2

l2

)
(3.63)

where l is the radius of curvature. In the veilbein formulation, (3.63) is given by

SEH =
1

16πG

∫
(ea ∧ (2dωa + εabcω

b ∧ ωc) +
Λ

3
εabce

a ∧ eb ∧ ec) (3.64)

To relate the Einstein-Hilbert action’s equation of motion, the Einstein equations, and the
Chern-Simons equations of motion we set

A = ω +
e

l
, Ā = ω − e

l
(3.65)

⇒
e =

1

2
(A− Ā) (3.66)

setting l = 1 and writing A in index notation

A = (ωaµ + eaµ)Ladx
µ, Ā = (ωaµ − eaµ)Ladx

µ (3.67)

⇒
SCS = S[A]− S[Ā] (3.68)

SCS = 2(eaµLa ∧ dωbµLb + ωaµLa ∧ debµLb)−
4

3
eaµLa ∧ ebLb ∧ ecLc

+
2

3
(ωaµLa ∧ ωbµLb ∧ ecLc + ωaµLa ∧ ebLb ∧ ωcµLc + eaLa ∧ ωbLb ∧ ωcLc)

(3.69)

We follow [6, 26] by using the following identities

Tr

∫
A ∧ dA = Tr(LaLb)

∫
Aa ∧ dAb

Tr(LaLb) =
1

2
δab

Aa ∧Bb =
1

2
[Aa, Bb]

[La, Lb] = εabcL
c

(3.70)

and the fact that the spin ω connection can be given by

ωaµ =
1

2
εabcωµbc (3.71)

to simplify (3.69). After some algebra we get the following expression for the Chern-Simons
action in veilbein notation

SCS =
1

4π

∫
ea

l
∧ (2dwa + εabcω

b ∧ ωc − 1

3l2
εabce

b ∧ ec) (3.72)

which can be seen to give the Einstein-Hilbert action in veilbein notation (3.64). To see this
explicitly one can set l = 1 in (3.72) and substitute 1

−l2 = Λ. Similar computations can be
performed for the vanishing field strengths

F = dA+ A ∧ A, F̄ = dĀ+ Ā ∧ Ā (3.73)
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of Chern-Simons and the Einstein equations of motion. It is important to note that the wedge
of the gauge fields and the exterior derivatives of these A’s which are 1-forms do not vanish
because they are algebra valued. These show that Chern-Simons theory is a demo for 3D
gravity, meaning that we should be able to define the BTZ black hole also in the Chern-Simons
formulation. The Virasoro zero modes given by (3.51) can also be expressed in terms of mass
and angular momentum in the following way

L+ L̄ =
Ml

8πG

and

L − L̄ =
J

8πG

where M is the mass of the black hole and J the angular momentum. We also recall the
SL(2, R) generators as given by (3.10)

L1 =

(
0 0
−1 0

)
, L−1 =

(
0 1
0 0

)
, L0 =

1

2

(
1 0
0 −1

)
which, already mentioned, obey

[Lm, Ln] = (m− n)Lm+n (3.74)

We readily identify eρ with L0. Using (3.65) we write the two gauge fields (A, Ā) in terms of
the two copies of the SL(2, R) generators

A = (eρL1 −
2πL
k
e−ρL−1)dz + L0dρ

Ā = (eρL−1 −
2πL̄
k
e−ρL1)dz − L0dρ

(3.75)

It is worth noting that the dependence of the connection on the functions (L, L̄), the BTZ
charges arising from the asymptotic symmetry (as explained below), arises through sub-leading
terms at large ρ. Which is what we mean by a connection which is asymptotically AdS3, it
follows (3.75) charge dependence. From (3.75) we can write the BTZ in metric formulation by
defining the metric in a bi-linear form

ds2 =
1

2
〈A− Ā, A− Ā〉

=
4

2
〈L0, L0〉dρ2 +

1

2
〈L+1, L−1〉

(
−2e2ρdzdz̄ − 2L(dz)2 − 2L̄dz̄2

)
− LL̄e−2ρdzdz̄

(3.76)

After some normalization
⇒

ds2 = dρ2 +
2π

k

(
Ldz2 + L̄dz̄2

)
−

(
e2ρ +

(
2π

k

)2

LL̄e−2ρ

)
dzdz̄ (3.77)

Such asymptotically AdS3 connections can be cast in gauge form, using gauge freedom to make
gauge transformations, as follows [10]

A = b−1a(z)b+ b−1db, Ā = bā(z̄)b−1 + bdb−1 (3.78)

where the radial dependence is accounted for by b

b = eρL0
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This radial dependence can be removed by making use of the freedom of gauge transformations.
We, however, want to extract a(z) which contains data on the boundary since the bulk has no
information because of no propagating degrees of freedom. We now write down (a, ā) and we
can see why the barred version of (3.77) takes that particular form so that a and ā can have
the same form

a(z) = (L1 −
2π

k
L(z)L−1)dz

ā(z̄) = (L−1 −
2π

k
L̄(z̄)L1)dz̄

(3.79)

where the coefficient functions L(z) and L̄(z̄) are components of the boundary stress tensor, a
measure of how the theory responds to changes in space-time

Tzz = L, Tz̄z̄ = L̄ (3.80)

which should exhibit Brown-Henneaux [4] central charge since these two copies of the Virasoro
algebra arise from the asymptotic symmetries of three-dimensional gravity with a negative
cosmological constant

c =
3l

2G
(3.81)

We give a proof of this in Appendix A. To derive the equations of motion, the field strength
which should vanish on-shell is given by

Fµν = ∂µaν − ∂νaµ + [aµ, aν ] = 0 (3.82)

⇒
Fzz̄ = ∂zaz̄ − ∂z̄az + [az, az̄] = 0

It is straightforward, since the first term and the last term vanish, to show that the equations
of motion take the following form

∂z̄L = 0

∂zL̄ = 0
(3.83)

These are the holographic Ward identities, which shows that the holomorphic and the anti-
holomorphic charges (L, L̄) are conserved, which is what we should get in a two-dimensional
CFT.

3.4.2 Black hole entropy in Chern-Simons formulation

Since we now know that we can define a black hole in Chern-Simons theory, the natural thing
to pursue next is most probably to examine the properties, such as the entropy of such black
holes. We do this by defining the black hole partition function as

Z(τ, τ̄) = Tr{e4π2iτ L̂−4π2iτ̄ ˆ̄L} (3.84)

The saddle point approximation is given by [11]

Z(τ, τ̄) = eS+4π2iτ L̂−4π2iτ̄ ˆ̄L (3.85)

⇒
L̂ = − i

4π2

∂ lnZ

∂τ
, ˆ̄L =

i

4π2

∂ lnZ

∂τ̄
(3.86)

It follows from (3.85) that

S = lnZ − 4π2iτ L̂+ 4π2iτ̄ ˆ̄L (3.87)
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We now turn towards generalizing our partition function by increasing the number of charges.
Following [11], we consider a charge Q with corresponding chemical potential α. Writing the
partition function in the grand canonical ensemble

Z(τ, α) = Tr{e4π2i(τ L̂+αQ̂)} (3.88)

The modified saddle point approximation is now given by

Z(τ, α) = eS+4π2i(τL+αQ) (3.89)

where the barred parameters have been suppressed to make it clear how the additional charge
and its potential is accounted for in the partition function. So we show the holomorphic part.
To determine Z and S, the entropy, we need to compute the charges, L and Q as functions of
τ and α respectively. To achieve the said dependence on τ and α we need to impose certain
specific smoothness conditions at the horizon. These smoothness conditions, also known as
integrability conditions are found by partially integrating the natural logarithm of the partition
function (3.87) with respect to the spin-2 and the spin-3 potentials

L = − i

4π2

∂ lnZ

∂τ
, Q = − i

4π2

∂ lnZ

∂α
(3.90)

⇒
∂L
∂α

=
∂Q

∂τ
(3.91)

These integrability conditions ensure the existence of the partition function Z. These are the
conditions that fixes various terms in the connection including sub-leading terms as we will see
later on this paper. For now we briefly turn to the laws of thermodynamics since it was shown
in [28] that black holes are thermodynamic systems.

3.5 Black hole thermodynamics

Hawking, in 1974, discovered that black holes release what is called ’black-body radiation’ due to
quantum effects close to the event horizon. Thus confirming that black holes are thermodynamic
systems. We examine, in this subsection, the analogues of the laws of thermodynamics for black
holes.

The Zeroth Law

A standard introductory text on university physics would express the zeroth law in the following
way: If bodies A and B are each in thermal equilibrium with the third body C, then A and
B are in thermal equilibrium with each other. Which simply means that the temperature
does not change in a system which is in thermal equilibrium. The Zeroth Law of black hole
thermodynamics states [28] that the surface gravity, κ, of a stationary black hole is constant
over the event horizon. Meaning that the surface gravity of a black hole acts as temperature.
The BTZ surface gravity is given by [28]

κ =
8G
√
−J2

l2
+M2

r+

=
r2

+ − r2
−

l2r+

(3.92)

The relationship between the black hole’s temperature, the Hawking temperature, and surface
gravity is given by

TH =
κ

2π
=
r2

+ − r2
−

2πl2r+

(3.93)
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The First Law

The first law of black hole thermodynamics gives the relationship between the changes of the
angular momentum J , the surface area A, and the mass M of the black hole. We start from
the first law of thermodynamics

dE = TdS − pdV (3.94)

where E is the internal energy, S the entropy, p the pressure and V the volume. We can also
write dE as

dE =
∂E

∂S
dS +

∂E

∂V
dV (3.95)

The area A(M,J) of the black hole is given by [28]

A = 4π

[
2G2M2

c4
+

2GM

c2

√
G2M2

c4
+

J2

M2c2

]1/2

(3.96)

Whilst M(A, J) is given by

M =

√
π

A

[
c4

G2
(
A

4π
)2 +

4J2

c2

]1/2

(3.97)

⇒
dM =

∂M

∂A
dA+

∂M

∂J
dJ (3.98)

Thus giving the first law of black hole thermodynamics to be

dE =
κ

8πG
dA+

J

2r2
+

dJ (3.99)

where c has been set to unity.

The Second Law

The second law of thermodynamics states that the entropy of a closed system increases for
irreversible processes and remains constant for reversible processes. Simply put, the entropy
of an isolated system always increases, ∆S ≥ 0. For black hole thermodynamics this law is
usually referred to as the area theorem, stating that the area of the event horizon of the black
hole never decreases with time, δA ≥ 0. The relationship between the area of the black hole
and its entropy is given by what is known as the Bekenstein-Hawking equation

SBH =
A

4G
(3.100)

For the BTZ black hole, the entropy is

SBTZ =
r+π

2G
(3.101)

It is worth noting that the entropy S scales like an area not with the volume and is thus one
dimension less than normal.

The Third Law

The third law of thermodynamics is about constant entropy at absolute zero temperature. The
analogous black hole law is that it is impossible to reduce the surface gravity, κ of a black
hole to zero by a finite sequence of operations [28]. When κ = 0 we refer to the black hole as
extremal since TBH = 0. Otherwise it is referred to as non-extremal. Meaning that the third
law is a statement about an impossibility to move from a non-extremal to an extremal black
hole.
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4 Black holes in SL(N,R)⊕ SL(N,R) higher spin gravity

Thus far, we have successfully recast Einstein gravity with a negative cosmological constant as
a SL(2, R) ⊕ SL(2, R) Chern-Simons theory. It turns out that the Chern-Simons formulation
of Einstein gravity with a negative cosmological constant can be generalized to include fields
of spin N . This is one of the reasons Chern-Simons formulation is preferred over the metric
formulation. The extension from SL(2, R) to SL(N,R), for N ≥ 3 describes a gravity theory
where the graviton is supplemented by a tower of higher spin fields with spin s = 3, 4, · · ·, N .
It was shown in [29] that a SL(N,R)⊕ SL(N,R) describes Einstein gravity coupled to N − 2
symmetric higher spin fields of spin s = 3, 4, · · ·, N . For our purposes, we concentrate on N = 3
which describes Einstein gravity coupled to a spin-3 field.

4.1 SL(3, R)⊕ SL(3, R) higher spin gravity and W3 symmetry

We proceed in the same way as in the SL(2, R) Chern-Simons formulation of Einstein gravity.
The connections A and Ā now take values in the SL(3, R) Lie algebra and satisfy vanishing
field strengths, flatness conditions. We only show the holomorphic

F = dA+ A ∧ A (4.1)

Choosing the following basis

L1 =

0 0 0
1 0 0
0 1 0

 , L0 =

1 0 0
0 0 0
0 0 −1

 , L−1 =

0 −2 0
0 0 −2
0 0 0

 ,

W2 =

0 0 0
0 0 0
2 0 0

 , W1 =

0 0 0
1 0 0
0 −1 0

 , W0 =
2

3

1 0 0
0 −2 0
0 0 1

 , (4.2)

W−1 =

0 −2 0
0 0 2
0 0 0

 , W−2 =

0 0 8
0 0 0
0 0 0


Satisfying the following commutation relations

[Li, Lj] = (i− j)Li+j,
[Li,Wm] = (2i−m)Wi+m,

[Wm,Wn] = −1

3
(m− n)(2m2 + 2n2 −mn− 8)Lm+n

(4.3)

and the trace relations
Tr(L0L0) = 2, T r(L1L−1) = −4

Tr(W0W0) = −8

3
, T r(W1W−1) = 4, T r(W2W−2) = −16

Other traces involving a product of two generators vanish. The SL(2, R) generators form a
sub-algebra of SL(3, R). We see that SL(2, R) has been embedded into SL(3, R). This kind of
embedding called the principal embedding (realising SL(N,R) generators in terms of SL(2, R)
generators) is not the only available inequivalent embedding of SL(2, R) into SL(3, R) [10].
There are other possibilities, e.g. the SL(2, R) sub-algebra generated by (W2/4, L0/2,−W−2/4),
the diagonal embedding, instead of (L±1, L0). However, the principal embedding is the one that
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gives rise to a higher spin theory. The spacetime fields, found by expanding the vielbein e and
the spin connection ω are identified in [10] as

gµν =
1

2
Tr(eµeν), ϕµνγ =

1

3!
Tr
(
e(µeνeγ)

)
(4.4)

where ϕ the spin-3 field is totally symmetric as can be seen from the vielbein indices. We
consider the following SL(3, R) connections

A(z) =

(
eρL1 −

2π

k
e−ρLL−1 −

π

2k
e−2ρW(z)W−2

)
dz + L0dρ

Ā(z̄) =

(
eρL−1 −

2π

k
e−ρL̄(z̄)L1 −

π

2k
e−2ρW̄(z̄)W2

)
dz̄ − L0dρ

(4.5)

where the coefficients W(z) and W̄ are the spin-3 currents. In [11], an asymptotically AdS
connection A is one that obeys Az̄ = 0, Aρ = L0 and

A− AAdS ∼ O(1)

as
ρ→∞

Similar conditions hold for the anti-holomorphic connection Ā. Upon using the available gauge
freedom for gauge transformations as in [11], the connections can be written as

a(z) =

(
L1 −

2π

k
L(z)L−1 −

π

2k
W(z)W−2

)
dz

ā(z̄) =

(
L−1 −

2π

k
L̄(z̄)L1 −

π

2k
W̄(z̄)W2

)
dz̄

(4.6)

We now look at the interaction of the two operators, the stress energy tensor T (z) and W (z)
a primary of conformal weight 3 as we will see shortly. The mode expansion of these operators
are given by

T (z) =
∑

Lnz
−n−2, W (z) =

∑
Wnz

−n−3 (4.7)

The asymptotic symmetry algebra is obtained by finding the most general gauge transformation
(3.78) of the connection (4.5) satisfying the asymptotic conditions. The functions (L, L̄) and
(W , W̄) transform under gauge transformations. If we expand in modes (4.7), we get two copies
of the classical W3 algebra. The symmetry currents (T,W ) have the following operator product
expansions

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
+ · · ·

T (z)W (w) =
3W (w)

(z − w)2)
+
∂wW

z − w
+ · · ·

W (z)W (w) =
c/3

(z − w)6
+

2T (w)

(z − w)4
+
∂wT (w)

(z − w)3
+

1

(z − w)2

(
2βΛ(w) +

3

10
∂2
wT (w)

)
+

1

z − w

(
β∂Λ(w) +

1

15
∂2
wT (w)

)
(4.8)

where the parameters β and Λ are given by

β =
16

22 + 5c

Λ =: T (w)T (w) : − 3

10
∂2
wT (w)

(4.9)
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The OPE’s of the stress tensor and the spin-3 currents

T (z)T (0) ∼ 3k

z4
+

2

z2
T (0) +

1

z
∂T (0)

T (z)W(0) ∼ 3

z2
W(0) +

1

z
∂W(0)

W(z)W(0) ∼ −5k

π2

1

z6
− 5

π2

1

z4
T (0)− 5

2π2

1

z3
∂T (0)− 3

4π2

1

z2
∂2T (0)

− 1

6π2

1

z
∂3T (0)− 8

3kπ2

1

z
T (0)∂T (0)− 8T (0)2

3kπ2

(4.10)

We can read off the central charge from the OPE to be

c = 6k =
3l

2G
(4.11)

The OPE between T (z) and W(0) identifies W as a spin-3 current because of the conformal
weight of 3 which can be read off from the OPE. The above OPE’s proves that SL(3, R) ⊕
SL(3, R) Chern-Simons gives rise to W3 algebra [31]. The same holds for the anti-holomorphic
connection, giving rise to an anti-holomorphic W3 algebra. By performing a gauge transfor-
mation, [30] has shown that the connection a can always take the following form, showing the
holomorphic part

a =

(
L1 −

2π

k
LL−1 −

π

2k
WW−2

)
dz

− (µW2 + w1W1 + w0W0 + w−1W−1 + w−2W−2 + w−3L−1) dz̄

(4.12)

where the spin-3 chemical potential µ(z, z̄) is given by the −µ(z, z̄)W2dz̄ and the coefficients
wi determined by the flatness conditions (da+ a ∧ a = 0) and found to be [10]

w1 = −∂+µ, w0 =
1

2
∂2

+µ−
4π

k
Lµ

w−1 = −1

6
∂3

+µ+
4π

3k
∂+Lµ+

10π

3k
L∂+µ, l =

4π

k
Wµ

w−2 =
1

24
∂4

+µ−
4π

3k
L∂2

+µ−
7π

6k
∂+L∂+µ−

π

3k
∂2

+Lµ+
4π2

k2
L2µ

(4.13)

with L and W
∂−L = −3W∂+µ− 2∂+Wµ

∂−W =
σk

12π
∂5

+µ−
2σ

3
∂3

+Lµ− 3σ∂2
+L∂+µ− 5σ∂+L∂2

+µ−
10σ

3
L∂3

+µ

+
64πσ

3k

(
L∂+Lµ+ L2∂+µ

) (4.14)

These are equivalent to the flatness conditions since any solution of (4.14) solves the flatness
conditions also. We also note that adding the chemical potential µ(z, z̄) creates a z̄ dependence
for the stress tensor due to the singular terms in the TW OPE. We look at this more closely
by computing Ward identities

∂z̄〈T (z, z̄)〉µ, ∂z̄〈W(z, z̄)〉µ (4.15)

which are found to yield [32]

−∂z̄W(z) =
k

12π
∂5
zµ−

10

3
∂3
zµL − 5∂2

zµ∂
2
zµ∂zL − 3∂zµ∂

2
zL −

2

3
µ∂3

zL

+
64π

3k
µL∂zL+

64π

3k
∂zµL2

(4.16)
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Identifying L = − 1
2π
T in (4.15), L and W are subject to

∂z̄L = 3W∂zµ+ 2∂zWµ

∂z̄W =
k

12π
∂5
zµ−

2

3
∂3
zLµ− 3∂2

zL∂zµ− 5∂zL∂2
zµ−

10

3
L∂3

zµ

+
64π

3k
Lµ∂zL+

64π

3k
L2∂zµ

(4.17)

Showing that the ward identities (for σ = 1) can be derived from the equations of motion of
spin-3 gravity. This as mentioned in [32] justifies a posteriori the AdS/CFT dictionary for the
incorporation of the spin-3 chemical potential µ in the gauge connections.

4.2 Black holes with higher spin charge

For black holes with higher spin charge within SL(3, R)⊕ SL(3, R) Chern-Simons theory, the
following solution was proposed by [30]

a =

(
L1 −

2π

k
LL−1 −

π

2k
WW−2

)
dz

− µ
(
W2 −

4πL
k
W0 +

4π2L2

k2
W−2 +

4πW
k

L−1

)
dz̄

ā = −
(
L−1 −

2π

k
LL1 −

π

2k
WW2

)
dz̄

− µ̄
(
W−2 −

4πL̄
k
W0 +

4π2L2

k2
W2 +

4πW̄
k

L1

)
dz

(4.18)

Corresponding to the following connections

A =

(
eρL1 −

2π

k
Le−ρL−1 −

π

2k
We−2ρW−2

)
dz

− µ
(
e2ρW2 −

4πL
k
W0 +

4π2L2

k2
e−2ρW−2 +

4πW
k

e−ρL−1

)
dz̄ + L0dρ

Ā = −
(
eρL−1 −

2π

k
Le−ρL1 −

π

2k
We−2ρW2

)
dz̄

− µ̄
(
e2ρW−2 −

4πL̄
k
W0 +

4π2L2

k2
e−2ρW2 +

4πW̄
k

e−ρL1

)
dz − L0dρ

(4.19)

All thermodynamic potentials have conjugate pairs. For black holes, the energy and the spin-3
current have conjugate thermodynamic potentials - which are temperature and spin-3 chemical
potential. The temperature is accounted for by the periodicity of imaginary time, t ∼= t + iβ
whilst the spin is accounted for by the µW2 term in az̄. The remaining terms in az̄ are said
to be fixed by the equations of motion in [10]. It turns out, [10], that we can write the az̄
component in the following form

az̄ = −2µ

[
(az)

2 − 1

3
Tr(a2

z)

]
(4.20)

To solve the equations of motion, the flatness conditions , we need only show the following
commutation relation as we have done in (3.82) for the SL(2, R) case

[az, az̄] = 0 (4.21)
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It is straightforward to show that (4.20) satisfies (4.23) (section 3.3.1). We consider the non
rotating case by setting

L̄ = L, W̄ = −W , µ̄ = −µ (4.22)

The non-rotating solution is thought of as depending on four parameters, (L,W , µ) and the
inverse temperature β, corresponding to the periodicity of imaginary time, t ' t+ iβ. However,
we expect that there should only be a two parameter space of physically admissible solutions.
If one specifies the temperature and chemical potential then the conjugates can be determined
thermodynamically as the function of the modular parameter τ of the torus given by

τ =
iβ

2π
(4.23)

and some potential α related to the chemical potential µ by

α = τ̄µ, ᾱ = τ µ̄ (4.24)

Now we would like to constrain the functions L andW , this procedure is a bit subtle. Unlike in
the SL(2, R) case for the uncharged BTZ where the relation between the energy stress tensor
and the temperature is obtained by demanding the absence of a conical singularity at the event
horizon in Euclidean signature, for the SL(3, R) case we proceed by imposing the following
conditions as suggested in [10]

1. The smoothness of the Euclidean geometry and the non-singularity of the spin-3 field at the
event horizon. By τ in the BTZ solution, L is obtained by demanding that the Euclidean
geometry close off smoothly at the location of the event horizon.

2. In the limit µ→ 0 the solution should smoothly recover BTZ; W → 0 in particular.

3. The charge assignment L = L(τ, α) and W = W(τ, α) should arise from an underlying
partition function and should therefore obey the integrability condition

∂L
∂α

=
∂W
∂τ

(4.25)

The integrability condition needs to be satisfied in order that the thermodynamic quantities
assigned to the black hole will obey the first law of thermodynamics. We proceed as in [10] to
investigate the above conditions. The metric (4.4) associated with the gauge connection (4.20)
is given by

ds2 = dρ2 −F(ρ)dt2 + G(ρ)dφ2 (4.26)

where

F =

(
2µe2ρ +

π

k
We−2ρ − 8π2

k2
µL2e−2ρ

)2

+

(
eρ − 2π

k
Le−ρ +

4π

k
µWe−ρ

)2

(4.27)

G(ρ) =

(
eρ +

2π

k
Le−ρ +

4π

k
µWe−ρ

)2

+ 4

(
µe2ρ +

π

2k
We−2ρ +

4π2

k2
µL2e−2ρ

)2

+
4

3

(
4π

k

)2

µ2L2

(4.28)

Setting W = µ = 0, the uncharged limit, the metric (4.26) recovers BTZ in Fefferman-Graham
coordinates

ds2 = dρ2 −
(
eρ − 2π

k
Le−ρ

)2

dt2 +

(
eρ +

2π

k
Le−ρ

)2

dφ2 (4.29)

23

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



The subtleness is with generic charge, for which F(ρ) and G(ρ) are positive definite quantities.
The horizon occurs where gtt vanishes, and since the radial dependence of the metric is simply
dρ2, gtt must have a double zero at the event horizon for the Euclidean time circle to smoothly
pinch off. One solution is achieved by demanding W = 0 and µ = 0, a second solution is
guaranteed by

k + 32µ2π (µW −L) = 0 (4.30)

The temperature is found by requiring the absence of a conical singularity at the event horizon,
located at

eρ+ =

√
2πL − 4πµW

k
(4.31)

→
β =

2
√

2πk√
(3k − 32πLµ2) (16πLµ2 − k)

(4.32)

From these two equations (4.30) and (4.32) we can determine the charge assignments L(τ, α)
and W(τ, α) to be

L =
k

64π

β2

α2

(√
1− 64π2α2/β4 − 5

)
(4.33)

W = − k

64π

β3

α3

(√
1− 64π2α2/β4 − 3

)
(4.34)

These charges, however, do not satisfy the condition (2) and (3). But are the only one for which
the geometry of the connection (4.20) has an event horizon. For any other charge assignment,
F(ρ) does not vanish, meaning there is no event horizon because the geometry possesses a
globally defined Killing vector. It is noted in [10] that at large positive and negative ρ, F and
G have leading behaviour e4ρ, corresponding to an AdS3 with a radius of l = 1

2
, which means

that the metric (4.27) and (4.28) describes a traversable wormhole connecting two asymptotic
AdS3 geometries. [10] notes that the metric of the spin-3 theory is not preserved under higher
spin gauge transformation and the connection (4.20) after a suitable gauge transformation
represents a smooth black hole whose black charge assignment satisfies condition (2) and (3).
To find this charge assignment we consider Wilson lines, given by the holonomy (an indication of
how curved a connection is), ω around the time circle. For contractible cycles (no singularity),
the holonomy should be trivial, i.e. the holonomy will give an identity matrix or a Casimir of
the group of a(z). Generally, the holonomy of a is given by

Holτ (a) = eω (4.35)

where ω is defined as
ω = 2π (τaz + τ̄ az̄) (4.36)

With the following eigenvalue conditions, calculated from the determinants of the ω’s

Tr(ω2) = −8π2, T r(ω3) = 0 (4.37)

In the following sections we show that the above holonomy condition satisfies the integrability
condition and the smoothness condition.

4.3 Holonomy and the integrability conditions

The holonomy condition for the connection (4.20) is explicitly given by

2048π2µ3L3 − 576πkµL2 + 864πkµ2WL− 864πkµ3W2 + 27k2W = 0 (4.38)
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2546π2µ2L2 − 24πkL − 72πkµW +
3k2

τ 2
= 0

the anti-holomorphic part takes a similar form. From the second equation of (4.38) we write
W and ∂W

∂τ
in terms of ∂L

∂τ

W =
256µ2π2τ 2L2 + 24kµπτ 2L+ 3k2

72kµπτ 2
(4.39)

∂W
∂τ

=
512µ2π2τ 2L(τ, α)

(
∂L
∂τ

)
+ 24kµπτ 2 ∂L

∂τ
+ 512µ2π2τL2 + 48kµπτL

72kµπτ 2

− 256µ2π2τ 2L2 + 24kµπτ 2L+ 3k2

36kµπτ 3

(4.40)

We then substituteW into the first equation of (4.38) and write ∂L
∂α

and ∂L
∂τ

. We finally substitute
the latter into ∂W

∂τ
and see that the integrability condition holds for these charge assignments.

We do not explicitly show these computations because they are too long to display.
To show that the second condition is fulfilled we define dimensionless versions of the charge

and the chemical potential as in [10]

ζ =

√
k

32πL3
W , γ =

√
2πL
k
µ (4.41)

These are then rewritten in terms of these new quantities as detailed in [10] giving a maximal
spin-3 charge W for a given L

(
W2

max = 128π
27k
L3
)
, which is accessible through holonomy condi-

tions (not through the connections). Perhaps it should be mentioned that to make (4.20) to be
a smooth black hole, new connections related to the wormhole gauge are introduced as shown
in detail in [32].

4.4 SL(3, R) Black hole thermodynamics

Now that we have a smooth higher spin black hole, we would like to do computations of
thermodynamic variables from the partition function, like entropy which should be consistent
with the first law of thermodynamics. For black holes in (2 + 1) gravity we can compute the
entropy from the area of the event horizon as given by Bekenstein-Hawking equation. But we
cannot in the present context because we have turned on a spin-3 field on (2 + 1) gravity; so
we do not know a priori whether the entropy is related to the area of the event horizon. We,
therefore, base our entropy calculations by demanding adherence to the first law of black hole
thermodynamics as in [32]. Written in terms of L and W the entropy (3.87) should satisfy the
following (holomorphic) thermodynamic relations

τ =
i

4π2

∂S

∂L
, α =

i

4π2

∂S

∂W
(4.42)

The anti-holomorphic parts take a similar form. In [32], the entropy is conveniently written as

S = 2π
√

2πkLf(y) (4.43)

where

y =
27

2
ζ2 =

27kW2

64πL3
(4.44)

ζ2 ∼ W2

L3 is a dimensionless ratio. such that f(0) = 1 recovers the holomorphic part of the
entropy of BTZ. Using (4.42) and (4.44) and plugging into the second line of (4.38) we get the
following differential equation

36y(2− y)(f
′
)2 + f 2 − 1 = 0 (4.45)
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The solution is given by

f(y) = cos θ, θ =
1

6
arctan

(√
y(2− y)

1− y

)
(4.46)

The range of y is [0,2] and the choice of θ is such that [0, π
6
]. The full expression of the entropy,

including both right movers and left movers, is then given by

S = 2π
√

2πkLf
(

27kW2

64πL3

)
+ 2π

√
2πkL̄f

(
27kW̄2

64πL̄3

)
(4.47)

Upon plugging in for ζ as a function of C, ζ = C−1
C3/2 , we get

θ =
1

6
arctan

(
K(C)

√
1− 3

4C

)
(4.48)

with

K(C) ≡ 6
√

3C(C − 1)(C − 3)

(2C − 3)(C2 − 12C + 9)

f(y) = cos

[
1

6
arctan

(
K(C)

√
1− 3

4C

)] (4.49)

⇒

f(y) =

√
1− 3

4C
(4.50)

Showing that the entropy is expressed in terms of C, the charges (L,W). We also observe that
(3.53) is recovered when the spin-3 field which gives rise to a spin-3 charge has been turned off
or C →∞.
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5 Modular invariance

Modular invariance as invariance under the modular group SL(2,Z) is studied in this chapter
because it is expected that since black holes in AdS3 have a dual CFT description, their partition
functions should be modular invariant or at least have simple transformation properties under
modular transformations. This is expected because modular invariance is a property of 2D
CFT. The main interesting feature of conformal field theories is that it is done on the infinite
plane which is topologically equivalent to a sphere. A sphere can be defined as a Riemann
surface of genus h = 0. Generally conformal field theories can be studied on a Riemann surface
of arbitrary genus h. The case of a torus, h = 1, is equivalent to a plane with periodic boundary
conditions in two directions.

5.1 Conformal field theory on the torus

Following [36] we define a torus by specifying two linearly independent lattice vectors (ω1, ω2)
on the plane and identifying points that vary by integer combination of these vectors. These
lattice vectors (ω1, ω2), on the complex plane, are complex numbers. The parameter of interest
is the ratio τ = ω2

ω1
known as the modular parameter.

The partition function, Z, describing our system depends on the modular parameter τ . To
write the partition function in terms of the Virasoro generators L0 and L̄0 we must define our
space and time directions. These are thought as running along the real and imaginary axes,
respectively; it is precisely the orientation of the period relative to the space-time axes that
concerns us. Considering the hamiltonian (H) and the total momentum of the theory, [36] gives
the operator that translates the system parallel to the period ω2 over a distance a in Euclidean
space-time to be

exp− a

|ω2|
{HIm(ω2)− iPRe(ω2)} (5.1)

where a is the lattice spacing; (5.1) is a translation that takes us from one row of a lattice to the
next, parallel to the period ω2. A complete period that contains m lattice spacings (|ω2| = ma),
the partition function which is the sum over all energy states. This is similar to taking the
trace of the above translation

Z(ω1, ω2) = Tr exp−{HIm(ω2)− iPRe(ω2)} (5.2)

If we consider the torus to be a cylinder of finite length with ends glued back together. We
can then express H and P in terms of the Virasoro generators L0 and L̄0. For a cylinder of
circumference L (ω1), the Hamiltonian and the momentum are given by [36]

H =
2π

L
(L0 + L̄0 −

c

12
)

P =
2πi

L
(L0 − L̄0)

(5.3)

The partition function may be finally written as

Z(τ) = Tr exp πi
{

(τ − τ̄)(L0 + L̄0 −
c

12
+ (τ + τ̄)(L0 − L̄0)

}
Z(τ) = Tr exp 2πi

{
τ(L0 −

c

24
)− τ̄(L̄0 −

c

24
)
} (5.4)

Setting
q = exp 2πiτ q̄ = exp−2πiτ̄ (5.5)
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Substituting (5.5) into (5.4) we write the partition function as

Z(τ) = Tr
(
qL0−c/24q̄L̄0−c/24

)
(5.6)

It is worth noting, as mentioned earlier, that the partition function depends on the ratio τ of
the periods (ω1, ω2). The above expression for the partition function involves what is known as
characters 3, given by

χc,h(τ) = Tr
(
qL0− c

24

)
(5.7)

where the trace is taken over the Verma module4 built upon a state of highest weight |h〉5

5.2 Modular invariance

Conformal field theories on a torus are advantageous because of the constraints on the operator
content that are imposed by the requirement that the partition function be independent of the
choice of periods (ω1, ω2).
If (ω

′
1, ω

′
2) are two periods describing the same lattice as (ω1, ω2). Then (ω

′
1, ω

′
2) can be expressed

as integer combinations of (ω1, ω2) (
ω
′
1

ω
′
2

)
=

(
a b
c d

)(
ω1

ω2

)
(5.8)

where ad− bc = 1,a, b, c, d ∈ Z. The same relationship holds for (ω1, ω2) in terms of (ω
′
1, ω

′
2),

implying that the above matrix is invertible with integer components. It is noted in [36] that
the unit cell of the lattice should have the same area regardless of the choice of periods; the
determinant of such a matrix should be unity. This means we must consider the group of
integer, invertible matrices with unit determinant, denoted as SL(2,Z).

Under the change of period in the above matrix, the modular parameter τ transforms as

τ → aτ + b

cτ + d
ad− bc = 1 (5.9)

The symmetry we are interested in is the one that preserves these modular transformations; this
is the modular group SL(2,Z)/Z2 or PSL(2,Z). Modular properties are checked by applying
these modular transformations (5.9) to our partition function Z(τ). If Γ is the action of the
modular group, a fundamental domain (F0) of Γ is a domain of the upper half-plane such that
no pair of points within it can be reached through a modular transformations denoted by the
shaded part of Figure 2. The modular group keeps τ on the upper half-plane. This can be seen
by considering the following transformations

T : τ → τ + 1 or T =

(
1 0
1 1

)
S : τ → −1

τ
or S =

(
0 1
−1 0

) (5.10)

These two (T ,S) generate the whole modular group and they satisfy [36]

(ST )3 = S2 = 1 (5.11)

3Characters are generating functions, χ(c, h), associated to a Verma module generated by the Virasoro
generators L−n acting on the highest weight state |h〉

4the representation space of all states created by acting on the highest weight state with the Virasoro
generator Ln

5We denote by |h〉 the highest weight state with eigenvalue h of L0: L0|h〉 = h|h〉
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Figure 2: fundamental domain

5.2.1 An example: Minimal Models - Modular transformations of the Characters

A Minimal model is a special conformal field theory whose spectrum is built from finitely many
irreducible representations of the Virasoro algebra. These models are usually parametrized by
two integers p, p′. The characters of minimal models with central charge [36]

c(p, p
′
) = 1− 6

(p− p′)2

pp′
(5.12)

can be written in the form

χr,s(τ) ≡ χλr,s(τ) = Kλr,s(τ)−Kλr,−s(τ) (5.13)

where
λr,s = pr − p′s λr,−s = pr + p

′
s (5.14)

the Kac indices (r, s) in the range

1 ≤ r ≤ p
′ − 1

1 ≤ s ≤ p− 1

p
′
s < pr

(5.15)

and

Kλ(τ) =
1

η(τ)

∑
n∈Z

q(Nn+λ)2/2N (5.16)

with
N = 2pp

′
(5.17)

and the Dedekind function given by (also in Appendix C)

η(τ) = q1/24

∞∏
n=1

(1− qn)

To do the modular transformations, starting with the T : τ → τ + 1 transformation we need
to use the T transformation of η given by

η(τ + 1) = eπi/12η(τ) (5.18)
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and the relation [36]
(Nn+ λ)2

2N
=

λ2

2N
mod 1 (5.19)

⇒

Kλ(τ + 1) =
1

η(τ + 1)

∑
n∈Z

q
(Nn+λ)2/2N
τ→τ+1

=
e−πi/12

η(τ)

∑
n∈Z

e2πi(τ+1)(Nn+λ)2/2N

= e−πi/12
∑

n∈Z
e2πi(Nn+λ)2/2Ne2πiτ(Nn+λ)2/2N

= e−πi/12
∑

n∈Z
e

2πi
(
λ2

2N

)
q(Nn+λ)2/2N

= e2πi( λ
2

2N
− 1

24
)
∑

n∈Z
q(Nn+λ)2/2N

Kλ(τ + 1) = e2πi( λ
2

2N
− 1

24
)Kλ(τ)

(5.20)

The following relation [36]
λ2
r,−s

2N
−
λ2
r,s

2N
= rs = 0 mod 1 (5.21)

makes it possible to write

Kλr,−s(τ + 1) = e2iπ(
λ2r,s
2N
− 1

24
)Kλr,−s(τ) (5.22)

Applying these results on the T transformation on the minimal characters is

χr,s(τ + 1) = e2iπ(
λ2r,s
2N
− 1

24
)χr,s(τ) (5.23)

We now turn to the S : τ → − 1
τ

transformation. For two relatively prime integers p and p
′

there is a unique pair (r0, s0) in the range (5.15) such that

pr0 − p
′
s0 = 1 (5.24)

known as the Bezout lemma. We also define

ω0 = pr0 + p
′
s0 mod N (5.25)

for which
ω2

0 = 1 mod 2N (5.26)

ω0 is the integer that is designed to generate the transformation s→ −s in λr,s

λr,−s = ω0λr,s mod N (5.27)

We then express the minimal characters as

χλ(τ) = Kλ(τ)−Kω0λ(τ) (5.28)

⇒
χλ = χλ+N = χ−λ = −χω0λ (5.29)

because of the following symmetries

Kλ+N = Kλ = K−λ (5.30)
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To show that the S transformation acts linearly on Kλ we need to make use of the Poisson
re-summation formula∑

n∈Z
exp(−πan2 + bn) =

1√
a

∑
k∈Z

exp−π
a

(k +
b

2πi
)2 (5.31)

Kλ(−
1

τ
) =

1√
−iτη(τ)

∑
n∈Z

exp

[
−2πi

τ

(Nn+ λ)2

2N

]
=

1√
−iτη(τ)

∫
R

dx
∑

k∈Z
exp 2πi

[
kx− N

2τ
(x+

λ

N
)2

]
=

1√
−iτη(τ)

∫
R

dx
∑

k∈Z
exp 2πi

[
τ

2N
k2 − kλ

N
− N

2τ
(x+

λ

N
− kτ

N
)2

]
=

1√
−iτη(τ)

∑
k∈Z

exp 2πi

(
τk2

2N

)∑
k∈Z

exp

(
−2πi

kλ

N

)
∑

k∈Z

∫
R

dx−
(
N

2τ
(x+ (

λ

N
− kτ

N
))2

)
= qk

2/2N
∑

k∈Z
exp

(
−2πi

kλ

N

)∑
k∈Z

∫
R

dx
∑

k∈Z
−
(
N

2τ
(x+ (

λ

N
− kτ

N
))2

)

(5.32)

where we have applied the re-summation formula from line 3 to line 4. We apply the re-
summation formula again with

a =
N

−iτ
b =

2π

−iτ
(λ− kτ)

and evaluating the integral yields

Kλ(−
1

τ
) =

1√
2Nη(τ)

∑
k∈Z

exp

(
−2πi

kλ

N

)
qk

2/2N (5.33)

Setting
k = µ+Nm m ∈ Z, µ ∈ [0, N − 1]

we have

Kλ(−
1

τ
) =

∑N−1

µ=0

1√
N
e2πiλµ/NKµ(τ) (5.34)

Therefore the minimal characters transform as

χλ(−
1

τ
) =

∑N−1

µ=0

1√
N
e2πiλµ/Nχµ(τ) (5.35)

It is worth noting though that the range of summation has been tampered with, the sum over
µ should be restricted to the fundamental domain. However, for our purposes, we have shown
how to perform modular transformations thus testing for modular invariance. Finding that the
modular transformed character can be expressed as a linear combination of the untransformed
characters. Which means that the partition function, as a particular sum of characters, stands
a chance of satisfying modular invariance.

5.3 Partition function and Cardy’s behaviour

In this subsection we review the main result of Cardy which is to show the modular invariance
of the 2D CFT partition function and use the S transformation in relating high and low
temperature behaviours where the saddle point calculation fails.
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We begin with a 2D CFT with the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0

[L̄m, L̄n] = (m− n)L̄m+n +
c

12
m(m2 − 1)δm+n,0

[Lm, L̄n] = 0

(5.36)

where c is the central charge. The partition function of a 2d CFT on a torus given by (5.6)
can be written as [37]

Z(τ, τ̄) =
∑

ρ(4, 4̄)e2πi4τe−2πi4̄τ̄ (5.37)

where ρ, for a unitary theory, is the number of states with L0 = 4, L̄0 = 4̄. Whereas for
a non-unitary theory ρ is the difference between the positive and negative-norm states with
appropriate eigenvalues.

If (τ, τ̄) are complex variables, and we set q = e2πiτ , q̄ = e2πiτ̄ and τ = τ1 + iτ2. We can
then write

ρ(4, 4̄) =
1

(2πi)2

∫
dq

q4+1

dq̄

q̄4+1
Z(q, q̄) (5.38)

this integral is evaluated at the contours that enclose (q, q̄) = 0. Cardy’s achievement has to
do with how we can handle Z(q, q̄); by writing a relationship between the behaviour of the
partition function at high temperatures and at low temperatures. To do so, Cardy needed the
result that the following quantity is modular invariant

Z(τ, τ̄) = e
πc
6
τ2Z0(τ, τ̄) (5.39)

where
Z0(τ, τ̄) = Tr

[
e2πi(L0− c

24
)τe−2πi(L̄0− c

24
)τ̄
]

We then use the modular invariance of Z0 to write Z(q, q̄) in a form suitable for a saddle point
approximation, suppressing τ̄ [38]

Z(τ) = e
πic
12 Z0(τ)

Z(τ) = e
πic
12 Z0

(
−1

τ

)
= e

πic
12
τe

πic
12

1
τZ

(
−1

τ

)
(5.40)

⇒
ρ(4) =

∫
dτ

{
e−2πi4τe

πic
12
τe

πic
12

1
τZ

(
−1

τ

)}
(5.41)

If we assume that Z
(
− 1
τ

)
varies slowly near the extremum of the phase as in [37]. We need to

divide the integrand into a rapidly varying phase and a slow one in order to use a saddle point
approximation. For 4→∞, the extremum of the exponent is

τ ≈ i

√
c

244
(5.42)

Substituting (5.42) into (5.41) yields the Cardy formula

ρ(4) ≈ exp

{
2π

√
c4
6

}
Z(i∞) (5.43)

where

Z(i∞) =

(
c

9643

)1/4

(5.44)
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The Cardy formula (5.43) is useful in computing the asymptotic density of states, which in
turn can be used to compute the entropy of a BTZ black hole [5]. Using the Brown-Henneaux
[4] central charge c = 3l/2G in the Cardy formula

ρ(4) ≈ exp

{
2π

√
3l4
12G

}(
3l

192G43

)1/4

(5.45)

Taking the logarithm (causing the Z(i∞) term to be very small) of the above expression, the
density of states, gives the entropy [6]

S = ln ρ(4) + ln ρ(4̄)

= 2π

(√
cL0

6
+

√
cL̄0

6

)

= 2π

(√
3l

12G

(r+ − r−)2

4Gl
+

√
3l

12G

(r+ + r−)2

4Gl

)

= 2π

(√
1

16G2

)
r+

=
2πr+

4G

(5.46)

where in line 2 we took the eigenvalues to be4 = 4L0 and used L0 = (r+−r−)2

16Gl
and L̄0 = (r++r−)2

16Gl

in line 3. Thus showing that (5.46) which emerges from relating low and high temperature be-
haviour via modular invariance matches the entropy found from 2+1 dimensions by computing
the area (Bekeinstein-Hawking) (3.40).

The above results show the importance of modular properties of the partition function in
the BTZ case. In section 4 we saw that the asymptotic symmetry of higher-spin gravity gives a
W algebra in a similar way that asymptotic symmetries of BTZ gives rise to a Virasoro algebra
[4]. Which in turn made it possible, because of known modular properties, to derive the Cardy
formula and thus get an expression for the entropy of a BTZ black hole [5]. Therefore, it is
expected that if we know the modular properties of higher spin partition functions then we can
reproduce Cardy’s argument and thus be able to compute entropies for higher spin black holes
for specific values of λ and thus understand black hole thermodynamics better. An interesting
question at this point is whether we can be able to generalise the SL(3, R) arguments which
gave rise to a W algebra to higher spin theories (perhaps of general λ).
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6 Higher spin black holes partition functions

Now that we have constructed black holes in SL(3, R) gravity, we confront the more challenging
task of repeating the same process in the three-dimensional Vasiliev theory containing an infinite
tower of higher spins s ≥ 2. Vasiliev theories are said [32] to be most likely to contribute
meaningfully in the business of relating higher spin gravity to string theory. In our case, what
is most useful in the Vasiliev framework is that its higher spin sector can be cast as two copies of
Chern-Simons theory with connections valued in the infinite Lie algebra hs[λ], a one parameter,
λ, family of higher spin algebras.

6.1 hs[λ] higher spin gravity

The hs[λ] theory contains two complex scalars with masses given by m2 = λ2−1 and an infinite
tower of higher spin fields [35]. For λ = 3 = N the Vasiliev theory described by the hs[λ] theory
can be truncated to two Chern-Simons when the complex scalar fields are set to zero. The hs[λ]
algebra is described by generators V s

m labelled by two integers: a spin s ≥ 2 and a mode index
|m| < s with the following commutation relations[

V s
m, V

t
n

]
=
∑s+t−|s−t|−1

u=2,4,6,···
gstu (m,n;λ)V s+t−u

m+n (6.1)

where g are structure constants given in Appendix B. The parameter λ is the label of inequiv-
alent algebras; g’s simplify to polynomials in λ2 when evaluated for integers (s,m) since they
feature via hypergeometric functions. From a mathematical perspective [39, 30], hs[λ] can be
defined as

B[µ] =
U ((SL(2, R))

〈C2 − µ1〉
(6.2)

where U = {1 + aiLi + aijLiLj + · · ·, a ∈ R, (i, j) ∈ Z+} is the universal enveloping
algebra, where products of generators are elements of the algebra. The triangle-like brackets
in the denominator are referred to as the ideal, all polynomials and generators multiplied by
C2 − µ1. C2 is the SL(2, R) Casimir, the element at the center of the algebra, i.e. commuting
with all elements of the algebra. In SL(2, R) the Casimir has the property

C2 < −
1

4
(6.3)

By convention we set (the mass of the complex scalars) [39, 30]

µ =
1

4
(λ2 − 1) (6.4)

for an sl(2, R) algebra with commutation relations (3.11) C2 is fixed as

C2 = (L0)2 − 1

2
(L1L−1 + L−1L1) =

1

4

(
λ2 − 1

)
(6.5)

The hs[λ] generators are constructed from the sl(2, R) generators as

V s
m = (−1)m+s−1 (m+ s− 1)!

(2s− 2)!

[
L−1, ...

[
L−1,

[
L−1, L

s−1
1

]]]
(6.6)

where the commutation relations are done s−1−m times. The hs[λ] algebra is generated upon
modding out by the ideal formed by (6.2) and dropping the identity element, defined to be V 1

0
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The hs[λ] algebra contain an SL(2, R) sub-algebra for s = 2, whilst the remaining generators
transform under the adjoint in the following way[

V 2
m, V

t
n

]
= (m(t− 1)− n)V t

m+n (6.7)

Unlike the SL(N,R) algebras, the hs[λ] algebra only has a single SL(2, R) sub-algebra; any
commutator of two generators each with spin s > 2 produces a generator with spin t > s, at
λ = N an ideal forms consisting of all generators V s

m with spin with s > N may decouple and
Tr(V s

mV
r
n ) = 0, thus

SL(N,R) ≈ hs[N ]

〈V s
m〉

, s > N (6.8)

In other words, SL(N,R) is recovered by modding out by this ideal. This means that SL(N,R)
gravity theories can be thought of as limiting cases of hs[λ] gravity. The radial dependency
which is suppressed in moving from A to a is now given by

b = eρV
2
0 (6.9)

When λ = 1
2
, it is said in [32] that hs[λ] is isomorphic to hs(1, 1) whose commutator can be

written as the antisymmetric part of the Moyal product. The commutation relations (6.1) can
be written as a star commutator[

V s
m, V

t
n

]
= V s

m ? V
t
n − V t

n ? V
s
m (6.10)

with the lone star product

V s
m ? V

t
n ≡

1

2

∑s+t−|s−t|−1

u=1,2,3,···
gstu (m,n;λ)V s+t−u

m+n (6.11)

We also need to define a bi-linear trace which picks out the identity element, V 1
0 , of any lone

star product
Tr(V s

m, V
t
n) ∝ gsts+t−1(m,n;λ)δstδm,−n (6.12)

with the structure constant explicitly given by

gss2s−1(m,−m;λ) = (−1)m
23−2sΓ(s+m)Γ(s−m)

(2s− 1)!!(2s− 3)!!

∏s−1

σ=1
(λ2 − σ2) (6.13)

It is worth noting that the trace naturally factors out the ideal when λ = N - this will come in
handy when computing black hole holonomies which easily compares to the SL(N,R) case. In
[33], the trace is normalized as

Tr(V s
mV

s
−m) =

12

λ2 − 1
gss2s−1(m,−m;λ) (6.14)

for s = 2, the SL(2, R) sub-algebra, the traces can be shown to be

Tr(V 2
1 V

2
−1) = −4, T r(V 2

0 V
2

0 ) = 2 (6.15)

One useful identity of the lone star product is the following result for products of the highest
weight SL(2, R) generator (

V 2
1

)s−1
= V s

s−1 (6.16)

The analogous conditions for asymptotic AdS in (4.5) to (4.6) of hs[λ] has been shown in
[7] to be the infinite-dimensional W -algebra, W∞. To show this we consider an hs[λ] valued
connection in highest-weight gauge

az = V 2
1 −

2π

k
L̄(z)V 2

−1 +
∑∞

s=3
J (s)(z)V s

1−s (6.17)

35

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



the J (s)(z) are spin-s currents. The W∞ is a non-linear algebra containing hs[λ] not as a proper
sub-algebra, but in the infinite central charge limit where the non-linear terms drop out. Hence
hs[λ] is known as the wedge sub-algebra of W∞. The hs[λ] generators can be identified as wedge
modes in the following way

J (s)
m = V s

m, |m| < s

provided we expand the currents in modes

J (s)
m =

∑
m

J
(s)
m

zm+s
(6.18)

In what follows we work with the flat connection a as given by (4.20) in constructing higher
spin black hole in hs[λ].

6.2 Constructing hs[λ] black holes

We follow the prescription in section 4.2. of constructing higher spin black holes, but now with
modifications to hs[λ]. In the hs[λ] theory, the BTZ black hole in particular gauge, known as
the ’wormhole gauge’ is described, following [32, 11] by

az = aBTZz + (higher spin charges) (6.19)

az̄ ∼ µs[(az)
s−1 − trace]

where µs is the spin-s chemical potential. Though the above connections are in the wormhole
gauge we know because of SL(3, R) that somewhere on the gauge orbit of the solution is a
solution with a manifest black hole metric. And we can see that at large ρ (ρ → ∞) for the
chemical potential term the leading part of (az)

s−1 carries the e(s−1)ρ dependence. This is so in
the hs[λ] case because of (6.6) (

V 2
1

)s−1
= V s

s−1

Just to recap, we had said in section (4.2) that to make the black hole solution smooth we
need to fix all charges in terms of the potential (µs, τ). This is achieved by considering Wilson
loops, since Chern-Simons is a topological theory, which are gauge invariant holonomies around
given cycles of a manifold; which in this case are the BTZ holonomy conditions given by the
contractible cycle of Euclidean time as in (4.36)

ω = 2π(τaz + τ̄ az̄) (6.20)

with the following condition on its eigenvalues, that they equal those of BTZ

Tr(ωn) = Tr(ωnBTZ), n = 2, 3, · · ·, rk(ω) (6.21)

The smooth black holes solution with spin-3 chemical potential is given by

az = V 2
1 +

1

4τ 2
V 2
−1 (6.22)

az̄ = 0

This would mean that the holonomy is given by

ωBTZ = 2πτ

(
V 2

1 +
1

4τ 2
V 2
−1

)
(6.23)
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Odd-n traces vanish because of the in-workings of the Moyal product. The first three even-n
traces are

Tr(ω2
BTZ) = −8π2

Tr(ω4) =
8π4

5

(
3λ2 − 7

)
(6.24)

Tr(ω6
BTZ) = −8π6

7
(3λ4 − 18λ2 + 31)

We consider the following ansatz for the higher spin black hole in the presence of a spin-3 field,
following (6.19)

az = V 2
1 −

2πL
k
V 2
−1 −N(λ)

πW
2k

V 3
−2 + J (6.25)

az̄ = −µN(λ)

(
az ? az −

2πL
3k

(λ2 − 1)

)
with

J = J (4)V 4
−3 + J (5)V 5

−4 + · · · (6.26)

where N(λ) is a normalization factor simplifying the comparison with the SL(3, R) case, given
by

N(λ) =

√
20

(λ2 − 4)
(6.27)

It is noted in [11] that truncating all spins s > 3 produces a solution with the same generator
normalizations and bi-linear traces as the spin-3 black hole (4.6) of the SL(3, R) theory. This
black hole is thought of as a saddle point contribution to the following partition function

Z(τ, α) = Tr
[
e4π2i(τL+αW)

]
(6.28)

where the potential is defined as
α = τ̄µ (6.29)

where τ as mentioned in section 3 is the modular parameter of the boundary torus, defined
through the following identifications

z ∼= z + 2πτ, z̄ = z̄ + 2πτ̄

These charges should, of-course, satisfy the integrability conditions

∂L
∂α

=
∂W
∂τ

(6.30)

The structure of this ansatz is such that az is the asymptotically AdS3 connection in the highest-
weight gauge. The az̄ is a traceless source term (containing the spin-3 chemical potential) that,
as noted in [11], deforms the ultra violet asymptotics by

az = µN(λ)V 3
2 + (subleading) (6.31)

Perhaps it is worth noting the divergences which occur in the hs[λ] construction of black holes.
First, there are an infinite number of holonomy equations (6.21). This is because we are fixing
smoothness at the event horizon of the black hole metric and an infinite tower of higher spin
fields. The number of non-zero higher spin charges J (s) of the infinite set of holonomy equations
would always occur in these solutions, demanding that they are always turned on. This can be
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seen from a W∞[λ] perspective as noted in [32, 11] by noting the higher spin charges appearing
in the WW OPE

W(z)W (0) ∼ · · ·+ µJ4(0)

z2
+ · · · (6.32)

Another way is by considering operator expectation values

〈J (s)〉α =
Tr
[
J (s)e4π2i(τL+αW)

]
Tr [e4π2i(τL+αW)]

(6.33)

A pertubative expansion in α of (6.33) is given as [11]

L = L0 + α2L2 + · · ·

W = αW1 + α3W3 + · · · (6.34)

J (s) = αs−2J
(s)
s−2 + αsJ (s)

s + · · ·

6.3 Black hole partition function

The holonomy matrix for the W∞ black hole ansatz (6.25) is

ω = 2π

[
τaz + αN(λ)

(
az ? az −

2πL
3k

(
λ2 − 1

))]
(6.35)

The holonomy constraints were given to be (6.21)

Tr (ωn) = Tr (ωnBTZ) (6.36)

Upon using the pertubative expansions (6.34), the holonomy equations up to n = 4 are given
to be the following in [11]
n = 2 :

0 = α2J4(144k2(λ2 − 9))− 1792π2α2L2 − 504πατkW − 168πτ 2kL − 21k2

n = 3 :

0 = αJ4(36k2(λ2 − 4)(λ2 − 9)[80πα2L(λ2 − 16) + 9kτ 2(λ2 − 4)])

− 40α3π2[45W2k(5λ4 − 65λ2 + 264) + 256L3π(λ2 − 4)(λ2 − 16)]

− 4320α2WLπ2τk(λ2 − 4)(4λ2 − 29)

− 4032αL2π2τ 2k(λ2 − 4)2

− 189Wπτ 3k2(λ2 − 4)2

n = 4 :

0 = α4J2
4 (57600k4(λ2 − 4)(λ2 − 9)[35λ6 − 1330λ4 + 21707λ2 − 134748])

− J4(624k2(λ2 − 4)(λ2 − 9)[12800α4L2π2(7λ4 − 199λ2 + 1788)

+ 8400α3Wπτk(5λ4 − 95λ2 + 636)

+ 23760α2Wπτ 2k(λ2 − 4)(λ2 − 11) + 99τ 4k2(λ2 − 4)2])

+ 665600α4Lπ3[75W2k(λ2 − 9)(5λ4 − 95λ2 + 636)

+ 352L3π(λ2 − 4)(λ4 − 17λ2 + 100)]

+ 131788800α3WL3π3τk(λ2 − 4)[3λ4 − 51λ2 + 244]

+ 137280α2π2τ 2k(λ2 − 4)[64L3π(λ2 − 4)(11λ2 − 71)

+ 45W2k(5λ4 − 65λ2 + 264)]

+ 823680αWLπ2τ 3k2(λ2 − 4)2[23λ2 − 123]

− 9009k2(3λ2 − 7)(λ2 − 4)(k + 8πLτ 2)(k − 8πLτ 2)

(6.37)
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These holonomy results which show the J4 dependence have been reproduced and shown in
Appendix C. The exact match can only be seen, however, after simplification. The charges
through O(α8) which are recovered from (6.34) are given by

L = − k

8πτ 2
+

5k

6πτ 6
α2 − 50k

3πτ 10

λ2 − 7

λ2 − 4
α4 +

2600k

27πτ 14

5λ4 − 85λ2 + 377

(λ2 − 4)2
α6

− 68000k

81πτ 18

20λ6 − 600λ4 + 6387λ2 − 23357

(λ2 − 4)3
α8 + · · ·

W = − k

3πτ 5
α +

200k

27πτ 9

λ2 − 7

λ2 − 4
α3 − 400k

9πτ 13

5λ4 − 85λ2 + 377

(λ2 − 4)2
α5

+
32000k

81πτ 17

20λ6 − 600λ4 + 6387λ2 − 23357

(λ2 − 4)3
α8 + · · ·

J (4) =
35

9τ 8

1

λ2 − 4
α2 − 700

9τ 12

2λ2 − 21

(λ2 − 4)2
α4 +

2800

9τ 16

20λ4 − 480λ2 + 3189

(λ2 − 4)3
α6 + · · ·

(6.38)

These charges satisfy the integrability condition and integrating either W or L we get the
holomorphic part of the black hole partition function

lnZ(τ, α) =
πik

2τ

[
1− 4

3

α2

τ 4
+

400

27

λ2 − 7

λ2 − 4

α4

τ 8
− 1600

27

5λ4 − 85λ2 + 377

(λ2 − 4)2

α6

τ 12

+
32000

81

20λ6 − 600λ4 + 6387λ2 − 23357

(λ2 − 4)3

α8

τ 16
+ · · ·

(6.39)

This is the partition function of a black hole with a higher spin-3 field. The entropy including
the spin-3 field and charge is given by

S = lnZ(τ, α)− 4π2(τL+ αW − τ̄ L̄ − ᾱW̄) (6.40)

At O(α0) the entropy is the Bekenstein-Hawking entropy

S =
A

4G

there is no understood geometric interpretation as yet for large α.

6.4 Matching to CFT

For specific values of λ = 0, 1 the partition function has a dual CFT theory that admits a free
field description. For these values, the partition function is given by

λ = 1 : lnZ(τ, α) =
πik

2τ
− 2πik

3

α2

τ 5
+

400πik

27

α4

τ 9
− 8800πik

9

α6

τ 13
+

10400000πik

81

α8

τ 17
+ · · ·

λ = 0 : lnZ(τ, α) =
πik

2τ
− 2πik

3

α2

τ 5
+

350πik

27

α4

τ 9
− 18850πik

27

α6

τ 13
+

5839250πik

81

α8

τ 17
+ · · ·

(6.41)
focusing only on the holomorphic part, but the structure also holds for the non-holomorphic
part of the partition function. Perhaps now its a good time to say something about W-algebras.
The WN algebra has currents with spin s = 2, 3, · · ·, N such that W2 is the Virasoro algebra.
TheW∞ algebra has currents of spins s = 2, 3, · · ·,∞ while theW1+∞ has currents of spinW∞
plus a spin s = 1 current as suggested by the notation. There are more as discussed in [40].
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6.4.1 Free bosons (λ = 1)

For λ = 1 the higher spin theory compares to a CFT of D free complex bosons with W∞[1]
global symmetry [30, 40] with central charge c = 2D. The interactions between free complex
bosons, the OPE is given by [22]

∂φ̄i(z1)∂φj(z2) ∼ −
δij

(z1 − z2)2
(6.42)

where (i, j) = 1, 2, · · ·, D. The stress tensor and the spin-3 current for free complex bosons are
given by [30]

T = −∂φ̄i∂φi
W = ia

(
∂2φ̄i∂φi − ∂φ̄i∂2φi

) (6.43)

where a is a normalization factor and W is a Virasoro primary field to match with the spin-3
current in our bulk theory. We compute the leading part of the WW OPE to fix the normal-
ization factor, a

W(z)W(0) ∼ −4a2D

z6
+ · · · (6.44)

We know from (4.10) that our standard normalization is

W(z)W(0) ∼ − 5k

π2z6
(6.45)

⇒

a =

√
5k

4π2d
(6.46)

we can write D in terms of k or vice-versa using D = 3k and the Brown-Henneaux central
charge, c = 3l

2G
. We then have for a

a =

√
5

12π2
(6.47)

The mode expansions of our fields φ are given by

∂φ(w) = −
∑

m
βme

imw ∂φ̄(w) = −
∑

m
β̄me

imw (6.48)

obeying the following commutation relations

[β̄m, βn] = mδm,−n = [βm, β̄n] (6.49)

The normal ordered stress tensor is given by [22]

T = −
∑(

β̄−mβm + β−mβ̄m
)

+
k

4
+ nonconstant (6.50)

What is important for our purposes, however, is the zero mode of this stress tensor since it is
the quantity appearing in our partition function. The non-constant terms are, therefore, not
relevant. Following [11] we drop the ground state term, k

4
is also dropped since it does not

contribute in the high temperature expansion that is studied in [11]. The quantity L is given
in terms of the constant part of the stress tensor as

L = − 1

2π
T (6.51)

→
L =

1

2π

∑∞

m=1

(
β̄−mβm + β−mβ̄m

)
(6.52)
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and the modes of the spin-3 current after normal ordering is

W = 2a
∑∞

m=1
m2
(
β̄−mβm − β−mβ̄m

)
(6.53)

Defining a state of the form

|nm, n̄m〉 = (β−m)nm(β̄−m)n̄m |0〉 (6.54)

obeying, as in [11]

L =
1

2π
m(n̄m + nm)|nm, n̄m〉

W|nm, n̄m〉 = 2am2(n̄m − nm)|nm, n̄m〉
(6.55)

we can, therefore, easily compute the partition function

Z(τ, α) = Tr
[
e4π2i(τL+αW)

]
(6.56)

which can be given by

lnZ(τ, α) = −D
∑∞

m=1

[
ln
(

1− e2πiτm−8π2iaαm2
)

+ ln
(

1− e2πiτm+8π2iaαm2
)]

(6.57)

For high temperature considerations, τ → 0, the partition function using D = 3k and x =
−2πiτm is

lnZ(τ, α) = − 3ik

2πτ

∫ ∞
0

dx
[
ln
(

1− e−x+ 2iaα
τ2

x2
)

+ ln
(

1− e−x−
2iaα
τ2

x2
)]

(6.58)

We use the identity [13]

∂

∂α
ln
[(

1− εe−x+ 2iaα
τ2

x2
)

+ ln
(

1− εe−x−
2iaα
τ2

x2
)]

= 4a
∑∞

p=1
e−pxx2 sin(2apαx2)εp (6.59)

Setting ε to unity we get

∑∞

p=1
e−pxx2 sin

(
2apαx2

)
=
∑∞

p=1

∑∞

n=0
(−1)n e−pxx2 (2apαx2)

2n+1

(2n+ 1)!

=
∑∞

p=1

∑∞

n=0
(−1)n e−pxx4n+4 (2apα)2n+1

(2n+ 1)!

(6.60)

We need the following result [13]∫ ∞
0

e−pxx4n+4dx = p−4n−5Γ (4n+ 5) (6.61)

using the Hurwitz function, for the p summation, given by

∞∑
p=1

1

p2n+4
= ζ(2n+ 4) (6.62)

at positive integers the Hurwitz function can be written as

ζ(2n) = (−1)n−122n−1π2n B2n

(2n)!
(6.63)
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where Bn are Bernoulli numbers. Integrating in α [13] recovers

lnZ(τ, α) =
πik

2τ
− 2πik

3

α2

τ 5
+

400πik

27

α4

τ 9
− 8800πik

9

α6

τ 13
+

10400000πik

81

α8

τ 17
+ · · · (6.64)

showing agreement with (6.41), the bulk results. In [13], a closed formula for the generic term
of the pertubative expansion of the CFT partition function for λ = 1 with τ set to 1 is derived
to be

lnZ(1, α) =
6πi√
π

∑∞

0

B2n+2Γ
(
2n+ 1

2

)
(2n+ 2)!

(
320

3

)n
α2n (6.65)

where B2n are Bernoulli numbers given by the series [46]

N − 1 =
∑N−1

n=1
B2n

(
2n
2

)
(6.66)

For λ = 1 as can be easily checked, (6.65) gives (6.41). It is also noted in [13] that for small α
expansion, the partition function (6.64) can be written in terms of the Hurwitz function, ζ as

lnZ(1, α) = πi

− 3

40α2
+

3

4

√
3

5

1

α
− 3
√

2

√√
3

5
ζ

(
−1

2
,

1

8α

√
3

5

)
1√
α

 (6.67)

with

ζ(a, s) =
∑∞

n=0

1

(a+ n)s
(6.68)

The motivation of reproducing these closed forms is with the intention of using them to check
modular properties of partition functions which depend on the modular parameter, which has
been set to 1 in (6.67).

6.4.2 Free fermions (λ = 0)

For λ = 0 the higher spin theory we dealing with compares to a CFT of D free complex
fermions with W1+∞ symmetry and central charge c = D [46]. We have already mentioned the
relatedness of W1+∞ with W∞[1]. To proceed as in 6.41 we use a chemical potential to require
that the spin-1 current is set to zero in the partition function. The fermions have the following
OPE

ψ̄i(z1)ψj(z2) ∼
δij

z1 − z2

(6.69)

and the stress tensor

T = −1

2
ψ̄i∂ψi −

1

2
ψi∂ψ̄

i (6.70)

In [46] the spin-3 current, up to a normalization constant b is given by

W = ib
(
∂2ψ̄iψi − 4∂ψ̄i∂ψi + ψ̄i∂2ψi

)
(6.71)

The T W OPE contains a term which scales like J/z4, J being the spin-1 current. We, therefore
set this spin-1 current J to zero forcing W to be primary so that we can compare with results
in our bulk theory. The leading part of the WW OPE is

W(z)W(0) ∼ −24Db2

z6
+ · · · (6.72)

Our standard normalization from (4.10) is given by

W(z)W(0) ∼ − 5k

π2z6
(6.73)
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using c = 6k = D ⇒

b =

√
5

144π2
(6.74)

Proceeding as in 6.41, using the fermionic mode expansions, stress tensor, the spin-3 current
as given in [11] and the spin-1 charge operator given by

Q ∼
∫
ψ̄ψ (6.75)

Defined to be [11]
Q|nm, n̄m〉 = (n̄m − nm) |nm, n̄m〉 (6.76)

For high temperature considerations we impose Q = 0 as an exact condition on states. We do
this by incorporating a chemical potential for Q in our partition function

Z(τ, α, γ) = Tr
[
e4π2i[τL+αW]+iγQ

]
(6.77)

⇒

lnZ(τ, α, γ) = D
∑∞

m=1

[
ln
(

1 + e(2πiτm−24π2ibαm2+iγ)
)

+ ln
(

1 + e(2πiτm+24π2ibαm2−iγ)
)]
(6.78)

using D = 6k and x = −2πiτm and converting the sum to an integral we get

lnZ(τ, α, γ) =
3ik

πτ

∫ ∞
0

[
ln
(

1 + e−x+ 6ibα
τ2

x2+iγ
)

+ ln
(

1 + e−x−
6ibα
τ2
−iγ
)]

(6.79)

In [11] pertubative approaches are employed in solving (6.79), producing

lnZ(τ, α) =
πik

2τ
− 2πik

3

α2

τ 5
+

350πik

27

α4

τ 9
− 18850πik

27

α6

τ 13
+

5839250πik

81

α8

τ 17
+ · · ·. (6.80)

matching with the bulk results (6.41)

6.4.3 Other values of λ, (λ =∞)

The partition function (6.39) for λ → ∞, the limit where all higher spin charges have been
switched on takes the form

lnZ(τ, α) =
πik

2τ

(
1− 4

3
ς2 +

400

27
ς4 − 8000

27
ς6 +

640000

81
ς8 + · · ·

)
(6.81)

with
ς =

α

τ 2
(6.82)

It turns out that (6.81) can be written in the following form

lnZ(τ, α) =
12πik

τ

∑∞

0
(−1)p

(
20

3

)p
Γ(4p)

Γ(p)Γ(3p+ 4)
ς2p (6.83)

where the p = 0 term is evaluated with Γ(4p)
Γ(p)

→ 1
4
. Writing out the Γ functions in full, the

pochammer symbols are evident and the infinite series can be written as a closed expression
using hypergeometric function as

lnZ(τ, α) =
3πiτ

160α

1

ς

[
3F2

(
−3

4
, −1

2
, −1

4
1
3
, 2

3

∣∣∣∣−5120

81
ς2

)
− 1

]
(6.84)

It is worth noting that it is only for λ → ∞ where we can write the partition function as a
hypergeometric function. This is due to the holonomy constraints which are algebraic at λ = N
[13].
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6.5 Higher Spin corrections to CFT thermodynamics

Following [47], we consider the partition function from the CFT side

Z(τ̂ , α) = Tr
(
q̂L0− c

24yW0

)
(6.85)

where q̂ = exp 2πiτ̂ , y = exp 2πiα and the shift L0 → L0 − c
24

. The spin-3 current is given by
the zero mode of the spin-3 generator of W∞[λ]

W =
1

2π
W0.

The modular parameter τ̂ is related to the temperature of the black hole β and angular mo-
mentum ΩH by

τ̂ =
i

2πβ
(1 + ΩH) (6.86)

such that τ̂ → 0 (q → 0) is the high temperature limit, since the S transformation is

τ = −1

τ̂
, q = exp 2πiτ

Expanding (6.85) in α yields, up to order O(α6)

Z (τ̂ , α) ≈ Tr
(
q̂L0− c

24

)
+

(2πiα)2

2!
Tr
(
(W0)4q̂L0− c

24

)
+

(2πiα)4

4!
Tr
(
(W0)4q̂L0− c

24

)
+

(2πiα)6

6!
Tr
(
(W0)6q̂L0− c

24

) (6.87)

Using the method of obtaining a partition function from a dual conformal field theory, by taking
the S transformation in the high temperature regime. We find for the vacuum contribution
(L0 = 0) of the first term of (6.87)

Tr
(
q̂L0− c

24

)
=
∑
s,r

SsrTrr
(
qL0− c

24

)
∼

(∑
s

Ss0

)
q−

c
24 + · · · (6.88)

Ssr is the modular S-matrix; the terms which are exponentially suppressed at high temperature
are indicated by the dots.
Taking the logarithm of (6.88) gives the leading behaviour

lnTr
(
q̂L0− c

24

)
= −πik

2
τ + · · · (6.89)

which matches exactly with the first term, the α independent term in (6.39). In the follow-
ing section we will follow this method in investigating the leading behaviour of our partition
function. In [47] a zero mode of a dimension-1 current is considered, with the modular trans-
formation of its exponential described by a Jacobi form [47]

φr

(
aτ + b

cτ + d
,

z

cτ + d

)
=
∑
s

exp

{
2πik

cz2

cτ + d

}
Mrsφs(τ, z) (6.90)

Where Mrs is the representation of the modular group. We have assumed that the CFT at our
disposal is rational with a U(1) current Jn, we define the trace in the representation r

φr(τ, z) = Trr
(
yJ0qL0− c

24

)
. (6.91)
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And the level k given by the commutator

[Jm, Jn] = 2kmδm,−n (6.92)

In [47] the modular properties of the partition function order by order in insertions of higher
spin zero modes were computed for the partition function (6.85). For the full partition function
we might expect something like (6.90) which is relevant for CFT’s with dimension 1 currents.
To understand this better, in the following section we try to look in detail at how the higher spin
partition functions (6.41) can be related to a new class of generalised Jacobi forms introduced
in Kaneko-Zagier [48], which might eventually lead to formulas similar to (6.90).
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7 hs[λ] modular properties

In this section we investigate the modular properties of the partition function (6.39). We
follow section 5.2., testing the S : τ → − 1

τ
modular transformation. The challenge we face,

however, is that we do not have (at the time of writing, maybe in future) a compact form of the
partition function (6.39); which would make it neat to check modular invariance or specifically,
the modular properties. We check modular properties for the values for which we have closed
forms. Following which we check the modular properties of the first few terms of (6.39). We
also make use of the transformation of the modular and generalized-Jacobi forms as given by
Kaneko and Zagier [48].

7.1 Modular forms

A modular form, of weight k, on a subgroup Γ of finite index of Γ1 is a holomorphic function
f on H such that

Z

(
aτ + b

cτ + d

)
= (cτ + d)kZ(τ) ∀τ ∈ H,

(
a b
c d

)
∈ Γ (7.1)

where H = {τ ∈ C|=(τ) > 0} is the complex upper half-plane. We also set q = e2πiτ and
Y = 4π=(τ). For (7.1) to be considered a modular form we have to add the condition that f
must grow polynomially in 1

Y
as y → 0.

The space of all holomorphic modular forms of weight k on Γ is denoted by Mk(Γ). The graded
ring6 ⊕kMk(Γ) (see Appendix C), is denoted by M∗(Γ). Following [48] we also define an almost
holomorphic modular form F (τ) of weight k, F (τ) which satisfies the same transformation
properties and growth conditions as Z but have the form

F (τ) =
M∑
m=0

Zm(τ)Y −m (7.2)

where 0 ≤M ≤ k
2

is some integer. The space of all almost holomorphic modular forms of weight

k is denoted by M̂k(Γ), whilst Z0(τ) which is a constant term with respect to 1
Y

of f is known as

a quasi-modular form of weight k. The space of all quasi-modular forms is denoted by M̃k(Γ).
It is noted in [48] that the spaces M̂?(Γ) = ⊕M̂k(Γ) and M̃?(Γ) = ⊕M̃h(Γ) are graded rings
and the map M̂?(Γ)→ M̃?(Γ) is a homomorphism [48]. For example, the following function is
a modular form of weight k [48]

Gk = −Bk

2k
+
∞∑
n=1

∑
d|n

dk−1

 qn (k = 2, 4, 6..., Bk = kth Bernoulli number) (7.3)

whereas G2(τ) transforms as

G2(
aτ + b

cτ + d
) = (cτ + d)2G2(τ)− c(cτ + d)

4πi
∀τ ∈ H (7.4)

Meaning that G2(τ) is quasi-modular. We now turn our attention to Jacobi forms and quasi-
Jacobi forms as proposed in [48]

6A graded ring is a ring (a set equipped with addition and multiplication) M with a set of subgroups ⊕kMk,
k ≥ 0 such that:

1. ⊕kMk forms an Abelian group

2. x · y ∈Mk+l∀x ∈Mk,∀y ∈Ml
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7.1.1 Jacobi forms

A Jacobi form [50] on Γ is a holomorphic function φ of two variables τ ∈ H and z ∈ C satisfying,
among other properties, the modular transformation property with respect to

(τ, z) 7→
(
aτ + b

cτ + d
,

z

cτ + d

)
∀
(
a b
c d

)
∈ Γ

φ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)h exp

(
2πimcz2

cτ + d

)
φ(τ, z)

(7.5)

where h is the weight and m the index of the Jacobi form φ. Related to the concept of
Jacobi forms is a concept of quasi-Jacobi forms [48], which are forms that exhibit Jacobi forms
properties in a modified form

Z(
aτ + b

cτ + d
,

z

cτ + d
) = (cτ + d)k

∑
i≤s,j≤t

Si,jZ(τ, z)

(
cz

cτ + d

)i(
c

cτ + d

)j
(7.6)

Following [48], a generalized classical Jacobi theta function, the analogue of our partition func-
tion (6.39) is given by

Θ(X, q, ζ) =
∏
n>0

(1− qn)
∏

n(odd)>0

(1− en2X/8qn/2ζ)(1− e−n2X/8qn/2ζ−1) (7.7)

Where we define
w = eX ζ = eZ (7.8)

and denote by Γ2 the group of matrices in (7.1) ∈ Γ1 with b even. We also introduce θ(τ)

θ4(τ) =
∑
r

(−1)rqr
2/2 (7.9)

a modular form of weight 1
2

on Γ2. The function Θ(X, τ, Z) has an expansion of the form

Θ(X, τ, Z) = θ4(τ)
∑
j,l≥0

Hj,l(τ)
Xj

j!

Z l

l!
(7.10)

where H0,0(τ) = 1 and each Hj,l(τ) is a quasi-modular form of weight 3j + l on Γ2. If we set

H(w, q, ζ) = q−1/24
∏

n(odd)>0

(1− wn2/8qn/2ζ)(1− w−n2/8qn/2ζ−1) (7.11)

H0(w, q) is the coefficient of ζ0 in H(w, q, ζ) as a Laurent series in ζ. The function H(w, q, ζ)
has the expansion [48]

H(w, q, ζ) =
∑
r∈Z

(−1)rH0(w,wrq)wr
3/6qr

2/6ζr. (7.12)

H0 is given by

H0(α, τ) =
∞∑
n=0

An(τ)

η(τ)
α2n (7.13)

with An a quasi-modular form of weight k = 6n [48].

We now turn to computing modular properties of the partition function at λ = 0, 1 against
the backdrop of these Jacobi (quasi) forms.
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7.2 Partition function modular properties

In this section we compute the modular properties (S transformation) of the partition function
at values of λ for which a CFT match has been computed in 6.4.

7.2.1 λ = 0

We check the standard free-fermion calculation. Starting with

Z =

[
∞∏
m=1

(
1 + e2πiτm−24π2ibαm2+iγ

)(
1 + e−2πiτm+24π2ibαm2−iγ

)]6k

(7.14)

Take α = 0, this also means that γ = 0

Z =

[
∞∏
m=1

(1 + qm)(1 + qm)

]6k

=

[
∞∏
m=1

(1 + qm)2

]6k

(7.15)

The expression in the r.h.s is given by [36]

∞∏
m=0

(1 + qm) =

√
θ2(τ)

η(τ)
(7.16)

Z =

[
∞∏
m=1

(1 + qm)

]12k

=

[
1

2

√
θ2(τ)

η(τ)

]12k

=
1

212k

(
θ2(τ)

η(τ)

) (7.17)

We now check if this partition function (7.17) gives the correct high temperature behaviour,
τ → 0 (τ̂ = −1/τ → i∞)7

Z(−1/τ̂) =
1

212k

(
θ2(−1/τ̂)

η(−1/τ̂)

)6k

=
1

212k

(√
−iτ̂√
−iτ̂

θ4(τ̂)

η(τ̂)

)
∼
(
θ4(τ̂)

η(τ̂)

)6k
(7.18)

Using the following relation of θ4(τ̂) (proof in Appendix C)

θ4(τ̂) =
η(τ̂ /2)2

η(τ̂)
(7.19)

Yielding for Z

Z ∼
(
η(τ̂ /2)

η(τ̂)

)12k

=

(
ˆq1/48

ˆq1/24

)12k

= (q̂−1/48)12k = e−
πiτ̂k
2 = e

πik
2τ

(7.20)

7To get to low temperature behaviour we need to account for the vacuum contribution of q−k/4 which has
been suppressed above
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Showing that Z(τ) → e
πik
2τ as τ → 0, which agrees with the first term of (6.41). Now as a

second check, we wish to relate (6.78)

lnZ(τ, α, γ) = D
∑∞

m=1

[
ln
(

1 + e(2πiτm−24π2ibαm2+iγ)
)

+ ln
(

1 + e(2πiτm+24π2ibαm2−iγ)
)]

to H(w, q, ζ) (7.10)

H(w, q, ζ) =
∑
r∈Z

(−1)rH0(w,wrq)wr
3/6qr

2/6ζr

We set
q = e2πiτ , w = e8·24πi2bα, ζ = −e−iγ (7.21)

This means that we have

lnZ(α, τ, γ) = D
∑∞

m=1

[
ln
(

1 + e(2πiτm−24π2ibαm2+iγ)
)

+ ln
(

1 + e(2πiτm+24π2ibαm2−iγ)
)]

= D

∞∑
m=1

[
ln(1− qmwm2/8ζ) + ln(1− qmw−m2/8ζ−1)

]
= D

∞∑
m=1

[
ln
(

(1− qmwm2/8ζ)(1− qmw−m2/8ζ−1)
)]

= D

[
ln
∞∏
m=1

(
(1− qmwm2/8ζ)(1− qmw−m2/8ζ−1)

)]

= D ln
∞∏

modd>0

(
(1− qmwm2/8ζ)(1− qmw−m2/8ζ−1)

)
∞∏

meven>0

(
(1− qmwm2/8ζ)(1− qm/2w−m2/8ζ−1)

)
(7.22)

lnZ(α, τ, γ) = D ln
∞∏

modd>0

(
(1− qmwm2/8ζ)(1− qmw−m2/8ζ−1)

)
∞∏

modd>0

(
(1− qm+1w(m+1)2/4ζ)(1− qm+1w−(m+1)2/4ζ−1)

) (7.23)

But we can write [48]∏
m(odd)=1

(1− w−(m+1)2/8qm+1ζ−1) =
∏
m=3

(1− w−(m−1)2/8qm−1ζ−1)

=
∏

m(odd)=1

(1− w−(m−1)2/8qm+1ζ−1)

(1− w0q0ζ−1)

(7.24)

lnZ(α, τ, γ) = D ln
∞∏

modd>0

(
(1− wm2/8qmζ)(1− qmw−m2/8ζ−1)

)
∞∏

modd>0

(
(1− wm2/8(wm/4qm)(w1/8qζ)

)(
1− w−m2/8(wm/4qm)(w−1/8q−1ζ−1)

)
×
(

1

1− ζ−1

)
(7.25)
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Therefore Z is given by

Z(α, τ, γ) =

[
H(w, q2, ζ) ·H(w,w1/2q2, w1/8qζ) · (q1/2(w1/2q2)1/24)×

(
1

1− ζ−1

)]D
Z(α, τ, γ) =

[
q1/6w1/48

(1− ζ−1)
H(w, q2, ζ) ·H(w,w1/2q2, w1/8qζ)

]D (7.26)

What we have done in the above equation, is to relate the λ = 0 partition function to the
Kaneko-Zagier generalized-Jacobi forms, which implies that a better understanding of the mod-
ular properties of these forms will help us also understand the physics of higher spin black holes
at least at λ = 0. H is given by [48]

H(α, τ, γ) =
θ(τ)

η(τ)

∑
m,n≥0

Hm,n(τ)
αm

m!

γn

n!

=
θ(τ)

η(τ)
(H0,0(τ) +H1,0(τ)α +H0,1(τ)γ + · · ·)

(7.27)

γ (ζ) is only known in a high temperature expansion, which would at least mean that the (7.26)
is non-singular. Since, as a first step, we are interested in the α = 0 term, i.e. w = 1 and
ζ = −1, we therefore reconsider the fermionic partition function with these values. For D = 6k
we have (7.15)

Z =

[
∞∏
m=1

(1 + qm)(1 + qm)

]6k

(7.28)

We introduce ζ to bring it to the form of the H functions of [48], later we let ζ → −1.

Z =

 ∞∏
m(odd)=1

(1− qmζ)(1− qmζ−1)
∞∏

m(even)=2

(1− qmζ)(1− qmζ−1)

6k

(7.29)

We use θ1(z|τ) and θ4(z|τ) of [36]

θ1(z|τ) = −iζ1/2q1/8

∞∏
n=1

(1− qn)
∞∏
n=0

(1− ζqn+1)(1− ζ−1qn)

= −iζ1/2q1/8q−1/24η(τ)
∞∏
n=0

(1− ζqn+1)(1− ζqn)

θ4(z|τ) =
∞∏
n=1

(1− qn)
∞∏
r∈Z

(1− ζqr)(1− ζ−1qr)

= q−1/24η(τ)
∞∏

n(odd)=1

(1− qn/2ζ)(1− qn/2ζ−1)

(7.30)

Substituting the θ’s we get for Z

Z =

[
q−1/6

(1− ζ−1)

1

η(2τ)2

θ4(z|2τ)θ1(z|2τ)

η(2τ)2

]6k

(7.31)

In agreement with (7.26). To see this we take w = 1 in (7.26)

Z =

[
q1/6w1/48

(1− ζ−1)
H(w, q2, ζ)H(w,w1/2q2, w1/8qζ)

]6k

=

[
q1/6

(1− ζ−1)
H(1, q2, ζ)H(1, q2, qζ)

]6k
(7.32)
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Using (7.12)

H(1, q, ζ) =
θ4(z|τ)

η(τ)
(7.33)

Which means

Z =

[
q1/6

(1− ζ−1)

1

η(τ)2
θ4(z|2τ)θ4(z + τ |2τ)

]6k

(7.34)

where ζq = e2πi(z+τ). In Appendix C, (C.3) gives the following relation

θ4(z +
τ

2
|2τ) = iζ−1/2q−1/8θ1(z|τ) (7.35)

Setting τ ′ = 2τ

θ4(z +
τ ′

2
|τ ′) = iζ−1/2(q′)−1/2θ1(z|τ ′) = iζ−1/2q−1/4θ1(z|2τ) (7.36)

Which gives

Z =

[
i
q−1/12ζ−1/2

η(τ)2

1

(1− ζ−1)
θ4(z|2τ)θ1(z|2τ)

]6k

(7.37)

Now we check the modular properties, S transformation of (7.37). We have for θ4 and θ1

θ4

(z
τ
, e−

iπ
τ

)
=

√
τ√
i
e
πiz2

τ θ2

(
z, eπiτ

)
θ1

(z
τ
, e
−πi
τ

)
= −i

(
e−

πi
τ

)√
−πie

πiz2

τ
+ πi

4τ θ1(z, eπiτ )

(7.38)

Starting with Z(ẑ, τ̂), with ẑ = 1
2

since we want, at the end, to take ζ̂ → −1. For high
temperature considerations, τ̂ → 0

θ4(ẑ|2τ̂) = θ4

(
ẑ, e2πiτ̂

)
= θ4

(
ẑ, e−

πi
τ ′
)

(7.39)

Defining ẑ = z′

τ ′
we get

θ4(ẑ|2τ̂) = θ4

(
z′

τ ′
, e−

πi
τ ′

)
θ4 (ẑ|2τ̂) = θ4

(
z′

τ ′
, e−

πi
τ ′

)
=

√
τ ′

i
e
πiz′2
τ ′ θ2

(
z′, eπiτ

′
)

=
√
−iτ/2e

πiτ
8 θ2(ẑτ ′, eπiτ

′
) =

√
−iτ

2
e
πiτ
8 eπiẑ

2 τ
2 θ2

(
ẑ
τ

2
, eπi

τ
2

)
=

√
−iτ

2
e
πiτ
8 θ2

(τ
4
, e

πiτ
2

)
(7.40)

where in the second line we used ẑ = z′

τ ′
and substituted ẑ = 1/2 in the last line. The product

expansion

θ2(z|τ) = ζ1/2q1/8

∞∏
n=1

(1− qn)
∞∏
n=0

(1 + ζqn+1)(1 + ζ−1qn) (7.41)

As we take τ → i∞, q → 0, meaning θ2 → ζ1/2q1/8(1 + ζ−1q0). This means

θ4(ẑ|2τ̂)→
√
−iτ

2
e
πiτ
8 θ2

(τ
4
, e

πiτ
2

)
=

√
−iτ

2
e
πiτ
8

(
e2πi τ

4

)1/2
(
e

2πi
8

)1/2 (
1 + e−

2πiτ
4

)
=

√
−iτ

2
· 1

(7.42)
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where in the second line we drop 1 in the last term of the product due to the largeness of
the exponential term when τ → i∞. Meaning that for high temperature behaviour we have

θ4(ẑ|2τ̂)→
√
− iτ

2
.

Similarly, we look at the high temperature behaviour of θ1(ẑ|2τ̂)

θ1(ẑ|2τ̂) = θ1

(
ẑ, e−

πi
τ ′
)

= θ1

(
ẑ′

τ ′
, e−

πi
τ ′

)
= −i

4
√
e−

πi
τ ′
√
−iτ ′e

πi(z′)2
τ ′ + πi

4τ ′ θ1

(
z′, eπiτ

′
)

= −ie−
πi
4τ ′
√
−iτ ′eπiẑ2τ ′+

πi
4τ ′ θ1

(
z′, eπiτ

′
)

= −ie−
πi
4τ ′
√
−iτ ′eπiẑ2τ ′+

πi
4τ ′ θ1

(
ẑτ ′, eπiτ

′
)

= −ie−
2πi
τ

√
−iτ

2
eπi

τ
8

+ 2πi
τ θ1

(τ
4
, e

πiτ
2

)
(7.43)

Now we need

θ1(z, eπiτ ) = −iζ1/2
(
e2πiτ

)1/8
∞∏
n=1

(1− qn)
∞∏
n=0

(1− ζqn+1)(1− ζ−1qn)

→ −iζ1/2e
πiτ
4

(
1− ζ−1

) (7.44)

Meaning for θ1

θ1(ẑ, 2τ̂)→

(
−i
√
−iτ

2
e
πiτ
8

)(
−i
(
e

2πiτ
4

)1/2 (
e
πiτ
8

)(
1− e−

2πiτ
4

))
=

√
−iτ

2
(7.45)

Looking at the full partition function (7.37)

Z =

[
i
q−1/12ζ−1/2

η(τ)2

1

(1− ζ−1)
θ4(z|2τ)θ1(z|2τ)

]6k

→
[

1

2

1

η(τ/2)2

]6k
(7.46)

where in moving to line 2 we took the high temperature behaviour
(
q̂ → 1, ζ̂ → −1

)
. Showing

that the high temperature behaviour is due to η(τ), the Dedekind’s function, giving for Z

Z → 1

26k

(
1

e
πikτ
2

)
∼ e−

πikτ
2 (7.47)

in agreement8 with (7.18) up to an exponential factor of 2 in the pre-factor. Under S transfor-
mation we have

Z = e
πi
2τ̂ (7.48)

Which corresponds to the high temperature behaviour of (6.41) for leading order in α as (7.20),
thus giving credibility to the idea of writing these higher spin partition functions in terms of
these Kaneko-Zagier generalized Jacobi forms.

8we have used τ → i∞ (q → 0) to write η(τ) = q1/24
∏∞

n=1(1− qn) as η(τ)→ q1/24.
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7.2.2 λ = 1

We start with the partition function (6.56)

Z(τ, α) = Tr
[
e4π2i(τL+αW)

]
(7.49)

We have D complex bosons, with stress tensor given by

T = −
∞∑
m=1

(
β̄−mβm + β−mβ̄m

)
+
k

4
(7.50)

Unlike in section 6.4.1. and 6.4.2., we keep the ground state term, k
4
, for purposes of investi-

gating the low temperature behaviour. The spin-3 primary is defined as

W = −2a
∞∑
m=1

m2
(
β̄−mβm + β−mβ̄m

)
(7.51)

Using (6.53), on a state of the form (6.42) we have

L|nm, n̄m〉 =
1

2π
m+ (n̄m + nm)|nm, n̄m〉 −

k

8π
W |nm, n̄m〉 = 2am2(n̄m − nm)|nm, n̄m〉

(7.52)

Looking at the first few contributions to Z we write

lnTr
[
e4π2i(τL+αW)

]
= e−

πik
2
τ [1+

D∑
j=1

∞∑
m=1

(e2πiτm−8π2iaαm2

+e2πiτm+8π2iaαm2

+e4πiτm+e6πiτm+···)]

(7.53)
Summing over D scalars as well as m, meaning

Tr
[
e4π2i(τL+αW)

]
= e−

πk
2
τ

D∏
i=1

∞∏
m=1

1

(1− e2πiτm−8π2iaαm2)(1− e2πiτm+8π2iaαm2)
(7.54)

The D scalars are independent, meaning we can write

Z(τ, α) = e−
πik
2
τ 1

[(1− e2πiτm−8π2iaαm2)(1− e2πiτm+8π2iaαm2)]
D

(7.55)

Taking the natural logarithm one obtains (6.57) with a pre-factor of e−
πkτ
2

lnZ(τ, α) = D
∑∞

m=1

[
ln
(

1− e2πiτm−8π2iaαm2
)

+ ln
(

1− e2πiτm+8π2iaαm2
)]

(7.56)

Relating (7.33) with H (7.10) we set

q = e2πiτ , w = e64π2iaα, ζ = 1 (7.57)

53

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Then we get

Z(α, τ) = (e−
πikτ
2 )

[
∞∏
m=1

(1− qmwm2/8)(1− qmw−m2/8

]−D

= (e−
πikτ
2 )[

∞∏
m(odd)=1

(1− qmwm2/8)(1− qmw−m2/8)

∞∏
m(even)=2

(1− qmwm2/8)(1− qmw−m2/8)]−D

= (e−
πikτ
2 )[

∞∏
m(odd)=1

(1− qmwm2/8)(1− qmw−m2/8)

∞∏
m(odd)=1

(1− qm+1w(m+1)2/8)(1− qm+1w−(m+1)2/8)]−D

(7.58)

Taking the logarithm gives (6.57), corrected by the vacuum contribution −πikτ
2

. Applying (7.17)
to (7.58) ∏

m(odd)=1

(1− w−(m+1)2/8qm+1ζ−1) =
∏
m=3

(1− w−(m−1)2/8qm−1ζ−1)

=
∏

m(odd)=1

(1− w−(m−1)2/8qm+1ζ−1)

(1− w0q0ζ−1)

(7.59)

makes Z singular since in the λ = 0 case we dealing with W∞ algebra, with no U(1) current,
i.e. ζ = 1. This behaviour is not completely surprising because the two complex scalars in the
Vasiliev theory which are proportional to 1 − λ2 become massless at λ = 1 and perhaps the
partition function must be corrected, by including these scalars in the bulk partition function
together with their dual operators in the CFT partition function in order to be able to express
the partition function in terms of modular forms.

7.2.3 λ =∞

We now turn to the case of λ =∞ given by (6.84)

lnZ(τ, α) =
3πiτ

160α

τ 2

α

[
3F2

(
−3

4
, −1

2
, −1

4
1
3
, 2

3

∣∣∣∣−5120

81
ς2

)
− 1

]
lnZ

(
aτ + b

cτ + d
,

α

(cτ + d)3

)
=

3πiτ 3

160α2

[
3F2

(
−3

4
, −1

2
, −1

4
1
3
, 2

3

∣∣∣∣−5120

81

α2

τ 4
(τ 2)

)
− 1

]
(7.60)

We use the 3F2 hypergeometric transformations to write the hypergeometric part of the r.h.s
of (7.37) as [53] [

3F2

(
−3

4
, −1

2
, −1

4
1
3
, 2

3

∣∣∣∣−5120

81

α2

τ 4
(τ 2)

)]
= (1− τ 2)3/4

∞∑
n=0

(
−3

4

)
n

n!

[
3F2

(
−n, −1

2
, −1

4
1
3
, 2

3

∣∣∣∣−5120

81

α2

τ 4

)](
τ 2

τ 2 − 1

)n (7.61)

We see that for λ =∞ we get an infinite sum. We can think of this minimal model as a limit of
minimal models with an ever-increasing number of representations so we would expect to have
to sum over an infinite number of characters. It would be interesting, perhaps in the future, to
see whether the partition function at λ =∞ can be written in terms of the Kaneko-Zagier [48]
generalized Jacobi forms.
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8 Conclusion and future work

In this project we have shown that the partition functions of black holes in the presence of a
spin-3 chemical potential can be written in terms of the Kaneko-Zagier generalised Jacobi forms
for λ = 0. This is a strong indication that generalised Jacobi forms have a central role to play
in the study of higher spin black holes. We also observe for λ = 1 that the partition function
might need to be corrected for it to be non-singular and therefore be written as a generalized
Jacobi-like form. This will be undertaken in future work. It would be worth exploring also in
future work if there might exist higher-order analogues of the triple product identity and thus
have functions such as H(w′, w, q, ζ) which can be useful for, say spin-4 chemical potential.
This can, in the future, be checked for spin-4 black holes. The case for bringing λ = ∞ into
a known modular form proves to be more involved for the scope of this project. However, it
can be observed that (7.61) just needs a transformation that would give the hypergeometric
on r.h.s., appearing in the sum, as the original variables (specifically getting n to produce the
same results as −3/4).
The ultimate goal of this project, hopefully to be accomplished in future work, is to check the
modular properties of the higher spin black hole partition function (6.39) for any λ, thus extend
the focus from leading order in α to higher orders in α. The expectation is that this partition
function should be modular invariant, since it can be reproduced from 2d CFT calculations. To
check this, however, we might need to let λ transform in a certain way for S, λ → λ/(λ − 1),
and along the T transformation λ → 1 − λ. Obviously these would need to be checked since
in our case we are dealing with a higher spin black hole. What is also important as shown by
[58] might be to consider conical defects in order for the full partition function to be modular
invariant.
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A Some proofs

Consider the Fefferman-Graham metric (3.48)

ds2 = dρ2 + 8πGl(Ldw2 + L̄dw̄2) + (l2e
2ρ
l + (8πG)2LL̄e

−2ρ
l dwdw̄) (A.1)

We argue that there exists a diffeormophism such that

(w, w̄, ρ) 7→
(
w
′
, w̄
′
, ρ
′
)

without loss of generality, we set L̄ = 0 and use the following infinitesimal diffeomorphisms

ρ
′
= ρ+

1

2
∂wε(w)w̄

′
= w̄ +

1

2
e−ρ∂2

wε(w) (A.2)

the claim is that the metric remains the same under these diffeomorphisms with only L(w)
changing the form as

L′(w) = L(w) + δεL(w) (A.3)

with

δεL(w) = ε(w)∂wL(w) + 2∂wε(w)L(w)− l

8G
∂3
wε(w) (A.4)

This result is a transformation law of the energy stress tensor of a CFT [22]. We can therefore
read off the central charge from the above result using the normalized TT OPE

T (z)T (w) =
c/12

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
+ ...

We fix c as
c

12
= − l

8G

c = − 3l

2G

(A.5)

B hs[λ] structure constants

The hs[λ] algebra structure constants are given by

gstu (m,n;λ) =
qu−2

2 (u− 1)!
φstu (λ)N st

u (m,n) (B.1)

with

N st
u (m,n) =

u−1∑
k=0

(−1)k
u− 1
k

[s− 1 +m]u−1−k [s− 1−m]k [t− 1−m]k [t− 1− n]u−1−k (B.2)

and

φstu (λ) =4 F3

[
1
2

+ λ, 1
2
− λ, 2−u

2
, 1−u

2
3
2
− s, 3

2
− t, 1

2
+ s+ t− u

∣∣∣∣1] (B.3)

also making use of the Pocchammer symbol

[a]n = a(a− 1)...(a− n+ 1) (B.4)
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q is a normalization that is usually set to q = 1/4. The following identities are also useful

φstu

(
1

2

)
= φst2 (λ) = 1

N st
u (m,n) = (−1)u+1N ts

u (n,m)

N st (0, 0) = 0

N st
u (n,−n) = N ts

u (n,−n)

(B.5)

The first three identities give testimony to the isomorphism, hs
[

1
2

] ∼= hs (1, 1), meaning that
the lone star product can be used to define the hs[λ] algebra [11]. The cyclic trace is defined to
be zero for all generators except the identity element. We use the conventional normalization

Tr
(
V s
mV

s
−m
)

=
24

λ2 − 1
gss2s−1(m,−m,λ) (B.6)

C Dedekind and Jacobi theta function

Jacobi’s triple product identity is given by [36]

∞∏
n=1

(1− qn)(1 + qn−
1
2/t) =

∑
n∈Z

qn
2/2tn ∀|q| < 1, t 6= 0 (C.1)

Using the above identity we write Jacobi’s theta functions as [36]

θ1(z | τ) = −iy1/2q1/8

∞∏
n=1

(1− qn)
∞∏
n=0

(1− yqn+1)(1− y−1qn)

θ2(z | τ) = y1/2q1/8

∞∏
n=1

(1− qn)
∏
∞

n=0(1 + yqn+1)(1 + y−1qn)

θ3(z | τ) =
∞∏
n=1

(1− qn)
∞∏

r∈N+ 1
2

(1 + yqr)(1 + y−1qr)

θ4(z | τ) =
∞∏
n=1

(1− qn)
∞∏

r∈N+ 1
2

(1− yqr)(1− y−1qr)

(C.2)

where τ is the modular parameter living on the upper half plane as defined in 5.2. and z a
complex variable; q = exp 2πiτ and y = exp 2πiz. Theta functions are all related to each other
by shifting their arguments as follows

θ4(z | τ) = θ3(z +
1

2
|τ)

θ1(z | τ) = −ieπizq1/8θ4(z +
1

2
τ |τ)

θ2(z | τ) = θ1(z +
1

2
|τ)

(C.3)

Theta functions play an important role in defining double periodic functions on the complex
plane [36]. The theta function at z = 0

θi(τ) ≡ θi(0|τ), ∀i = 2, 3, 4 θ1(0|τ) = 0 (C.4)

57

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



In terms of sums and products, theta functions at z = 0

θ2(τ) =
∑
n∈Z

q(n+ 1
2

)2/2 = 2q1/8

∞∏
n=1

(1− qn)(1 + qn)2

θ3(τ) =
∑
n∈Z

qn
2/2 =

∞∏
n=1

(1− qn)(1 + qn−1/2)2

θ4(τ) =
∑
n∈Z

(−1)nqn
2/2 =

∞∏
n=1

(1− qn)(1− qn−1/2)2

(C.5)

Before turning to modular transformations of theta functions, we define the Dedekind function
η(τ) [36]

η(τ) = q
1
24ϕ(q) = q

1
24

∞∏
n=1

(1− qn) (C.6)

where ϕ is the Euler function. The Dedekind function has the following relationship with theta
functions

η3(τ) =
1

2
θ2(τ)θ3(τ)θ4(τ) (C.7)

Since we want to investigate the modular transformations of theta functions. The S : τ → − 1
τ

requires the use of the Poisson re-summation formula

∑
n∈Z

exp(−aπn2 + bn) =
1√
a

∑
k∈Z

exp−π
a

(
k +

b

2πi

)2

(C.8)

Applying the formula to θ3(τ) using

a = −iτ b = 0

we find

θ3

(
−1

τ

)
=
√
−iτθ3(τ) (C.9)

Whilst setting
a = −iτ b = −πi

we find

θ2

(
−1

τ

)
=
√
−iτθ4(τ) (C.10)

Applying S for a second time yields

η

(
−1

τ

)
=
√
−iτθ2(τ) (C.11)

Using these transformations and the relationship between the Dedekind function and theta
functions we get

η

(
−1

τ

)
=
√
−iτη(τ) (C.12)

The T modular transformations are trivial. We therefore give only the S transformations of
theta functions and the Dedekind function

θ2

(
−1

τ

)
=
√
−iτθ4(τ), θ3

(
−1

τ

)
=
√
−iτθ3(τ), θ4

(
−1

τ

)
=
√
−iτθ2(τ) (C.13)
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η

(
−1

τ

)
=
√
−iτη(τ) (C.14)

In addition to Dedekind’s function and Jacobi theta functions, we need to use the concept of
Weber modular functions. Weber modular functions are three functions f, f1, f2 [52]

f(τ) = q−1/48
∏
n>0

(
1 + qn−

1
2

)
=

η2(τ)

η( τ
2
)η(2τ)

f1(τ) = q−1/48
∏
n>0

(1− qn−
1
2 ) =

η( τ
2
)

η(τ)

f2 =
√

2q1/24
∏
n>0

(1 + qn) =

√
2η(2τ)

η(τ)

(C.15)

f1(τ) is also given in terms of the theta functions as

f1(τ) =

√
θ4(q)

η(τ)
(C.16)

Therefore, we have for θ4(τ)

θ4(τ) =
η(τ/2)2

η(τ)
(C.17)
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D Bulk partition function currents

n = 2 :(
8π2

21k2

)(
504παkτW + 1792π2α2L2 + 168πkτ 2L − 144α2k2L2J4

+ 1296α2k2J4 + 21k2 = 0

(D.1)

n = 3 :

−
(

32π3

(63
√

5k3 (l − 2) (l + 2)

)
(9000π2α3kl4W2 − 117000π2α3kl2W2 + 475200π2α3kW2

+ 17280π2α2kl4τLW − 194400π2α2kl2τLW + 501120π2α2kτLW
+ 189πk2l4τ 3W − 1512πk2l2τ 3W + 3024πk2τ 3W + 10240π3α3l4L3

− 204800π3α3l2L3 + 655360π3α3L3 + 4032π2αkl4τ 2L2

− 32256π2αkl2τ 2L2 + 64512π2τ 2L2 − 2880πα3k2l6J4L
+ 83520πα3k2l4J4L − 702720πα3k2l2J4L+ 1658880πα3k2J4L
− 324αk3l6τ 2J4 + 5508α k3l4τ 2J4 − 28512αk3l2τ 2J4 + 46656αk3τ 2J4 ) = 0

(D.2)

n = 4 :(
128π4

45045k4(l − 2)2(l + 2)2

)
(15600000π3α4kl6LW2 − 436800000π3α4kl4LW2 + 4651920000π3α4kl2LW2

− 17858880000π3α4kLW2 + 1930500π2α2k2l6τ 2W2 − 32818500π2α2k2l4τ 2W2

+ 202316400π2α2k2l2τ 2W2 − 407721600π2α2k2τ 2W2 + 24710400π3α3kl6τL2W
− 518918400π3α3kl4τL2W + 3690086400π3α3kl2τL2W − 8039116800π3α3kτL2W
+ 1184040π2αk2l6τ 3LW − 15804360π2αk2l4τ 3LW + 69600960π2αk2l2τ 3LW
− 101312640π2αk2τ 3LW − 1638000πα3k3l8τJ4W + 52416000πα3k3l6τJ4W
− 671907600πα3k3l4τJ4W + 3828988800πα3k3l2τJ4W − 7500729600πα3k3τJ4W
+ 14643200π4α4l6L4 − 307507200π4α4l4L4 + 2460057600π4α4l2L4

− 5857280000π4α4L4 + 6040320π3α2kl6τ 2L3 − 87310080π3α2kl4τ 2L3

+ 408545280π3α2kl2τ 2L3 − 623800320π3α2kτ 2L3 − 3494400π2α4k2l8J4L2

+ 144768000π2α4k2l6J4L2 − 2309798400π2α4k2l4J4L2 + 15179673600π2α4k2l2J4L2

− 32132505600π2α4k2J4L2 + 108108π2k2l6τ 4L2 − 1117116π2k2l4τ 4L2

+ 3747744π2k2l2τ 4L2 − 4036032π2k2τ 4L2 − 926640πα2k3l8τ 2J4L
+ 25945920πα2k3l6τ 2J4L − 254826000πα2k3l4τ 2J4L+ 1030423680πα2k3l2τ 2J4L
− 1467797760πα2k3τ 2J4L+ 126000α4k4l10J4

2 − 6426000α4k4l8J4
2

+ 144925200α4k4l6J4
2 − 1673348400α4k4l4J4

2 + 9119433600α4k4l2J4
2

− 17463340800α4k4J4
2 − 3861k4l8τ 4J4 + 81081k4l6τ 4J4

− 602316k4l4τ 4J4 + 1915056k4l2τ 4J4 − 2223936k4τ 4J4 ) = 0

(D.3)
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