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Summary

The main result of this thesis is an existence result for parabolic semi-linear
problems. This is done by reformulating the semi-linear problem as an ab-
stract Cauchy problem

ut(t) = Au(t) + f(t, u(t)), t > 0

u(0) = u0 (1)

for u0 ∈ X, where X is a Banach space. We then develop and use the theory
of compact semigroups to prove an existence result.

In order to make this result applicable, we give a characterization of
compact semigroups in terms of its resolvent operator and continuity in the
uniform operator topology. Thus, using the theory of analytic semigroups,
we are able to determine under what conditions on A a solution to (1) exists.

Furthermore, we consider the asymptotic behaviour and regularity of such
solutions. By developing perturbation theory, we are easily able to apply our
existence result to a larger class of problems. We then demonstrate these
results with an example.

This work is significant in providing a novel approach to a group of previ-
ously established results. The content can be considered pure mathematics,
but it is of significant importance in real world situations. The structure
of the thesis, and the choice of certain definitions, lends itself to be easily
understood and interpreted in the light of these real world situations and
is intended to be easily followed by an applied mathematician. An impor-
tant part of this process is to develop the problem in a real Hilbert space
and then to consider the complexification of the problem in order to reset
it in a complex Hilbert space, in which we can apply the theory of analytic
semigroups. A large number of real world problems fall into the class of
problems discussed here, not only in biology as demonstrated, but also in
physics, chemistry, and elsewhere.
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Chapter 1

Introduction

1.1 Aims of the Thesis

The main aim of this thesis is to prove an existence result for a class of
semi-linear abstract Cauchy problems. We do this by first reformulating the
problem as an infinite-dimensional dynamical system,

ut(t) = Au(t) + f(t, u(t)), t > 0

u(0) = u0, (1.1)

and then developing and using semigroup theory to determine conditions
under which a solution to (1.1) will exist. Furthermore, we aim to use semi-
group theory to prove a regularity result for the solution to our problem and
determine the asymptotic behaviour of the solution.

We shall then demonstrate the applicability of these results to parabolic
semi-linear PDEs with an example.

1.2 Structure of the Thesis

The first chapter introduces the topic of the thesis and, in Section 1.3, dis-
cusses why the theory developed in the thesis is important. Basic results
from the theory of C0-semigroups are given in Section 1.4. In Section 1.5
we state the problem, that is, a semi-linear PDE, and reformulate it as an
abstract Cauchy problem. We then discuss two types of solutions, classical
and mild, to the abstract Cauchy problem.

In Chapter 2 we begin by investigating compact semigroups and giving a
characterization of such semigroups in terms of the compactness of the resol-
vent operator and the continuity of the semigroup in the uniform operator
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topology. This provides motivation for Section 2.2 in which we show that
elliptic operators acting on the Hilbert space L2(Ω) have compact resolvent
operators, and Section 2.3 in which we discuss sectorial operators and define
analytic semigroups in terms of these operators. We prove basic properties
of analytic semigroups. In Section 2.4 we prove perturbation results concern-
ing strongly continuous and analytic semigroups. We proceed to define the
complexification of a Hilbert space and the complexification of an operator
on that Hilbert space in Section 2.5, and as a result we determine which
characteristics of a semigroup or infinitesimal generator are preserved when
moving, in the way defined, from a real Hilbert space to its complexification.

Chapter 3 is dedicated to the existence, asymptotic behaviour and regu-
larity of mild solutions to the abstract Cauchy problem (1.1). We start, in
Section 3.1, by showing that classical solutions are mild solutions. We then
prove an existence result for a local mild solution to the abstract Cauchy
problem (1.1) in Section 3.2, using the theory of compact semigroups de-
veloped in Section 2.1. In Section 3.3 we determine conditions on f under
which the local mild solution to (1.1) is a global mild solution. Furthermore,
in Section 3.4 we prove a regularity result to show under what conditions a
mild solution will be a classical solution. This result is based on the theory
of analytic semigroups developed in Section 2.3.

In Chapter 4 we demonstrate the applicability of these results with a bio-
logical example. We state the problem and then reformulate it into the form
of the abstract Cauchy problem in Section 4.1. In Section 4.2 we apply our
existence, asymptotic behaviour and regularity results from Chapter 3 to the
example problem. We then discuss how the perturbation theory developed
in Section 2.4 allows us to do the same with a broader class of problems in
Section 4.3.

We conclude the thesis in Chapter 5 by asking whether or not the aims
of the thesis were met.

We give three appendices. Appendix A contains some basic results and
definitions regarding integration, in particular, the Bochner integral for the
integration of vector-valued functions and Cauchy’s Integral Formula. In
Appendix B we consider Hölder continuous functions, relevant to our regu-
larity results. Our final appendix, Appendix C, contains miscellaneous results
needed throughout the thesis, but which do not contribute to the main aims
or flow of the thesis.
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1.3 Why Semigroups?

Jean-Baptiste Alphonse Karr is famous for saying “plus ça change, plus c’est
la même chose”, usually translated as “the more things change, the more
they stay the same.”From a mathematical perspective we assume that the
way in which things change stays the same, allowing us to model such change
as dynamical systems.

In the physical realm things are almost always changing, yet, for most of
history, geometric and algebraic methods were used to deal with problems
that are essentially static. Indeed, prior to the development of Calculus by
Newton and Leibniz in the latter half of the 17th century, the only types
of motion that could be described in a mathematically precise manner were
those of a particle moving at uniform velocity along a straight line and a par-
ticle moving at constant angular momentum along a circular path. However,
differential and integral Calculus provided the tools for the exact mathemat-
ical formulation of dynamic problems.

Since then mathematics has developed as a tool to help us understand the
phenomenon of change over time by building models, most often differential
equations, to try and understand the nature of that change and to predict how
the object in question would change under certain conditions. In the context
of differential equations such conditions are usually formulated as initial and
boundary conditions. Mathematical analysis is done on the model to test
whether or not a reasonably realistic solution of the formulated model exists.
The insights from our analysis are used either to solve our problem exactly
or to compute an approximate solution. These models and their solutions
must be tested against empirical data in order to validate them. If there is
some sense of validity, then further analysis or refining of the model can be
done.

One of the main insights in the development of the mathematical theory
of differential equations is that such equations can be expressed in operator
theoretic terms; that is, in terms of functions acting on functions. This allows
complicated problems in finite dimensions to be transformed into formally
simpler problems in higher, or infinitely many, dimensions. Peano [19] was
the first to do this explicitly, by expressing a system of first order linear
ODEs in matrix form as

x̄′(t) = Ax̄(t) + f(t), t > 0

x̄(0) = x̄0, (1.2)

and solving it using the explicit formula

x̄(t) = etAx̄0 +

∫ t

0

e(t−s)Af(s)ds (1.3)
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where

etA =
∞∑
i=0

tiAi

i!
. (1.4)

In the case of PDEs, the situation is much more complex. Consider an
evolution equation, such as the one-dimensional heat equation

ut(x, t) = γuxx(x, t), 0 < x < 1, t > 0 (1.5)

with initial and boundary conditions given, for instance, by

u(x, 0) = u0(x), 0 < x < 1 (1.6)

and
u(0, t) = u(1, t) = 0, t > 0. (1.7)

The initial-boundary value problem (1.5)-(1.7) describes the relationship
between the change in heat over time and the distribution of heat over space.
In the case of an ODE such as (1.2) the state of the system at any given time
t > 0 is given by x̄(t) ∈ Rn. On the other hand, for the problem (1.5)-(1.7),
the state of the system at time t > 0 is given by a function

ū(t) : [0, 1] 3 x 7→ ū(t)[x] := u(x, t) ∈ R.

Therefore, when expressing the initial-boundary value problem (1.5)-(1.7)
as a dynamical system

ū′(t) = Aū(t), t > 0

ū(0) = ū0, (1.8)

the operator A acts on some infinite dimensional function space X, with
u0 ∈ X. The boundary condition (1.7) is typically incorporated into the
definition of D(A) ⊆ X.

For the ODE (1.2), the solution (1.3) can be expressed in terms of the op-
erator (1.4). Two difficulties prevent us from adopting the same approach for
the dynamical system (1.8). Firstly, the operator A is typically unbounded.
Secondly, in most cases D(A) is not the whole of X. For these reasons the
series (1.4) need not converge.

Semigroups were introduced to deal with this dilemma. The first time the
term semigroup was formerly used was in 1904 [10, page vi], but only from
the 1930s-1950s was the basic theory developed, with major contributions by
Einar Hille [11], Ralph Phillips [12], Kôsaku Yosida [27] and Dunford and
Schwartz [8]. However, it was not until the work of McIntosh in the 1980s
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that the functional calculus for sectorial operators was introduced, [3, page
101].

The basic idea underlying semigroup theory is the following: If A is an
operator acting on X, we define a function

[0,∞) 3 t 7→ etA ∈ B(X),

where B(X) is the set of all bounded linear operators acting on X. This
function has all the main properties of etA when A is a bounded linear op-
erator. In particular, e0A = I, if t, s > 0 then e(t+s)A = etAesA, and the
right-hand time derivative of etA is AetA. We call the family of operators
etA, t ≥ 0, a semigroup, and the operator A the infinitesimal generator of
that semigroup. If we use u(t) in place of x̄(t), u0 in the place of x̄0, and the
semigroup etA in place of (1.4), then (1.3) defines a solution to (1.5)-(1.7),
given that lim

t→0+
etAu0 = u0.

This raises some questions: How does the semigroup etA behave? Is etA

bounded, and in what sense? What can we deduce about etA as a function of
time based on our knowledge of A? To help answer these questions, consider
a general initial value problem

ut(t) = Au(t) + f , t > 0

u(0) = u0, (1.9)

for a function f : [0,∞) 7→ X, with X some Banach space, A : X ⊃ D(A) 7→
X a linear operator, and u0 ∈ X.

If the problem is linear, that is, if f = f(t) does not depend on u(t),
then the initial-value problem is well-posed if and only if A generates a C0-
semigroup, see Section 1.4. However, semigroups provide the added benefit
that the solution to problem (1.9) is continuously dependent on A [10, The-
orem IV]. Furthermore, perturbation theorems concerning semigroups allow
you to easily characterize and find solutions to (1.9) when A is changed in
appropriate ways. For example if A generates a C0-semigroup and B is a
bounded operator then A+B generates a C0-semigroup.

Even with the aforementioned benefits of semigroup theory when applied
to linear problems, semigroup theory is particularly useful when applied to
non-linear problems. This is because, to a large degree, the “linearity is
irrelevant”-[10, Page 9]. Goldstein justifies this remarkable claim further, for
example in [10, Theorem I’] and the Crandall-Liggett Theorem [10, Theorem
II’]. These theorems allow us to define a C0-semigroup dependant only on
properties of A and thus prove that a well-posed solution exists for any f ,
linear or non-linear, in the domain of A. Indeed, most of the theory for
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linear problems can be adopted for non-linear problems with little effort,
given that the space you are working in is reflexive, see for example, [18,
Chapter 6]. Even if the space is not reflexive, some sense of well-posedness
of the solution can still be obtained, but with a little more work, and a little
more compromise.

Semigroup theory has a wide range of applications to both linear and
non-linear Partial Differential Equations. In physics it has proven particu-
larly useful in quantum mechanics. As an example, consider Schroedinger’s
Equation. The linear problem is dealt with in [18, Section 7.5], and the
non-linear one in [18, Section 8.1] and [7, Chapter 14]. Scattering Theory is
discussed in [10, Section 2.14] and nuclear stability in [5, Section 6.3]. It has
also been proven useful in continuum mechanics, such as the Navier-Stokes
equation [10, Sections 15.19 and 15.25], the Korteweg-de Vries equation [18,
Section 8.5] and vibration models [23]. In probability theory it is helpful in
dealing with Markov processes, see for example [10, Sections 15.8-15.12] and
[7, Chapter 12]. In other fields semigroup theory may be applied to Fischer’s
model for invasive species and models for spatial patterns in biology and
ecology as in [15, Part III]. Indeed, sectorial operators and the analytic semi-
groups they generate have become central to our understanding of parabolic
problems. In this thesis we consider the human mechanism of perspiration.
It is worthwhile noting that, although this work focusses on the contribution
of semigroup theory to Partial Differential Equations, semigroup theory has
also made a large contribution to other areas of functional analysis.

For an extensive list of references on either theory or application of semi-
group theory and its historical development, we refer the reader to the bibli-
ographies and corresponding notes and historical remarks contained in both
Pazy [18] and Goldstein [10].

1.4 C0-Semigroups

In this section, for the convenience of the reader, we gather together the basic
notions and results relating to C0-semigroups. These notions and results
are typically treated in any first course on the topic of semigroups, and is
therefore considered as pre-knowledge. All the given results can be found in
[18, Sections 1.1-1.5], unless otherwise indicated, and we refer the reader to
this work for a more comprehensive discussion on C0-semigroups. We develop
our semigroup theory for operators acting on Banach spaces.

Let X be a Banach space over K, where K is either R or C. For any
z̄ = x+ iy ∈ C we denote the real part of z̄ by <z̄, that is, <z̄ = x, and the
imaginary part of z̄ by =z̄, that is, =z̄ = y.
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Definition 1.4.1. (Semigroup) A family of bounded linear operators T (t)
on X, defined for t ≥ 0, is called a semigroup on X if

T (t+ s) = T (t)T (s), t, s ≥ 0

T (0) = I.

Definition 1.4.2. (Infinitesimal Generator) Consider a semigroup T (t),
t ≥ 0, on X. For h > 0, define the linear operator Ah by

Ahx = h−1(T (h)− I)x, x ∈ X.

Let

D(A) =

{
x ∈ X

∣∣∣∣ lim
h→0+

Ahx exists

}
and define the operator A with domain D(A) by

Ax = lim
h→0+

Ahx, x ∈ D(A).

The operator A is called the infinitesimal generator of T (t).

Definition 1.4.3 (Strongly Continuous Semigroup). A semigroup T (t),
t ≥ 0, is called strongly continuous if

lim
h→0+

T (h)x = x for each x ∈ X.

A strongly continuous semigroup is also called a C0-semigroup.

Definition 1.4.4. (Uniformly Continuous Semigroup) A semigroup of
bounded linear operators, T (t), is uniformly continuous if

lim
t→0+
‖T (t)− I‖ = 0.

Uniformly continuous semigroups are clearly C0-semigroups, and if X is
a finite dimensional Banach space, then strongly continuous semigroups are
uniformly continuous. A linear operator A is the infinitesimal generator of
a uniformly continuous semigroup if and only if it is bounded, [18, Theorem
1.2]. However, in applications to PDE’s, the infinitesimal generator is rarely
bounded, thus we will deal with strongly continuous semigroups, which may
be generated by unbounded operators.

Theorem 1.4.1. If T (t), t ≥ 0, is a C0-semigroup, then there exist real
numbers M ≥ 1 and β > 0 such that

‖T (t)‖ ≤Meβt

for all t ≥ 0.
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Corollary 1.4.2. If T (t), t ≥ 0, is a C0-semigroup, then for each x ∈ X the
function R+ 3 t 7→ T (t)x ∈ X is continuous.

Theorem 1.4.3. Let T (t), t ≥ 0, be a C0-semigroup and let A be its in-
finitesimal generator. Then the following results hold:

(i) For x ∈ X and t ≥ 0,

lim
h→0+

h−1

∫ t+h

t

T (s)xds = T (t)x.

(ii) For x ∈ X and t > 0,

∫ t

0

T (s)xds ∈ D(A) and

A

∫ t

0

T (s)xds = T (t)x− x.

(iii) For x ∈ D(A) and t ≥ 0, T (t)x ∈ D(A) and

d

dt
[T (t)x] = AT (t)x = T (t)Ax.

(iv) For x ∈ D(A) and t, s ≥ 0,

T (s)x− T (t)x =

∫ s

t

AT (τ)xdτ =

∫ s

t

T (τ)Axdτ.

Here it is worthwhile recalling the meaning and intuition underlying the
definition of a semigroup as mentioned in the introduction, and some of
the properties listed in Theorem 1.4.3. First note that the properties of a
C0-semigroup, particularly those from Definition 1.4.1 and (iii) of Theorem
1.4.3, correspond to the properties of the well-known operator-valued func-
tion S(t) = etA, defined when A is bounded. This reminds us of the use
of semigroups in providing the existence of solutions to PDEs of the form
ut = Au. Indeed, for any u0 ∈ D(A), if T (t), t ≥ 0, is a C0-semigroup then
the function u(t) = T (t)u0 for t ≥ 0 is a classical solution of the initial value
problem ut = Au with initial condition u(0) = u0.

Since the abstract Cauchy problem (1.13) can be formulated in terms of
the weak time derivative of u(t), one might ask what happens if we take the
weak derivative in (iii). Pazy shows in [18, Section 2.1] that if we define the
Aw as the weak right-hand derivative of a C0-semigroup T (t), t ≥ 0, with
infinitesimal generator A, that is, A is the strong right-hand derivative of
T (t), then A = Aw.

14
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Theorem 1.4.4 (Uniqueness of Infinitesimal Generators). Let T (t),
t ≥ 0, and S(t), t ≥ 0 be semigroups of bounded linear operators with in-
finitesimal generators A and B respectively. Then A = B if and only if
T (t) = S(t) for all t ≥ 0.

Theorem 1.4.5. If A is the infinitesimal generator of a C0-semigroup T (t),
t ≥ 0, then D(A) is dense in X and A is a closed linear operator.

Since in practice we need to determine the character of the semigroup
from the properties of its infinitesimal generator, we are more interested in
whether the converse of Theorem 1.4.5 is true. We shall see from the Hille-
Yosida Theorem to come that the denseness of D(A) in X will always be
required for C0-semigroups, and A will always need to be closed.

However, since A is unbounded, it is difficult to use properties of A di-
rectly to determine characteristics of the semigroup of bounded operators
T (t), t ≥ 0, that it generates, if indeed it is the infinitesimal generator of
a semigroup. The most basic way to relate an unbounded operator A with
a bounded operator is to consider the inverse A−1. However, this may not
always be defined, and it may not always help. In our case we consider the
resolvent operator, (λI −A)−1, for λ ∈ K such that the operator exists. The
additional requirements for an operator to generate a C0-semigroup depend
on the resolvent operator, defined below.

Definition 1.4.5 (Resolvent Set). For an operator A on X, the resolvent
set ρ(A) is defined as

ρ(A) = {λ ∈ K | (λI − A)−1 ∈ B(X)}.

That is, the resolvent set is the set of all λ ∈ K such that (λI − A)−1 exists
and is a bounded linear operator on X.

Definition 1.4.6 (Resolvent Operator). Let A be an operator on X. The
resolvent operator R(λ,A) is defined for λ ∈ ρ(A) ⊂ K as

R(λ,A) = (λI − A)−1.

Theorem 1.4.6 (The Resolvent Identity). [10, Chapter 1 1.3] If λ, µ ∈
ρ(A) then

R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A).

Theorem 1.4.7. [10, Chapter 1 1.2] Suppose that A : X ⊃ D(A) 7→ X. If
the resolvent set ρ(A) of A is non-empty then A is closed. Furthermore, if
A is closed then

ρ(A) = {λ ∈ K | (λI − A) is a bijection}.

15
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Theorem 1.4.8 (Hille-Yosida). Suppose that A is a linear operator on
X. There exists an M ≥ 1 and an ω ∈ R such that A is the infinitesimal
generator of a C0-semigroup T (t), t ≥ 0, satisfying ‖T (t)‖ ≤Meωt, t ≥ 0, if
and only if

(i) A is closed and D(A) = X.

(ii) The resolvent set ρ(A) of A contains the ray (ω,∞) and

‖R(λ,A)‖ ≤ M

|λ− ω|
for λ > ω.

It is worthwhile noting that to prove the Hille-Yosida Theorem we form
a sequence (etAn), where An is a bounded operator for each n ∈ N, which
converges to the semigroup T (t) generated by the unbounded operator A.

Traditionally the Hille-Yosida theorem has M = 1 and provides necessary
and sufficient conditions for generating a contraction C0-semigroup, that is,
where ‖T (t)‖ ≤ 1 for t ≥ 0. This is sufficient for most purposes, for if we have
a semigroup T (t), t ≥ 0 and ‖T (t)‖ ≤M where M ≥ 1, then we can find an
equivalent norm ‖ · ‖1 on B(X) such that ‖T (t)‖1 ≤ 1 for all t ≥ 0. That is,
T (t) is a contraction semigroup with respect to ‖ · ‖1, see [10, Exercise 2.19].
Here, however, we deal with exponentially bounded semigroups.

1.5 Problems and Solutions

1.5.1 Problems

Semi-linear Parabolic Problems

Let Ω be an open and bounded subset of Rn with boundary ∂Ω. For some
fixed T > 0 let ΩT = Ω× (0, T ). The initial-value problem is given by

ut(x, t) = Au(x, t) + f(x, t, u(x, t)), (x, t) ∈ ΩT

u(x, 0) = u0(x), x ∈ Ω (1.10)

u(x, t) = g(x), x ∈ ∂Ω, 0 < t < T.

The function f : ΩT × R 7→ R is taken to be continuous and second-order
Lebesgue integrable over its domain. The boundary ∂Ω is taken to be smooth.
The linear operator A is taken to be a second-order partial differential oper-
ator in divergence form

Au(x, t) =
n∑

i,j=1

(αij(x)u(x, t)xi)xj +
n∑
i=1

βi(x)u(x, t)xi + γ(x)u(x, t) (1.11)
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for coefficient functions αij ∈ C1(Ω̄), βi ∈ L∞(Ω) and γ ∈ L∞(Ω) for i, j =

1, ..., n. We further assume that the operator
∂

∂t
− A is parabolic, that is,

the operator A is uniformly elliptic. Thus there exists a constant θ > 0 such
that

n∑
i,j=1

αij(x)ζiζj ≥ θ‖ζ‖2 (1.12)

for all x ∈ Ω and ζ ∈ Rn. In this case A is a generalization of the Laplacian
∇2.

In dealing with problems of this sort it is worth keeping a physical inter-
pretation in mind. Parabolic problems of this type are often used to model
diffusion processes. Here u(·, t) represents the concentration or density profile
of a substance within a particular medium at a time t ∈ (0, T ). The shape of
the medium determines the spatial domain Ω of u, the boundary conditions
are given by g and the initial condition u0 describes the concentration profile
at time t = 0.

The second-order term
n∑

i,j=1

(αijuxi)xj of our operator A determines how

the concentration u diffuses or coalesces in the medium through space and
with time. The ellipticity assumption forces diffusion from regions with a
high concentration to regions with a low concentration. This agrees with
most physical examples like energy or chemical flow, but might not be ap-
propriate for cash flow, as, no doubt, most people understand full well. Some
mediums would allow rapid diffusion, others not, and some may allow more
rapid diffusion in particular directions. How the medium affects diffusion is

described by the coefficient functions αij. The first-order term
n∑
i=1

βiuxi de-

termines the transport of the concentration u through the spatial domain Ω.
This is not to be confused with the flow due to diffusion through the medium,
but is due to some forces that act on the substance, either due to the nature
of its interaction with the medium or some external input. The zeroth-order
term γu describes the direct creation or depletion of the substance within
the medium.

The function f represents some external factor which affects the distribu-
tion profile of the substance, and can itself be dependent on the concentration
profile.

As an example, consider squirting oil into the bottom of a glass of water
with a syringe. The body of water contained in the glass is the spatial domain
Ω. The function u(x, t) represents the concentration of oil at a point x ∈ Ω
and at time t ≥ 0. The initial concentration profile is u0. The oil will float
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to the top due to the fact that it has a lower density than the water. This is
the transport of the oil to the surface. The rate at which the oil flows to the
surface is captured by the functions βi. However, as the oil rises in the water,
the oil stream spreads out in different directions. This is the diffusion of the
oil in the water. The behaviour of the diffusion of oil through the water is
determined by the functions αij. If the water were replaced with something
more dense, the diffusion would likely be slower, and different functions αij

would be needed. If we kept squirting oil from the syringe into the water
for t > 0, perhaps at different places, then the impact of that on the overall
concentration of oil in the cup would be described by the function γ. If we
stirred the water then the oil would also be transported by the current, and
this would likely affect both the diffusivity and transport terms. If we were to
add some substance that chemically reacts with the oil, so that the amount
of reaction depends on the concentration of the oil, then that contribution
would be determined by the function f .

Although this is a very simple example of a semi-linear parabolic problem,
to truly be able to understand or predict the behaviour of oil squirted into a
glass of water is no mean feat, and a large body of sophisticated mathematics
is needed in order to analyse these types of problems.

The Abstract Cauchy Problem

One way to formulate problems of this type is as an infinite-dimensional
dynamical system, or abstract Cauchy problem. Let X be a Banach space
of functions defined on Ω, and let U be an open subset of X. Define u(t) :
[0, T ) 7→ X as

u(t) : x ∈ Ω 7→ u(t)[x] := u(x, t)

and f(t, u) : [0, T )× U 7→ X as

f(t) : x ∈ Ω 7→ f(t, u)[x] := f(x, t, u(x, t)).

The function u(t) is called the state of the system at time t. We can now
write our problem in the form

ut(t) = Au(t) + f(t, u(t)), t ∈ (0, T )

u(0) = u0 (1.13)

where u0 ∈ X and A : X ⊃ D(A) 7→ X. The main aim of this thesis
is to prove an existence result for this more general form of problem using
semigroup theory and to apply this result to a concrete example of a semi-
linear parabolic problem.
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1.5.2 Solutions

We now consider two different types of solutions to the abstract Cauchy
problem (1.13).

Definition 1.5.1. (Classical Solution) We say that u : [0, T ) 7→ X is a
classical solution to (1.13) if u(t) ∈ D(A) for 0 < t < T , u(t) is continuous
on [0, T ), and u(t) is continuously differentiable on (0, T ). Furthermore,
ut(t) = Au(t) + f(t, u(t)) for 0 < t < T and u(0) = u0.

In practice a classical solution, while very desirable, might not exist. In
these cases, we are obliged to consider weaker notions of solution. In this
thesis our existence theorem provides sufficient conditions for the existence
of a local mild solution.

Definition 1.5.2. (Mild Solution) Suppose the linear operator A from
problem (1.13) is the infinitesimal generator of a C0-semigroup T (t), t ≥ 0.
We say that u : [0, T ) 7→ X is a mild solution to problem (1.13) if

u(t) = T (t)u0 +

∫ t

0

T (t− s)f(s, u(s))ds (1.14)

for 0 ≤ t < T .

Note that if u is a mild solution to (1.13) and f is continuous then
u(t) ∈ D(A) for 0 < t < T , u is continuous on [0, T ) and u(0) = u0 ∈ D(A).
However, u need not be differentiable. Thus a mild solution is not a clas-
sical solution, even though the converse is true, as shown in Section 3.1.
Indeed a mild solution is a classical solution if and only if it is continuously
differentiable, see [2, Propositions 3.1.2 and 3.1.9].
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Chapter 2

Compact and Analytic
Semigroups

Many different existence theorems for the abstract Cauchy problem (1.13)
exist, each with their own conditions, and we refer the reader to the introduc-
tions of [17], or, more recently, [6], for an extensive list of references. Most of
these theorems add restrictions to the function f , requiring it to be locally
Lipschitz, monotone or have some sort of relationship to the fractional pow-
ers of the operator A. However, in this thesis we consider a restriction on
the semigroup T (t), requiring it to be compact, and the only demand on f
is that it is continuous.

There is no useful characterization of a compact semigroups in terms of
its infinitesimal generator. However we do have a characterization in terms
of another property of the semigroup. A semigroup is compact if and only if
the semigroup is continuous in the uniform operator topology for t > 0 and
the resolvent operator is compact for every λ ∈ ρ(A), as we show in Theorem
2.1.6.

In practice this compactness theorem is of limited use, since it requires
T (t) to be continuous in the uniform operator topology for t > 0. Therefore,
using the compactness theorem requires us to know something about the
semigroup, when in applications we only have access to information regarding
its infinitesimal generator. Thus we need to find a way to determine whether
a semigroup is uniformly continuous with respect to the uniform operator
norm in terms of the infinitesimal generator A.

The idea then is to determine the characteristics of A needed in order
for it to be the infinitesimal generator of an analytic semigroup. The theory
of analytic semigroups has proven to be particularly useful when applied to
semi-linear parabolic problems, see [17], [18, Chapter 6], or [6] for examples.
Analytic semigroups act on complex Banach spaces and are functions of a
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complex variable. Importantly for us, are continuous with respect to the
uniform operator norm for t > 0. They are also useful in proving regularity
results of the solution, as we show in Section 3.4.

However, in many applications, including those we deal with in this thesis,
the dynamical system is defined on a real Banach space, often a Hilbert space.
A standard approach in such cases is to study the extension of the operator
A, acting on a real space X, to the complexification X̃ of X. The general
idea of this approach is shown in the Figure 2.1.

Figure 2.1: General Idea to Prove Existence.

In this chapter we develop the semigroup theory we shall use to prove the
existence result for mild solutions of the abstract Cauchy problem (1.13).
We start by considering compact semigroups and give the aforementioned
characterization of such semigroups. As preparation for applications to semi-
linear parabolic problems, we prove compactness results for the resolvent
of elliptic operators acting on Hilbert space L2(Ω) for suitable open sets
Ω ⊆ Rn. To make this characterization useful to us, we then investigate
analytic semigroups. We then develop perturbation theory regarding analytic
semigroups, which enables us to apply our existence result to a broader class
of problems. Finally, we consider the complexification of operators acting on
Hilbert spaces.
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2.1 Compact Semigroups

In this section we define and characterize compact semigroups acting on a
Banach space X.

Definition 2.1.1 (Compact Operator). An linear operator L from a Ba-
nach Space X to another Banach Space Y is called compact if the image
under L of any bounded subset of X is a precompact subset of Y .

We will make use of the following standard results concerning compact
operators.

Theorem 2.1.1. [8, VI.5.3] Suppose (Tn) is a sequence of compact operators
from one Banach space to another, and suppose that (Tn) converges to a
operator T with respect to the operator norm. Then T is also compact.

Theorem 2.1.2. [8, VI.5.4] Linear combinations of compact operators are
compact operators, and the composition of a compact operator and a bounded
linear operator is a compact operator.

Definition 2.1.2 (Compact Semigroup). A C0-semigroup T (t), t ≥ 0, is
called compact for t > t0 > 0 if, for each t > t0, T (t) is a compact linear
operator. A C0-semigroup T (t), t ≥ 0, is called compact if it is compact for
t > 0.

Theorem 2.1.3. [7, Theorem 7.1.4] If T (t), t ≥ 0, is a C0-semigroup, and
T (a) is compact for some a > 0, then T (t) is compact and continuous in the
uniform operator topology for all t ≥ a.

Proof. Suppose T (a) is compact and let t ≥ a. Since T (t)x = T (a)T (t− a)x
for all x ∈ X, T (t) is compact by Theorem 2.1.2. Now suppose B is the
unit ball in X and X̄ is the compact closure of the image of B under T (a).
Because X is compact and T (t), t ≥ 0, is a C0-semigroup, then for any ε > 0
we can find a δ > 0 such that if 0 ≤ t < δ then ‖[T (t) − I]x‖X < ε for all
x ∈ X̄. Thus, if we let a ≤ b ≤ t < b + δ and x ∈ B, then 0 ≤ t − b ≤ δ,
T (a)x ∈ X̄, and

‖T (t)x− T (b)x‖X = ‖T (b− a)[T (t− b)− I]T (a)x‖X
≤ ‖T (b− a)‖ε.

Thus ‖T (t)− T (b)‖ ≤Mε where M = ‖T (b− a)‖. Hence T (t) is continuous
with respect to the uniform operator norm from the right on [a,∞). Similarly
it can be shown that T (t) is continuous with respect to the uniform operator
norm from the left on [a,∞).
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Theorem 2.1.4. Suppose A : X ⊃ D(A) 7→ X is a linear operator and
R(λ,A) is compact for some λ ∈ ρ(A). Then R(λ,A) is compact for all
λ ∈ ρ(A).

Proof. Suppose λ ∈ ρ(A) such that R(λ,A) is compact. For any µ ∈ ρ(A),
by the resolvent identity

R(µ,A) = R(λ,A) + (λ− µ)R(µ,A)R(λ,A).

Thus, by Theorem 2.1.2, R(µ,A) is compact for all µ ∈ ρ(A).

To proceed we need the following Lemma.

Lemma 2.1.5. Let A : X ⊇ D(A) 7→ X be the infinitesimal generator of a
C0-semigroup T (t), t ≥ 0, satisfying ‖T (t)‖ ≤ Meωt for all t ≥ 0 and for
some M ≥ 1 and ω ∈ R. For λ ∈ ρ(A), if <λ > ω then

R(λ,A) =

∫ ∞
0

e−λtT (t)dt.

Proof. Consider λ ∈ ρ(A) with <λ > ω. Let R(λ)x =

∫ ∞
0

e−λtT (t)xdt for

all x ∈ X. Since T (t) is a C0-semigroup, the mapping R+ 3 t 7→ T (t)x is
continuous for each x ∈ X, and by assumption ‖T (t)‖ ≤ Meωt for all t ≥ 0
so that the integral exists. Thus for any x ∈ X

‖R(λ)x‖X =

∥∥∥∥∫ ∞
0

e−λtT (t)xdt

∥∥∥∥
X

≤
∫ ∞

0

e−<λt‖T (t)‖‖x‖Xdt

≤
∫ ∞

0

e−<λtMeωt‖x‖Xdt

= M‖x‖X
∫ ∞

0

e−(<λ−ω)tdt

=
M

<λ− ω
‖x‖X (2.1)
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Thus R(λ) is a bounded linear operator. For h > 0

T (h)− I
h

R(λ)x =
1

h

∫ ∞
0

e−λtT (t+ h)xdt− 1

h

∫ ∞
0

e−λtT (t)xdt

=
1

h

∫ ∞
h

e−λ(s−h)T (s)xds− 1

h

∫ ∞
0

e−λtT (t)xdt

=
eλh − 1

h

∫ ∞
0

e−λtT (t)xdt− eλh

h

∫ h

0

e−λtT (t)xdt

=
eλh − 1

h
R(λ)x− eλhh−1

∫ h

0

e−λtT (t)xdt. (2.2)

Applying L’Hôpital’s rule to the first term on the right-hand side of (2.2)
and Theorem 1.4.3 (i) to the second, equation (2.2) gives

lim
h→0+

T (h)− I
h

R(λ)x = λR(λ)x− x.

Thus for each x ∈ X, lim
h→0+

T (h)− I
h

R(λ)x exists so that R(λ)x ∈ D(A), and

AR(λ)x = λR(λ)x− x. Thus (λI − A)R(λ)x = x for every x ∈ X so that

(λI − A)R(λ) = I. (2.3)

Furthermore, by Theorem 1.4.5, A is closed, so by Theorem 1.4.3 (iii) and
Proposition A.1.3, for all x ∈ D(A) we have

R(λ)Ax =

∫ ∞
0

e−λtT (t)Axdt

=

∫ ∞
0

e−λtAT (t)xdt

= A

[∫ ∞
0

e−λtT (t)xdt

]
= AR(λ)x. (2.4)

From (2.3) and (2.4) it follows that R(λ)(λI − A)x = x for all x ∈ D(A).
Thus R(λ) = (λI − A)−1 = R(λ,A).

The following is an important characterization of compact semigroups.

Theorem 2.1.6 (Characterization of Compact Semigroups). A C0-
semigroup T (t), t ≥ 0, is compact if and only if it is continuous in the uniform
operator topology for t > 0 and the resolvent R(λ,A) of its infinitesimal
generator A is a compact linear operator for every λ in the resolvent set
ρ(A) of A.
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Proof. First suppose that T (t) is a C0-semigroup which is compact for t > 0.
Then by Theorem 1.4.1 we can find an M ≥ 1 and an ω ∈ R such that the
resolvent set contains {λ ∈ C | <λ > ω}, and ‖T (t)‖ ≤ Meωt. Thus, by
Lemma 2.1.5, the resolvent operator is given by

R(λ,A) =

∫ ∞
0

e−λsT (s)ds (2.5)

for all λ ∈ ρ(A), <λ > ω. Furthermore, by Theorem 2.1.3 the semigroup
T (t) is continuous in the uniform operator topology for t > 0 so that the
integral (2.5) is convergent with respect to the operator norm. Fix ε > 0 and
λ ∈ ρ(A), and define

Rε(λ) =

∫ ∞
ε

e−λsT (s)ds.

By Theorems 2.1.1, 2.1.2 and the definition of the integral, for any α > ε

we have that

∫ α

ε

e−λsT (s)ds will be compact since T (s) is compact for all

s > 0. Thus since the integral converges with respect to the operator norm

lim
α→∞

∫ α

ε

e−λsT (s)ds is compact, by Theorem 2.1.1. Thus Rε(λ) is compact.

Furthermore

‖R(λ,A)−Rε(λ)‖ =

∥∥∥∥∫ ε

0

e−λsT (s)ds

∥∥∥∥
≤M

∫ ε

0

|e(ω−λ)s|ds

≤Mε.

Therefore Rε(λ) converges to R(λ,A) with respect to the operator norm, so
by Theorem 2.1.1, R(λ,A) is compact. By Theorem 2.1.4 then R(λ,A) is
compact for all λ ∈ ρ(A).

Conversely suppose that R(λ,A) is compact for λ ∈ ρ(A) and that T (t)
is continuous with respect to the operator norm for t > 0. For all λ ∈ ρ(A),
<λ > ω

R(λ,A) =

∫ ∞
0

e−λsT (s)ds

exists and converges with respect to the operator norm since

‖e−λsT (s)‖ ≤ |e−λs|‖T (s)‖ ≤Me(ω−<λ)s

for all s > 0. Let γ ∈ R+ such that γ > ω. Then γ ∈ ρ(A). Note that

γ

∫ ∞
0

e−γsT (t)ds = γT (t)

∫ ∞
0

e−γsds = T (t),
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and that if δ > 0 then ∫ δ

0

γe−γsds ≤ 1.

Thus for any fixed δ > 0 and t > 0

‖γR(γ,A)T (t)− T (t)‖ =

∥∥∥∥γ ∫ ∞
0

e−γs[T (t+ s)− T (t)]ds

∥∥∥∥
≤
∫ δ

0

γe−γs‖T (t+ s)− T (t)‖ds

+

∫ ∞
δ

γe−γs‖T (t+ s)− T (t)‖ds

≤
∫ δ

0

γe−γs‖T (t+ s)− T (t)‖ds

+

∫ ∞
δ

γe−γs‖T (t)‖‖T (s)− I‖ds

≤ sup
0≤s≤δ

‖T (t+ s)− T (t)‖

+

∫ ∞
δ

Mγe−γseωt(Meωs + 1)ds

≤ sup
0≤s≤δ

‖T (t+ s)− T (t)‖

+M2γ(γ − ω)−1eω(t+δ)e−γδ +Mγeωte−γδ. (2.6)

Fix ε > 0. Since δ is arbitrary we can take δ small enough so that

sup
0≤s≤δ

‖T (t+ s)− T (t)‖ < ε

3
. (2.7)

For that fixed δ we can then take γ large enough so that both

M2γ(γ − ω)−1eω(t+δ)e−γδ <
ε

3
(2.8)

and
Mγeωte−γδ <

ε

3
. (2.9)

It follows from (2.7), (2.8), (2.9) and (2.6) that

lim
γ→∞
‖γR(γ,A)T (t)− T (t)‖ = 0.

Now since R(λ,A) is compact for every λ ∈ ρ(A) and ρ(A) contains all
real numbers γ > ω then γR(γ,A)T (t) is compact for all γ > ω by Theorem
2.1.2. Thus, since γR(γ,A)T (t) converges to T (t) with respect to the uniform
operator norm, then by Theorem 2.1.1, T (t) is compact for every t > 0.
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Recall that the C0-semigroup T (t), t ≥ 0, is continuous in the uniform
operator topology for t ≥ 0 if and only if it has a bounded infinitesimal
generator. Since we are interested in the case where A is an unbounded
operator, we have that T (t) is not continuous with respect to the uniform
operator norm for t ≥ 0. Thus

lim
t→0+
‖T (t)− I‖ > 0

or does not exist, while, for each u0 ∈ X,

lim
t→0+
‖T (t)u0 − u0‖ = 0.

The characterization of compact semigroups given above requires that
the resolvent operator of the infinitesimal generator be compact and the
semigroup be continuous in the uniform operator topology for t > 0. Thus

lim
t→a+

‖T (t)− T (a)‖ = 0

for all a > 0. In the following section, Section 2.2, we show that if A is an
elliptic operator acting on L2(Ω) then A has a compact resolvent. In Section
2.3 we show that analytic semigroups are semigroups whose infinitesimal
generator is a sectorial operator, and that these semigroups are strongly
continuous for t ≥ 0 and continuous in the uniform operator topology for
t > 0.

2.2 Elliptic Operators on a Hilbert Space

In this section we show that if A is an elliptic operator on L2(Ω) for suitable
open sets Ω ⊆ Rn then ρ(A) contains {λ ∈ R | λ > ω} for some ω ≥ 0 and
the resolvent operator R(λ,A) is compact for some λ ∈ ρ(A). This result
is extremely useful in application to elliptic and parabolic problems, as we
demonstrate in Chapter 4.

We first recall from (1.11) and (1.12) what it means for A to be an elliptic
operator. Suppose Ω is an open and bounded subset of Rn and ∂Ω is smooth.
Then A : L2(Ω) ⊃ D(A) 7→ L2(Ω) is called a uniformly elliptic operator in
divergence form if we can write A in the form

Au =
n∑

i,j=1

(αij(x)uxi)xj +
n∑
i=1

βi(x)uxi + γ(x)u (2.10)
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and there exists a constant θ > 0 such that for all ζ ∈ Rn then

n∑
i,j=1

αij(x)ζiζj ≥ θ‖ζ‖2 (2.11)

where αij ∈ C1(Ω̄), βi ∈ L∞(Ω) and γ ∈ L∞(Ω) for i, j = 1, ..., n.
To proceed we need the following theorem from Evans [9]:

Theorem 2.2.1 (Energy Estimates). ([9], Section 6.2.2, Theorem 2) Sup-
pose B : H1

0 (Ω)×H1
0 (Ω) 7→ R given by

B[u, v] =

∫
Ω

[
n∑

i,j=1

αij(x)uxivxj +
n∑
i=1

βi(x)uxiv + γ(x)uv

]
dx

is the bilinear form corresponding to an elliptic operator A : D(A) 7→ L2(Ω)
in divergence form (2.10).

Then there exist constants δ, ε > 0 and ω ≥ 0 such that

(i) |B[u, v]| ≤ δ‖u‖H1
0 (Ω)‖v‖H1

0 (Ω)

and

(ii) ε‖u‖2
H1

0 (Ω)
≤ B[u, u] + ω‖u‖2

L2(Ω)

for all u, v ∈ H1
0 (Ω).

Theorem 2.2.2. Suppose Ω is an open and bounded subset of Rn, ∂Ω is
smooth, D(A) = H1

0 (Ω) ∩ H2(Ω), and A : D(A) 7→ L2(Ω) is a uniformly
elliptic operator in divergence form. Then there exists a constant ω ≥ 0
such that the resolvent set ρ(A) of A contains the ray {λ ∈ R | λ > ω}.
Furthermore, R(λ,A) is compact for each λ > ω.

Proof. We begin by showing that there exists a λ ∈ R such that (λI −A)−1

exists, that is, for all g ∈ L2(Ω) there exists a unique u ∈ D(A) such that
(λI − A)u = g.

Let λ ∈ R be arbitrary, and let u ∈ D(A). Then there exists an f ∈ L2(Ω)
such that

(λI − A)u = f. (2.12)

Multiplying both sides of (2.12) with v ∈ H1
0 (Ω) and integrating over Ω, we

get
λ(u, v)L2(Ω) − (Au, v)L2(Ω) = (f, v)L2(Ω). (2.13)
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Equations (2.13) and (2.10) give us

λ(u, v)L2(Ω) −
∫

Ω

[
n∑

i,j=1

(αijuxi)xjv +
n∑
i=1

βiuxiv + γuv

]
dx = (f, v)L2(Ω).

Applying integration by parts to

∫
Ω

n∑
i,j=1

(αijuxi)xjvdx with v ∈ H1
0 (Ω) gives

λ(u, v)L2(Ω) +

∫
Ω

[
n∑

i,j=1

αijuxivxj −
n∑
i=1

βiuxiv − γuv

]
dx = (f, v)L2(Ω).

We define bilinear forms B[u, v] and Bλ[u, v] associated with −A and (λI−A)
respectively, for each v ∈ H1

0 (Ω), by

B[u, v] =

∫
Ω

[
n∑

i,j=1

αijuxivxj −
n∑
i=1

βiuxiv − γuv

]
dx

and

Bλ[u, v] = λ(u, v)L2(Ω) +B[u, v]. (2.14)

Then

Bλ[u, v] = (f, v)L2(Ω) (2.15)

for each v ∈ H1
0 (Ω). Since A is elliptic, by Theorem 2.2.1, we can find

constants ε > 0 and ω ≥ 0 such that

ε‖u‖2
H1

0 (Ω) ≤ B[u, u] + ω‖u‖2
L2(Ω).

Let λ ≥ ω ≥ 0. Then

ε‖u‖2
H1

0 (Ω) ≤ B[u, u] + λ‖u‖2
L2(Ω)

= Bλ[u, u]. (2.16)

It is clear that (λI − A) is elliptic. Thus by Theorem 2.2.1 we can find a
constant δ > 0 such that

|Bλ[u, v]| ≤ δ‖u‖H1
0 (Ω)‖v‖H1

0 (Ω) (2.17)

for all u, v ∈ H1
0 (Ω). From (2.16) and (2.17) the requirements for the Lax-

Milgram Theorem, Theorem C.0.6 are met. Furthermore, the function hf :
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L2(Ω) 7→ R defined by hf (v) = (f, v)L2(Ω) is a bounded linear functional
on L2(Ω) by the Reisz Representation Theorem, Theorem C.0.7. Thus, for
every g ∈ L2(Ω) we can find a unique u ∈ D(A) so that (g, v)L2(Ω) = Bλ[u, v]
for all v ∈ H1

0 (Ω). This holds whenever g = (λI − A)u. Thus (λI − A)−1

exists and u = (λI − A)−1g.
We now show that (λI −A)−1 is a bounded linear operator. Substituting

(2.15) into (2.16) and applying Cauchy-Schwartz inequality we have that

ε‖u‖2
H1

0 (Ω) ≤ (g, u)L2(Ω)

≤ ‖g‖L2(Ω)‖u‖L2(Ω)

≤ ‖g‖L2(Ω)‖u‖H1
0 (Ω).

Thus for every g ∈ L2(Ω)

ε‖(λI − A)−1g‖H1
0 (Ω) ≤ ‖g‖L2(Ω). (2.18)

It follows from (2.18) that (λI − A)−1 is a bounded linear operator, and
thus λ ∈ ρ(A). Since this is true for all λ ≥ ω then ρ(A) contains the ray
{λ ∈ R | λ > ω}.

Furthermore, by the Rellich-Kondrachov Compactness Theorem, Theo-
rem C.0.8, H1

0 (Ω) is compactly embedded in L2(Ω). Thus (2.18) implies that
R(λ,A) is compact.

2.3 Analytic Semigroups

We now consider sectorial operators, and define analytic semigroups in terms
of these operators. In this section X denotes a complex Banach space, and
A is a linear operator on X.

The definition of analytic function is given by A.2.1. A function from C
into X is called holomorphic at point a ∈ C if it is infinitely differentiable
within some open disk containing a. A function is holomorphic if and only if it
is complex analytic, see [4, Page 46]. Thus, due to the equivalent definitions,
the words holomorphic and analytic are used interchangeably, even though
one can also have real analytic functions.

Before we proceed we show that for a linear operator A : X ⊃ D(A) 7→ X
with a non-empty resolvent set, the mapping ρ(A) 3 λ 7→ R(λ,A) ∈ B(X)
is analytic on ρ(A).

Theorem 2.3.1. Consider a linear operator A : X ⊃ D(A) 7→ X. Let
λ0 ∈ ρ(A). Then the open ball

D = {λ ∈ C | |λ− λ0| < ‖R(λ0, A)‖−1}
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is contained in ρ(A), and if λ ∈ D, then

R(λ,A) =
∞∑
0

(−1)n(λ− λ0)nRn+1(λ0, A)

= R(λ0, A)[I + (λ− λ0)R(λ0, A)]−1.

Therefore the resolvent set ρ(A) is open in C and λ 7→ R(λ,A) is analytic
on ρ(A).

Proof. Consider λ ∈ D = {λ ∈ C | |λ− λ0| < ‖R(λ0, A)‖−1} and y ∈ X. To
show that R(λ,A) exists we show that there exists a unique x ∈ D(A) such
that λx−Ax = y. We then show that R(λ,A) is a bounded linear operator.
The equation λx−Ax = y is equivalent to (λ−λ0)x+ (λ0I−A)x = y. Thus
letting z = (λ0I −A)x so that x = R(λ0, A)z we get the equivalent equation

z + (λ− λ0)R(λ0, A)z = [I + (λ− λ0)R(λ0, A)]z = y.

Consider the series

S(λ) =
∞∑
n=0

(−1)n(λ− λ0)nRn(λ0, A).

Since |λ− λ0| < ‖R(λ0, A)‖−1 implies that

‖(λ− λ0)R(λ0, A)‖ < 1

the series S(λ) converges absolutely with respect to the operator norm, thus
defining a bounded linear operator on X. Thus, if λ ∈ D then S(λ) is a
bounded linear operator and

S(λ)[I + (λ− λ0)R(λ0, A)]

=
∞∑
n=0

(−1)n(λ− λ0)nRn(λ0, A)[I + (λ− λ0)R(λ0, A)]

=
∞∑
n=0

(−1)n(λ− λ0)nRn(λ0, A) +
∞∑
n=0

(−1)n(λ− λ0)n+1Rn+1(λ0, A)

= I + (λ− λ0)R(λ0, A)− (λ− λ0)R(λ0, A)− (λ− λ0)2R2(λ0, A) + ...

= I.

Similarly, [I+(λ−λ0)R(λ0, A)]S(λ) = I. Thus for λ ∈ D, S(λ) is the inverse
of [I + (λ− λ0)R(λ0, A)], so that the equation

z + (λ− λ0)R(λ0, A)z = y
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has a unique solution z ∈ X for every y ∈ X. Thus for every y ∈ X,
(λI − A)x = y if and only if

x = R(λ0, A)z = R(λ0, A)S(λ)y.

Thus, since R(λ0, A)S(λ) a bounded linear operator then λ ∈ ρ(A). Hence
D is contained in ρ(A). Furthermore,

R(λ,A) = R(λ0, A)S(λ) =
∞∑
n=0

(−1)n(λ− λ0)nRn+1(λ0, A),

so that the mapping λ 7→ R(λ,A) is analytic.

Sectorial Operators

Definition 2.3.1 (Sector). For ω ∈ R and θ > 0 we define the sector Sθ,ω
as

Sθ,ω = {λ ∈ C : λ 6= ω, |arg(λ− ω)| < θ}.

If ω = 0 then we write Sθ,0 as Sθ. See Figure 2.2 for a graphical repre-
sentation of the sector Sθ,ω.

◦ω
θ

Sω,θ

<λ

=λ

Figure 2.2: The sector Sθ,ω.

Definition 2.3.2 (Sectorial Operator). An operator A : X ⊃ D(A) 7→ X

is said to be sectorial if there exist constants ω ∈ R, θ ∈
(π

2
, π
)

, and M > 0

such that

(i) Sθ,ω ⊂ ρ(A)
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(ii) ‖R(λ,A)‖ ≤ M

|λ− ω|
for all λ ∈ Sθ,ω.

The following is a useful sufficient condition for an operator to be sectorial.

Theorem 2.3.2. [14, Theorem 2.1.11] Let A : X ⊃ D(A) 7→ X be a linear
operator such that ρ(A) contains a half-plane Π = {λ ∈ C | <λ ≥ ω}, and

‖λR(λ,A)‖ ≤M when <λ ≥ ω,

with ω ∈ R and M > 0. Then A is sectorial.

Proof. We start by showing that there exists a θ ∈ (π
2
, π) such that Sθ,ω ⊂

ρ(A). If ω < 0 then we can choose any ω∗ ≥ 0 and use it to define a
sector Sθ,ω∗ on which the conditions for A being sectorial hold true. Thus we
assume that ω ≥ 0. For any r ∈ R, ω + ir ∈ Π ⊂ ρ(A). Since ‖λR(λ,A)‖ ≤

M for <λ ≥ ω, then ‖R(ω + ir, A)‖−1 ≥ |ω + ir|
M

for all r ∈ R. Thus, from

Theorem 2.3.1, for all r ∈ R the open ball BM−1|ω+ir| (ω + ir) is contained
within the resolvent set ρ(A). Let

S = {λ ∈ C | λ 6= ω, |arg(λ− ω)| ≤ π − arctan 2M}.

We show that S is contained in
⋃
r∈R

BM−1|ω+ir| (ω + ir)∪Π so that S ⊂ ρ(A).

To do this assume r > 0 and let x + iy ∈ S, with y > 0. If x ≥ ω then
x+ iy ∈ Π and we are done. If x < ω, let θ = arg(x+ iy − ω) so that

y

x− ω
= tan(θ)

≤ tan(π − arctan 2M)

= − tan(arctan 2M)

= −2M.

Thus

(
y

x− ω

)2

≥ 4M2 > M2 and

|x+ iy − (ω + ir)|2 = y2

(
x− ω
y

)2

+ (y − r)2 <
y2

M2
+ (y − r)2.

Setting r = y gives |x + iy − (ω + ir)|2 < y2

M2
≤ ω2 + r2

M2
. Thus x + iy is

contained in the open ball BM−1|ω+ir|(ω + ir). The case for y < 0 follows
similarly with

y

x− ω
≥ tan(π − arctan(2M)) = 2M.
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Thus S ⊂
⋃
r∈R

BM−1|ω+ir| (ω + ir) ∪ Π.

We now show that there exists an M∗ > 0 such that ‖R(λ,A)‖ ≤ M∗

|λ− ω|
for all λ ∈ S. Suppose λ ∈ S. If 0 ≤ ω ≤ <λ then

‖R(λ,A)‖ ≤ M

|λ|
≤ M

|λ− ω|
. (2.19)

Suppose =λ > 0. If <λ < ω then
π

2
< arg λ ≤ π − arctan 2M , so that

tan(arg λ) ≤ −2M . Thus λ = w + ir − αr

M
for some r 6= 0 and α ∈

(
0,

1

2

]
.

By Theorem 2.3.1, since <λ < ω we have that

‖R(λ,A)‖ =

∥∥∥∥∥
∞∑
n=0

(−1)n [λ− (ω + ir)]n [R(ω + ir, A)]n+1

∥∥∥∥∥
≤

∞∑
n=0

[
−αr
M

]n [ M

|ω + ir|

]n+1

≤ M√
ω2 + r2

∞∑
n=0

[
− αr√

ω2 + r2

]n
=

M√
ω2 + r2

[
1−

(
αr√
ω2 + r2

)
+

(
αr√
ω2 + r2

)2

− ...

]
≤ 2M

|r|
, (2.20)

since

∣∣∣∣ αr√
ω2 + r2

∣∣∣∣ ≤ 1

2
. However, with λ = w + ir − αr

M
we have

|r| = |λ− ω|
(

1 +
α2

M2

)− 1
2

≥ |λ− ω|
(

1 +
1

4M2

)− 1
2

since 0 < α ≤ 1
2
. Substituting this back into (2.20) gives

‖R(λ,A)‖ ≤ 2M

(
1 +

1

4M2

) 1
2

|λ− ω|−1. (2.21)

Setting M∗ = 2M

(
1 +

1

4M2

) 1
2

> M , (2.19) and (2.21) gives our result, and

thus A is sectorial.
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Analytic Semigroups

We begin this section by associating with the sectorial operator A a family
of bounded linear operators etA, t > 0, on X. We then show that etA, t > 0,
with e0A = I, is a semigroup. Lunardi [14] calls this family of bounded
operators the analytic semigroup generated by A.

Unlike with C0-semigroups, when dealing with sectorial operators it is no
longer necessary that D(A) is dense in X, see [14, Page X]. This is demon-
strated by Lunardi in [14, Proposition 2.1.4], where he shows that analytic
semigroups have all the properties of C0-semigroups listed in Theorem 1.4.3
on D(A), where D(A) is not necessarily the whole of X. However, some
results are true when D(A) is dense in X and other results not, see [3, Page
102]. Furthermore, suppose D(A) was not dense in X. Let X0 = D(A) and
A0 be the part of A in X0. Then X0 a Banach space with respect to ‖ · ‖X
and all the results proved in this section hold true for A0 acting on X0. In
particular, if A is sectorial on X then A0 is sectorial on X0, A0 is the in-
finitesimal generator of an analytic semigroup etA0 , t ≥ 0, in X0, and this
semigroup is a C0-semigroup in X0, see [14, Remark 2.1.5].

Therefore we assume that D(A) is dense in X. Under this assumption we
shall show in Theorem 2.3.6 that analytic semigroups are C0-semigroups on
X.

Proposition 2.3.3. Let A : X ⊇ D(A) 7→ X be a sectorial operator such

that Sθ,ω ⊂ ρ(A) for some ω ∈ R and θ ∈
(π

2
, π
)

. The operator etA defined

as the integral

etA =
1

2πi

∫
ω+γr,η

etλR(λ,A)dλ, t > 0,

where r > 0, η ∈
(π

2
, θ
)

, and γr,η is the curve

{λ ∈ C | | arg λ| = η, |λ| ≥ r} ∪ {λ ∈ C | | arg λ| ≤ η, |λ| = r}

oriented counter-clockwise, is a bounded linear operator on X for all t > 0,
and the integral is absolutely uniformly convergent.

Proof. The curve ω + γr,η is shown in Figure 2.3. Since A is sectorial there

exists a M > 0 such that ‖R(λ,A)‖ ≤ M

|λ− ω|
for all λ ∈ (ω + γr,η). For

any n ∈ N, n > max

{
r,
−ω

cos(η)

}
, let Γn = Bn(ω) ∩ (ω + γr,η), where Bn(ω)

is the closed ball in C with radius n centred at ω + 0i. Note that for all

n > max

{
r,
−ω

cos(η)

}
, if λ ∈ (ω + γr,η) \ Γn then <λ = |λ| cos(η) + ω < 0.

35

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



If t > 0 and λ ∈ (ω + γr,η) \ Γn then

‖etλR(λ,A)‖ ≤ |etλ|‖R(λ,A)‖

≤ et<λ
M

|λ|

≤ et(n cos(η)+ω)M

n
,

with cos(η) < 0. Thus, since Γn is a compact piecewise differentiable curve,

for each t > 0 we have that

∫
Γn

‖etλR(λ,A)x‖Xdλ < ∞ for every x ∈ X.

Furthermore, the function ρ(A) 3 λ 7→ etλR(λ,A) ∈ B(X) is measurable by
Theorem 2.3.1. Thus, by Theorem A.1.2, etλR(λ,A) ∈ L1(Γn;B(X)).

Fix α > 0. We now show that
1

2πi

∫
Γn

etλR(λ,A)dλ is absolutely and

uniformly convergent on [α,∞). Fix ε > 0 and t ∈ [α,∞). Consider the
curve (ω + γr,η) \ Γn with positive imaginary part, say (ω + γ+

r,η) \ Γn. For
each λ ∈ (ω+γ+

r,η)\Γn, there exists a real number δ ≥ n such that λ = ω+δeiη.
Thus∣∣∣∣∣ 1

2πi

∫
(ω+γ+r,η)\Γn

‖etλR(λ,A)‖dλ

∣∣∣∣∣ ≤
∣∣∣∣ 1

2πi

∣∣∣∣
∣∣∣∣∣
∫

(ω+γ+r,η)\Γn
|etλ|‖R(λ,A)‖dλ

∣∣∣∣∣
=

1

2π

∣∣∣∣∣
∫

(ω+γ+r,η)\Γn
et<λ‖R(λ,A)‖dλ

∣∣∣∣∣
=

1

2π

∣∣∣∣∫ ∞
n

et(ω+δ cos(η))‖R(ω + δeiη, A)‖eiηdδ
∣∣∣∣

≤ 1

2π

∫ ∞
n

eα(ω+δ cos(η))M

|δ|
|eiη|dδ

≤ M

2πn

∫ ∞
n

eα(ω+δ cos(η))dδ

=
Meαω

2πα| cos(η)|n
eα cos(η)n

≤ Meαω

2πα| cos(η)|n

=
Kα

n

where Kα =
Meαω

2πα| cos(η)|
> 0. It follows that if n > max

{
r,
−ω

cos(η)
,
Kα

ε

}
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then ∣∣∣∣∣ 1

2πi

∫
(ω+γ+r,η)\Γn

‖etλR(λ,A)‖dλ

∣∣∣∣∣ < ε. (2.22)

Note that for each λ+ ∈ (ω + γ+
r,η) \ Γn, λ+ = ω + δeiη, there exists a

corresponding λ− ∈ (ω + γr,η) \ Γn, λ− = ω + δe−iη with negative imaginary
part. However, since cos(η) = cos(−η), then <λ− = <λ+. Thus if we
integrate over the curve (ω + γr,η) \ Γn with negative imaginary part (2.22)
follows in the same way.

Thus for t ∈ [α,∞) we have that
1

2πi

∫
ω+γr,η

‖etλR(λ,A)‖dλ <∞ so that

etλR(λ,A) ∈ L1(ω + γr,η;B(X)). By Theorem A.2.1

lim
n→∞

1

2πi

∫
Γn

etλR(λ,A)dλ =
1

2πi

∫
ω+γr,η

etλR(λ,A)dλ

and the integral is absolutely and uniformly convergent on [α,∞). Taking
α → 0 gives that the convergence is absolute and uniform on (0,∞). Thus
for any sectorial operator A, we can define a bounded linear operator

etA =
1

2πi

∫
ω+γr,η

etλR(λ,A)dλ

for t > 0, and the integral is absolutely uniformly convergent.

◦ω
ηr

Sω,θ

<λ

=λ

Figure 2.3: The curve ω + γr,η.

The following basic proposition shows that, in general, we can take ω = 0.
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Proposition 2.3.4 (Exponential Shift). Suppose A : X ⊃ D(A) 7→ X
is a sectorial operator such that there exist constants ω ∈ R and θ ∈ (π

2
, π)

such that Sθ,ω is contained in ρ(A), and there exists an M > 0 such that if

λ ∈ Sθ,ω then ‖R(λ,A)‖ ≤ M

|λ− ω|
. Then the operator

B : X ⊃ D(A) 3 x 7→ Ax− ωx ∈ X

is sectorial and satisfies the following properties:

(i) If λ+ ω ∈ ρ(A) then λ ∈ ρ(B) and R(λ,B) = R(λ+ ω,A);

(ii) Sθ ⊂ ρ(B);

(iii) If λ ∈ Sθ then ‖λR(λ,B)‖ ≤M .

(iv) The family etB, t ≥ 0, is a family of bounded linear operators, and
etB = e−ωtetA, t ≥ 0.

Proof. (i): Suppose λ+ ω ∈ ρ(A). Then (A− (λ+ ω)I)−1 = (B − λI)−1 is
a bounded linear operator. Thus λ ∈ ρ(B) and R(λ,B) = R(λ+ω,A).

(ii): Let λ ∈ Sθ. Then λ+ ω ∈ Sθ,ω ⊂ ρ(A). Thus, by (i), λ ∈ ρ(B). Hence
Sθ ⊂ ρ(B).

(iii): Let λ ∈ Sθ ⊂ ρ(B). Then, by (i),

‖R(λ,B)‖ = ‖R(λ+ ω,A)‖ ≤ M

|λ|
.

(iv): For t > 0 we have by Proposition (2.3.3) that

etB =
1

2πi

∫
γr,η

eλtR(λ,B)dλ

=
1

2πi

∫
ω+γr,η

e(λ−ω)tR(λ− ω,B)dλ

=
1

2πi
e−ωt

∫
ω+γr,η

etλR(λ,A)dλ

= e−ωtetA,

is a bounded linear operator. In the case of t = 0 then we just have
the identity.
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Theorem 2.3.5. Suppose A is a sectorial operator with ρ(A) containing Sθ,ω,
for constants θ ∈ (π

2
, π) and ω ∈ R, and that if λ ∈ Sθ,ω then ‖R(λ,A)‖ ≤

M

|λ− ω|
for some M > 0. Then the family of bounded linear operators

etA =
1

2πi

∫
ω+γr,η

etλR(λ,A)dλ, t > 0,

e0Ax = x, x ∈ X,

has the following properties:

(i) etAx ∈ D(Ak) for each t > 0, x ∈ X, k ∈ N. If x ∈ D(Ak) for some
k ∈ N, then

AketAx = etAAkx, for t > 0.

(ii) etAesA = e(t+s)A for all t, s ≥ 0.

(iii) (a) ‖etA‖ ≤M0e
ωt, t > 0;

(b) For every k ∈ N there exists a constant Mk > 0 such that

‖tk(A− ωI)ketA‖ ≤Mke
ωt, t > 0.

(c) For every ε > 0 and k ∈ N there exists a Ck,ε > 0 such that

‖tkAketA‖ ≤ Ck,εe
(ω+ε)t, t > 0.

(iv) The function t 7→ etA belongs to C∞((0,∞);B(X)), and for all k ∈ N

dk

dtk
etA = AketA, t > 0.

Moreover this function has an analytic extension to the sector

Sθ−π
2

= {t ∈ C | t 6= 0, | arg t| < θ − π

2
}.

Proof. The following equations are used in the subsequent proofs. Let t ≥ 0.
For each λ ∈ ρ(A), since (λI −A)R(λ,A)x = x for x ∈ X and R(λ,A)(λI −
A)x = x for x ∈ D(A) we have that

R(λ,A)Ax = AR(λ,A)x, for x ∈ D(A), (2.23)

AR(λ,A)x = λR(λ,A)x− x, for x ∈ X. (2.24)
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(i): Fix t > 0. Note that∫
ω+γr,η

eλtdλ =

∫ r

∞
eω+δe−iηe−iηdδ +

∫ 0

−η
eω+reiθreiθdθ

+

∫ η

0

eω+reiθreiθdθ +

∫ ∞
r

eω+δeiηeiηdδ

=0. (2.25)

From (2.24) we have

‖eλtAR(λ,A)x‖X = et<λ‖λR(λ,A)x− x‖X

≤ et<λ
(
|λ|M
|λ− ω|

+ 1

)
‖x‖X (2.26)

for all λ ∈ Sθ,ω ⊃ (ω + γr,η) and x ∈ X. For all x ∈ X, since

lim
<λ→−∞

et<λ
(
M |λ|
|λ− ω|

+ 1

)
‖x‖X = 0

then
1

2πi

∫
ω+γr,η

eλtAR(λ,A)xdλ

exists. By Theorem 1.4.7 the sectorial operator A is closed. Thus by
Propositions 2.3.3 and A.1.3 we have, for all x ∈ X, that

etAx =
1

2πi

∫
ω+γr,η

eλtR(λ,A)xdλ ∈ D(A)

and

1

2πi
A

∫
ω+γr,η

eλtR(λ,A)xdλ =
1

2πi

∫
ω+γr,η

eλtAR(λ,A)xdλ. (2.27)

From (2.27), (2.24) and (2.25), we have

AetAx =
1

2πi
A

∫
ω+γr,η

eλtR(λ,A)xdλ

=
1

2πi

∫
ω+γr,η

eλtAR(λ,A)xdλ

=
1

2πi

∫
ω+γr,η

eλt[λR(λ,A)x− x]dλ

=
1

2πi

∫
ω+γr,η

λeλtR(λ,A)xdλ. (2.28)
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In a similar manner to (2.26) we get that

lim
<λ→−∞

‖λk−1eλtAR(λ,A)x‖ ≤ lim
<λ→−∞

et<λ|λ|k−1

(
M |λ|
|λ− ω|

+ 1

)
‖x‖X

= 0 (2.29)

for all k ∈ N and x ∈ X. Thus, from (2.28) and (2.29), it follows in a
similar manner to before that for all k ∈ N and x ∈ X, etAx ∈ D(Ak)
and

AketAx =
1

2πi

∫
ω+γr,η

λkeλtR(λ,A)xdλ. (2.30)

From (2.23) and (2.27), if x ∈ D(A) then

AetAx =
1

2πi

∫
ω+γr,η

eλtAR(λ,A)xdλ

=
1

2πi

∫
ω+γr,η

eλtR(λ,A)Axdλ

= etAAx.

Similarly, for any k ∈ N, if x ∈ D(Ak) then AketAx = etAAkx.

(ii): Let t, s > 0. From Proposition 2.3.4 we can define a sectorial operator
B : X ⊃ D(A) 7→ X such that ρ(B) contains Sθ, ‖R(λ,B)‖ = ‖R(λ +

ω,A)‖ ≤ M

|λ|
for λ ∈ Sθ, and etB = e−ωtetA for t ≥ 0. If e(t+s)B = etBesB

then
e(t+s)A = eω(t+s)e(t+s)B = eωtetBeωsesB = etAesA.

Thus it is sufficient to prove that e(t+s)B = etBesB. Let 0 < r1 < r2 and
π
2
< η2 < η1. It is clear that∫

γr1,η1

∫
γr2,η2

etλ+sµR(λ,B)R(µ,B)dλdµ

exists due to the fact that ‖R(λ,B)‖ ≤ M

|λ|
for λ ∈ Sθ. Thus by Fubini’s

Theorem, Theorem A.1.4, and the Resolvent Identity, Theorem 1.4.6,
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we have

etBesB =

(
1

2πi

)2 ∫
γr1,η1

etλR(λ,B)dλ

∫
γr2,η2

esµR(µ,B)dµ

=

(
1

2πi

)2 ∫
γr1,η1

∫
γr2,η2

etλ+sµR(λ,B)R(µ,B)dλdµ

=

(
1

2πi

)2 ∫
γr1,η1

∫
γr2,η2

etλ+sµR(λ,B)−R(µ,B)

µ− λ
dλdµ

=

(
1

2πi

)2 ∫
γr1,η1

etλR(λ,B)

∫
γr2,η2

esµ(µ− λ)−1dµdλ

−
(

1

2πi

)2 ∫
γr2,η2

esµR(µ,B)

∫
γr1,η1

etλ(µ− λ)−1dλdµ.

By Lemma A.2.3 (1)(a), since γr1,η1 lies to the left of γr2,η2 in the
complex plane and esµ is analytic and bounded on γr2,η2 and everything
to the left of it, we have that

etBesB =

(
1

2πi

)2 ∫
γr1,η1

etλR(λ,B)(2πiesλ)dλ

=

(
1

2πi

)∫
γr1,η1

e(t+s)λR(λ,B)dλ

= e(t+s)B.

(iii)(a): To prove (iii)(a) we again use the operator B as described in the proof

of (ii), so that ‖R(λ,B)‖ ≤ M

|λ|
for λ ∈ Sθ. Then

‖etA‖ = ‖eωtetB‖ = eωt‖etB‖

for all t > 0. Thus, for M0 > 0, etA ≤M0e
ωt if and only if ‖etB‖ ≤M0

for all t > 0. Hence it is sufficient to show that there exists an M0 > 0
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such that ‖etB‖ ≤M0 for all t > 0. For any fixed t > 0, we have

‖etB‖ =

∥∥∥∥∥ 1

2πi

∫
γr,η

etλR(λ,B)dλ

∥∥∥∥∥
=

1

2π

∥∥∥∥∫ ∞
r

etδe
iη

R(δeiη, B)eiηdδ +

∫ r

∞
etδe

−iη
R(δe−iη, B)e−iηdδ

+

∫ η

−η
etre

iθ

R(reiθ, B)ireiθdθ

∥∥∥∥
≤ 1

2π

(
2

∫ ∞
r

etδ cos(η)M

δ
dδ +

∫ η

−η
etr cos(θ)M

r
rdθ

)
≤M

2π

(
2

∫ ∞
r

δ−1etδ cos(η)dδ +

∫ η

−η
etr cos(θ)dθ

)
.

Note that cos(η) < 0 so that

∫ ∞
r

δ−1etδ cos(η)dδ exists. Then

‖etB‖ ≤ MN

2π
:= M0

when N > 0 is greater than

(
2

∫ ∞
r

δ−1etδ cos(η)dδ +

∫ η

−η
etr cos(θ)dθ

)
.

(iii)(b): Fix k ∈ N. Note that if there exists a positive constant Mk such that
‖tkBketB‖ ≤Mk for all t > 0 then

‖tk(A− ωI)ketA‖ = ‖tkBkeωtetB‖ ≤Mke
ωt

for all t > 0 and we have our result. Thus we show that there exists
a positive constant Mk such that ‖tkBketB‖ ≤ Mk for all t > 0. Fix
t > 0. From (i), for any x ∈ X we have that etBx ∈ D(B). Thus, by
(2.27), (2.24) and (2.25), and using the same integral manipulation as
in (iii)(a), we have

‖BetB‖ =

∥∥∥∥∥ 1

2πi

∫
γr,η

etλBR(λ,B)dλ

∥∥∥∥∥
=

∥∥∥∥∥ 1

2πi

∫
γr,η

λetλR(λ,B)dλ− 1

2πi

∫
γr,η

etλdλ

∥∥∥∥∥
=

1

2π

∥∥∥∥∥
∫
γr,η

λetλR(λ,B)dλ

∥∥∥∥∥
≤ M

2π

(
2

∫ ∞
r

etδ cos(η)dδ +

∫ η

−η
etr cos(θ)rdθ

)
.
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Letting ζ = tδ and ζ0 = tr gives

‖BetB‖ ≤ M

2πt

(
2

∫ ∞
ζ0

eζ cos(η)dζ +

∫ η

−η
eζ0 cos(θ)ζ0dθ

)
=
M1

t

for 0 < M1 =
M

2π

(
2

∫ ∞
ζ0

eζ cos(η)dζ +

∫ η

−η
eζ0 cos(θ)ζ0dθ

)
< ∞. Fix k ∈

N. Since etBx ∈ D(B) for all x ∈ X, t > 0, and BetB = etBB on D(B)

by (i), then BketB = (Be
t
k
B)k. Thus letting Mk = (M1k)k > 0 we have

‖BketB‖ = ‖(Be
t
k
B)k‖ ≤

(
M1k

t

)k
=
Mk

tk
. (2.31)

(iii)(c): Fix ε > 0 and k ∈ N. Note that kk ≤ ekk! so that (2.31) gives

‖BketB‖ ≤ Mk

tk
≤ (M1e)

kk!t−k. Thus, by the binomial formula, we

get

‖AketA‖ = ‖(B + ωI)keωtetB‖

= eωt

∥∥∥∥∥
k∑
j=0

(
k

j

)
ωk−jBjetB

∥∥∥∥∥
≤ eωt

[
k∑
j=0

(
k

j

)
ωk−j‖BjetB‖

]

≤ eωt

[
k∑
j=0

(
k

j

)
ωk−j(M1e)

jj!t−j

]

= eωtt−k

[
k∑
j=0

k!

(k − j)!
ωk−j(M1e)

jtk−j

]

= eωtt−kk!

[
k∑
i=0

ti

i!
ωi(M1e)

k−i

]

≤ eωtt−kk!

[
k∑
i=0

(tε)i

i!

(
|ω|
ε

)i
(M1e)

k−i

]
.
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Let Ck,ε = k! max

{
(M1e)

k,

(
|ω|
ε

)
(M1e)

k−1, ...,

(
|ω|
ε

)k}
> 0. Then

‖AketA‖ ≤ eωtt−kCk,ε

(
k∑
i=0

(tε)i

i!

)
≤ eωtt−kCk,εe

tε

= Ck,εe
(ω+ε)tt−k.

(iv): Let t > 0 and x ∈ X. Then by (i), etAx ∈ D(A). Since the integral
defining etA is uniformly convergent in t, then by (2.28)

d

dt
etA =

1

2πi

∫
ω+γr,η

d

dt
etλR(λ,A)dλ

=
1

2πi

∫
ω+γr,η

λetλR(λ,A)dλ

= AetA.

Similarly, for k ∈ N, we have that etAx ∈ D(Ak) and by (2.30),
dk

dtk
etA =

AketA. Thus the function t 7→ etA belongs to C((0,∞);B(X)). Now

let ε > 0 such that 2ε < θ − π

2
, and let η = θ − ε, so that

π

2
< η < θ.

Then, following an argument similar to that of Proposition 2.3.3, the
function

t 7→ etA =
1

2πi

∫
γr,η

etλR(λ,A)dλ

is well-defined if <(tλ) < 0 as <λ→ −∞. Note that this is the case if
π

2
< | arg(tλ)| = | arg t+ arg λ|. But if

t ∈ Sε =
{
t ∈ C | t 6= 0, | arg t| < θ − 2ε− π

2

}
then | arg(tλ)| ≥ π

2
+ ε. Hence the map t 7→ etA extends to Sε for all

ε > 0 such that 2ε < θ − π

2
. Thus we may take the derivative with

respect to t and we see that the mapping t 7→ etA is analytic on Sε with
dk

dtk
etA = AketA for all k ∈ N as before. Since this is true for each ε

such that 2ε ∈ (0, θ − π
2
), t 7→ etA is analytic on

Sθ−π
2

=
{
t ∈ C | t 6= 0, | arg t| < θ − π

2

}
.
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Most commonly, the properties of above theorem are used to define an
analytic semigroup, as is done in Pazy [18], Goldstein [10] and Showalter [22].
For our purposes, however, it is more useful to define the semigroup in terms
of its infinitesimal generator A, since in applications to PDEs A is directly
linked to the physical problem that we are dealing with. Thus we follow the
method of Lundardi [14]. This definition is given below.

Definition 2.3.3 (Analytic Semigroup). Let A : X ⊇ D(A) 7→ X be a
sectorial operator. The family {etA | t ≥ 0} defined as

etA =
1

2πi

∫
ω+γr,η

etλR(λ,A)dλ, t > 0,

e0Ax = x, x ∈ X,

where r > 0, η ∈ (π
2
, θ), and γr,η is the curve

{λ ∈ C | | arg λ| = η, |λ| ≥ r} ∪ {λ ∈ C | | arg λ| ≤ η, |λ| = r}

oriented counter-clockwise, is the analytic semigroup generated by A on X.

It follows, by Theorem 2.3.5 (ii), that the family of bounded linear op-
erators etA, t ≥ 0, as defined in Definition 2.3.3, is indeed a semigroup. We
now show that etA, t ≥ 0, is a C0-semigroup.

Theorem 2.3.6. If A is a sectorial operator, then the analytic semigroup
generated by A is a C0-semigroup with infinitesimal generator A.

Proof. Since A is sectorial there exist constants ω ∈ R, θ ∈
(π

2
, π
)

and M >

0 such that Sω,θ ⊂ ρ(A) and ‖R(λ,A)‖ ≤ M

|λ− ω|
for λ ∈ Sω,θ. Furthermore,

the operator A generates an analytic semigroup etA, t ≥ 0, defined as e0A = I

and etA =
1

2πi

∫
ω+γr,η

etλR(λ,A)dλ for all t > 0 and for some r > 0. Suppose

x ∈ D(A). Consider ζ ∈ R such that ζ > ω + r. Then ζ ∈ ρ(A). Let
y = (ζI − A)x, then x = R(ζ, A)y.
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Fix t > 0. By the resolvent identity, Theorem 1.4.6, we have that

etAx =etAR(ζ, A)y

=
1

2πi

∫
ω+γr,η

etλR(λ,A)R(ζ, A)ydλ

=
1

2πi

∫
ω+γr,η

etλ
R(λ,A)−R(ζ, A)

ζ − λ
ydλ

=
−1

2πi

∫
ω+γr,η

etλ
R(λ,A)

λ− ζ
ydλ+

1

2πi

∫
ω+γr,η

etλ
R(ζ, A)

λ− ζ
ydλ. (2.32)

If <λ < ω, then

‖etλR(ζ, A)y‖X ≤ et<λ‖R(ζ, A)‖‖y‖X ≤ etω‖R(ζ, A)‖‖y‖X

and etλR(ζ, A) is bounded. Thus, since ζ lies to the right of ω+γr,η, it follows
from Lemma A.2.3 (1)(b) that∫

ω+γr,η

etλR(ζ, A)

λ− ζ
ydλ = 0. (2.33)

For λ ∈ (ω + γr,η) with <λ < 0,∥∥∥∥etλR(λ,A)

λ− ζ
y

∥∥∥∥
X

≤ et<λ
M‖y‖X

|λ− ω||λ− ζ|

≤ M‖y‖X
|λ− ω||λ− ζ|

.

Hence ∫
ω+γr,η

etλ
R(λ,A)

λ− ζ
ydλ (2.34)

is uniformly convergent in t ≥ 0. Therefore, by (2.32), (2.33) and (2.34),

lim
t→0+

etAx = lim
t→0+

−1

2πi

∫
ω+γr,η

etλ
R(λ,A)

λ− ζ
ydλ

=
−1

2πi

∫
ω+γr,η

lim
t→0+

etλ
R(λ,A)

λ− ζ
ydλ

=
−1

2πi

∫
ω+γr,η

R(λ,A)

λ− ζ
ydλ. (2.35)

We have that ‖R(λ,A)‖ ≤ M

|λ− ω|
for all λ ∈ Sω,θ. Thus, for any ρ ∈ (0, r),

R(λ,A) will be bounded on D = Sω,θ \ Bρ(ω), where Bρ(ω) is the open ball
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with radius ρ centred at ω + 0i. Furthermore, D contains the half-plane
{λ ∈ C | <λ > ω} and the curve ω + γr,η. By Theorem 2.3.1, the mapping
ρ(A) 3 λ 7→ R(λ,A) ∈ B(X) is analytic. It follows from Lemma A.2.3 (2)(a)
with ζ to the right of ω + γr,η that∫

ω+γr,η

R(λ,A)

λ− ζ
ydλ = −2πiR(ζ, A)y. (2.36)

Substituting (2.36) into (2.35) gives

lim
t→0+

etAx = R(ζ, A)y = x (2.37)

for every x ∈ D(A). We now prove this result for x ∈ X. Fix x ∈ X. Since
D(A) = X, there exists a sequence (xn) ∈ D(A) such that (xn) converges
to x in X. By Theorem 2.3.5 (iii)(a) there exists a M0 > 0 such that
‖etA‖ ≤M0e

ωt. Thus

‖etAx− x‖X ≤ ‖etAx− etAxn‖X + ‖etAxn − xn‖X + ‖xn − x‖X
≤ (Meωt + 1)‖x− xn‖X + ‖etAxn − xn‖X (2.38)

for all n ∈ N. Fix ε > 0. Since R 3 t 7→ M0e
ωt ∈ R is continuous and (xn)

converges to x there exists a δ1 > 0 and a N ∈ N such that if t ∈ (0, δ1) then

(Meωt + 1)‖x− xN‖X ≤
ε

2
. (2.39)

Since xN ∈ D(A), (2.37) gives us that lim
t→0+

etAxN = xN . Thus there exists a

δ ∈ (0, δ1] such that if t ∈ (0, δ) then

‖etAxN − xN‖X <
ε

2
. (2.40)

Substituting (2.39) and (2.40) into (2.38) gives that if t ∈ (0, δ) then

‖etAx− x‖X < ε.

Hence
lim
t→0+

etAx = x (2.41)

for all x ∈ X so that etA, t ≥ 0, is a C0-semigroup on X.
Next we show that A is the infinitesimal generator of etA, t ≥ 0. That is,

we show that, for all x ∈ D(A),

lim
t→0+

1

t
(etAx− x) = Ax.
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Fix x ∈ D(A). Then AetAx = etAAx for t > 0 by Theorem 2.3.5 (i). We
show that the function t 7→ AetAx is continuous on [0,∞). Since the mapping
t 7→ etAx is an belongs to C∞((0,∞);B(X)) by Theorem 2.3.5 (iv) then
t 7→ AetAx is continuous on (0,∞). Thus we only need to show continuity
at t = 0. Let s > 0, then

‖AesAx− Ae0Ax‖X = ‖A(esA − I)x‖X
= ‖(esA − I)Ax‖X .

By (2.41), lim
s→0+

(esA − I)Ax = 0. Thus

lim
s→0+

‖AesAx− Ae0Ax‖X = 0,

and the function t 7→ AetAx is continuous on [0,∞). Thus t 7→ AetAx is
Bochner integrable.

By Proposition A.1.5 (a), the function

F (t) =

∫ t

0

AesAxds, t ≥ 0

is differentiable on (0,∞) and, by Theorem 2.3.5 (iv),

F ′(t) = AetAx =
d

dt
etAx

for t > 0. Thus
F (t) = etAx+ cx

for t > 0 and for some cx ∈ X. However,

0 = F (0) = x+ cx

so that cx = −x. Hence∫ t

0

AesAxds = F (t) = etAx− x

for t > 0. Thus, for every t > 0,

1

t
(etAx− x) =

1

t

∫ t

0

AesAxds. (2.42)
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By Proposition A.1.5 (b) we have that for t > 0

lim
t→0+

∥∥∥∥1

t

∫ t

0

AesAxds− Ax
∥∥∥∥
X

= lim
t→0+

∥∥∥∥1

t

∫ t

0

(AesAx− Ax)ds

∥∥∥∥
X

≤ lim
t→0+

1

t

∫ t

0

‖AesAx− Ae0tx‖Xds

= 0.

Thus for t > 0

lim
t→0+

1

t

∫ t

0

AesAxds = Ax. (2.43)

From (2.42) and (2.43) it follows that for all t > 0

lim
t→0+

1

t
(etAx− x) = Ax.

Thus A is the infinitesimal generator of the C0-semigroup etA.

It follows that all the properties of C0-semigroups stated in Theorem 1.4.3
hold for analytic semigroups. However, Theorem 2.3.5 (i) is a stronger result
than Theorem 1.4.3 (iii).

Theorem 2.3.7. If etA, t ≥ 0, is an analytic semigroup then etA is uniformly
continuous for t > 0.

Proof. Suppose A : X ⊃ D(A) 7→ X is the infinitesimal generator of etA,
t ≥ 0. Let b > 0 be arbitrary and let Mb be an upper bound for {‖etA‖ | t ∈
(0, b)}. By Theorem 2.3.5 (i) and (iv), etAx ∈ D(A) and

d

dt
etAx = AetAx

for any x ∈ X and t > 0. Thus the domain of AetA, t > 0, is all of X.
Furthermore, since A is a closed linear operator and since etA is bounded on
(0, b), then AetA is a closed operator for each t ∈ (0, b). Thus, by the Closed
Graph Theorem, Theorem C.0.10, AetA is a bounded linear operator on X
for each t ∈ (0, b). To show that etA is uniform continuous for t > 0, consider
t1 ∈ (0, b) and t2 ∈ R such that 0 < t1 ≤ t2 ≤ t1 + b. Since etA, t ≥ 0, is a
C0-semigroup, by Theorem 2.3.6, then by Theorem 1.4.3 (iv), for any x ∈ X
we have

‖et2Ax− et1Ax‖X =

∥∥∥∥∫ t2

t1

AesAxds

∥∥∥∥
X

=

∥∥∥∥∫ t2

t1

e(s−t1)AAet1Axds

∥∥∥∥
X

≤ (t2 − t1)Mb‖Aet1A‖‖x‖X .
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Therefore ‖et2A − et1A‖ ≤ (t2 − t1)Mb‖Aet1A‖ so that

lim
t2→t+1

‖et2A − et1A‖ = 0.

In the same way
lim
t2→t−1

‖et1A − et2A‖ = 0.

Since b is arbitrary etA is uniformly continuous for t > 0.

2.4 Perturbation Theory

As mentioned in the introduction, one of the main benefits of semigroup
theory is the relatively easy way it lends itself to perturbation theory. This
allows one to generalise results that hold for a given operator A to operators
of type A + B. In particular, if A is the infinitesimal generator of a C0-
semigroup then perturbation theory determines specific conditions on the
operator B for A + B to be the infinitesimal generator of a C0-semigroup.
The simplest cases are when B is bounded. We consider only a few basic
results related to strongly continuous and analytic semigroups, since this
enables us to extend our existence theorem to a broader class of problems,
as discussed in Remark 2.4.3. These results can be found in [18, Chapter 3].
For a more complete discussion on the perturbation of semigroups we refer
the reader to [7, Chapter 11].

Let X be a Banach space.
In what follows we make use of the following technical Lemma.

Lemma 2.4.1. [18, Lemma 1.5.1] Let A be a linear operator on a Banach
space X for which ρ(A) contains (0,∞). If there exists an M > 0 such that

‖λnR(λ,A)n‖ ≤M for n = 1, 2, ..., λ > 0

then there exists a norm ‖ · ‖∗X on X which is equivalent to the original norm
‖ · ‖X on X in the sense that

‖x‖X ≤ ‖x‖∗X ≤M‖x‖X for every x ∈ X

and
‖λR(λ,A)x‖∗X ≤ ‖x‖∗X for all x ∈ X, λ > 0.

Remark 2.4.1. It is clear that we can extend this theorem to the case where
ρ(A) contains (ω,∞) for some ω ∈ R. In this case,

‖(λ− ω)R(λ,A)x‖∗X ≤ ‖x‖∗X for every x ∈ X, λ > ω.
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Furthermore, Pazy shows in the proof of [18, Theorem 1.5.2] that if A is the
infinitesimal generator of a C0-semigroup T (t), t ≥ 0, such that ‖T (t)‖ ≤M
for some M ≥ 1 and for all t ≥ 0, then ‖T (t)x‖∗X ≤ ‖x‖∗X for each x ∈ X and
t ≥ 0. This estimate can be generalized to the case where ρ(A) ⊃ (ω,∞) in
the same way as before, and, as Pazy suggests in [18, Section 1.5, Equation
(5.17)], if ‖T (t)‖ ≤Meωt then

‖T (t)x‖∗X ≤ ‖x‖∗Xeωt

for each x ∈ X.

Theorem 2.4.2. Suppose A : X ⊃ D(A) 7→ X is the infinitesimal generator
of a C0-semigroup T (t), t ≥ 0, on X, satisfying ‖T (t)‖ ≤ Meωt, t ≥ 0, for
some M ≥ 1 and ω > 0. If B is a bounded linear operator on X then A+B
is the infinitesimal generator of a C0-semigroup S(t), t ≥ 0, on X satisfying
‖S(t)‖ ≤Me(ω+M‖B‖)t for t ≥ 0.

Proof. From the Hille-Yosida Theorem, Theorem 1.4.8, we have that A is
closed, D(A) is dense in X, ρ(A) contains (ω,∞) and

‖R(λ,A)‖ ≤ M

(λ− ω)
for λ > ω, n ∈ N.

Since B is bounded, A+B is closed and D(A+B) is dense in X. Furthermore,
from Lemma 2.4.1 and Remark 2.4.1 there exists a norm ‖ · ‖∗X on X such
that, for every x ∈ X, the following hold:

(i) ‖x‖X ≤ ‖x‖∗X ≤M‖x‖X ,

(ii) ‖R(λ,A)x‖∗X ≤ (λ− ω)−1‖x‖∗X for λ > ω

(iii) ‖T (t)x‖∗X ≤ ‖x‖∗Xeωt.

Denote by ‖ · ‖∗ the operator norm on the set of bounded linear operators on
X with respect to the norm ‖ · ‖∗X . That is,

‖T‖∗ = sup{‖Tx‖∗X | x ∈ X, ‖x‖∗X = 1}.

It follows from (i) that ‖·‖∗ is equivalent to the standard operator norm ‖·‖.
Furthermore,

‖R(λ,A)‖∗ ≤ (λ− ω)−1 (2.44)

for λ > ω by (ii) and ‖T (t)‖∗ ≤ eωt, t ≥ 0, by (iii).
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We now show that there exist λ ∈ ρ(A) such that the operator I −
BR(λ,A) is invertible. Fix λ ∈ ρ(A) such that λ > ω + ‖B‖∗. Then (2.44)
gives

‖BR(λ,A)‖∗ ≤ ‖B‖∗(λ− ω)−1 < 1. (2.45)

Suppose
[I −BR(λ,A)]x = [I −BR(λ,A)]y,

for some x, y ∈ X. Then, by the reverse triangle inequality and (2.45),

0 = ‖[I −BR(λ,A)](x− y)‖∗X
≥ |‖x− y‖∗X − ‖BR(λ,A)(x− y)‖∗X |
= ‖x− y‖∗X − ‖BR(λ,A)(x− y)‖∗X
≥ ‖x− y‖∗X(1− ‖BR(λ,A)‖∗). (2.46)

From (2.45) and (2.46) we have that ‖x − y‖∗X = 0 and so x = y. Thus the
operator [I −BR(λ,A)] is injective. Furthermore, for all x ∈ X

[I −BR(λ,A)]
∞∑
n=0

[BR(λ,A)]nx = I −BR(λ,A)x+BR(λ,A)x− ...

= x. (2.47)

Thus [I−BR(λ,A)] is surjective. In a similar manner to (2.47) we can show

that
∞∑
n=0

[BR(λ,A)]n[I −BR(λ,A)]x = x for all x ∈ X. Thus [I −BR(λ,A)]

is invertible and

[I −BR(λ,A)]−1 =
∞∑
n=0

[BR(λ,A)]n.

Set

R = R(λ,A)[I −BR(λ,A)]−1 =
∞∑
n=0

R(λ,A)[BR(λ,A)]n. (2.48)

Now

[λI − (A+B)]R = [(λI − A)−B]R(λ,A)[I −BR(λ,A)]−1

= [I −BR(λ,A)]−1 −BR(λ,A)[I −BR(λ,A)]−1

= [I −BR(λ,A)][I −BR(λ,A)]−1

= I.
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We also have from (2.48) that for each x ∈ D(A)

R[λI − (A+B)]x =
∞∑
n=0

R(λ,A)[BR(λ,A)]n[λI − (A+B)]x

=R(λ,A)[(λI − A)−B]x

+
∞∑
n=1

R(λ,A)[BR(λ,A)]n[λI − (A+B)]x

=x−R(λ,A)Bx+R(λ,A)BR(λ,A)[(λI − A)−B]x

+R(λ,A)[BR(λ,A)]2[(λI − A)−B]x+ ...

=x−R(λ,A)Bx+R(λ,A)Bx−R(λ,A)BR(λ,A)Bx

+R(λ,A)BR(λ,A)Bx−R(λ,A)[BR(λ,A)]2Bx+ ...

=x.

Thus λ ∈ ρ(A+B) and

R(λ,A+B) = R = R(λ,A)[I −BR(λ,A)]−1. (2.49)

Moreover, from (2.48), (2.44) and (2.45) we have

‖R(λ,A+B)‖∗ =

∥∥∥∥∥
∞∑
n=0

R(λ,A)[BR(λ,A)]n

∥∥∥∥∥
∗

≤ (λ− ω)−1

∞∑
n=0

(‖BR(λ,A)‖∗)n

= (λ− ω)−1(1− ‖BR(λ,A)‖∗)−1. (2.50)

Now, from (2.44) we have that

(λ− ω)‖BR(λ,A)‖∗ ≤ (λ− ω)‖B‖∗‖R(λ,A)‖∗ ≤ ‖B‖∗.

Thus

1 ≤ (λ− ω)− (λ− ω)‖BR(λ,A)‖∗

(λ− ω)− ‖B‖∗

so that

(λ− ω)−1 ≤ 1− ‖BR(λ,A)‖∗

λ− ω − ‖B‖∗
,

and we conclude that

(λ− ω)−1(1− ‖BR(λ,A)‖∗)−1 ≤ (λ− ω − ‖B‖∗)−1. (2.51)
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Substituting (2.51) into (2.50) gives that

‖R(λ,A+B)‖∗ ≤ (λ− ω − ‖B‖∗)−1. (2.52)

Thus ρ(A + B) contains Q = {λ ∈ ρ(A) | λ > ω + ‖B‖∗} and (2.52) holds
for λ ∈ Q. By the Hille-Yosida Theorem we then have that A + B is the
infinitesimal generator of a C0-semigroup S(t), t ≥ 0, satisfying

‖S(t)‖∗ ≤ e(ω+‖B‖∗)t

for t ≥ 0. Returning to the original, equivalent norm ‖ · ‖ on B(X) gives

‖S(t)‖ ≤Me(ω+M‖B‖)t

for t ≥ 0 as desired.

In is natural to wonder how the C0-semigroup T (t), t ≥ 0, generated by
A, and the C0-semigroup S(t), t ≥ 0, generated by A + B, where B is a
bounded linear operator, are related. For more on this topic we refer the
reader to [18, Proposition 3.1.2, Corollary 3.1.3].

We now consider perturbations of the infinitesimal generators of analytic
semigroups. The first result in this regard is the following.

Theorem 2.4.3. Suppose A : X ⊃ D(A) 7→ X is a sectorial operator and
B : X ⊃ D(B) 7→ X is a closed linear operators such that D(A) ⊆ D(B).
Then there exists a δ ∈

(
0, 1

2

)
such that if there exist constants a ∈ [0, δ] and

b ≥ 0 such that

‖Bx‖X ≤ a‖Ax‖X + b‖x‖X for all x ∈ D(A), (2.53)

then A+B is a sectorial operator.

Proof. Since A is sectorial, there exist constants ω ∈ R, θ ∈
(
π
2
, π
)
, and

M > 0 such that
Sθ,ω ⊂ ρ(A)

and

‖R(λ,A)‖ ≤ M

|λ− ω|
for all λ ∈ Sθ,ω. (2.54)

Let δ = 1
2
(1 + M)−1 ∈

(
0, 1

2

)
. Assume that (3.44) holds for some a ∈ [0, δ]

and b ≥ 0. From (2.53), (2.54) and (2.24) we have that for every x ∈ X and
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λ ∈ Sθ,ω

‖BR(λ,A)x‖X ≤ a‖AR(λ,A)x‖X + b‖R(λ,A)x‖X
= a‖λR(λ,A)x− x‖X + b‖R(λ,A)x‖X
= a‖(λ− ω)R(λ,A)x+ ωR(λ,A)x− x‖X + b‖R(λ,A)x‖X

≤ a(M + 1)‖x‖X +
M(b+ a|ω|)
|λ− ω|

‖x‖X

≤ a(M + 1)‖x‖X +
M(b+ |ω|)
|λ− ω|

‖x‖X . (2.55)

Thus BR(λ,A) is bounded. In particular, if <λ > ω + 2M(b + |ω|) then
(2.55) implies that ‖BR(λ,A)‖ < 1. Then, in the same way as the proof of
Theorem 2.4.2, in particular (2.46) and (2.47), the operator [I − BR(λ,A)]
is invertible with a bounded inverse.

Continuing with the same reasoning as in the proof of Theorem 2.4.2,
in particular (2.48) and (2.49), we have that if <λ > ω + 2M(b + |ω|) then
λ ∈ ρ(A+B) and

[λI − (A+B)]−1 = R(λ,A)[I −BR(λ,A)]−1. (2.56)

Let ω′ > ω+2M(b+|ω|). Then Sθ,ω′ ⊂ Sθ,ω and, from (2.56), Sθ,ω′ ⊂ ρ(A+B).
Furthermore, for λ ∈ Sθ,ω′ we have

‖R(λ,A+B)‖ = ‖R(λ,A)[I −BR(λ,A)]−1‖

≤ MN

|λ− ω|

where N = ‖[I −BR(λ,A)]−1‖. Thus A+B is a sectorial operator.

Remark 2.4.2. If A and B satisfy the relationship (2.53) then they are called
relatively bounded, see [7, Section 11.1].

Corollary 2.4.4. Let A : X ⊃ D(A) 7→ X be the infinitesimal generator of
an analytic semigroup. If B is a bounded linear operator on X then A + B
is the infinitesimal generator of an analytic semigroup.

Proof. Since B is bounded we have

‖Bx‖X ≤ a‖Ax‖X + ‖B‖‖x‖X

for every a ≥ 0 and x ∈ X. The result follows from Theorem 2.4.3.
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Remark 2.4.3. Pazy shows in [18, Section 3.1, Proposition 1.4] that if X is a
Banach space, A : X ⊃ D(A) 7→ X is the infinitesimal generator of a compact
semigroup T (t), t ≥ 0, and B is a bounded linear operator on X, then A+B
is the infinitesimal generator of a compact semigroup S(t), t ≥ 0. However,
we do not need this result since our aim is to apply our existence theory
to parabolic problems. Indeed, in such cases we obtain compactness of the
semigroup via analyticity of the semigroup and compactness of the resolvent
operator of its infinitesimal generator, see Theorems 2.1.6 and 2.3.7. Note
that, in the case of parabolic problems, A is an elliptic operator acting on
L2(Ω) for some open set Ω ⊂ Rn. A perturbation of A by an operator of the
form

Bu =
n∑
i=1

βi(x)uxi + γ(x)u, (2.57)

is also elliptic, and therefore has a compact resolvent operator R(λ,A + B)
for some λ ∈ ρ(A+B), by Theorem 2.2.2.

To make Remark 2.4.3 precise we consider the complexification ofA acting
on the complexification of Hilbert space L2(Ω).

2.5 Complexification of Operators

In order to apply the existence, regularity and perturbation results for the
abstract Cauchy problem from sections 3.2, 3.4 and 2.4 respectively, we need
to work with analytic semigroups defined on a complex Banach space. How-
ever, the problems we are considering are set in a real Hilbert space, and it
is intuitive that the physical solutions should take values in a real Hilbert
space. In this section we show how to associate with a real Hilbert space
H a complex space H̃. For each operator A on H there is a correspond-
ing operator Ã on H̃, and for each semigroup T (t), t ≥ 0, on H there is a
corresponding semigroup T̃ (t), t ≥ 0, on H̃. Many of the properties of a
semigroup on H can be deduced from the semigroup induced on H̃. For a
more generous discussion on the complexification of Banach spaces we refer
the reader to [16].

Operators on the Complexification of a Real Hilbert Space

Definition 2.5.1 (Complexification of a real Hilbert Space). Let H be
a real Hilbert space. The complexification of H is the complex vector space
H̃ defined as

H̃ := {x+ iy | x ∈ H, y ∈ H}
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with addition and scalar multiplication given by

(x+ iy) + (u+ iv) = (x+ u) + i(y + v)

(α + iβ)(x+ iy) = (αx− βy) + i(αy + βx)

for all (x+ iy), (u+ iv) ∈ H̃ and (α + iβ) ∈ C.

In the following two theorems we show that H̃ is a complex Hilbert space.

Theorem 2.5.1. The function (·, ·)H̃ : H̃ × H̃ 7→ C defined as

(x+ iy, u+ iv)H̃ := (x, u)H + (y, v)H + i(y, u)H − i(x, v)H

is an inner product on H̃.

Proof. The function (·, ·)H̃ is an inner product on H̃ if, for any a, b ∈ C and
x,u,q ∈ H̃, we have

(i) (x,u)H̃ = (u,x)H̃ .

(ii) (x + u,p)H̃ = (x,p)H̃ + (u,p)H̃ .

(iii) (ax,p)H̃ = a(x,p)H̃

(iv) (x,x)H̃ ≥ 0.

(v) (x,x)H̃ = 0 =⇒ x = 0.

Properties (i) to (v) above all follow easily from the properties of (·, ·)H and
the definition of (·, ·)H̃ . We demonstrate the general idea by proving (iii).
Let x = x+ iy ∈ H̃, p = p+ iq ∈ H̃ and a = α + iβ ∈ C. Then

(a[p+ iq], x+ iy)H̃ = ([αp− βq] + i[βp+ αq], x+ iy)H̃
= (αp− βq, x)H + (βp+ αq, y)H − i(αp− βq, y)H

+ i(βp+ αq, x)H

= (α + iβ)[(p, x)H + (q, y)H ] + (β − iα)[(p, y)H − (q, x)H ]

= (α + iβ){[(p, x)H + (q, y)H ]− i[(p, y)H − (q, x)H ]}
= a(p+ iq, x+ iy)H̃ .

Remark 2.5.1. Note that if x+ iy ∈ H̃ then

‖x+ iy‖2
H̃

= (x+ iy, x+ iy)H̃ = ‖x‖2
H + ‖y‖2

H .

Furthermore, for each x ∈ H, x+ 0i ∈ H̃ and ‖x‖H = ‖x+ 0i‖H̃ .
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Theorem 2.5.2. The vector space H̃ is a Hilbert space with respect to the
inner product (·, ·)H̃ .

Proof. We have already shown in Theorem 2.5.1 that H̃ is an inner product
space with inner product (·, ·)H̃ . We need to show that H̃ is complete with
respect to the norm ‖ · ‖H̃ . Suppose (zn) is a Cauchy sequence in H̃ with
respect to ‖ · ‖H̃ . For n ∈ N, zn = xn + iyn with xn, yn ∈ H. If n,m ∈ N we
have

‖zn − zm‖2
H̃

= ‖xn − xm‖2
H + ‖yn − ym‖2

H , (2.58)

so that
‖xn − xm‖H ≤ ‖zn − zm‖H̃

and
‖yn − ym‖H ≤ ‖zn − zm‖H̃ .

Thus (xn) and (yn) are Cauchy sequences in H, and since H is a Hilbert space
they converge to limits in H, say x and y respectively. Thus the sequence (zn)
converges to z = x+ iy ∈ H̃, since ‖zn − z‖2

H̃
= ‖xn − x‖2

H + ‖yn − y‖2
H .

Definition 2.5.2 (Complexification of a Linear Operator). Let H be
a real Hilbert space and A a linear operator on H with domain D(A). The
complexification of A, denoted Ã, acts on the complex Hilbert space H̃ and
is given by

D(Ã) := {x+ iy | x ∈ D(A), y ∈ D(A)} ⊂ H̃,

Ã(x+ iy) := Ax+ iAy, x+ iy ∈ D(Ã).

Theorem 2.5.3. An operator A : H ⊇ D(A) 7→ H is closed if and only if
its complexification Ã : H̃ ⊇ D(Ã) 7→ H̃ is closed.

Proof. Suppose that the operator A : H ⊇ D(A) 7→ H is closed. That is,
if (xn) ⊂ D(A) is a sequence converging to x ∈ H and (Axn) converges to
y ∈ H, both with respect to ‖·‖H , then x ∈ D(A) and Ax = y. Now suppose
Ã is the complexification of A. We consider a sequence (zn) = (xn + iyn) ⊂
D(Ã) such that (zn) converges to z = x + iy ∈ H̃ and (Ãzn) converges to
w = u+ iv ∈ H̃, both with respect to ‖ · ‖H̃ . That is,

lim
n→∞

‖zn − z‖H̃ = 0 and lim
n→∞

‖Ãzn −w‖H̃ = 0.

By Definition 2.5.2, xn, yn ∈ D(A) for each n ∈ N. By Remark 2.5.1 we have
that lim

n→∞
‖xn − x‖H = 0, lim

n→∞
‖yn − y‖H = 0, lim

n→∞
‖Axn − u‖H = 0 and
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lim
n→∞

‖Ayn − v‖H = 0. Since A is closed, x, y ∈ D(A) and u = Ax, v = Ay.

Hence z ∈ D(Ã) and w = Ãz. Thus Ã is closed.
Conversely suppose Ã is closed, and that (xn) ⊂ D(A) is a sequence

converging to x ∈ H, such that (Axn) converges to y ∈ H, both with respect
to ‖ · ‖H . It is clear that xn = xn + 0i ∈ D(Ã) and that Ãxn = Axn + 0i for
each n ∈ N. Since (xn) converges to x and (Axn) converges to y, it follows
that (xn) converges to x = x + 0i and (Ãxn) converges to y = y + 0i, both
with respect to ‖ · ‖H̃ . Thus since Ã is closed, x ∈ D(Ã) and y = Ãx. By
Definition 2.5.2 it follows that x ∈ D(A) and y = Ax. Thus A is closed.

Proposition 2.5.4. Consider a linear operator A on H. Then D(A) = H

if and only if D(Ã) = H̃.

Proof. Suppose that D(A) = H and let z = x + iy ∈ H̃. Then by the
definition of H̃, x, y ∈ H and we can find sequences (xn) and (yn) contained
in D(A) such that lim

n→∞
‖xn − x‖H = 0 and lim

n→∞
‖yn − y‖H = 0. Define

zn := xn + iyn ∈ D(Ã) for each n ∈ N. Then by Remark 2.5.1

lim
n→∞

‖zn − z‖2
H̃

= lim
n→∞

‖xn − x‖2
H + lim

n→∞
‖yn − y‖2

H = 0.

Thus D(Ã) = H̃.

Conversely suppose that D(Ã) = H̃. Let x ∈ H. Then x = x + 0i ∈ H̃.

Now since D(Ã) = H̃ we can find a sequence (zn) = (xn + iyn) in D(Ã)
converging to x. Since

‖x− xn‖2
H ≤ ‖x− xn‖2

H + ‖yn‖2
H = ‖x− zn‖2

H̃

for every n ∈ N it follows that (xn) converges to x. Furthermore, zn =
xn + iyn ∈ D(Ã) for every n ∈ N, so xn ∈ D(A) for every n ∈ N by definition
of Ã. Hence D(A) = H.

Theorem 2.5.5. A linear operator T : H 7→ H is bounded if and only if its
complexification T̃ : H̃ 7→ H̃ is bounded. Furthermore, in the case that they
are bounded, ‖T‖ = ‖T̃‖.

Proof. Suppose T : H 7→ H is bounded. Then for all z = x + iy ∈ H̃ we
have that

‖T̃z‖2
H̃

= ‖Tx+ iTy‖2
H̃

= ‖Tx‖2
H + ‖Ty‖2

H

≤ ‖T‖2(‖x‖2
H + ‖y‖2

H)

= ‖T‖2‖z‖2
H̃
.

60

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Thus ‖T̃z‖H̃ ≤ ‖T‖‖z‖H̃ for all z ∈ H̃, so T̃ is bounded and ‖T̃‖ ≤ ‖T‖.
Conversely, suppose that T̃ : H̃ 7→ H̃ is bounded. Then for all x ∈ H we

have

‖Tx‖2
H = ‖T̃ (x+ 0i)‖2

H̃

≤ ‖T̃‖2‖x+ 0i‖2
H̃

= ‖T̃‖2‖x‖2
H .

Thus ‖Tx‖H ≤ ‖T̃‖‖x‖H for all x ∈ H, so T is bounded and ‖T‖ ≤ ‖T̃‖.

Theorem 2.5.6. Suppose that A : H ⊇ D(A) 7→ H is the infinitesimal
generator of a C0-semigroup T (t) for t ≥ 0 . Then the following hold:

(i) Ã : H̃ ⊇ D(Ã) 7→ H̃ is the infinitesimal generator of the C0-semigroup
T̃ (t) for t ≥ 0;

(ii) If T (t) satisfies ‖T (t)‖ ≤ Meωt for t ≥ 0 and for some M ≥ 1 and
ω ∈ R, then ‖T̃ (t)‖ ≤Meωt for all t ≥ 0.

Proof. We first prove (i). Suppose A : H ⊃ D(A) 7→ H is the infinitesimal
generator of a C0-semigroup T (t), t ≥ 0. Then the complexification of A is
Ã : H̃ ⊃ D(Ã) 7→ H̃ where Ãz = Ax + iAy for z = x + iy ∈ D(Ã). We
have that T̃ (t) : H̃ 7→ H̃ is defined as T̃ (t)z = T (t)x + iT (t)y for t ≥ 0 and
z = x+ iy ∈ H̃. We now show that T̃ (t) is a C0-semigroup generated by Ã.
For each t ≥ 0 the operator T̃ (t) is bounded by Theorem 2.5.5. For t, s > 0
and z = x+ iy ∈ H̃ we have that

T̃ (t+ s)z = T (t+ s)[x] + iT (t+ s)[y]

= T (t)[T (s)x] + iT (t)[T (s)y]

= T̃ (t)[T (s)x+ iT (s)y]

= T̃ (t)T̃ (s)z.

Furthermore, T̃ (0)z = T (0)x+ iT (0)y = z for all z = x+ iy ∈ H̃. Thus T̃ (t),
t ≥ 0 is a semigroup. Furthermore

lim
t→0+

T̃ (t)z = lim
t→0+

T (t)x+ i lim
t→0+

T (t)y = x+ iy = z.

Thus T̃ (t), t ≥ 0, is a C0-semigroup. Let A∗ be the infinitesimal generator
of T̃ (t), t ≥ 0. Choose z = x+ iy ∈ D(A∗). Then

A∗z = lim
h→0+

h−1(T̃ (h)− I)[x+ iy]

= lim
h→0+

h−1(T (h)− I)x+ i lim
h→0+

h−1(T (h)− I)y.
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Now since z = x+iy ∈ D(A∗) then A∗z exists. Thus lim
h→0+

h−1(T (h)−I)x and

lim
h→0+

h−1(T (h)−I)y exist so that x, y ∈ D(A), and lim
h→0+

h−1(T (h)−I)x = Ax

and lim
h→0+

h−1(T (h)− I)y = Ay. It follows that

A∗z = Ax+ iAy

= Ãz.

Thus D(A∗) ⊆ D(Ã) and Ã is an extension of A∗.
We now show that D(Ã) ⊆ D(A∗), that is, if x+ iy ∈ D(Ã) then x+ iy ∈

D(A∗). Let x+ iy ∈ D(Ã) so that x ∈ D(A) and y ∈ D(A). Thus

lim
h→0+

h−1(T (h)− I)x and lim
h→0+

h−1(T (h)− I)y exist. (2.59)

Now consider

h−1(T̃ (h)− I)(x+ iy) = h−1(T (h)− I)x+ ih−1(T (h)− I)y. (2.60)

From (2.59) and (2.60) we have that lim
h→0+

h−1(T̃ (h)− I)(x+ iy) exists. Thus

x+ iy ∈ D(A∗) so that D(Ã) ⊆ D(A∗). Hence A∗ = Ã.
The statement (ii) follows immediately from Theorem 2.5.5.

Theorem 2.5.7. Suppose T > 0 and U is an open bounded subset of H. Let
Ũ be the complexification of U . Further suppose A : H ⊃ D(A) 7→ H is the
infinitesimal generator of a C0-semigroup T (t), t ≥ 0, and f : (0, T )×U 7→ H
is continuous. Consider the function f̃ : (0, T )× Ũ 7→ H̃ given by

f̃(t, u+ iv) = f(t, u) + 0i.

If u : [0, T ) 7→ H is a mild solution of (1.13) with initial condition u0 ∈ H,
then the function ũ : [0, T ) 7→ H̃ given by ũ(t) = u(t) + 0i is a mild solution
of

d

dt
ũ(t) = Ãũ(t) + f̃(t, ũ(t)), t ∈ (0, T )

ũ(0) = u0 + 0i. (2.61)

Proof. Clearly Ũ is an open bounded subset of H̃. Fix t ∈ (0, T ) and u0 ∈ H.
Since u is a mild solution of (1.13) with initial condition u0 then u satisfies
the integral equation

u(t) = T (t)u0 +

∫ t

0

T (t− s)f(s, u(s))ds, t ≥ 0.
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By Theorem 2.5.6, Ã is the infinitesimal generator of a C0-semigroup T̃ (t),
t ≥ 0. For t ≥ 0, consider the integral equation

T̃ (t)(u0 + 0i) +

∫ t

0

T̃ (t− s)f̃(s, ũ(s))ds =T (t)u0 + 0i

+

∫ t

0

T̃ (t− s)[f(s, u(s)) + 0i]ds

=T (t)u0 + 0i

+

∫ t

0

[T (t− s)f(s, u(s)) + 0i]ds

=T (t)u0 +

∫ t

0

T (t− s)f(s, u(s))ds

+ 0i

=u(t) + 0i

=ũ(t).

Thus ũ(t) is a mild solution of (2.61).

Theorem 2.5.8. A linear operator T : H 7→ H is compact if and only if its
complexification T̃ : H̃ 7→ H̃ is compact.

Proof. Suppose that T is a compact operator on a real Hilbert space H.
Then T maps any bounded subset U of H onto a precompact subset of H by
definition. By Theorem C.0.9 this is equivalent to saying that if (xn) ⊂ H
is a bounded sequence then (Txn) ⊂ H has a convergent subsequence. Now
consider the complexification T̃ of T acting on the complex Hilbert space H̃,
and suppose (zn) ⊂ H̃ is a bounded sequence. We want to show that the
sequence (T̃zn) has a convergent subsequence.

By the definition of H̃, for every n ∈ N we can find xn, yn ∈ H such
that zn = xn + iyn. Since ‖xn‖H ≤ ‖zn‖H̃ and ‖yn‖H ≤ ‖zn‖H̃ for every
n ∈ N, it follows that (xn) and (yn) are bounded sequences in H. Thus,
since T is compact, (Txn) has a convergent subsequences, say, (Txni) with
limit x ∈ H. Since (yni) is a subsequence of (yn), it is bounded. By the
compactness of T , (Tyni) has a subsequence (Tynij ) that converges to some

y ∈ H. Since (Txni) converges to x, then so does its subsequence (Txnij ).

Hence (T̃znij ) = (Txnij +iTynij ) converges to z = x+iy so that T̃ is compact.

Conversely suppose that T̃ is a compact operator on H̃. Consider a
bounded sequence (xn) ⊂ H. We want to show that the sequence (Txn) has
a convergent subsequence. We define zn = xn + 0i ∈ H̃ for every n ∈ N.
It follows that (zn) ⊂ H̃ is a bounded sequence, since ‖zn‖H̃ = ‖xn‖H for
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all n ∈ N. Thus, by the compactness of T̃ and by Theorem C.0.9, (T̃zn)
has a convergent subsequence, say (T̃znk), converging to z = x + iy ∈ H̃.
Furthermore, for every k ∈ N we have that T̃znk = T̃ (xnk + 0i). Hence
z = x+ 0i and

0 = lim
k→∞
‖T̃znk − T̃z‖H̃ = lim

k→∞
‖Txnk − Tx‖H .

Thus (Txnk) is a convergent subsequence of (Txn), converging to Tx, so that
T is compact.

The Resolvent and its Complexification

In order to prove the main results of this section we make use of the following
proposition and theorem.

Proposition 2.5.9. [14, Proposition A.0.2] Let Ω ⊂ C be an open set and
let {F̃ (λ) | λ ∈ Ω} be a family of bounded linear operators satisfying the
resolvent identity

F̃ (λ)− F̃ (µ) = (µ− λ)F̃ (λ)F̃ (µ), for every λ, µ ∈ Ω. (2.62)

Assume that for some λ0 ∈ Ω, the operator F̃ (λ0) is injective. Then there
exists a unique linear operator Ã : H̃ 3 D(Ã) 7→ H̃ such that Ω ⊂ ρ(Ã), and
R(λ, Ã) = F̃ (λ) for λ ∈ Ω.

Proof. Since F̃ (λ0) is injective for some λ0 ∈ Ω, we can define an operator Ã
such that

D(Ã) = Range F̃ (λ0), Ãx = λ0x− F̃ (λ0)−1x for all x ∈ D(Ã).

Fix y ∈ H̃. By the resolvent identity, equation (2.62), for every λ ∈ Ω

F̃ (λ)y = F̃ (λ0)y − (λ− λ0)F̃ (λ0)F̃ (λ)y

= F̃ (λ0)[y − (λ− λ0)F̃ (λ)y] (2.63)

so that F̃ (λ)y ∈ D(Ã). Thus F (λ)(H) = D(Ã) for every λ ∈ Ω.
For any x ∈ D(Ã), y ∈ H̃ and λ ∈ Ω

(λI − Ã)x = y (2.64)

if and only if
(λ− λ0)x+ F̃ (λ0)−1x = y. (2.65)
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If we now apply F̃ (λ) to both sides of the equation then

(λ− λ0)F̃ (λ)x+ F̃ (λ)F̃ (λ0)−1x = F̃ (λ)y. (2.66)

Now by applying F̃ (λ0)−1 to both sides of the resolvent identity F̃ (λ) −
F̃ (λ0) = (λ0 − λ)F̃ (λ)F̃ (λ0) we get

F̃ (λ)F̃ (λ0)−1 − I = −(λ− λ0)F̃ (λ). (2.67)

Substituting (2.67) into (2.66) gives us

F̃ (λ)y = (λ− λ0)F̃ (λ)x− (λ− λ0)F̃ (λ)x+ x = x.

Thus if (λI − Ã)x = y, then x = F̃ (λ)y. Conversely, if for some y ∈ H̃ and
λ ∈ Ω we set x = F̃ (λ)y, then by (2.63)

(λ− λ0)x+ F̃ (λ0)−1x = (λ− λ0)F̃ (λ)y + F̃ (λ0)−1F̃ (λ)y

= (λ− λ0)F̃ (λ)y + F̃ (λ0)−1F̃ (λ0)[y − (λ− λ0)F̃ (λ)y]

= y.

Thus for any x ∈ D(Ã), y ∈ H̃ and λ ∈ Ω,

(λI − Ã)x = y iff x = F̃ (λ)y.

Thus (λI − Ã) has a bounded inverse R(λ, Ã) = F̃ (λ) for all λ ∈ Ω.
To show uniqueness, suppose that there was an operator B̃ such that

F̃ (λ0) = R(λ0, B̃). Then D(B̃) = F̃ (λ0)(H) = D(Ã). Thus, for all x ∈ D(A)

F̃ (λ0)(λ0I − B̃)x = x = F̃ (λ0)(λ0I − Ã)x,

which implies that

F̃ (λ0)−1F̃ (λ0)(λ0I − B̃)x = F̃ (λ0)−1F̃ (λ0)(λ0I − Ã)x,

from which it follows that

(λ0I − B̃)x = (λ0I − Ã)x.

Thus B̃ = Ã.

Remark 2.5.2. Operators F̃ (λ) which satisfy the resolvent identity, as in
Proposition 2.5.9, are called pseudo resolvents, see[18, Chapter 1.9].

Theorem 2.5.10. [14, Proposition 2.1.9 (b)] Let {T̃ (t) | t > 0} be a family
of bounded linear operators on H̃ such that the following hold:
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(i) T̃ (t)T̃ (s) = T̃ (t+ s), for every t, s > 0;

(ii) There exist constants ω ∈ R and M > 0 such that ‖T̃ (t)‖ ≤ Meωt for
each t > 0;

(iii) Either

(a) there is a t > 0 such that T̃ (t) is one-to-one, or

(b) for every x ∈ H̃, lim
h→0+

T̃ (h)x = x.

Then there exists an unique linear operator Ã : H̃ ⊃ D(Ã) 7→ H̃ such that

R(λ, Ã) =

∫ ∞
0

e−λtT̃ (t)dt,

for all λ ∈ Π = {λ ∈ C | <λ > ω}.

Proof. By (ii), for all t > 0

‖e−λtT̃ (t)‖ ≤Me(ω−<λ)t.

Thus the integral F̃ (λ) =

∫ ∞
0

e−λtT̃ (t)dt exists for all λ ∈ Π. Furthermore,

for any x ∈ H̃,

‖F̃ (λ)x‖H̃ =

∥∥∥∥∫ ∞
0

e−λtT̃ (t)xdt

∥∥∥∥
H̃

≤
∫ ∞

0

‖e−λtT̃ (t)x‖H̃dt

≤
∫ ∞

0

Me(ω−<λ)t‖x‖H̃dt

=
M

<λ− ω
‖x‖H̃ .

Hence F̃ (λ) is a bounded linear operator for each λ ∈ Π. We now show that
the family {F̃ (λ) | λ ∈ Π} satisfies the conditions of Proposition 2.5.9. To
do this let λ, µ ∈ Π. Then by Fubini’s Theorem, Theorem A.1.4,

F̃ (λ)F̃ (µ) =

∫ ∞
0

e−λtT̃ (t)dt

∫ ∞
0

e−µsT̃ (s)ds

=

∫ ∞
0

∫ ∞
0

e−λtT̃ (t)e−µsT̃ (s)dtds

=

∫ ∞
0

[∫ ∞
0

e−µ(t+s)e−(λ−µ)tT̃ (t+ s)dt

]
ds.
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Let σ = t+ s. Then

F̃ (λ)F̃ (µ) =

∫ ∞
0

e−µσT̃ (σ)

∫ σ

0

e−(λ−µ)tdtdσ

=

∫ ∞
0

e−µσT̃ (σ)
e(µ−λ)σ − 1

µ− λ
dσ

=
1

µ− λ

[∫ ∞
0

e−λσT̃ (σ)dσ −
∫ ∞

0

e−µσT̃ (σ)dσ

]
=

1

µ− λ
[F̃ (λ)− F̃ (µ)].

Thus F satisfies the resolvent identity on the half-plane Π.
We now show that F̃ (λ) is one-to-one for λ ∈ Π. For the sake of con-

tradiction assume that for some λ ∈ Π, F̃ (λ) is not one-to-one. That is, for
some x 6= 0 we can find a λ0 ∈ Π such that F̃ (λ0)x = 0. Then for any λ ∈ Π,
by the resolvent identity,

F̃ (λ)x = F̃ (λ0)x+ (λ0 − λ)F̃ (λ)F̃ (λ0)x = 0.

Therefore, for every x∗ ∈ H̃ and λ ∈ Π,

0 = (F̃ (λ)x, x∗)H̃

=

(∫ ∞
0

e−λtT̃ (t)xdt, x∗
)
H̃

=

∫ ∞
0

e−λt(T̃ (t)x, x∗)H̃dt (2.68)

since the inner product is continuous. Note that L(x) =

∫ ∞
0

e−λt(T̃ (t)x, x∗)H̃dt

is the Laplace transform of (T̃ (t)x, x∗)H̃ . Furthermore, Laplace transforms
are injective. Thus (2.68) implies that 0 = (T̃ (t)x, x∗)H̃ for every t > 0.
Hence T̃ (t)x = 0 for t > 0 since x∗ is arbitrary.

However, if (iii)(a) holds, then there exists a t∗ > 0 such that T̃ (t∗) is
one-to-one. Then

T̃ (t∗)x = 0 = T̃ (t∗)0

so that x = 0, a contradiction.
Alternatively, if (iii)(b) holds, then x∗ = lim

t→0+
T̃ (t)x∗ = 0, also a contra-

diction.
Hence F̃ (λ) is injective. Thus by Proposition 2.5.9 there exists a unique

operator Ã : H̃ ⊃ D(Ã) 7→ H̃, where D(Ã) = Range F̃ (λ), such that
R(λ, Ã) = F̃ (λ) for λ ∈ Π.
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Theorem 2.5.11. Suppose A : H ⊃ D(A) 7→ H is the infinitesimal gener-
ator of a C0-semigroup T (t), t ≥ 0, satisfying ‖T (t)‖ ≤ Meωt, t ≥ 0, for
some M ≥ 1 and ω ∈ R. Then the resolvent set of the complexification of
A, ρ(Ã), contains the half-plane Π = {λ ∈ C | Reλ > ω}. Furthermore, for

λ ∈ Π, ‖R(λ, Ã)‖ ≤ M

|λ− ω|
.

Proof. By Theorem 2.5.6 we have that Ã : H̃ ⊃ D(Ã) 7→ H̃ is the infinites-
imal generator of a C0-semigroup T̃ (t), t ≥ 0, satisfying ‖T̃ (t)‖ ≤ Meωt for
t ≥ 0. By Lemma 2.1.5 we have that

R(λ, Ã) =

∫ ∞
0

e−λtT̃ (t)dt

for all λ ∈ ρ(Ã). Now T̃ (t) satisfies conditions (i), (ii) and (iii)(b) of Theorem
2.5.10, and thus we can find an unique operator B̃ : H̃ ⊃ D(B̃) 7→ H̃ such
that

R(λ, B̃) =

∫ ∞
0

e−λtT̃ (t)dt

for all λ ∈ Π. Fix λ ∈ R, λ > ω. By the Hille-Yosida Theorem, Theorem
1.4.8, λ ∈ ρ(A). Thus λ ∈ Π ∩ ρ(Ã) and R(λ, Ã) = R(λ, B̃). It follows that

D(Ã) = R(λ, Ã)(H) = R(λ, B̃)(H) = D(B̃)

and for x ∈ D(Ã) = D(B̃)

R(λ, Ã)(λI − Ã)x = x = R(λ, Ã)(λI − B̃)x.

By the injectivity of R(λ, Ã) it follows that

(λI − Ã)x = (λI − B̃)x

so that Ãx = B̃x. Thus Ã = B̃ so that Π ⊂ ρ(Ã).
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Furthermore, if λ ∈ Π and z ∈ H̃ then

‖R(λ, Ã)z‖H̃ =

∥∥∥∥∫ ∞
0

e−λtT̃ (t)zdt

∥∥∥∥
H̃

≤
∫ ∞

0

e−<λt‖T̃ (t)‖‖z‖H̃dt

≤
∫ ∞

0

e−<λtMeωt‖z‖H̃dt

= M‖z‖H̃
∫ ∞

0

e−(<λ−ω)tdt

=
M

<λ− ω
‖z‖H̃

≤ M

|λ− ω|
‖z‖H̃ .

Thus, for λ ∈ Π, ‖R(λ, Ã)‖ ≤ M

|λ− ω|
.

Theorem 2.5.12. Let A be the infinitesimal generator of a C0-semigroup
T (t), t ≥ 0, satisfying ‖T (t)‖ ≤ Meωt for some M ≥ 1 and some ω ∈ R. If

λ ∈ R and λ > ω, then R̃(λ,A) = R(λ, Ã).

Proof. Consider λ ∈ R such that λ > ω. It follows directly from the Hille-
Yosida Theorem, Theorem 1.4.8 that λ ∈ ρ(A). Thus λ ∈ ρ(Ã). By Lemma
2.1.5 we have, for each z = x+ iy ∈ H̃, that

˜R(λ,A)z = R(λ,A)x+ iR(λ,A)y

=

∫ ∞
0

e−λt(T (t)x+ iT (t)y)dt

=

∫ ∞
0

e−λtT̃ (t)zdt

= R(λ, Ã)z.

Note that the results presented in this section hold if the Hilbert space H
is replaced with a Banach space X, see for example [14, Proposition 2.1.9].
However,

‖x+ iy‖X̃ =
(
‖x‖2

X + ‖y‖2
X

) 1
2

does not define a norm on X̃, so that the norm on X must be defined in
some other way. Furthermore, since we apply the results in this section to
parabolic problems, the Hilbert space setting considered here is sufficient.
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Chapter 3

Mild Solutions

In this chapter we investigate mild solutions to the abstract Cauchy problem
(1.13). We start by showing that classical solutions to (1.13) are indeed
mild solutions. Then we prove an existence result showing under which
conditions local mild solutions exist. Furthermore, we investigate conditions
under which these local mild solutions are global mild solutions. Finally, we
prove a regularity result for the mild solutions of (1.13), giving conditions on
A and f so that all mild solutions of (1.13) are classical solutions.

Throughout this chapter, X denotes a Banach space.

3.1 Classical vs Mild Solutions

We now show that a classical solution of (1.13), in the sense of Definition
1.5.1, is a mild solution of (1.13). To do this we prove the following two
propositions.

Proposition 3.1.1. Suppose T (t) is a C0-semigroup for t ≥ 0, I ⊆ R is an
open interval, and f : I 7→ X is a continuous function. Then for t > 0 and
s ∈ I we have

lim
h→0+

T (t+ h)f(s+ h) = T (t)f(s).

Proof. For any fixed s ∈ I, t > 0 and real number h ≥ 0, we have

‖T (t+ h)f(s+ h)− T (t)f(s)‖X ≤‖T (t+ h)f(s+ h)− T (t+ h)f(s)‖X
+ ‖T (t+ h)f(s)− T (t)f(s)‖X

≤‖T (t+ h)‖‖f(s+ h)− f(s)‖X
+ ‖T (t)‖‖T (h)f(s)− f(s)‖X . (3.1)
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Since T (t), t ≥ 0, is a C0-semigroup, then by Theorem 1.4.1 there exists an
M ≥ 1 and an ω ∈ R such that ‖T (t + h)‖ ≤ Meω(t+h). Furthermore, since
f is continuous, then

lim
h→0
‖T (t+ h)‖‖f(s+ h)− f(s)‖X = 0. (3.2)

Furthermore, since ‖T (t)‖ ≤Meωt and T (t), t ≥ 0, is a C0-semigroup, then

lim
h→0+

‖T (t)‖‖T (h)f(s)− f(s)‖X = 0. (3.3)

Thus substituting (3.2) and (3.3) into (3.1), and taking the limit as h→ 0+,
we have our result.

Proposition 3.1.2. Fix β > 0 and 0 < T ≤ ∞. Suppose T (t), t ≥ 0, is a
C0-semigroup with infinitesimal generator A, and the function f : (0, T ) 7→
D(A) is differentiable. Consider the functions g : (0, T ) 7→ X given by
g(θ) = T (θ+β)f(θ), and h : [β, T ) 7→ X given by h(θ) = T (θ−β)f(θ). Then
g and h are differentiable from the right on (0, T ) and (β, T ) respectively.
Furthermore

g′(θ) = AT (θ + β)f(θ) + T (θ + β)f ′(θ),

and
h′(θ) = −AT (θ − β)f(θ) + T (θ − β)f ′(θ).

Proof. Fix θ ∈ (0, T ) and h ≥ 0. We have

g(θ + h)− g(θ)

h
=
T (θ + β + h)f(θ + h)− T (θ + β)f(θ)

h

=
T (θ + β)T (h)f(θ + h)− T (θ + β)f(θ)

h

=T (θ + β)
T (h)f(θ + h)− f(θ)

h

=T (θ + β)h−1

(
T (h)[f(θ + h)− f(θ)]

+ [T (h)− I]f(θ)

)
. (3.4)

We now define a function

j(x) =

{
f(θ+x)−f(θ)

x
for x ∈ (−θ,∞), x 6= 0

f ′(θ) for x = 0,
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which is continuous on (−θ,∞) since f is differentiable. Thus by Proposition
3.1.1 we have that

lim
h→0+

T (h)[f(θ + h)− f(θ)]

h
= lim

h→0+
[T (h)j(h)]

= j(0)

= f ′(θ). (3.5)

By Definition 1.4.2 we have, since f(θ) ∈ D(A) for all θ ∈ (0, T ), that

lim
h→0+

(T (h)− I)

h
f(θ) = Af(θ). (3.6)

Thus, considering (3.5) and (3.6), taking the limit as h→ 0+ in (3.4) we see
that g is differentiable from the right at θ and that

g′(θ) = AT (θ + β)f(θ) + T (θ + β)f ′(θ).

That h is differentiable from the right at any θ > β, and that

h′(θ) = −AT (θ − β)f(θ) + T (θ − β)f ′(θ),

follows in the same way.

Theorem 3.1.3. Let 0 < T ≤ ∞, and U be an open subset of X. If
A : X ⊃ D(A) 7→ X is the infinitesimal generator of a C0-semigroup, then a
classical solution of (1.13) is a mild solution of (1.13).

Proof. Since u is a classical solution, u(t) ∈ D(A) for 0 < t < T and u is
differentiable on (0, T ). Thus, from Proposition 3.1.2, we have that

u(t)− T (t)u0 = T (0)u(t)− T (t)u(0)

=

∫ t

0

(
d

ds
[T (t− s)u(s)]

)
ds

=

∫ t

0

(
− T (t− s)Au(s) + T (t− s) d

ds
u(s)

)
ds

=

∫ t

0

T (t− s)
(
d

ds
u(s)− Au(s)

)
ds

=

∫ t

0

T (t− s)f(s, u(s))ds,

taking each derivative from the right and the final identity following from
the fact that u is a classical solution of (1.13).
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3.2 Existence

In this section we consider an existence theorem from Pazy [17] for mild
solutions of the abstract Cauchy problem (1.13) in the case where A is the
infinitesimal generator of a compact semigroup T (t), t ≥ 0.

This existence theorem follows from two classical results, namely, the
Arzelà-Ascoli Theorem [8, IV.6.7] and the Schauder Fixed Point Theorem [8,
V.10.6]. For the convenience of the reader the results are given below.

Definition 3.2.1 (Equicontinuous Functions). Suppose S is a compact
metric space. A subset F of C(S;X) is equicontinuous if, for every x ∈ S
and ε > 0, there exists a neighbourhood Ux of x so that ‖f(y)− f(x)‖X < ε
whenever f ∈ F and y ∈ Ux.

Theorem 3.2.1 (Arzelà-Ascoli Theorem). Let S be a compact metric
space. Then a subset F of C(S;X) is precompact with respect to the uniform
norm if and only if it is bounded and equicontinuous.

Theorem 3.2.2 (Schauder Fixed Point Theorem). Suppose K is a non-
empty convex subset of X. If T is a continuous mapping from K to itself
such that T (K) is contained in a compact subset of K, then T has a fixed
point.

The previous two theorems hold under more general assumptions. Namely,
the Arzelà-Ascoli Theorem holds for any subset F of the set continuous func-
tions acting on a compact Hausdorff space S, and the Schauder Fixed Point
Theorem holds for any locally convex linear topological space X.

Theorem 3.2.3 (Local Existence). Let U be an open subset of X and let
0 < T ≤ ∞. If f : [0, T ) × U 7→ X is continuous and A is the infinitesimal
generator of a compact semigroup T (t), t ≥ 0, then for every u0 ∈ U there
exists a t∗ = t∗(u0), 0 < t∗ < T , and a continuous mapping u from [0, t∗] to
U which is a mild solution of (1.13) on [0, t∗].

Proof. Fix u0 ∈ U , t0 ∈ (0, T ) and let M > 0 be an upper bound for the
non-empty set {‖T (t)‖ | t ∈ [0, t0]}.

We now show that there exists a ρ > 0 such that Bρ(u0) ⊂ U and the set

{f(t, v) | t ∈ [0, t0], v ∈ Bρ(u0)} is bounded in X. Fix ε > 0 and t ∈ [0, t0],
and let ft = f(t, u0). By the continuity of f we can find a δt > 0 and a ρt > 0
such that if s ∈ [0, t0] ∩ (t − δt, t + δt) and v ∈ Bρt(u0) ⊂ U then f(s, v) ∈
Bε(ft). Let It = (t − δt, t + δt) for each t ∈ [0, t0]. Then {It | t ∈ [0, t0]}
is an open cover for [0, t0]. Thus there exists t1, t2, ...tn ∈ [0, t0] such that
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[0, t0] ⊂
n⋃
i=1

Iti . Let ρ = min{ρt1 , ..., ρtn}, then Bρ(u0) =
n⋂
i=1

Bρti
(u0). Thus

for all t ∈ [0, t0], if v ∈ Bρ(u0) then f(t, v) ∈ Bε(fti) for some i = 1, ..., n.
Thus we can find an N > 0 such that ‖f(t, v)‖X ≤ N for all t ∈ [0, t0] and
v ∈ Bρ(u0).

Since T (t) is a C0-semigroup for t ≥ 0, we can find a constant b > 0 such
that

‖T (t)u0 − u0‖X ≤
ρ

2
for t ∈ [0, b].

Let
t∗ = min

{
t0, b,

ρ

2MN

}
> 0.

Set Y = C([0, t∗];X), and

Y0 = {u ∈ Y | u(0) = u0, u(t) ∈ Bρ(u0) for t ∈ [0, t∗]}.

It is clear that Y0 is a closed, bounded, convex and non-empty subset of Y .
We define a mapping F on Y0 by setting

(Fu)(t) = T (t)u0 +

∫ t

0

T (t− s)f(s, u(s))ds, 0 ≤ t ≤ t∗.

Using the Schauder Fixed Point Theorem we show that F has a fixed point
in Y0. We begin by showing that if u ∈ Y0 then Fu ∈ Y0. It is clear that
(Fu)(0) = u0. We also have that Fu is continuous on [0, t∗], since f is
continuous on [0, t∗] × U and T (t), t ≥ 0, is a C0-semigroup. Furthermore,
for each t ∈ [0, t∗],

‖(Fu)(t)− u0‖X =

∥∥∥∥T (t)u0 +

∫ t

0

T (t− s)f(s, u(s))ds− u0

∥∥∥∥
X

≤ ‖T (t)u0 − u0‖X +

∥∥∥∥∫ t

0

T (t− s)f(s, u(s))ds

∥∥∥∥
X

≤ ρ

2
+ t∗MN

≤ ρ.

Thus F maps Y0 into Y0. We now show that F is a continuous mapping of
Y0 into Y0. Fix u ∈ Y0 and ε > 0, and consider v ∈ Y0 and t ∈ [0, t∗]. Then

‖(Fu)(t)− (Fv)(t)‖X =

∥∥∥∥∫ t

0

T (t− s)[f(s, u(s))− f(s, v(s))]ds

∥∥∥∥
X

≤M

∫ t∗

0

‖f(s, u(s))− f(s, v(s))‖Xds. (3.7)
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By the continuity of f and u, for every t ∈ [0, t∗] there exists a δ
′
t > 0 and a

ρ
′
t > 0 such that if s ∈ [0, t∗] ∩ (t− δ′t, t+ δ

′
t) and ‖u(t)− w‖X < ρ

′
t then

‖f(t, u(t))− f(s, w)‖X <
ε

2Mt∗
(3.8)

and

‖u(t)− u(s)‖X <
ρ
′
t

2
.

Let I
′
t = (t − δ

′
t, t + δ

′
t) for each t ∈ [0, t∗]. Then {I ′t | t ∈ [0, t∗]} is an

open cover for [0, t∗]. Therefore there exists t
′

1, t
′

2, ..., t
′

n ∈ [0, t∗] such that

[0, t∗] ⊂
n⋃
i=1

I
′

t
′
i
. Let ρ

′
= 1

2
min{ρ′

t
′
1

, ..., ρ
′

t′n
} and assume that sup

s∈[0,t∗]

‖u(s) −

v(s)‖X < ρ
′
. It follows that for all s ∈ [0, t∗], there exists an i = 1, ..., n such

that ‖u(ti)− u(s)‖X <
ρ
′
ti

2
and

‖u(ti)− v(s)‖X ≤ ‖u(ti)− u(s)‖X + ‖u(s)− v(s)‖X

<
ρ
′
ti

2
+ ρ

′

< ρ
′

ti
.

Hence from (3.8) we have that

‖f(s, u(s))− f(s, v(s))‖X ≤‖f(s, u(s))− f(ti, u(ti))‖X
+ ‖f(ti, u(ti))− f(s, v(s))‖X

<
ε

Mt∗
.

Thus, considering (3.7), we have that there exists a ρ
′
> 0 such that if

sup
s∈[0,t∗]

‖u(s) − v(s)‖X < ρ
′

then ‖(Fu)(t) − (Fv)(t)‖X < ε for all t ∈ [0, t∗].

It follows that F is a continuous mapping from Y0 to Y0.
We now show that F maps Y0 onto a precompact subset of Y0 using the

Arzelà-Ascoli Theorem. Consider the set

Z∗ = {Fu | u ∈ Y0}.

We need to show that Z∗ is an equicontinuous family of functions. Fix
s1, s2 ∈ [0, t∗] and u ∈ Y0. Without loss of generality, assume that s1 > s2.
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Then

‖(Fu)(s1)−(Fu)(s2)‖X ≤ ‖(T (s1)− T (s2))u0‖X

+

∥∥∥∥∫ s1

0

T (s1 − s)f(s, u(s))ds−
∫ s2

0

T (s2 − s)f(s, u(s))ds

∥∥∥∥
X

≤‖(T (s1)− T (s2))u0‖X +

∥∥∥∥∫ s1

s2

T (s1 − s)f(s, u(s))ds

∥∥∥∥
X

+

∥∥∥∥∫ s2

0

[T (s1 − s)− T (s2 − s)]f(s, u(s))ds

∥∥∥∥
X

≤‖(T (s1)− T (s2))u0‖X + (s1 − s2)MN

+N

∫ s2

0

‖T (s1 − s)− T (s2 − s)‖ds. (3.9)

Note that right-hand side of (3.9) is independent of u ∈ Y0. Fix ε > 0. Since
T (t), t ≥ 0, is a C0-semigroup there exists a δ1 such that if (s1 − s2) < δ1

then
‖(T (s1)− T (s2))u0‖X <

ε

3
. (3.10)

If ε ≥ 12MNs2 then

N

∫ s2

0

‖T (s1 − s)− T (s2 − s)‖ds ≤ 2NMs2

<
ε

3
. (3.11)

Now suppose ε < 12MNs2 so that γ =
ε

12MN
∈ (0, s2). Then

∫ s2

0

‖T (s1 − s)− T (s2 − s)‖ds =

∫ s2−γ

0

‖T (s1 − s)− T (s2 − s)‖ds

+

∫ s2

s2−γ
‖T (s1 − s)− T (s2 − s)‖ds

≤
∫ s2−γ

0

‖T (s1 − s)− T (s2 − s)‖ds+ 2Mγ

≤
∫ s2−γ

0

‖T (s1 − s)− T (s2 − s)‖ds+
ε

6N
.

(3.12)

By Theorem 2.1.6, since T (t), t ≥ 0, is compact for t > 0, T (t) is continuous
in the uniform operator topology for t > 0. Since [γ, t∗] is compact, T (t) is
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uniformly continuous with respect to the uniform norm on [γ, t∗]. Thus there
exists a δ2 > 0 such that, for all r1, r2 ∈ [γ, t∗], if |r1 − r2| < δ2 then

‖T (r1)− T (r2)‖ < ε

6Nt∗
. (3.13)

If 0 ≤ s ≤ s2 − γ then s1 − s2 + γ ≤ s1 − s ≤ s1. Since s1 > s2 then
γ < s1 − s2 + γ ≤ s1 − s ≤ s1 ≤ t∗. Thus (s1 − s) ∈ [γ, t∗]. Similarly,
if 0 ≤ s ≤ s2 − γ then (s2 − s) ∈ [γ, t∗]. Thus, by (3.13), if |s1 − s2| =
|(s1 − s)− (s2 − s)| < δ2 then∫ s2−γ

0

‖T (s1 − s)− T (s2 − s)‖ds <
ε

6N
. (3.14)

Substituting (3.14) into (3.12) we get that if (s1 − s2) < δ2 then∫ s2

0

‖T (s1 − s)− T (s2 − s)‖ds <
ε

3N
. (3.15)

Let δ = min
{
δ1, δ2,

ε

3MN

}
. Then, from (3.9), (3.10), (3.11) and (3.15), we

have that if (s1 − s2) < δ then

‖(Fu)(s1)− (Fu)(s2)‖X < ε.

Thus Z∗ is equicontinuous.
We have already shown that Z∗ = F (Y0) ⊆ Y0, so that Z∗ is bounded.

Thus by the Arzelà-Ascoli Theorem, Theorem 3.2.1, Z∗ is a precompact set.
Since Y0 is closed, Z∗ = F (Y0) is contained in a compact subset of Y0.

Thus F is a continuous mapping from Y0 to itself, and F (Y0) is contained
in a compact subset of Y0. Therefore, by Schauder’s Fixed Point Theorem,
Theorem 3.2.2, F has a fixed point, say u, in Y0. Thus u ∈ C([0, t∗], X),
u(0) = u0, u(t) ∈ U for all t ∈ [0, t∗] and

u(t) = T (t)u0 +

∫ t

0

T (t− s)f(s, u(s))ds

for t ∈ [0, t∗].

Note that the proof of Theorem 3.2.3 shows that under the conditions of
the theorem, we can find a solution to the integral equation

u(t) = g(t) +

∫ t

0

T (t− s)f(s, u(s))ds,

for any continuous function g : [0, b) 7→ X.
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We mention two weaknesses of this existence theorem. Firstly, the theo-
rem assumes that A generates a compact semigroup and yet, as previously
mentioned, it is difficult to prove that A generates a compact semigroup.

Secondly, existence theorems using semigroup theory are numerically
weak, as demonstrated by [7, Theorem 8.3.10]. This shows that if an estimate

of ‖R(λ,A)‖ differs from the required bound, that is, ‖R(λ,A)‖ ≤ M

|<λ− ω|
when <λ > ω, by even an infinitesimally small amount, then a correspond-
ing semigroup does not necessarily exist. Thus it is easy to err when using a
numerical method to approximate R(λ,A)x for x ∈ X.

3.3 Asymptotic Behaviour

In this section we show that under certain conditions a local mild solution of
(1.13) can be extended to a global solution.

Note that if E is a subspace of X, f : E 7→ R and a is a limit point of E,
then the limit superior of f(x) as x→ a, denoted lim

x→a
f(x), is defined by

lim
x→a

f(x) = lim
ε→0+

(sup{f(x) | x ∈ E ∩Bε(a) \ {a}}).

Theorem 3.3.1. Suppose A is the infinitesimal generator of a compact semi-
group T (t), t ≥ 0, and f : [0,∞)×X 7→ X is continuous. If f maps bounded
sets in [0,∞) × X into bounded sets in X, then for every u0 ∈ X a mild
solution (1.14) of (1.13) can be extended to maximal interval of existence
[0, tmax). If tmax <∞ then

lim
t→tmax

‖u(t)‖ =∞.

Proof. Suppose u is a mild solution of (1.13) on [0, t1] and consider the prob-
lem

wt(t) = Aw(t) + f(t+ t1, w(t)), t > 0

w(0) = u(t1) (3.16)

where w(0) = u(t1) ∈ X. Then, by Theorem 3.2.3, there exists a t2 =
t2(u(t1)) > 0 and a continuous function w : [0, t2] 7→ X such that

w(t) = T (t)u(t1) +

∫ t

0

T (t− s)f(s+ t1, w(s))ds

is a mild solution to (3.16) on [0, t2]. We now show that we can extend the
mild solution u of (1.13) to [0, t1 + t2].
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For t = t1 + γ, 0 ≤ γ ≤ t2, let u(t) = w(γ). For t1 < t ≤ t1 + t2, with
t = t1 + γ, we have

T (t)u0 +

∫ t

0

T (t− s)f(s, u(s))ds =T (t1 + γ)u0

+

∫ t1+γ

0

T (t1 + γ − s)f(s, u(s))ds

=T (γ)T (t1)u0

+

∫ t1

0

T (t1 + γ − s)f(s, u(s))ds

+

∫ t1+γ

t1

T (t1 + γ − s)f(s, w(s− t1))ds

=T (γ)

[
T (t1)u0 +

∫ t1

0

T (t1 − s)f(s, u(s))ds

]
+

∫ t1+γ

t1

T (t1 + γ − s)f(s, w(s− t1))ds

=T (γ)u(t1)

+

∫ t1+γ

t1

T (t1 + γ − s)f(s, w(s− t1))ds.

(3.17)

Letting α = s− t1, (3.17) gives

T (t)u0 +

∫ t

0

T (t− s)f(s, u(s))ds =T (γ)u(t1)

+

∫ γ

0

T (γ − α)f(α + t1, w(α))dα

=w(γ)

=u(t).

Thus u is a mild solution of (1.13) on [0, t1 + t2].
Suppose [0, tmax), tmax < ∞, is the maximal interval to which the so-

lution can be extended. For the sake of attaining a contradiction, sup-
pose lim

t→tmax

‖u(t)‖ < ∞. Then there exist constants M,K > 0 such that

‖T (t)‖ ≤ M and ‖u(t)‖ ≤ K for all t ∈ [0, tmax). Furthermore, by our as-
sumption that f maps bounded sets in [0,∞) ×X into bounded sets in X,
there exists an N > 0 such that ‖f(t, u(t))‖ ≤ N for all t ∈ [0, tmax]. Fix
ε > 0 and 0 < t < t′ < tmax. Define ρ ∈ (0, t) by

ρ = min

{
ε

8MN
,
t

2

}
. (3.18)
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Then

‖u(t′)− u(t)‖X =

∥∥∥∥T (t′)u0 +

∫ t′

0

T (t′ − s)f(s, u(s))ds

− T (t)u0 −
∫ t

0

T (t− s)f(s, u(s))ds

∥∥∥∥
X

≤‖T (t′)u0 − T (t)u0‖X +

∥∥∥∥∫ t′

t

T (t′ − s)f(s, u(s))

∥∥∥∥
X

+

∥∥∥∥∫ t−ρ

0

[T (t′ − s)− T (t− s)]f(s, u(s))ds

∥∥∥∥
X

+

∥∥∥∥∫ t

t−ρ
[T (t′ − s)− T (t− s)]f(s, u(s))ds

∥∥∥∥
X

≤‖T (t′)u0 − T (t)u0‖X + (t′ − t)MN

+N

∫ t−ρ

0

‖T (t′ − s)− T (t− s)‖ds

+N

∫ t

t−ρ
‖T (t′ − s)‖+ ‖T (t− s)‖ds

≤‖T (t′)u0 − T (t)u0‖X + (t′ − t)MN + 2MNρ

+N

∫ t−ρ

0

‖T (t′ − s)− T (t− s)‖ds. (3.19)

By the definition of a compact semigroup, T (t), t ≥ 0, is a C0-semigroup.
Thus there exists a δ1 > 0 such that if (t′ − t) < δ1 then

‖T (t′)u0 − T (t)u0‖X <
ε

4
. (3.20)

Since T (t), t ≥ 0, is a compact semigroup, it is continuous in the uni-
form operator topology for t > 0 by Theorem 2.1.6. Hence it is uniformly
continuous in the uniform operator topology on the compact set [ρ, t′]. If
0 < s < t − ρ then (t′ − s) ∈ [ρ, t′] and (t − s) ∈ [ρ, t′]. Thus there exists a
δ2 > 0 such that if [(t′ − s)− (t− s)] = (t′ − t) < δ2 then

‖T (t′ − s)− T (t− s)‖ < ε

4Ntmax

(3.21)

for all s ∈ (0, t−ρ). Let δ∗ = min
{
δ1, δ2,

ε

4MN

}
. Then (3.18), (3.20), (3.21)

and (3.19) imply that if (t′ − t) < (tmax − t) < δ∗ then

‖u(t′)− u(t)‖X < ε.

80

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Therefore lim
t→tmax

u(t) = u(tmax) exists. But then we can apply the same

procedure as at the beginning of the proof to extend the solution u(t) to
[0, b] where b > tmax, contradicting the fact that [0, tmax) is the maximal
interval of existence. Thus lim

t→tmax

‖u(t)‖ =∞.

Corollary 3.3.2. Suppose A is the infinitesimal generator of a compact semi-
group T (t), t ≥ 0, and f : [0,∞)×X 7→ X is continuous. If f maps bounded
sets in [0,∞) × X into bounded sets in X, and there exist two real-valued
locally Lebesgue-integrable functions k1 and k2 on [0,∞) such that

‖f(t, u)‖X ≤ k1(t)‖u‖X + k2(t)

for all t ∈ [0,∞) and u ∈ X, then, for every u0 ∈ X, any local mild solution
(1.14) of (1.13) can be extended to a global mild solution.

Proof. Fix u0 ∈ X. By Theorem 3.2.3 there exists a t∗ = t∗(u0) such that a
local mild solution u(t) of (1.13) exists on [0, t∗]. Assume that [0, tmax) is the
maximal interval of existence of u(t) with tmax <∞. There exists a constant
M > 0 such that ‖T (t)‖ ≤M for all t ∈ [0, tmax]. Let

αu0(t) = M‖u0‖X +M

∫ t

0

k2(s)ds

for t ∈ [0,∞). Then for t ∈ [0, tmax)

‖u(t)‖X =

∥∥∥∥T (t)u0 +

∫ t

0

T (t− s)f(s, u(s))ds

∥∥∥∥
X

≤ ‖T (t)u0‖X +

∫ t

0

‖T (t− s)f(s, u(s))‖Xds

≤M‖u0‖X +M

∫ t

0

‖f(s, u(s))‖Xds

≤M‖u0‖X +M

∫ t

0

k2(s)ds+

∫ t

0

Mk1(s)‖u(s)‖Xds

= αu0(t) +

∫ t

0

Mk1(s)‖u(s)‖Xds. (3.22)

By Grönwall’s Inequality, Theorem C.0.11, (3.22) gives

‖u(t)‖X ≤ αu0(t) +

∫ t

0

αu0(s)Mk1(s)e
∫ t
s Mk1(r)drds (3.23)
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for all t ∈ [0, tmax). Define Φu0(t) : [0,∞) 7→ [0,∞) by

Φu0(t) =

{
αu0(t) +

∫ t
0
αu0(s)Mk1(s)e

∫ t
s Mk1(r)drds, t ∈ [0, tmax)

αu0(tmax) +
∫ tmax

0
αu0(s)Mk1(s)e

∫ tmax
s Mk1(r)drds, t ∈ [tmax,∞).

Clearly Φu0(t) is continuous on [0,∞) and from (3.23)

‖u(t)‖X ≤ Φu0(t)

for t ∈ [0, tmax). It follows that lim
t→tmax

‖u(t)‖X < ∞ contradicting Theorem

3.3.1. Hence any mild solution u of (1.13) can be extended to a global
solution.

3.4 Regularity

Recall from Section 1.5.2 that a mild solution of (1.13) need not be a classical
solution of (1.13) since it need not be differentiable. Indeed, a mild solution
is classical if and only if it is continuously differentiable, see [2, Propositions
3.1.2 and 3.1.9].

In this section we prove a regularity result for the mild solutions of (1.13).
This result gives sufficient conditions on f and A for the mild solutions of
(1.13) to be classical solutions. In particular, f is required to be Hölder
continuous. See Appendix B for the relevant definitions and results regarding
Hölder continuous functions.

Before proceeding to the main result for the regularity of mild solutions
to (1.13), we consider useful regularity results for the homogeneous abstract
Cauchy problem and the linear non-homogeneous abstract Cauchy problem.
We do not prove the results concerning the homogeneous problem for the
sake of presentation, but we do for the linear non-homogeneous problem, as
the result for the semi-linear case relies heavily on it and it lends intuition
to the relationship between the mild and classical solutions of (1.13). This
section is based on work done by Pazy in [17] and [18, Sections 3.1-3.2], and
Arendt et al. in [2].

In this section X is a complex Banach space.

The Homogeneous Problem

The homogeneous case of the abstract Cauchy problem is given by

ut(t) = Au(t), t > 0

u(0) = u0 (3.24)

with u0 ∈ X.
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Remark 3.4.1. If A : X ⊃ D(A) 7→ X is the infinitesimal generator of a C0-
semigroup T (t), t ≥ 0, then u(t) = T (t)u0 is a mild solution to (3.24). If u0 ∈
D(A) then u(t) = T (t)u0 is a classical solution to (3.24), see [2, Proposition
3.1.9 (h)]. Continuously differentiable semigroups give us a stronger result.
If A is the infinitesimal generator of a continuously differentiable semigroup
T (t), t ≥ 0, then for all u0 ∈ X the function u(t) = T (t)u0 is a classical
solution to (3.24). It follows that if A is the infinitesimal generator of an
analytic semigroup etA, t ≥ 0, then for all u0 ∈ X the function u(t) = etAu0

is a classical solution to (3.24), see [2, Corollary 3.7.21].

The Linear Problem

We now consider the linear non-homogeneous abstract Cauchy problem

ut(t) = Au(t) + g(t), t > 0

u(0) = u0 (3.25)

where u0 ∈ X and g : [0,∞) 7→ R is independent of u. Assume A : X ⊃
D(A) 7→ X is the infinitesimal generator of an analytic semigroup etA, t ≥ 0.
Then

u(t) = etAu0 +

∫ t

0

e(t−s)Ag(s)ds (3.26)

is a mild solution to (3.25).
The idea is to first prove that if g is Hölder continuous, then a mild

solution (3.26) of (3.25) is a classical solution of (3.25). We then show that a
mild solution (3.26) is Hölder continuous, which enables us to prove a similar
result for the semi-linear case where g acts on u.

Theorem 3.4.1. Let A be the infinitesimal generator of an analytic semi-
group etA, t ≥ 0. If, for some T > 0, the function g ∈ L1(0, T ;X) is Hölder
continuous on (0, T ), then for every u0 ∈ X the mild solution (3.26) to prob-
lem (3.25) is a classical solution.

Proof. Fix u0 ∈ X. We split this proof into two parts:

1) We show that if

v(t) =

∫ t

0

e(t−s)Ag(s)ds

is an element of D(A) for t ∈ (0, T ), and Av(t) is continuous on (0, T ),
then every mild solution

u(t) = etAu0 +

∫ t

0

e(t−s)Ag(s)ds = etAu0 + v(t) (3.27)

of (3.25) is a classical solution of (3.25).
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2) We show that if g satisfies the conditions stated in the theorem then
v(t) ∈ D(A) for t ∈ (0, T ) and Av(·) is continuous on (0, T ).

We begin with the proof of part 1. Suppose that u(t) is a mild solution to
the linear abstract Cauchy problem (3.25), that is, u(t) satisfies (3.27). Fur-
thermore, assume that v(t) ∈ D(A) for all t ∈ (0, T ) and Av(·) is continuous
on (0, T ). Fix t ∈ (0, T ) and h > 0 is such that t+ h ∈ (0, T ). Then

h−1[v(t+ h)− v(t)]− h−1

∫ t+h

t

e(t+h−s)Ag(s)ds

=h−1

∫ t+h

0

e(t+h−s)Ag(s)ds− h−1

∫ t

0

e(t−s)Ag(s)ds− h−1

∫ t+h

t

e(t+h−s)Ag(s)ds

=h−1

∫ t

0

e(t+h−s)Ag(s)ds− h−1

∫ t

0

e(t−s)Ag(s)ds

=h−1(ehA − I)v(t). (3.28)

Since v(t) ∈ D(A) for t ∈ (0, T ), we have

lim
h→0+

h−1(ehA − I)v(t) = Av(t). (3.29)

Furthermore we have∥∥∥∥h−1

∫ t+h

t

e(t+h−s)Ag(s)ds− g(t)

∥∥∥∥
X

=

∥∥∥∥h−1

∫ t+h

t

[e(t+h−s)Ag(s)− g(t)]ds

∥∥∥∥
X

≤
∥∥∥∥h−1

∫ t+h

t

[e(t+h−s)Ag(s)− e(t+h−s)Ag(t)]ds

∥∥∥∥
X

+

∥∥∥∥h−1

∫ t+h

t

[e(t+h−s)Ag(t)− g(t)]ds

∥∥∥∥
X

. (3.30)

Fix ε > 0 and let MT be an upper bound for the set {‖esA‖ | 0 ≤ s < T}.
Then∥∥∥∥h−1

∫ t+h

t

[e(t+h−s)Ag(s)− e(t+h−s)Ag(t)]ds

∥∥∥∥
X

≤ h−1

∫ t+h

t

‖e(t+h−s)Ag(s)− e(t+h−s)Ag(t)‖Xds

≤ MT

h

∫ t+h

t

‖g(s)− g(t)‖Xds.
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Since g is continuous, by Proposition A.1.5, lim
h→0+

1

h

∫ t+h

t

‖g(s)− g(t)‖Xds =

0, thus there exists a δ1 > 0 such that if h < δ1 then∥∥∥∥h−1

∫ t+h

t

[e(t+h−s)Ag(s)− e(t+h−s)Ag(t)]ds

∥∥∥∥
X

≤ ε

2
. (3.31)

Furthermore, by letting v = t+ h− s we get∥∥∥∥h−1

∫ t+h

t

[e(t+h−s)Ag(t)− g(t)]ds

∥∥∥∥
X

=

∥∥∥∥h−1

∫ h

0

[evAg(t)− g(t)]dv

∥∥∥∥
X

≤h−1

∫ h

0

‖evAg(t)− g(t)‖Xdv.

Since evA, v ≥ 0, is a C0-semigroup then v 7→ evAg(t) is continuous, and thus

Bochner integrable. Hence, by Proposition A.1.5, lim
h→0+

h−1

∫ h

0

‖evAg(t) −

g(t)‖Xdv = 0. Therefore there exists a δ2 > 0 such that if h < δ2 then∥∥∥∥h−1

∫ t+h

t

[e(t+h−s)Ag(t)− g(t)]ds

∥∥∥∥
X

≤ ε

2
. (3.32)

Substituting (3.31) and (3.32) into (3.30) gives that if h < min{δ1, δ2} then∥∥∥∥h−1

∫ t+h

t

e(t+h−s)Ag(s)ds− g(t)

∥∥∥∥
X

< ε.

Thus

lim
h→0+

h−1

∫ t+h

t

e(t+h−s)Ag(s)ds = g(t). (3.33)

Substituting (3.29) and (3.33) into (3.28) and taking h→ 0+ gives that v(t)
is differentiable from the right on (0, T ), and

d

dt
v(t) = lim

h→0+
h−1[v(t+ h)− v(t)] = Av(t) + g(t). (3.34)

Furthermore, since Av(t) and g(t) are continuous on (0, T ), it follows that
v(t) is continuously differentiable on this interval, and

v(0) = 0. (3.35)

From Remark 3.4.1, since A is the infinitesimal generator of an analytic
semigroup etA, t ≥ 0, then etAu0 is a classical solution to the homogeneous
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abstract Cauchy problem (3.24) for all u0 ∈ X. Therefore etAu0 is continu-
ously differentiable on (0, T ) and

e0Au0 = u0. (3.36)

Thus, from (3.27), (3.35) and (3.36), we have that u(0) = u0, and u(t)
is continuously differentiable on (0, T ) for each u0 ∈ X. Furthermore, from
(3.27), Theorem 2.3.5 (iv) and (3.34), we have

d

dt
u(t) =

d

dt
[etAu0 + v(t)]

= AetAu0 + Av(t) + g(t)

= Au(t) + g(t)

for all u0 ∈ X and t ∈ (0, T ). Thus u(t) is a classical solution of (3.25).
We now prove part 2. For t ∈ (0, T ) we have

v(t) =

∫ t

0

e(t−s)Ag(s)ds = v1(t) + v2(t)

where

v1(t) =

∫ t

0

e(t−s)A[g(s)− g(t)]ds

and

v2(t) =

∫ t

0

e(t−s)Ag(t)ds.

From Theorem 1.4.3 (ii) we have that v2(t) ∈ D(A) for each t ∈ (0, T ) and
that

Av2(t) = (etA − I)g(t).

Since g(t) is continuous on (0, T ), it follows that Av2(t) is continuous on this
interval.

We now show that v1(t) ∈ D(A) for each t ∈ (0, T ) using the fact that A
is closed. Fix t ∈ (0, T ) and let ε ∈ (0, t). Define the function v1,ε(t) by

v1,ε(t) =

∫ t−ε

0

e(t−s)A[g(s)− g(t)]ds.

Clearly

lim
ε→0+

v1,ε(t) =

∫ t

0

e(t−s)A[g(s)− g(t)]ds = v1(t). (3.37)

We now show that v1,ε(t) ∈ D(A). Let f(s) = e(t−s)A[g(s)−g(t)], s ∈ [0, t−ε].
By Theorem 2.3.5 (i) we have that f(s) ∈ D(A) for each s ∈ [0, t − ε].
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Furthermore, for any s1, s2 ∈ [0, t − ε], assuming without loss of generality
that s1 > s2, we have

‖f(s1)− f(s2)‖X =‖e(t−s1)A[g(s1)− g(t)]− e(t−s2)A[g(s2)− g(t)]‖X

≤‖e(t−s1)A‖
(
‖g(s1)− e(s1−s2)Ag(s1)‖X

+ ‖e(s1−s2)A[g(s1)− g(s2)]‖X + ‖g(t)− e(s1−s2)Ag(t)]‖X
)
.

It follows that f is continuous on [0, t− ε] since e(t−s)A is bounded on [0, t− ε]
by Theorem 2.3.5 (iii)(a), etA, t ≥ 0, is a C0-semigroup by Theorem 2.3.6, g
is continuous, and from Proposition 3.1.1. Thus f is Bochner integrable.

For s ∈ [0, t− ε] Theorem 2.3.5 (iv) gives that

Af(s) = Ae(t−s)A[g(s)− g(t)]

=

[
d

d(t− s)
e(t−s)A

]
[g(s)− g(t)].

Since s ∈ [0, t−ε] then (t−s) ∈ [ε, t] and thus, by Theorem 2.3.5 (iv), A◦f is
continuous on [0, t−ε]. Thus A◦f is Bochner integrable. Hence, by Theorem
A.1.3, v1,ε(t) ∈ D(A) and

Av1,ε(t) =

∫ t−ε

0

Ae(t−s)A[g(s)− g(t)]ds. (3.38)

We now show that

∫ t

0

Ae(t−s)A[g(s)− g(t)]ds exists and that

lim
ε→0+

Av1,ε(t) =

∫ t

0

Ae(t−s)A[g(s)− g(t)]ds.

By Theorem 2.3.5 (iv),

Ae(t−s)A[g(s)− g(t)] =

[
d

d(t− s)
e(t−s)A

]
[g(s)− g(t)]

is continuous on [0, t). Furthermore, by Theorem 2.3.5 (iii)(c), there exists
constants C1,1 > 0 and ω ∈ R such that

‖Ae(t−s)A[g(s)− g(t)]‖X ≤ C1,1e
(ω+1)(t−s)(t− s)−1‖g(s)− g(t)‖X (3.39)

on [0, t). Since g(t) is Hölder continuous on (0, T ) there exist constants C > 0
and α ∈ (0, 1] such that

‖g(s)− g(t)‖X ≤ C|s− t|α (3.40)
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for all s ∈ (0, t]. Thus, by Proposition B.0.5, we can take α < 1. From (3.39)
and (3.40) we have that

‖Ae(t−s)A[g(s)− g(t)]‖X ≤ Le(ω+1)(t−s)(t− s)α−1 (3.41)

for s ∈ [0, t) with α < 1 where L = C1,1C. Thus

∫ t

0

Ae(t−s)A[g(s) − g(t)]ds

exists for every s ∈ [0, t). Now from (3.38) and (3.41) we have∥∥∥∥∫ t

0

Ae(t−s)A[g(s)− g(t)]ds− Av1,ε(t)

∥∥∥∥
X

=

∥∥∥∥∫ t

t−ε
Ae(t−s)A[g(s)− g(t)]ds

∥∥∥∥
X

≤
∫ t

t−ε
‖Ae(t−s)A[g(s)− g(t)]‖Xds

≤
∫ t

t−ε
Le(ω+1)(t−s)(t− s)α−1ds

for s ∈ [0, t) with α < 1. Let K = max{L, e(ω+1)TL}. Then K is independent
of ε and∥∥∥∥∫ t

0

Ae(t−s)A[g(s)− g(t)]ds− Av1,ε(t)

∥∥∥∥
X

≤ K

∫ t

t−ε
(t− s)α−1ds

=
K

α
εα. (3.42)

Thus

lim
ε→0+

Av1,ε(t) =

∫ t

0

Ae(t−s)A[g(s)− g(t)]ds. (3.43)

Since A is closed, (3.37) and (3.43) give that v1(t) ∈ D(A) and

Av1(t) =

∫ t

0

Ae(t−s)A[g(s)− g(t)]ds.

We now show that Av1 is continuous on (0, T ). From (3.42) it follows
that, for each δ ∈ (0, T ), Av1,ε → Av1 uniformly on [δ, T ) as ε → 0+. Since
Av1,ε(t) is continuous on (0, T ) for all ε ∈ (0, T ), it follows that, taking δ → 0,
Av1(t) is continuous on (0, T ).

Thus v(t) ∈ D(A) for t ∈ (0, T ) and Av(·) is continuous on (0, T ).

The following lemma will be useful to us in the proof of a regularity result,
similar to the one above, for the semi-linear problem.
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Lemma 3.4.2. Suppose A : X ⊃ D(A) 7→ X is the infinitesimal generator
of an analytic semigroup etA, t ≥ 0, and g ∈ L2(0, T ;X). If u(t) is a mild
solution to the linear Cauchy problem (3.25), that is, u(t) satisfies (3.26) with
u0 ∈ X, then, for every ε ∈ (0, T ), u(t) is Hölder continuous with exponent
1
2

on [ε, T ). That is, for every ε > 0 there exists a constant Kε > 0 such that

‖u(t)− u(s)‖X ≤ Kε|t− s|
1
2

for all t, s ∈ [ε, T ). Furthermore, if u0 ∈ D(A) then u(t) is Hölder continuous
on [0, T ) with exponent 1

2
.

Proof. Fix ε ∈ (0, T ). Let ‖etA‖ ≤M on [0, T ). From Theorem 2.3.5 (iii)(c)
there exist constants ω ∈ R and C1,1 > 0 such that

‖AetA‖ ≤ C1,1e
(ω+1)tt−1 ≤ Ct−1 (3.44)

on (0, T ) where C = max{C1,1, C1,1e
(ω+1)T}. If x ∈ X then from (3.44) the

mapping [ε, T ) 3 t 7→ AetAx belongs to L1([ε, T );X). Thus, from Theorems
2.3.6, 1.4.3 (ii) and 2.3.5 (i), and using (3.44), if t, t+ h ∈ (0, T ) then

‖e(t+h)Ax− etAx‖X = ‖etA(ehAx− x)‖X

=

∥∥∥∥etA ∫ h

0

AesAxds

∥∥∥∥
X

=

∥∥∥∥∫ h

0

Ae(t+s)Axds

∥∥∥∥
X

=

∥∥∥∥∫ t+h

t

AerAxdr

∥∥∥∥
X

≤
∫ t+h

t

‖AerA‖‖x‖Xdr

≤
∫ t+h

t

Cr−1‖x‖Xdr

≤ C‖x‖Xt−1

∫ t+h

t

dr

≤ Ct−1h‖x‖X ,

so that
‖e(t+h)A − etA‖ ≤ hCt−1. (3.45)

In particular, if t, t+ h ∈ [ε, T ) then

‖e(t+h)A − etA‖ ≤ hC

ε
.
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Thus t 7→ etAx is Lipschitz continuous on [ε, T ) for all x ∈ X.
However, if x ∈ D(A) and t, t+h ∈ [0, T ), then by Theorem 2.3.5 (i) and

(iii)(a) there exists an M∗ > 0 such that∥∥∥∥∫ t+h

t

AerAxdr

∥∥∥∥
X

=

∥∥∥∥∫ t+h

t

erAAxdr

∥∥∥∥
X

≤
∫ t+h

t

‖erAA‖‖x‖Xdr

≤
∫ t+h

t

M∗‖x‖Xdr

= hM∗‖x‖X ,

where M∗ is an upper bound for the bounded operator ‖etAA‖ on (0, T ).
Thus t 7→ etAx is Lipschitz continuous on [0, T ) for all x ∈ D(A).

Hence, Proposition B.0.5 gives that the first term on the right-hand side
of

u(t) = etAu0 +

∫ t

0

e(t−s)Ag(s)ds

will be Hölder continuous with exponent 1
2

on [ε, T ) if u0 ∈ X, and on [0, T )
if u0 ∈ D(A). Hence, for u(t) to be Hölder continuous with exponent 1

2
on

[ε, T ) and [0, T ) for u0 ∈ X and u0 ∈ D(A) respectively, it is sufficient to

show that v(t) =

∫ t

0

e(t−s)Ag(s)ds is Hölder continuous with exponent 1
2

on

[0, T ).
To do this fix t ∈ [0, T ) and h > 0 such that t+ h < T . Then

v(t+ h)− v(t) =

∫ t+h

0

e(t+h−s)Ag(s)ds−
∫ t

0

e(t−s)Ag(s)ds

=

∫ t+h

t

e(t+h−s)Ag(s)ds

+

∫ t

0

[e(t+h−s)A − e(t−s)A]g(s)ds. (3.46)

We deal with each integral in (3.46) independently. Consider the norm of
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the first integral. By the Cauchy-Schwartz inequality∥∥∥∥∫ t+h

t

e(t+h−s)Ag(s)ds

∥∥∥∥
X

≤M

∫ t+h

t

‖g(s)‖Xds

≤M

(∫ t+h

t

ds

) 1
2
(∫ t+h

t

‖g(s)‖2
Xds

) 1
2

≤Mh
1
2‖g‖L2(0,T ;X)

= K1h
1
2 (3.47)

where K1 = M‖g‖L2(0,T ;X).
Before we proceed with the second integral, note that

‖e(t+h)A − etA‖ ≤ 2M (3.48)

on [0, T ). Thus, from (3.45) and (3.48), letting C∗ = max{C, 2M} and

µ(h, t) = min

{
1,
h

t

}
we get that

‖e(t+h)A − etA‖ ≤ C∗µ(h, t). (3.49)

Now, by the Cauchy-Schwartz inequality and (3.49) we have∥∥∥∥∫ t

0

[e(t+h−s)A − e(t−s)A]g(s)ds

∥∥∥∥
X

≤
∫ t

0

‖e(t+h−s)A − e(t−s)A‖‖g(s)‖Xds

≤C∗
∫ t

0

|µ(h, t− s)|‖g(s)‖Xds

≤C∗
(∫ t

0

µ(h, t− s)2ds

) 1
2

(∫ t

0

‖g(s)‖2
Xds

) 1
2

≤C∗‖g‖L2(0,T ;X)

(∫ t

0

µ(h, t− s)2ds

) 1
2

.

(3.50)

Letting τ = t− s we have∫ t

0

µ(h, t− s)2ds =

∫ t

0

µ(h, τ)2dτ

≤
∫ h

0

dτ +

∫ ∞
h

h2

τ 2
dτ

= 2h. (3.51)
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Substituting (3.51) into (3.50) gives∥∥∥∥∫ t

0

[e(t+h−s)A − e(t−s)A]g(s)ds

∥∥∥∥
X

≤ K2h
1
2 (3.52)

where K2 =
√

2C∗‖g‖L2(0,T ;X). Finally, substituting (3.47) and (3.52) into
(3.46) gives that

‖v(t+ h)− v(t)‖X ≤ K∗h
1
2

where K∗ = K1 + K2. Hence v(t) is Hölder continuous with exponent 1
2

on
[0, T ). Therefore

u(t) = T (t)u0 +

∫ t

0

T (t− s)g(s)ds

is Hölder continuous with exponent 1
2

on [ε, T ) for u0 ∈ X, and on [0, T ) for
u0 ∈ D(A).

The Semi-Linear Problem

We now proceed to the semi-linear problem (1.13), and show that if f is
Hölder continuous then a mild solution (1.14) of (1.13) is a classical solution
of (1.13).

Theorem 3.4.3. Suppose T > 0, U is an open subset of X and A : X ⊃
D(A) 7→ X is the infinitesimal generator of an analytic semigroup etA, t ≥ 0.
If f : [0, T ) × U 7→ X is Hölder continuous in both of its variables, that is,
there exist constants K > 0 and α ∈ (0, 1] such that

‖f(t1, u1)− f(t2, u2)‖X ≤ K(|t1 − t2|α + ‖u1 − u2‖αX) (3.53)

for every t1, t2 ∈ [0, T ) and u1, u2 ∈ U , then every mild solution u(t) of (1.13)
is a classical solution of (1.13).

Proof. Suppose u(t) is a mild solution to (1.13), that is

u(t) = etAu0 +

∫ t

0

e(t−s)Af(s, u(s))ds (3.54)

for t ∈ [0, T ). If we let g(t) = f(t, u(t)) for each t ∈ [0, T ), then

u(t) = etAu0 +

∫ t

0

e(t−s)Ag(s)ds (3.55)

is a mild solution of problem (3.25).
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We now show that u(t) is Hölder continuous with exponent 1
2

on [0, T ).
By Lemma 3.4.2, u(t) is Hölder continuous with exponent 1

2
on [T

5
, T ). Thus

there exists a constant C1 > 0 such that, if t1, t2 ∈ [T
5
, T ) then

‖u(t1)− u(t2)‖X ≤ C1|t1 − t2|
1
2 . (3.56)

For t ∈ [0, 2T
3

), let v(t) = u

(
t+

T

3

)
and h(t, v(t)) = f

(
t+

T

3
, v(t)

)
. Then,

for t ∈ [0, 2T
3

), we have

v(t) =u

(
t+

T

3

)
=e(t+

T
3 )Au0 +

∫ t+T
3

0

e(t+
T
3
−s)Af(s, u(s))ds

=etAe
T
3
Au0 + etA

∫ T
3

0

e(
T
3
−s)Af(s, u(s))ds

+

∫ t+T
3

T
3

e(t+
T
3
−s)Af(s, u(s))ds

=etAu

(
T

3

)
+

∫ t+T
3

T
3

e(t+
T
3
−s)Af(s, u(s))ds. (3.57)

Letting α = s− T
3
, (3.57) gives

v(t) =etAu

(
T

3

)
+

∫ t

0

e(t−α)Af

(
α +

T

3
, u

(
α +

T

3

))
dα

=etAu

(
T

3

)
+

∫ t

0

e(t−α)Ah(α, v(α))dα.

Thus v(t) is a mild solution to the problem

v′(t) = Av(t) + h(t, v(t)), t ∈
(

0,
2T

3

)
v(0) = u

(
T

3

)
.

Let gh(t) = h(t, v(t)) for t ∈ (0, 2T
3

), then v(t) is a mild solution to the
problem

v′(t) = Av(t) + gh(t), t ∈
(

0,
2T

3

)
v(0) = u

(
T

3

)
.
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Thus, by Lemma 3.4.2, v(t) is Hölder continuous with exponent 1
2

on [T
3
, 2T

3
).

Since u(t) = v

(
t− T

3

)
, then u(t) is Hölder continuous with exponent 1

2
on

[0, T
3
). Thus there exists a constant C2 > 0 such that, if t1, t2 ∈ [0, T

3
) then

‖u(t1)− u(t2)‖X ≤ C2|t1 − t2|
1
2 . (3.58)

Now we have that u is Hölder continuous with exponent 1
2

on both [0, T
3
)

and [T
5
, T ). Suppose t1 ∈ [0, T

4
) and t2 ∈ [T

4
, T ). Then (3.56) and (3.58) give

that

‖u(t1)− u(t2)‖X ≤
∥∥∥∥u(t1)− u

(
T

4

)∥∥∥∥
X

+

∥∥∥∥u(T4
)
− u(t2)

∥∥∥∥
X

≤ C2

∣∣∣∣t1 − T

4

∣∣∣∣ 12 + C1

∣∣∣∣t2 − T

4

∣∣∣∣ 12
≤ max{C1, C2}

(∣∣∣∣t1 − T

4

∣∣∣∣ 12 +

∣∣∣∣t2 − T

4

∣∣∣∣ 12
)

≤ 2 max{C1, C2}|t1 − t2|
1
2 .

Thus u(t) is Hölder continuous with exponent 1
2

on [0, T ).
By Proposition B.0.4, f and u are continuous on [0, T ], and thus g ∈

L1(0, T ;X). Furthermore, from (3.53) and the fact that u(t) is Hölder con-
tinuous with exponent 1

2
on [0, T ), there exist constants D > 0, K > 0 and

α ∈ (0, 1] such that if t1, t2 ∈ [0, T ) then

‖g(t1)− g(t2)‖X = ‖f(t1, u(t1))− f(t2, u(t2))‖X
≤ K(|t1 − t2|α + ‖u(t1)− u(t2)‖αX)

≤ K(|t1 − t2|α +Dα|t1 − t2|
1
2
α)

= K(|t1 − t2|
1
2
α +Dα)|t1 − t2|

1
2
α

≤ C|t1 − t2|
1
2
α

where C = K(T
1
2
α + Dα). Thus g is Hölder continuous on [0, T ). Hence,

by Theorem 3.4.1, (3.55) is a classical solution to the linear Cauchy problem
(3.25) for each u0 ∈ X. It follows that (3.54) is a classical solution to the
abstract Cauchy problem (1.13).
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Chapter 4

Example

4.1 Biological Model

Many biological organisms are heavily reliant on the stability of their core
body temperature to survive. Being able to maintain a constant body tem-
perature is therefore imperative. Warm-blooded animals like elephants cool
themselves off by flapping their ears, splashing themselves with water, and
covering themselves in a layer of mud or dust. Cold-blooded animals like
snakes lie on rocks in the sun to warm themselves up.

Apart from regulating their body temperatures by making use of their
environments, these organisms may also have an internal thermoregulatory
mechanism. In humans these mechanisms work to maintain a core body
temperature averaging 36.2◦C, “with most of the internal temperatures con-
trolled within the range of 35 − 39◦C”, [26, Introduction]. An example of
this is the way humans constrict their blood vessels near the skin and shiver
if they get too cold, or dilate their blood vessels near the skin or sweat if
they get too hot. Often these mechanisms will only operate when their body
temperature has exceeded, or dropped below, some threshold limit.

Tests done by Wyndham and Atkins [25] show that in humans “sweat
rate does not increase until rectal temperature rises above a threshold value
of 36.5◦C; thereafter the increase in sweat rate depends upon the level of
mean skin temperature, being greater the higher the mean skin temperature
is”. Furthermore, they claim that “sweat rate does not increase markedly un-
til mean skin temperature rises above 33◦C”. There has been “considerable
disagreement as to whether the peripheral or core temperature is the control-
ling factor for the sweat mechanism”, [24, Introduction]. Therefore further
investigations and refinement of the mathematical models for perspiration as
a thermoregulatory mechanism may be necessary.
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We consider a simple mathematical model for the distribution of heat on
the skin of humans who are at rest, with particular consideration of perspi-
ration as a thermoregulatory mechanism. Suppose Ω ∈ R2 is an open and
bounded set representing the spatial domain of the skin surface in question.
We suppose that the boundary ∂Ω of Ω is smooth, that is, ∂Ω ∈ C∞. For
some fixed T > 0, let ΩT = Ω× (0, T ). Let u(x, t) represent the skin temper-
ature at point x ∈ Ω and time t ∈ (0, T ), and L : Ω 7→ R the threshold limit.
That is, perspiration starts at x ∈ Ω and t ∈ (0, T ) whenever u(x, t) > L(x).
The function u0 is the distribution of heat on the surface of the skin at
time t = 0. We assume that we have Dirichlet boundary conditions, that is,
u(x, t) = 0 for x ∈ ∂Ω for each t ∈ [0, T ). A biological interpretation of this
assumption is that we take the average heat at the surface of the skin, say
H ∈ R, to correspond with u(x, t) = 0 and assume that the skin surrounding
the area in question remains at that temperature. In the case of Wyndam
and Atkins [25], L(x) = 33◦C − H for all x ∈ Ω. We consider only the
diffusion across the skin due to the laws of thermodynamics, as described by
the heat equation

∂

∂t
u(x, t) = ∇2u(x, t),

and the contribution of perspiration, given by p(x, t), when the skin temper-
ature exceeds the threshold L(x).

This provides us with a simple semi-linear parabolic problem (1.10) given
by

ut(x, t) = ∇2u(x, t) + p(x, t) max{u(x, t)− L(x), 0}, (x, t) ∈ ΩT

u(x, 0) = u0, x ∈ Ω (4.1)

u(x, t) = 0, x ∈ ∂Ω

where p(x, t) : Ω× [0,∞) 7→ R− is assumed to be continuous and uniformly
bounded on its domain, and L ∈ L2(Ω). It is clear that the operator ∇2 is
in divergence form (1.11) taking αi,j(x, t) = 1, βi(x, t) = 0 and γ(x, t) = 0

on ΩT , with i, j = 1, 2. Furthermore, it is clear that the operator
∂

∂t
−∇2 is

parabolic on ΩT .
We reformulate this problem as an infinite-dimensional dynamical system,

in the form of an abstract Cauchy problem (1.13). Our Banach space X, as
referred to throughout this thesis, shall be taken to be the Hilbert space
L2(Ω). Due to the Dirichlet boundary conditions, we take D(A) = H1

0 (Ω) ∩
H2(Ω). Let u(t) : [0, T ) 7→ L2(Ω) be the state of u at time t, that is,

u(t) : x ∈ Ω 7→ u(t)[x] := u(x, t).
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Furthermore, define p : [0, T ) 7→ L2(Ω) by

p(t) : x ∈ Ω 7→ p(t)[x] := p(x, t) ∈ R

for each t ∈ [0, T ) and f : [0, T )× L2(Ω) 7→ L2(Ω) by

f(t, u) : x ∈ Ω 7→ f(t, u)[x] := p(x, t) max{u(x, t)− L(x), 0}.

Then
f(t, u(t)) = p(t) sup{u(t)− L, 0}

for each t ∈ [0, T ) and our problem is given by

ut(t) = ∇2u(t) + f(t, u(t)), t ∈ (0, T )

u(0) = u0. (4.2)

Remark 4.1.1. The fact that f maps [0, T ) × L2(Ω) into L2(Ω) and is con-
tinuous is non-trivial

Firstly, for t ∈ [0, T ) and u ∈ L2(Ω), f need not belong to L2(Ω) since the
product of two functions p and u belonging to L2(Ω) is itself not necessarily
contained in L2(Ω). However, in our case it is true. For all t ∈ [0, T ), since
p is uniformly bounded on Ω× [0, T ), there exists a K > 0 such that

|p(x, t)| ≤ K

for all x ∈ Ω and t ∈ [0, T ). Thus for any t ∈ [0, T ) and u ∈ L2(Ω),∫
Ω

f(t, u)2dx =

∫
Ω

p(x, t)2 max{u(x)− L(x), 0}2dx

≤ K2

∫
Ω

max{u(x)− L(x), 0}2dx.

Since L ∈ L2(Ω) and u ∈ L2(Ω), the integral exists and is finite so that
f(t, u) ∈ L2(Ω) for all t ∈ [0, T ).

Secondly, f is continuous. It is easily verified that for every u1, u2 ∈ L2(Ω)
and x ∈ Ω

|max{u1(x)− L(x), 0} −max{u2(x)− L(x), 0}|
≤ |u1(x)− L(x)− [u2(x)− L(x)]|
= |u1(x)− u2(x)|. (4.3)
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Fix ε > 0, u2 ∈ L2(Ω) and t2 ∈ [0, T ). Then, for every t1 ∈ [0, T ) and
u1 ∈ L2(Ω) we have

‖f(t1, u1)− f(t2, u2)‖L2(Ω)

≤‖f(t1, u1)− f(t1, u2)‖L2(Ω) + ‖f(t1, u2)− f(t2, u2)‖L2(Ω)

=

(∫
Ω

p(x, t1)2[max{u1(x)− L(x), 0} −max{u2(x)− L(x), 0}]2dx
) 1

2

+

(∫
Ω

[p(x, t1)− p(x, t2)]2 max{u2(x)− L(x), 0}2dx

) 1
2

≤
(
K2

∫
Ω

|u1(x)− u2(x)|2dx
) 1

2

+ (‖u2‖2
L2(Ω) + ‖L‖2

L2(Ω))
1
2

(∫
Ω

[p(x, t1)− p(x, t2)]2dx

) 1
2

=K‖u1 − u2‖L2(Ω) + (‖u2‖2
L2(Ω) + ‖L‖2

L2(Ω))
1
2‖p(t1)− p(t2)‖L2(Ω). (4.4)

Since p is continuous on Ω×[0, T ) there exists a δ1 > 0 such that if |t1−t2| < δ1

then
‖p(t1)− p(t2)‖L2(Ω) <

ε

2(‖u2‖2
L2(Ω) + ‖L‖2

L2(Ω))
1
2

. (4.5)

Let δ2 =
ε

2K
. Then from (4.5) and (4.4) it follows that if |t1 − t2| < δ1 and

‖u1 − u2‖L2(Ω) < δ2 then

‖f(t1, u1)− f(t2, u2)‖L2(Ω) < ε.

Thus f is continuous on [0, T )× L2(Ω).

4.2 Mild Solutions of the Biological Model

We begin this section by showing that a local mild solution to the semi-
linear problem (4.2) exists. We then consider the asymptotic behaviour and
regularity of this solution. Finally, we consider whether solutions to more
complex models of the mechanism of sweating exist.

Let L̃2(Ω) be the complexification of L2(Ω) as defined in Definition 2.5.1.

By Theorem 2.5.2 the vector space L̃2(Ω) is a complex Hilbert space with
inner product (·, ·)

L̃2(Ω)
as defined in Theorem 2.5.1. Let Ã be the complexi-

fication of A = ∇2 acting on L̃2(Ω), as in Definition 2.5.2.
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4.2.1 Existence

We begin this subsection by showing that the operator A satisfies the condi-
tions of the Hille-Yosida theorem, so that a mild solution to the homogeneous
problem exists. We then use results from Section 2.5 on the complexifica-
tion of operators to show that Ã is the infinitesimal generator of an analytic
semigroup and that a local mild solution to the semi-linear problem (4.2)
exists.

Theorem 4.2.1. The closure of the domain D(A) = H1
0 (Ω) ∩ H2(Ω) of

A = ∇2 on L2(Ω) is L2(Ω), and A is closed.

Proof. Since C∞0 (Ω) is dense in L2(Ω) and C∞0 (Ω) ⊂ D(A) then L2(Ω) =
D(A).

Furthermore, since A is an elliptic operator in divergence form, then by
Theorem 2.2.2 the resolvent set ρ(A) of A is non-empty. Thus by Theorem
1.4.7 the operator A is closed.

Theorem 4.2.2. The resolvent set ρ(A) of A : D(A) 7→ L2(Ω) contains R+,
and there exists an M > 0 such that

‖λR(λ,A)‖ ≤M , λ > 0.

Proof. Suppose B[u, v] : H1
0 (Ω)×H1

0 (Ω) 7→ R given by

B[u, v] =

∫
Ω

2∑
i,j=1

uxivxjdx

is the bilinear form corresponding to the uniform elliptic operator −A =
−∇2 in divergence form (2.10). Then it follows directly from the ellipticity
condition (2.11) on A that there exists a θ > 0 such that

θ‖u‖H1
0 (Ω) ≤ B[u, u] (4.6)

for u ∈ H1
0 (Ω). If we compare (4.6) with Theorem 2.2.1 and the proof of

Theorem 2.2.2, in particular (2.16), then we can choose the ω in Theorem
2.2.2 to be 0, and the resolvent set ρ(A) ofA contains the ray {λ ∈ R | λ > 0}.

We now show that there exists a M > 0 such that for all λ > 0 and
f ∈ L2(Ω)

‖u‖L2(Ω) = ‖(λI − A)−1f‖L2(Ω) ≤
M

λ
‖f‖L2(Ω).

Let λ > 0 and u ∈ D(A) so that

(λI −∇2)u = f (4.7)
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where f ∈ L2(Ω). Multiplying both sides of (4.7) by u and integrating, we
get ∫

Ω

λu2dx−
∫

Ω

(∇2u)udx =

∫
Ω

fudx.

Applying Integration by Parts gives

λ‖u‖2
L2(Ω) + ‖∇u‖2

L2(Ω) = (f, u)L2(Ω).

Thus by the Cauchy-Swartz inequality

λ‖u‖2
L2(Ω) ≤ (f, u)L2(Ω) ≤ ‖f‖L2(Ω)‖u‖L2(Ω)

and we have that

‖u‖L2(Ω) ≤
1

λ
‖f‖L2(Ω). (4.8)

The result follows upon setting M = 1.

Theorem 4.2.3. The operator A is the infinitesimal generator of a contrac-
tion C0-semigroup T (t), t ≥ 0. That is, the semigroup satisfies ‖T (t)‖ ≤ 1
for t ≥ 0.

Proof. From Theorems 4.2.1 and 4.2.2, the conditions of the Hille-Yosida
Theorem, Theorem 1.4.8, are satisfied, with M = 1 and ω = 0.

It follows that, for all u0 ∈ L2(Ω), u(t) = T (t)u0, t ≥ 0, is a mild solution
to (4.2) in the case where f = 0.

Recall Figure 2.1. We now have all the required knowledge to show how
the flow-chart works out in practice. Consider the complexification, Ã of A,

acting on L̃2(Ω).

Theorem 4.2.4. The complexification Ã of A is a sectorial operator.

Proof. By Theorems 4.2.3 and 2.5.11 the resolvent set of Ã contains the half-

plane Π = {λ ∈ C : <λ > 0} and ‖R(λ, Ã)‖ ≤ M

|λ|
for λ ∈ Π. Thus, for any

ε > 0
{λ ∈ C : <λ ≥ ε} ⊂ ρ(Ã). (4.9)

Furthermore,

‖R(λ, Ã)‖ ≤ 1

|λ|
(4.10)

for all λ ∈ C, <λ ≥ ε. From (4.9) and (4.10), Theorem 2.3.2 gives that Ã is
a sectorial operator.
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Corollary 4.2.5. The complexification Ã of A is the infinitesimal generator
of an analytic semigroup etÃ, t ≥ 0.

Proof. This follows directly from Theorem 4.2.4.

Theorem 4.2.6. For every u0 ∈ L2(Ω) there exists a t∗ = t∗(u0), 0 < t∗ < T ,
and a continuous mapping u from [0, t∗] to L2(Ω) that is a mild solution on
[0, t∗] to the abstract Cauchy problem (4.2).

Proof. We will use Theorem 3.2.3 to prove the result.
From Corollary 4.2.5 we have that Ã is the infinitesimal generator of an

analytic semigroup etÃ, t ≥ 0, on L̃2(Ω). Thus etÃ, t ≥ 0, is a C0-semigroup,

and, by Theorem 2.3.7, etÃ, t ≥ 0, is continuous in the uniform operator
topology for t > 0.

Furthermore, since A is uniformly elliptic, by Theorem 2.2.2 the resolvent
operator R(λ,A) is compact for all λ > 0. Thus, by Theorems 2.5.12, 2.5.8
and 2.1.4, the resolvent operator R(λ, Ã) will be compact for all λ ∈ ρ(Ã).

Therefore, by Theorem 2.1.6, the semigroup etÃ, t ≥ 0, is compact.
By Theorem 2.5.6, Ã is the infinitesimal generator of the C0-semigroup

T̃ (t), t ≥ 0. By Theorem 1.4.4 the semigroup generated by Ã is unique, so

that T̃ (t) = etÃ for each t ≥ 0. Hence T̃ (t), t ≥ 0, is compact.
Thus, by Theorem 2.5.8, the C0-semigroup T (t), t ≥ 0, with infinitesimal

generator A, is compact. Furthermore, f is continuous on [0, T )× L2(Ω) as
shown in Remark 4.1.1.

Thus by Theorem 3.2.3 the result holds.

We now investigate the asymptotic behaviour and regularity of the local
mild solution u of (4.2).

4.2.2 Asymptotic Behaviour

Theorem 4.2.7. For each u0 ∈ L2(Ω) the local mild solution u(t) of (4.2) is
a global solution.

Proof. Recall our assumption that p is continuous and uniformly bounded
on Ω× [0,∞). Thus f is defined on [0,∞)×L2(Ω) with values in L2(Ω). We
begin by showing that f maps bounded sets in [0,∞) × L2(Ω) to bounded
sets in L2(Ω). Consider bounded sets [a, b] ⊂ [0,∞) and U ⊂ L2(Ω). Let
K > 0 be an upper bound for the set {|p(x, t)| | t ∈ [a, b], x ∈ Ω} and M > 0
be an upper bound for the set {‖u‖L2(Ω) | u ∈ U}. Then for t ∈ [a, b] and
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u ∈ U

‖f(t, u)‖2
L2(Ω) =

∫
Ω

p(x, t)2 max{u(x)− L(x), 0}2dx

≤ K2(‖u‖2
L2(Ω) + ‖L(x)‖2

L2(Ω)) (4.11)

≤ K2(M2 + ‖L(x)‖2
L2(Ω)).

Thus f maps [a, b]× U onto a bounded set.
Note that (4.11) holds for all t ∈ [0,∞) and u ∈ L2(Ω). Thus

‖f(t, u)‖L2(Ω) ≤ K2‖u‖L2(Ω) +K2‖L(x)‖2
L2(Ω)

for all t ∈ [0,∞) and u ∈ L2(Ω). Thus, by Corollary 3.3.2, the local mild
solution u of (4.2) can be extended to a global solution.

4.2.3 Regularity

In this subsection we show that a mild solution of (4.2) is a classical solution,
provided that p : Ω× [0, T ) 7→ R is Hölder continuous in t. In order to prove
this regularity result, we first establish the Hölder continuity of f .

Theorem 4.2.8. Suppose the function p : Ω × [0, T ) 7→ R− is Hölder con-
tinuous in t, such that there exist constants C > 0 and α ∈ (0, 1] such that

|p(x, t1)− p(x, t2)| ≤ C|t1 − t2|α

for all x ∈ Ω, t1, t2 ∈ [0, T ). Then f is Hölder continuous on [0, T )× Bρ(0)
for all ρ > 0, where Bρ(0) is the open ball in L2(Ω) centred at 0 with radius
ρ.

Proof. Fix ρ > 0, t1, t2 ∈ [0, T ), and u1, u2 ∈ Bρ(0). Then

‖f(t1, u1)− f(t2, u2)‖L2(Ω) ≤‖f(t1, u1)− f(t2, u1)‖L2(Ω)

+ ‖f(t2, u1)− f(t2, u2)‖L2(Ω). (4.12)

We have that

‖f(t1, u1)− f(t2, u1)‖2
L2(Ω) =

∫
Ω

[p(x, t1)− p(x, t2)]2 max{u1(x)− L(x), 0}2dx

≤ C2|t1 − t2|2α
∫

Ω

[u1(x)− L(x)]2dx

≤ C2|t1 − t2|2α[‖u1‖2
L2(Ω) + ‖L‖2

L2(Ω)]

< C2[ρ2 + ‖L‖2
L2(Ω)]|t1 − t2|2α.
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Thus
‖f(t1, u1)− f(t2, u1)‖L2(Ω) ≤M |t1 − t2|α. (4.13)

where M = C[ρ2 + ‖L‖2
L2(Ω)]

1
2 > 0. Since p(x, t) is uniformly bounded there

exists a K > 0 such that |p(x, t)| ≤ K for all (x, t) ∈ Ω× [0, T ). Thus from
(4.3) we have

‖f(t2, u1)− f(t2, u2)‖2
L2(Ω) =

∫
Ω

p(x, t2)2[max{u1(x)− L(x), 0}

−max{u2(x)− L(x), 0}]2dx

≤K2

∫
Ω

[u1(x)− u2(x)]2dx

=K2‖u1 − u2‖2
L2(Ω).

Thus
‖f(t2, u1)− f(t2, u2)‖L2(Ω) ≤ K‖u1 − u2‖L2(Ω). (4.14)

Proposition B.0.5 and (4.14) imply that there exists a N > 0 such that

‖f(t2, u1)− f(t2, u2)‖L2(Ω) ≤ N‖u1 − u2‖αL2(Ω) (4.15)

for all u1, u2 ∈ Bρ(0). Substituting (4.13) and (4.15) into (4.12) gives that

‖f(t1, u1)− f(t2, u2)‖L2(Ω) ≤M |t1 − t2|α +N‖u1 − u2‖αL2(Ω)

≤ max{M,N}(|t1 − t2|α + ‖u1 − u2‖αL2(Ω)),

and f is Hölder continuous with exponent α.

Theorem 4.2.9. Suppose the function p : Ω × [0, T ) 7→ R− is Hölder con-
tinuous in t, such that there exist constants C > 0 and α ∈ (0, 1] such that

|p(x, t1)− p(x, t2)| ≤ C|t1 − t2|α

for all x ∈ Ω, t1, t2 ∈ [0, T ). Then every mild solution of (4.2) is a classical
solution of (4.2).

Proof. Suppose u(t) is a mild solution of (4.2). Consider the functions f̃ :

[0, T )× L̃2(Ω) 7→ L̃2(Ω) given by f̃(t, u+ iv) = f(t, u) + 0i and ũ : [0, T ) 7→
L̃2(Ω) given by ũ(t) = u(t) + 0i. By Theorem 4.2.8 the function f is Hölder
continuous on [0, T )× Bρ(0) for all ρ > 0. It is clear that taking ρ → ∞, f̃
will be Hölder continuous on [0, T )×L2(Ω). Furthermore, by Theorem 2.5.7,
ũ(t) is a mild solution of

d

dt
ũ(t) = Ãũ(t) + f̃(t, ũ(t)), t ∈ (0, T )

ũ(0) = u0 + 0i, (4.16)
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where Ã is the infinitesimal generator of an analytic semigroup. Thus, by
Theorem 3.4.3, ũ(t) is a classical solution of (4.16). Hence ũ(t) ∈ D(Ã) for
0 < t < T , ũ(t) is continuous on [0, T ), and ũ(t) is continuously differentiable
on (0, T ). If follows that u(t) ∈ D(A) for 0 < t < T , u(t) is continuous on
[0, T ) and u(t) is continuously differentiable on (0, T ). Furthermore, u(0) +
0i = ũ(0) = u0 + 0i and

d

dt
u(t) + 0i =

d

dt
(u(t) + 0i)

=
d

dt
ũ(t)

= Ãũ(t) + f̃(t, ũ(t))

= Ã(u(t) + 0i) + f̃(t, u(t) + 0i)

= Au(t) + 0i+ f(t, u(t)) + 0i

= Au(t) + f(t, u(t)) + 0i

for all t ∈ (0, T ). It follows that u(0) = u0 and
d

dt
u(t) = Au(t) + f(t, u(t))

for all t ∈ (0, T ). Thus u(t) is a classical solution to (4.2).

4.3 Comments on the Model

Although this is an overly simplistic model, we use it for two reasons: First,
it demonstrates the applicability of the main results of this thesis in showing
the existence of a solution to a parabolic semi-linear equation.

Second, most more accurate models that consider perspiration in research
include many factors other than perspiration and diffusion, since the core
body temperature, not the skin temperature, is what the researchers are
mostly interested in. Accordingly they add more terms to the operator A or
adjust f(t, u(t)) in appropriate ways. Indeed, many terms such as the zeroth-
order term ρu(t), where ρ ∈ R, can be included as an additional term in either
A or in f(t, u(t)). These additional terms are generally either zeroth-order
or first-order terms. Models such as [28, Chapter 9, Equation (46)] add a
zeroth-order term, and models such as [24, (2.1)] and [24, (2.14)] add both.
Thus we can follow the ideas mentioned in Remark 2.4.3 to show existence for
this broader class of problem. Therefore the existence and regularity results
will still apply to many of these more complex models.

To demonstrate this, suppose the additional terms are zeroth-order and
are given by linear operator B : L2(Ω) ⊃ D(B) 7→ L2(Ω) such that D(A) ⊆
D(B). Since A is elliptic the operator A + B will be elliptic, since the
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ellipticity only depends on the second-order term, that is, the diffusion A.
Thus by Theorem 2.2.2 R(λ,A+B) will be compact for some λ ∈ ρ(A+B).
Furthermore, B will be bounded when D(A) = H1

0 (Ω) ∩H2(Ω). Thus since
Ã is the infinitesimal generator of an analytic semigroup, by Corollary 2.4.4

the operator Ã+B = Ã + B̃ is the infinitesimal generator of an analytic
semigroup.

It follows that a local mild solution to the problem

ut(t) = (A+B)u(t) + f(t, u(t)), t > 0

u(0) = u0 (4.17)

exists.
Note that the regularity result only depends on the behaviour of f , thus

it will also hold for problem (4.17). In particular, Theorem 4.2.9 shows that
the regularity of the solution depends on conditions for the function p, which
represents the contribution of perspiration. Whether or not these conditions
for p are realistic assumptions falls outside the scope of this thesis.

For a discussion on some of the better known models, we refer the reader
to [24, Review of Thermoregulatory Modelling] and [26, Literature Survey].
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Chapter 5

Conclusion

At the beginning of this thesis we stipulated the main aims of this thesis.
Here we discuss whether those goals have been met.

We considered a parabolic semi-linear PDE and reformulated it as an
infinite-dimensional system. We then developed theory concerning compact
and analytic semigroups, and used this knowledge to find conditions under
which a local mild solution to the infinite-dimensional dynamical system
exists. This required proving some results on integration over a complex
plane. To make this theory applicable we discussed the complexification of
operators acting on a real Hilbert space to operators acting on a complex
Hilbert space.

We then investigated the asymptotic behaviour of the solution, show-
ing when the local mild solution was global. Furthermore, we developed
a regularity result, showing under which conditions a mild solution of the
infinite-dimensional system will be a classical solution. This required some
basic knowledge of Hölder continuous functions.

Finally we demonstrated that these results are applicable in “real-life”with
a biologically motivated example, making use of perturbation theory devel-
oped earlier to demonstrate the applicability of the presented research to
more complex problems.

Thus we believe that the main aims of the thesis were met.
As demonstrated, the results of this thesis are applicable to certain bio-

logical problems. Indeed, a large number of other physical models fall into
the class of problems discussed throughout this thesis. Thus the work is of
real world significance. The key benefit of this thesis is to develop the main
results from the foundation of the real world problem, as opposed to devel-
oping the theory independently. This makes it easy to see the relevance of
the work to real world problems.

This thesis could be expanded to include a broader group of problems,
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most obviously by considering fully non-linear parabolic PDEs or by devel-
oping wider-reaching perturbation theory. Furthermore, numerical solutions
could be developed to approximate the mild solutions shown to exist. How-
ever, as mentioned previously, this theory does not easily lend itself to the
development of corresponding numerical methods, so this would be a task
largely independent of the work discussed in this thesis.
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Appendix A

Integration

In this appendix we introduce some results on integration of vector-valued
functions and integration along curves in C.

A.1 The Bochner Integral

We begin by defining an integral for vector-valued functions and giving a few
basic results. In this case, we use the Bochner integral. We refer the reader to
[8, III.2] for an introduction to measure theory. Unless otherwise indicated,
the results and definitions of this section can be found in [2, Section 1.1],
along with a more detailed analysis of the Bochner Integral.

In this section X denotes a Banach space and I denotes an interval in R
or rectangle in R2.

Definition A.1.1 (Step Function). A function f : I 7→ X is a step function

if it can be written in the form f(t) =
n∑
i=1

xiχIi(t) for some n ∈ N. Here

xi ∈ X and Ii ⊂ I is measurable for each i = 1, ..., n and χIi denotes the
characteristic (indicator) function of Ii.

Definition A.1.2 (Measurable Function). A function f : I 7→ X is mea-
surable if there is a sequence of step functions gn such that f(t) = lim

n→∞
gn(t)

for almost all t ∈ I.

Proposition A.1.1. A function f : I 7→ X is measurable if it is continuous,
or if there exists a sequence (fn) of measurable functions fn : I 7→ X such
that (fn) converges pointwise to f almost everywhere.
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For a step function g : I 7→ X given by g(t) =
n∑
i=1

xiχIi(t), t ∈ I, we

define ∫
I

g(t)dt :=
n∑
i=1

xim(Ii)

where m(Ii) is the Lebesgue measure of Ii.

Definition A.1.3 (Bochner Integral). A function f : I 7→ X is called
Bochner integrable if there exist step functions gn : I 7→ X such that (gn)
converges to f pointwise almost everywhere, and

lim
n→∞

∫
I

‖f(t)− gn(t)‖Xdt = 0.

If f is Bochner Integrable then the Bochner Integral of f on I is∫
I

f(t)dt := lim
n→∞

∫
I

gn(t)dt.

Remark A.1.1. Another integral we could use for functions with values in a
Banach space is the Pettis integral. On a Banach space the Pettis integral
is more general than the Bochner integral. However, we choose to use the
Bochner integral for the following three reasons: Firstly, the Bochner integral
is more intuitive as a natural extension of the Lebesgue integral to vector-
valued functions. Secondly, we are interested in integrating functions that
are continuous on I, and these are Bochner integrable. Thirdly, the class of
Bochner integrable functions is easily characterized, as shown in the following
theorem.

Theorem A.1.2 (Bochner). A function f : I 7→ X is Bochner integrable if
and only if f is measurable and ‖f‖X is Lebesgue integrable. If f is Bochner
integrable then ∥∥∥∥∫

I

f(t)dt

∥∥∥∥
X

≤
∫
I

‖f(t)‖Xdt.

It is clear by definition that if f : I 7→ X is Bochner integrable and T is
a bounded linear operator from X to a Banach space Y then T ◦ f : I 3 t 7→
T (f(t)) is Bochner integrable and T

∫
I

f(t)dt =

∫
I

Tf(t)dt. We shall need a

result similar to this for a closed operator A.
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Proposition A.1.3. Suppose A : X ⊃ D(A) 7→ X is a closed linear operator
on X and f : I 7→ D(A) is Bochner integrable. If A ◦ f : I 7→ X is Bochner

integrable, then

∫
I

f(t)dt ∈ D(A) and

A

∫
I

f(t)dt =

∫
I

Af(t)dt.

The following Theorem, introduced by Guido Fubini in 1907 for scalar-
valued functions, is a result that gives conditions under which it is possible
to compute an integral over a two-dimensional area using iterated integrals.
A direct result of this theorem, which is useful for us, is that the order of
integration can be changed for iterated integrals.

Theorem A.1.4 (Fubini’s Theorem). Suppose I = I1 × I2 is a rectangle
in R2, f : I 7→ X is measurable and∫

I1

∫
I2

‖f(s, t)‖Xdtds <∞.

Then f is Bochner integrable and the iterated integrals∫
I1

∫
I2

f(s, t)dtds and

∫
I2

∫
I1

f(s, t)dsdt

exist and are equal, and they coincide with the integral

∫
I

f(s, t)d(s, t).

Proposition A.1.5. Let f : [a, b] 7→ X be Bochner integrable and F (t) :=∫ t

a

f(s)ds for t ∈ [a, b]. Then

a) F is differentiable almost everywhere in (a, b) and F ′ = f almost ev-
erywhere.

b) lim
h→0

1

h

∫ t+h

t

‖f(s)− f(t)‖Xds = 0 for t almost everywhere in (a, b).

We can now define Lp-spaces for X-valued functions. The definition and
properties are analogous to the case of scalar-valued functions.

Definition A.1.4. The set L1(I;X) denotes the set of Bochner integrable
functions equipped with norm

‖f‖L1(I;X) :=

∫
I

‖f(t)‖Xdt.
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For 1 < p < ∞ the space Lp(I;X) consists of all measurable functions
f : I 7→ X such that ∫

I

‖f(t)‖pXdt <∞

equipped with norm

‖f‖Lp(I;X) :=

(∫
I

‖f(t)‖pXdt
) 1

p

.

The set L∞(I;X) consists of all measurable functions f : I 7→ X such that

ess sup
t∈I
‖f(t)‖X <∞

equipped with norm

‖f‖L∞(I;X) := ess sup
t∈I
‖f(t)‖X .

In the usual way, we identify functions which differ only on sets of measure
zero, that is, two functions are considered equal if they are equal pointwise
almost everywhere. For 1 ≤ p ≤ ∞ the space Lp(I;X) is a Banach space
equipped with its respective norm ‖ · ‖Lp(I;X), see [2, Theorem 1.1.10] and
[13, Chapter 6, Theorem 6.28]. Furthermore, it can be shown that for 1 ≤
p <∞ both the collection of all step functions g : I 7→ X and the collection

of functions of the form g(t) =
n∑
i=1

ciφi(t) for t ∈ I, where ci ∈ X and

φi ∈ C∞0 (I) for all i = 1, ..., n, are dense in Lp(I;X), see [13, Chapter 6,
Proposition 6.29].

Definition A.1.5. Suppose I = [a,∞) for some a ∈ R. If f ∈ L1([a, τ ];X)

for all τ ∈ [a,∞) then we say that

∫ ∞
a

f(t)dt converges as an improper

integral and we define ∫ ∞
a

f(t)dt := lim
τ→∞

∫ τ

a

f(t)dt.

If f ∈ L1(I;X), that is,

∫ ∞
a

‖f(t)‖Xdt < ∞, then we say that the integral

is absolutely convergent.

If f is a scalar-valued function then the above definition holds in a similar
manner and is taken as pre-knowledge, see [20, Chapter 6, Exercise 8].
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A.2 Cauchy’s Integral Formula

We now consider some results on the integration of both complex-valued and
vector-valued functions on the complex plane. In particular, we consider ana-
lytic functions. We refer the reader to [1] for more on the topic of integration
on the complex plane.

In this section X denotes a complex Banach space.

Definition A.2.1 (Analytic Function). A function f on C with values
either in C or in X is called (complex) analytic if we can write f(x) as a
power series around x0 for x near x0, that is

f(x) =
∞∑
i=0

an(x− x0)n

where an is either in C or X.

Definition A.2.2 (Integral Along a Curve). Suppose Ω ⊆ C is open and
Γ ⊂ Ω is a smooth curve with parametrization z : R ⊇ I 7→ C. Furthermore,
suppose that f is a function on Ω with values in either C or X such that
f(z(t)) is Lebesgue or Bochner integrable on I respectively. Then∫

Γ

f(z)dz :=

∫
I

f(z(t))
dz

dt
dt.

If Γ is piecewise smooth such that Γ = Γ1 ∪ Γ2 ∪ ... ∪ Γn with Γi smooth for
each i = 1, ..., n then ∫

Γ

f(z)dz :=
n∑
i=1

∫
Γi

f(z)dz.

The following theorem follows straight from Definitions A.1.5 and A.2.2.

Theorem A.2.1. Suppose Ω ⊆ C is open and Γ ⊂ Ω is a piecewise smooth
curve of infinite length. Let Bn(0) be the disk in C with radius n ∈ R centred
at the origin and Γn = Γ ∩ Bn(0). If f ∈ L1(Γn;X) for every n ∈ R, then∫

Γ

f(t)dt converges as an improper integral and∫
Γ

f(t)dt := lim
n→∞

∫
Γn

f(t)dt.

If f ∈ L1(I;X), that is,

∫
Γ

‖f(t)‖Xdt < ∞, then the integral is absolutely

convergent.
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If f is a scalar-valued function then the above theorem holds in a similar
manner, and is taken as pre-knowledge.

Theorem A.2.2 (Cauchy’s Integral Formula). [1, Theorem 6, page 119]
Suppose that f is an analytic on an open disk Ω ⊂ C, with values in either
C or X. Let Γ be a piecewise differentiable, closed and positively oriented
curve in Ω. For any point a not on Γ

n(Γ, a) · f(a) =
1

2πi

∫
Γ

f(z)

z − a
dz,

where n(Γ, a) is the index of a with respect to Γ.

A bit of further explanation here is useful. The index n(Γ, a) is also
called the winding number of Γ with respect to a. In essence it is the number
of times the curve Γ winds around, or encloses, the point a, while moving
in the counter-clockwise direction. Thus if a lies outside the curve Γ then
n(Γ, a) = 0. Supposing Γ does not form a loop within itself, that is, Γ does
not loop around any point more than once, and that Γ is positively oriented,
then if a lies within curve Γ then n(Γ, a) = 1. If Γ were negatively oriented
and were to loop around a then n(Γ, a) = −1. Indeed, n(−Γ, a) = −n(Γ, a).

Although the theorem stated above from Ahlfors is for an open disk Ω,
the theorem can be extended to any open, simply connected region Ω, see
[1, Sections 4.2-4.3] and , in particular, [1, Theorem 16]. The intuition is
that a simply connected region is a region without any holes, and thus its
complement is a single connected piece.

We can thus conclude from Theorem A.2.2 that if Ω is any open simply
connected region containing a piecewise differentiable, closed, and positively
oriented curve Γ, which does not form a loop within itself, and f(z) is an
analytic function on Ω, then∫

Γ

f(x)

z − a
dx = 0 for any point a outside of Γ,∫

Γ

f(x)

z − a
dx = 2πif(a) for any point a inside of Γ.

This is what we shall refer to as Cauchy’s Integral Formula. We now
provide a version of Cauchy’s Integral Formula for the case where Γ is a curve
that is not closed and has infinite length, in particular, the curve ω + γr,η as
shown in Figure 2.3. This curve splits the complex plane into two parts.

Lemma A.2.3. Suppose γr,η is the curve

{λ ∈ C | |argλ| = η, |λ| ≥ r} ∪ {λ ∈ C | |argλ| ≤ η, |λ| = r}
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oriented counter-clockwise, where r > 0 and η ∈ (π
2
, π). Let ω ∈ R. Suppose

f is a bounded analytic function on an open set D with values either in C or
X. Let

SL = {x+ iy ∈ C | x < u, u+ iy ∈ (ω + γr,η)},
that is, everything to the left of (ω + γr,η), and

SR = {x+ iy ∈ C | x > v, v + iy ∈ (ω + γr,η)},

that is, everything to the right of (ω + γr,η). Then

(1) If D contains SL ∪ (ω + γr,η), then for µ ∈ D

(a)

∫
ω+γr,η

f(λ)

λ− µ
dλ = 2πif(µ) whenever µ ∈ SL.

(b)

∫
ω+γr,η

f(λ)

λ− µ
dλ = 0 whenever µ ∈ SR.

(2) If D contains SR ∪ (ω + γr,η), then for µ ∈ D

(a)

∫
ω+γr,η

f(λ)

λ− µ
dλ = −2πif(µ) whenever µ ∈ SR.

(b)

∫
ω+γr,η

f(λ)

λ− µ
dλ = 0 whenever µ ∈ SL.

Proof. We start with case (1) where D contains the curve (ω + γr,η) and
everything to the left of it. Without loss of generality take ω = 0. Fix
R > r > 0 and µ ∈ D. Consider the curve

CR = {λ ∈ C | | arg λ| ≥ η, |λ| = R}

and the closed curve

ΓR ={λ ∈ C | | arg λ| = η, r ≤ |λ| ≤ R}∪
{λ ∈ C | | arg λ| ≤ η, |λ| = r} ∪ CR,

both oriented counter-clockwise. By Cauchy’s Integral Theorem, since ΓR is

closed for every R, and
f(λ)

λ− µ
is analytic on D which contains ΓR, then∫

ΓR

f(λ)

λ− µ
dλ = 2πif(µ) if µ inside ΓR∫

ΓR

f(λ)

λ− µ
dλ = 0 if µ outside ΓR.
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Note that anything the right of γr,η would lie outside ΓR for all R > r, while
anything to the left of γr,η would lie inside ΓR for R sufficiently large. Thus

lim
R→∞

∫
ΓR

f(λ)

λ− µ
dλ = 2πif(µ) if µ to the left of γr,η (A.1)

lim
R→∞

∫
ΓR

f(λ)

λ− µ
dλ = 0 if µ to the right of γr,η. (A.2)

Since f is bounded on D, we can find a number M > 0 such that ‖f(λ)‖ ≤M
for all λ ∈ D. We parametrise CR as λ(s) = Rei(1−s)η+is(2π−η) for 0 ≤ s ≤ 1,
and use the reverse triangle inequality to get∫

CR

∥∥∥∥ f(λ)

λ− µ

∥∥∥∥ dλ ≤ ∫
CR

M

|λ− µ|
dλ

= 2πM

∫ 1

0

|Rei(1−s)η+is(2π−η) − µ|−1
ds

≤ 2πM

∫ 1

0

||Rei(1−s)η+is(2π−η)| − |µ||−1
ds

= 2πM |R− |µ||−1.

Thus

lim
R→∞

∫
CR

∥∥∥∥ f(λ)

λ− µ

∥∥∥∥ dλ = 0. (A.3)

Thus by Theorem (A.2.1)∫
γr,η

f(λ)

λ− µ
dλ = lim

R→∞

[∫
ΓR

f(λ)

λ− µ
dλ−

∫
CR

f(λ)

λ− µ
dλ

]
, (A.4)

with ΓR positively oriented and the integral converges absolutely. Substitut-
ing equations (A.1), (A.2) and (A.3) into (A.4) gives our result.

The proof for case (2) follows in the same manner. Here we define CR by

CR = {λ ∈ C | | arg λ| ≤ η, |λ| = R},

and define ΓR as before. However, for ΓR to be positively oriented we reverse
the orientation of γr,η, thus∫

γr,η

f(λ)

λ− µ
dλ = − lim

R→∞

[∫
ΓR

f(λ)

λ− µ
dλ−

∫
CR

f(λ)

λ− µ
dλ

]
.
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Appendix B

Hölder Continuous Functions

In this section I is an interval in R.

Definition B.0.3 (Hölder Continuous Functions). A function f : I 7→ X is
called Hölder continuous if there exist constants C > 0 and α ∈ (0, 1] such
that

‖f(t)− f(s)‖X ≤ C|t− s|α

for all s, t ∈ I. The number α is called the exponent of the Hölder condition.
If the inequality holds true for α = 1 then the function is called Lipschitz
continuous.

Note that continuously differentiable functions are Hölder continuous. In
particular, they are Lipschitz continuous. Furthermore Hölder continuous
functions are continuous.

We will require the following two basic propositions.

Proposition B.0.4. Suppose that, for some open interval I = (a, b) and
1 ≤ p ≤ ∞, the function f ∈ Lp(I;X) is Hölder continuous on I. Then f is
continuous on the closed interval I = [a, b].

Proof. We start by showing that f is continuous at a. Consider a sequence
(tn) such that tn ∈ (a, b) for every n ∈ N and

lim
n→∞

|tn − a| = 0. (B.1)

Since f is Hölder continuous on (a, b) there exist constants α ∈ (0, 1] and
C > 0 such that

‖f(t)− f(s)‖X ≤ C|t− s|α

for all t, s ∈ (a, b). Thus for every n,m ∈ N

‖f(tn)− f(tm)‖X ≤ C|tn − tm|α. (B.2)
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Since (tn) is convergent it is a Cauchy sequence. It follows from (B.2) that
(f(tn)) is a Cauchy sequence with respect to ‖ · ‖X . However, X is a Banach
space with respect to ‖ · ‖X . Thus there exists a f ∗ ∈ X such that

lim
n→∞

‖f(tn)− f ∗‖X = 0. (B.3)

By the continuity of f on (a, b), (B.1) and (B.3) imply that f ∗ = f(a). Thus
f is continuous at a. In the same way we can show that f is continuous at
b.

Proposition B.0.5. Suppose f : I 7→ X is a Hölder continuous function on
I with exponent β ∈ (0, 1]. Then f is Hölder continuous with exponent α for
every α ∈ (0, β).

Proof. For any I ⊂ R, by Proposition B.0.4, f is continuous on I. Thus f
is bounded on I and there exists a constant K such that ‖f(t)‖ ≤ K for all
t ∈ I. Furthermore, since f is Hölder continuous with exponent β ∈ (0, 1],
there exists a constant C ≥ 0 such that

‖f(t)− f(s)‖X ≤ C|t− s|β

for all t, s ∈ I. Let α ∈ (0, β). If |t− s| ≤ 1 then |t− s|β−α ≤ 1 and

‖f(t)− f(s)‖X ≤ C|t− s|β

= C|t− s|α|t− s|β−α

≤ C|t− s|α.

If |t− s| > 1 then |t− s|α ≥ 1 and

‖f(t)− f(s)‖X ≤ ‖f(t)‖X + ‖f(s)‖X
≤ 2K

≤ 2K|t− s|α.

Therefore
‖f(t)− f(s)‖X ≤ max{C, 2K}|t− s|α

for all t, s ∈ I. Thus f is Hölder continuous on I with exponent α.
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Appendix C

Miscellaneous

Here we collect together some useful results which are used in the thesis but
which do not belong to the scope of the thesis.

Theorem C.0.6 (Lax-Milgram Theorem). ([9], Section 6.2.1, Theorem
1) Suppose H is a Hilbert space. Assume that B : H ×H 7→ R is a bilinear
mapping, for which there exist constants α, β > 0 such that

(i) |B[u, v]| ≤ α‖u‖H‖v‖H (u, v ∈ H)

and

(ii) β‖u‖2
H ≤ B[u, u] (u ∈ H).

Finally, let f : H 7→ R be a bounded linear functional, that is, f belongs to
the dual space of H.

Then there exists a unique element u ∈ H such that

B[u, v] = f(v)

for all v ∈ H.

Theorem C.0.7 (Reisz Representation Theorem). [9, Appendix D.3.
Theorem 2] Let H be a Hilbert space with inner product (·, ·)H , and let H∗

denote its dual space, consisting of all bounded linear functionals from H into
the field R or C. If x is an element of H, then the function ϕx, for all y in
H defined by

ϕx(y) = (y, x)H

is an element of H∗. Furthermore, every element of H∗ can be written
uniquely in this form.
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Theorem C.0.8 (Rellich-Kondrachov Compactness Theorem). [9,
Theorem 1, Section 5.7] Assume U is a bounded open subset of Rn and ∂U

is C1. Suppose 1 ≤ p < n and p∗ =
pn

n− p
. Then

W 1,p(U) ⊂⊂ Lq(U)

for each 1 ≤ q < p∗.

The statement W 1,p(U) ⊂⊂ Lq(U) is that W 1,p(U) is compactly embedded
in Lq(U). That is,

‖x‖Lq(U) ≤ C‖x‖W 1,p(U)

for some constant C, and each bounded sequence in W 1,p(U) is precompact
in Lq(U).

Theorem C.0.9. ([8], I.6.15) If K is a set in a metric space X then the
following are equivalent:

(i) K is sequentially compact.

(ii) K is precompact.

(iii) K is totally bounded and K is complete.

Furthermore, a compact metric space is complete and separable.

Theorem C.0.10 (Closed Graph Theorem). [9, Appendix D.3. Theorem
1] If X and Y are Banach spaces, and T : X 7→ Y is a linear operator, then
T is continuous if and only if its graph is closed in X × Y .

Theorem C.0.11 (Grönwall’s Inequality in Integral Form). [9, Ap-
pendix B.2. (k)] Let I be an interval on the real line with a greatest lower
bound a, and let α, β be real-valued functions defined on I. Assume that β
and u are continuous and that the negative part of α is integrable on every
closed and bounded subinterval of I. If β is non-negative and if u satisfies
the integral inequality

u(t) ≤ α(t) +

∫ t

a

β(s)u(s)ds,

then

u(t) ≤ α(t) +

∫ t

a

α(s)β(s)e
∫ t
s β(r)drds.
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Theorem C.0.12 (Uniform Boundedness Principle). [21, Theorem 2.5]
Let X be a Banach space and Y a normed vector space. If a sequence of
bounded operators (Tn) from X onto Y converges pointwise, that is, the limit
of (Tnx) exists for all x ∈ X, then these pointwise limits define a bounded
operator T . Furthermore, (Tn) converges to T uniformly on compact subsets
of X.
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