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Summary

The main result of this thesis is an existence result for parabolic semi-linear
problems. This is done by reformulating the semi-linear problem as an ab-
stract Cauchy problem

£
&+
—~
~+~
~—
I

Au(t) + f(t,u(t)), t > 0
u(0) = ug (1)

for ug € X, where X is a Banach space. We then develop and use the theory
of compact semigroups to prove an existence result.

In order to make this result applicable, we give a characterization of
compact semigroups in terms of its resolvent operator and continuity in the
uniform operator topology. Thus, using the theory of analytic semigroups,
we are able to determine under what conditions on A a solution to exists.

Furthermore, we consider the asymptotic behaviour and regularity of such
solutions. By developing perturbation theory, we are easily able to apply our
existence result to a larger class of problems. We then demonstrate these
results with an example.

This work is significant in providing a novel approach to a group of previ-
ously established results. The content can be considered pure mathematics,
but it is of significant importance in real world situations. The structure
of the thesis, and the choice of certain definitions, lends itself to be easily
understood and interpreted in the light of these real world situations and
is intended to be easily followed by an applied mathematician. An impor-
tant part of this process is to develop the problem in a real Hilbert space
and then to consider the complexification of the problem in order to reset
it in a complex Hilbert space, in which we can apply the theory of analytic
semigroups. A large number of real world problems fall into the class of
problems discussed here, not only in biology as demonstrated, but also in
physics, chemistry, and elsewhere.
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Chapter 1

Introduction

1.1 Aims of the Thesis

The main aim of this thesis is to prove an existence result for a class of
semi-linear abstract Cauchy problems. We do this by first reformulating the
problem as an infinite-dimensional dynamical system,
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Au(t) + f(t,u(t)), t >0
u(0) = uyg, (1.1)

and then developing and using semigroup theory to determine conditions
under which a solution to will exist. Furthermore, we aim to use semi-
group theory to prove a regularity result for the solution to our problem and
determine the asymptotic behaviour of the solution.

We shall then demonstrate the applicability of these results to parabolic
semi-linear PDEs with an example.

1.2 Structure of the Thesis

The first chapter introduces the topic of the thesis and, in Section [I.3] dis-
cusses why the theory developed in the thesis is important. Basic results
from the theory of Cjy-semigroups are given in Section In Section
we state the problem, that is, a semi-linear PDE, and reformulate it as an
abstract Cauchy problem. We then discuss two types of solutions, classical
and mild, to the abstract Cauchy problem.

In Chapter 2| we begin by investigating compact semigroups and giving a
characterization of such semigroups in terms of the compactness of the resol-
vent operator and the continuity of the semigroup in the uniform operator

© University of Pretoria
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topology. This provides motivation for Section [2.2| in which we show that
elliptic operators acting on the Hilbert space £2(€2) have compact resolvent
operators, and Section in which we discuss sectorial operators and define
analytic semigroups in terms of these operators. We prove basic properties
of analytic semigroups. In Section [2.4] we prove perturbation results concern-
ing strongly continuous and analytic semigroups. We proceed to define the
complexification of a Hilbert space and the complexification of an operator
on that Hilbert space in Section [2.5, and as a result we determine which
characteristics of a semigroup or infinitesimal generator are preserved when
moving, in the way defined, from a real Hilbert space to its complexification.

Chapter |3]is dedicated to the existence, asymptotic behaviour and regu-
larity of mild solutions to the abstract Cauchy problem . We start, in
Section [3.1], by showing that classical solutions are mild solutions. We then
prove an existence result for a local mild solution to the abstract Cauchy
problem in Section using the theory of compact semigroups de-
veloped in Section 2.1} In Section [3.3] we determine conditions on f under
which the local mild solution to is a global mild solution. Furthermore,
in Section [3.4] we prove a regularity result to show under what conditions a
mild solution will be a classical solution. This result is based on the theory
of analytic semigroups developed in Section [2.3]

In Chapter [4| we demonstrate the applicability of these results with a bio-
logical example. We state the problem and then reformulate it into the form
of the abstract Cauchy problem in Section [4.1] In Section [4.2] we apply our
existence, asymptotic behaviour and regularity results from Chapter |3|to the
example problem. We then discuss how the perturbation theory developed
in Section [2.4] allows us to do the same with a broader class of problems in
Section .3l

We conclude the thesis in Chapter [5| by asking whether or not the aims
of the thesis were met.

We give three appendices. Appendix [A] contains some basic results and
definitions regarding integration, in particular, the Bochner integral for the
integration of vector-valued functions and Cauchy’s Integral Formula. In
Appendix [B] we consider Holder continuous functions, relevant to our regu-
larity results. Our final appendix, Appendix[C] contains miscellaneous results
needed throughout the thesis, but which do not contribute to the main aims
or flow of the thesis.

© University of Pretoria
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1.3 Why Semigroups?

Jean-Baptiste Alphonse Karr is famous for saying “plus ¢a change, plus c’est
la méme chose”, usually translated as “the more things change, the more
they stay the same.” From a mathematical perspective we assume that the
way in which things change stays the same, allowing us to model such change
as dynamical systems.

In the physical realm things are almost always changing, yet, for most of
history, geometric and algebraic methods were used to deal with problems
that are essentially static. Indeed, prior to the development of Calculus by
Newton and Leibniz in the latter half of the 17th century, the only types
of motion that could be described in a mathematically precise manner were
those of a particle moving at uniform velocity along a straight line and a par-
ticle moving at constant angular momentum along a circular path. However,
differential and integral Calculus provided the tools for the exact mathemat-
ical formulation of dynamic problems.

Since then mathematics has developed as a tool to help us understand the
phenomenon of change over time by building models, most often differential
equations, to try and understand the nature of that change and to predict how
the object in question would change under certain conditions. In the context
of differential equations such conditions are usually formulated as initial and
boundary conditions. Mathematical analysis is done on the model to test
whether or not a reasonably realistic solution of the formulated model exists.
The insights from our analysis are used either to solve our problem exactly
or to compute an approximate solution. These models and their solutions
must be tested against empirical data in order to validate them. If there is
some sense of validity, then further analysis or refining of the model can be
done.

One of the main insights in the development of the mathematical theory
of differential equations is that such equations can be expressed in operator
theoretic terms; that is, in terms of functions acting on functions. This allows
complicated problems in finite dimensions to be transformed into formally
simpler problems in higher, or infinitely many, dimensions. Peano [19] was
the first to do this explicitly, by expressing a system of first order linear
ODEs in matrix form as

T'(t) = Az(t) + f(t), t >0

z(0) = Zo, (1.2)
and solving it using the explicit formula
t
Z(t) = ez + / =4 (s5)ds (1.3)
0
9
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where

e iAz‘
A i (1.4)

7!
i=0
In the case of PDEs, the situation is much more complex. Consider an
evolution equation, such as the one-dimensional heat equation

ur(z,t) = Yuge(x,t), 0 <z <1,t>0 (1.5)
with initial and boundary conditions given, for instance, by
u(z,0) =up(x), 0 <z <1 (1.6)

and
u(0,t) = u(l,t) =0, t > 0. (1.7)

The initial-boundary value problem — describes the relationship
between the change in heat over time and the distribution of heat over space.
In the case of an ODE such as the state of the system at any given time
t > 0 is given by Z(t) € R™. On the other hand, for the problem (L.5)-(L.7),

the state of the system at time ¢ > 0 is given by a function
u(t) : [0,1] 3 z — u(t)[z] == u(z,t) € R,

Therefore, when expressing the initial-boundary value problem ([1.5])-(|1.7))
as a dynamical system

(t)
(0) =

Au(t), t >0

0

I

|
2l

(1.8)

the operator A acts on some infinite dimensional function space X, with
ug € X. The boundary condition is typically incorporated into the
definition of D(A) C X.

For the ODE , the solution can be expressed in terms of the op-
erator . Two difficulties prevent us from adopting the same approach for
the dynamical system ({1.8]). Firstly, the operator A is typically unbounded.
Secondly, in most cases D(A) is not the whole of X. For these reasons the
series need not converge.

Semigroups were introduced to deal with this dilemma. The first time the
term semigroup was formerly used was in 1904 [10, page vi], but only from
the 1930s-1950s was the basic theory developed, with major contributions by
Einar Hille [I1], Ralph Phillips [12], Kosaku Yosida [27] and Dunford and
Schwartz [8]. However, it was not until the work of McIntosh in the 1980s

10

© University of Pretoria



&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

that the functional calculus for sectorial operators was introduced, [3, page
101].

The basic idea underlying semigroup theory is the following: If A is an
operator acting on X, we define a function

[0,00) >t ' € B(X),

where B(X) is the set of all bounded linear operators acting on X. This
function has all the main properties of ¢4 when A is a bounded linear op-
erator. In particular, e® = I, if t,s > 0 then e(t®4 = ¢!4es4 and the
right-hand time derivative of e'4 is Aef4. We call the family of operators
ettt > 0, a semigroup, and the operator A the infinitesimal generator of
that semigroup. If we use u(t) in place of Z(t), uo in the place of Zj, and the

semigroup e*4 in place of (1.4), then ([1.3) defines a solution to (1.5)-(1.7)),

given that lim e“ug = up.
t—0+

This raises some questions: How does the semigroup e!4 behave? Is e/
bounded, and in what sense? What can we deduce about e as a function of
time based on our knowledge of A? To help answer these questions, consider
a general initial value problem

w(t) = Au(t) + f, t >0
u(0) = o, (1.9)

for a function f : [0, 00) — X, with X some Banach space, A: X D D(A) —
X a linear operator, and ug € X.

If the problem is linear, that is, if f = f(¢) does not depend on wu(t),
then the initial-value problem is well-posed if and only if A generates a Cy-
semigroup, see Section However, semigroups provide the added benefit
that the solution to problem (|1.9)) is continuously dependent on A [10, The-
orem IV]. Furthermore, perturbation theorems concerning semigroups allow
you to easily characterize and find solutions to when A is changed in
appropriate ways. For example if A generates a Cy-semigroup and B is a
bounded operator then A + B generates a Cy-semigroup.

Even with the aforementioned benefits of semigroup theory when applied
to linear problems, semigroup theory is particularly useful when applied to
non-linear problems. This is because, to a large degree, the “linearity is
irrelevant”-[10], Page 9]. Goldstein justifies this remarkable claim further, for
example in [10, Theorem I'] and the Crandall-Liggett Theorem [10, Theorem
IT’]. These theorems allow us to define a Cy-semigroup dependant only on
properties of A and thus prove that a well-posed solution exists for any f,
linear or non-linear, in the domain of A. Indeed, most of the theory for

11
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linear problems can be adopted for non-linear problems with little effort,
given that the space you are working in is reflexive, see for example, [18]
Chapter 6]. Even if the space is not reflexive, some sense of well-posedness
of the solution can still be obtained, but with a little more work, and a little
more compromise.

Semigroup theory has a wide range of applications to both linear and
non-linear Partial Differential Equations. In physics it has proven particu-
larly useful in quantum mechanics. As an example, consider Schroedinger’s
Equation. The linear problem is dealt with in [I§, Section 7.5], and the
non-linear one in [I8, Section 8.1] and [7, Chapter 14]. Scattering Theory is
discussed in [I0, Section 2.14] and nuclear stability in [5, Section 6.3]. It has
also been proven useful in continuum mechanics, such as the Navier-Stokes
equation [10, Sections 15.19 and 15.25], the Korteweg-de Vries equation [18]
Section 8.5] and vibration models [23]. In probability theory it is helpful in
dealing with Markov processes, see for example [10, Sections 15.8-15.12] and
[7, Chapter 12]. In other fields semigroup theory may be applied to Fischer’s
model for invasive species and models for spatial patterns in biology and
ecology as in [15, Part III]. Indeed, sectorial operators and the analytic semi-
groups they generate have become central to our understanding of parabolic
problems. In this thesis we consider the human mechanism of perspiration.
It is worthwhile noting that, although this work focusses on the contribution
of semigroup theory to Partial Differential Equations, semigroup theory has
also made a large contribution to other areas of functional analysis.

For an extensive list of references on either theory or application of semi-
group theory and its historical development, we refer the reader to the bibli-
ographies and corresponding notes and historical remarks contained in both
Pazy [18] and Goldstein [10].

1.4 (Cy-Semigroups

In this section, for the convenience of the reader, we gather together the basic
notions and results relating to Cy-semigroups. These notions and results
are typically treated in any first course on the topic of semigroups, and is
therefore considered as pre-knowledge. All the given results can be found in
[18, Sections 1.1-1.5], unless otherwise indicated, and we refer the reader to
this work for a more comprehensive discussion on Cy-semigroups. We develop
our semigroup theory for operators acting on Banach spaces.

Let X be a Banach space over K, where K is either R or C. For any
z = x + iy € C we denote the real part of Z by Rz, that is, RZ = x, and the
imaginary part of z by &z, that is, 3z = .

12
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Definition 1.4.1. (Semigroup) A family of bounded linear operators T'(t)
on X, defined for ¢t > 0, is called a semigroup on X if

Tt+s)=T)T(s), t,s >0
T0)=1.

Definition 1.4.2. (Infinitesimal Generator) Consider a semigroup 7'(¢),
t >0, on X. For h > 0, define the linear operator A, by

Apr =h Y (T(h) — Dz, v € X.

D(A) = {xeX

lim Apx exists }

h—0t

and define the operator A with domain D(A) by
Az = lim Apx, x € D(A).
h—0+

The operator A is called the infinitesimal generator of T(t).

Definition 1.4.3 (Strongly Continuous Semigroup). A semigroup 7'(t),
t > 0, is called strongly continuous if

lim T'(h)z = x for each x € X.

h—0t

A strongly continuous semigroup is also called a Cy-semigroup.

Definition 1.4.4. (Uniformly Continuous Semigroup) A semigroup of
bounded linear operators, 7(t), is uniformly continuous if
lim [[7() ~ 1] =0

Uniformly continuous semigroups are clearly C-semigroups, and if X is
a finite dimensional Banach space, then strongly continuous semigroups are
uniformly continuous. A linear operator A is the infinitesimal generator of
a uniformly continuous semigroup if and only if it is bounded, [I8, Theorem
1.2]. However, in applications to PDE’s, the infinitesimal generator is rarely
bounded, thus we will deal with strongly continuous semigroups, which may
be generated by unbounded operators.

Theorem 1.4.1. If T(t), t > 0, is a Cy-semigroup, then there exist real
numbers M > 1 and 5 > 0 such that

1T < M
for allt > 0.

13
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Corollary 1.4.2. IfT(t), t > 0, is a Cy-semigroup, then for each x € X the
function Rt 5t — T(t)x € X is continuous.

Theorem 1.4.3. Let T(t), t > 0, be a Cy-semigroup and let A be its in-
finitesimal generator. Then the following results hold:

(i) Forx € X andt >0,

t+h
lim h_l/ T(s)xds =T(t)x.
t

h—0t

¢
(i) For x € X andt > 0, / T(s)xds € D(A) and
0

A/t T(s)xds =T(t)x — x.

(111) For x € D(A) andt >0, T(t)x € D(A) and

d

Z[T()z] = AT (t)x = T(t) Aw.

(iv) For x € D(A) and t,s >0,
T(s)x —T(t)x = /ts AT (T)xdr = /ts T(1)Axdr.

Here it is worthwhile recalling the meaning and intuition underlying the
definition of a semigroup as mentioned in the introduction, and some of
the properties listed in Theorem [1.4.3] First note that the properties of a
Cy-semigroup, particularly those from Definition and (ii7) of Theorem
1.4.3] correspond to the properties of the well-known operator-valued func-
tion S(t) = e*4, defined when A is bounded. This reminds us of the use
of semigroups in providing the existence of solutions to PDEs of the form
u; = Au. Indeed, for any ug € D(A), if T(t), t > 0, is a Cyp-semigroup then
the function u(t) = T'(t)u for t > 0 is a classical solution of the initial value
problem u; = Au with initial condition u(0) = u.

Since the abstract Cauchy problem can be formulated in terms of
the weak time derivative of u(t), one might ask what happens if we take the
weak derivative in (iii). Pazy shows in [18, Section 2.1] that if we define the
A, as the weak right-hand derivative of a Cy-semigroup T'(t), ¢ > 0, with
infinitesimal generator A, that is, A is the strong right-hand derivative of

T(t), then A = A,.

14
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Theorem 1.4.4 (Uniqueness of Infinitesimal Generators). Let T'(t),
t >0, and S(t), t > 0 be semigroups of bounded linear operators with in-
finitesimal generators A and B respectively. Then A = B if and only if
T(t) = S(t) for allt > 0.

Theorem 1.4.5. If A is the infinitesimal generator of a Cy-semigroup T(t),
t >0, then D(A) is dense in X and A is a closed linear operator.

Since in practice we need to determine the character of the semigroup
from the properties of its infinitesimal generator, we are more interested in
whether the converse of Theorem [L.4.5] is true. We shall see from the Hille-
Yosida Theorem to come that the denseness of D(A) in X will always be
required for Cy-semigroups, and A will always need to be closed.

However, since A is unbounded, it is difficult to use properties of A di-
rectly to determine characteristics of the semigroup of bounded operators
T(t), t > 0, that it generates, if indeed it is the infinitesimal generator of
a semigroup. The most basic way to relate an unbounded operator A with
a bounded operator is to consider the inverse A~!. However, this may not
always be defined, and it may not always help. In our case we consider the
resolvent operator, (A\I — A)~!, for A € K such that the operator exists. The
additional requirements for an operator to generate a Cy-semigroup depend
on the resolvent operator, defined below.

Definition 1.4.5 (Resolvent Set). For an operator A on X, the resolvent
set p(A) is defined as

p(A) = {NeK | (M- A" € B(X)}.

That is, the resolvent set is the set of all A € K such that (A — A)~! exists
and is a bounded linear operator on X.

Definition 1.4.6 (Resolvent Operator). Let A be an operator on X. The
resolvent operator R(A, A) is defined for A € p(A) C K as

RO\ A) = (M — AL

Theorem 1.4.6 (The Resolvent Identity). [10, Chapter 1 1.3] If \,u €
p(A) then
RO\ A) — R(s, A) = (11— RO\ A)R(s, A).

Theorem 1.4.7. [1(}, Chapter 1 1.2] Suppose that A : X D D(A) — X. If
the resolvent set p(A) of A is non-empty then A is closed. Furthermore, if
A is closed then

p(A) ={N e K | (M — A) is a bijection}.

15
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Theorem 1.4.8 (Hille-Yosida). Suppose that A is a linear operator on
X. There exists an M > 1 and an w € R such that A is the infinitesimal
generator of a Cy-semigroup T(t), t > 0, satisfying ||T(t)|| < Me*t, t >0, if
and only if

(i) A is closed and D(A) = X.

(i) The resolvent set p(A) of A contains the ray (w,00) and

[R(X, A < for A > w.

Xl

It is worthwhile noting that to prove the Hille-Yosida Theorem we form
a sequence (ed*), where A, is a bounded operator for each n € N, which
converges to the semigroup T'(t) generated by the unbounded operator A.

Traditionally the Hille-Yosida theorem has M = 1 and provides necessary
and sufficient conditions for generating a contraction Cy-semigroup, that is,
where ||T'(¢)]| < 1 for ¢ > 0. This is sufficient for most purposes, for if we have
a semigroup T'(t), t > 0 and ||T'(t)|| < M where M > 1, then we can find an
equivalent norm || - ||; on B(X) such that || 7(¢)||; <1 for all ¢ > 0. That is,
T(t) is a contraction semigroup with respect to || - |1, see [10, Exercise 2.19].
Here, however, we deal with exponentially bounded semigroups.

1.5 Problems and Solutions

1.5.1 Problems

Semi-linear Parabolic Problems

Let €2 be an open and bounded subset of R™ with boundary 0€2. For some
fixed T'> 0 let Qr = Q x (0,7). The initial-value problem is given by

u(x,t) = Au(x, t) + f(z,t,u(x, b)), (x,t) € Qr
u(z,0) = ug(x), x €} (1.10)
u(z,t) = g(x), red, 0<t<T.

The function f : Qr x R +— R is taken to be continuous and second-order
Lebesgue integrable over its domain. The boundary 0f2 is taken to be smooth.
The linear operator A is taken to be a second-order partial differential oper-
ator in divergence form

Aula,t) = 3 (@9 @ule ), + Y B @ule b, +5(@ulat)  (111)
16
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for coefficient functions o € C1(Q), B* € £>(Q) and v € L>(Q) for i,j =
1,...,n. We further assume that the operator — — A is parabolic, that is,

the operator A is uniformly elliptic. Thus there exists a constant § > 0 such
that

> el (2)Gé > 0]¢I? (1.12)
ij=1
for all x € 2 and ¢ € R". In this case A is a generalization of the Laplacian
V2.

In dealing with problems of this sort it is worth keeping a physical inter-
pretation in mind. Parabolic problems of this type are often used to model
diffusion processes. Here u(-,t) represents the concentration or density profile
of a substance within a particular medium at a time ¢ € (0,7"). The shape of
the medium determines the spatial domain €2 of u, the boundary conditions
are given by g and the initial condition uq describes the concentration profile
at time t = 0.

n
The second-order term Z(aij Ug,)z; of our operator A determines how
ij=1

the concentration u diﬁusesjor coalesces in the medium through space and
with time. The ellipticity assumption forces diffusion from regions with a
high concentration to regions with a low concentration. This agrees with
most physical examples like energy or chemical flow, but might not be ap-
propriate for cash flow, as, no doubt, most people understand full well. Some
mediums would allow rapid diffusion, others not, and some may allow more
rapid diffusion in particular directions. How the medium affects diffusion is

described by the coefficient functions a/. The first-order term Z Bu,, de-

termines the transport of the concentration u through the spatiazd élomain Q.
This is not to be confused with the flow due to diffusion through the medium,
but is due to some forces that act on the substance, either due to the nature
of its interaction with the medium or some external input. The zeroth-order
term yu describes the direct creation or depletion of the substance within
the medium.

The function f represents some external factor which affects the distribu-
tion profile of the substance, and can itself be dependent on the concentration
profile.

As an example, consider squirting oil into the bottom of a glass of water
with a syringe. The body of water contained in the glass is the spatial domain
2. The function u(x,t) represents the concentration of oil at a point z €
and at time ¢ > 0. The initial concentration profile is ug. The oil will float

17
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to the top due to the fact that it has a lower density than the water. This is
the transport of the oil to the surface. The rate at which the oil flows to the
surface is captured by the functions 3. However, as the oil rises in the water,
the oil stream spreads out in different directions. This is the diffusion of the
oil in the water. The behaviour of the diffusion of oil through the water is
determined by the functions . If the water were replaced with something
more dense, the diffusion would likely be slower, and different functions o
would be needed. If we kept squirting oil from the syringe into the water
for t > 0, perhaps at different places, then the impact of that on the overall
concentration of oil in the cup would be described by the function v. If we
stirred the water then the oil would also be transported by the current, and
this would likely affect both the diffusivity and transport terms. If we were to
add some substance that chemically reacts with the oil, so that the amount
of reaction depends on the concentration of the oil, then that contribution
would be determined by the function f.

Although this is a very simple example of a semi-linear parabolic problem,
to truly be able to understand or predict the behaviour of oil squirted into a
glass of water is no mean feat, and a large body of sophisticated mathematics
is needed in order to analyse these types of problems.

The Abstract Cauchy Problem

One way to formulate problems of this type is as an infinite-dimensional
dynamical system, or abstract Cauchy problem. Let X be a Banach space
of functions defined on 2, and let U be an open subset of X. Define u(t) :
0,T) — X as

u(t) :x € Q— u(t)[z] = u(z,t)

and f(t,u) :[0,7) x U — X as
ft):xeQw— f(t,u)lx] := f(x,t,u(x,t)).

The function u(t) is called the state of the system at time ¢t. We can now
write our problem in the form

u(t) = Au(t) + f(t,u(t)), t € (0,T)
u(0) = ug (1.13)

where ug € X and A : X D D(A) — X. The main aim of this thesis
is to prove an existence result for this more general form of problem using
semigroup theory and to apply this result to a concrete example of a semi-
linear parabolic problem.

18

© University of Pretoria



&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

1.5.2 Solutions

We now consider two different types of solutions to the abstract Cauchy
problem ((1.13]).

Definition 1.5.1. (Classical Solution) We say that w : [0,7) — X is a
classical solution to (1.13) if u(t) € D(A) for 0 < t < T, u(t) is continuous
on [0,7), and u(t) is continuously differentiable on (0,7"). Furthermore,
u(t) = Au(t) + f(t,u(t)) for 0 <t < T and u(0) = uy.

In practice a classical solution, while very desirable, might not exist. In
these cases, we are obliged to consider weaker notions of solution. In this
thesis our existence theorem provides sufficient conditions for the existence
of a local mild solution.

Definition 1.5.2. (Mild Solution) Suppose the linear operator A from
problem (1.13)) is the infinitesimal generator of a Cy-semigroup T'(t), t > 0.
We say that w: [0,T) — X is a mild solution to problem ([1.13]) if

u(t) = T(t)ug +/0 T(t—s)f(s,u(s))ds (1.14)

for0 <t<T.

Note that if u is a mild solution to and f is continuous then
u(t) € D(A) for 0 <t < T, u is continuous on [0, T) and u(0) = uy € D(A).
However, u need not be differentiable. Thus a mild solution is not a clas-
sical solution, even though the converse is true, as shown in Section [3.1
Indeed a mild solution is a classical solution if and only if it is continuously

differentiable, see [2 Propositions 3.1.2 and 3.1.9].
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Chapter 2

Compact and Analytic
Semigroups

Many different existence theorems for the abstract Cauchy problem (|1.13])
exist, each with their own conditions, and we refer the reader to the introduc-
tions of [I7], or, more recently, [6], for an extensive list of references. Most of
these theorems add restrictions to the function f, requiring it to be locally
Lipschitz, monotone or have some sort of relationship to the fractional pow-
ers of the operator A. However, in this thesis we consider a restriction on
the semigroup 7'(t), requiring it to be compact, and the only demand on f
is that it is continuous.

There is no useful characterization of a compact semigroups in terms of
its infinitesimal generator. However we do have a characterization in terms
of another property of the semigroup. A semigroup is compact if and only if
the semigroup is continuous in the uniform operator topology for ¢ > 0 and
the resolvent operator is compact for every A € p(A), as we show in Theorem
2.1.6]

In practice this compactness theorem is of limited use, since it requires
T(t) to be continuous in the uniform operator topology for ¢ > 0. Therefore,
using the compactness theorem requires us to know something about the
semigroup, when in applications we only have access to information regarding
its infinitesimal generator. Thus we need to find a way to determine whether
a semigroup is uniformly continuous with respect to the uniform operator
norm in terms of the infinitesimal generator A.

The idea then is to determine the characteristics of A needed in order
for it to be the infinitesimal generator of an analytic semigroup. The theory
of analytic semigroups has proven to be particularly useful when applied to
semi-linear parabolic problems, see [I7], [I8, Chapter 6], or [6] for examples.
Analytic semigroups act on complex Banach spaces and are functions of a
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complex variable. Importantly for us, are continuous with respect to the
uniform operator norm for ¢t > 0. They are also useful in proving regularity
results of the solution, as we show in Section

However, in many applications, including those we deal with in this thesis,
the dynamical system is defined on a real Banach space, often a Hilbert space.
A standard approach in such cases is to study the extension of the operator
A, acting on a real space X, to the complexification X of X. The general
idea of this approach is shown in the Figure [2.1]

We obtain the
infinitesimal
generator on a real ||»
Hilbert Space from
the physical problem.
-

-

Figure 2.1: General Idea to Prove Existence.

In this chapter we develop the semigroup theory we shall use to prove the
existence result for mild solutions of the abstract Cauchy problem (|1.13]).
We start by considering compact semigroups and give the aforementioned
characterization of such semigroups. As preparation for applications to semi-
linear parabolic problems, we prove compactness results for the resolvent
of elliptic operators acting on Hilbert space £2(€2) for suitable open sets
) C R™ To make this characterization useful to us, we then investigate
analytic semigroups. We then develop perturbation theory regarding analytic
semigroups, which enables us to apply our existence result to a broader class
of problems. Finally, we consider the complexification of operators acting on
Hilbert spaces.
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2.1 Compact Semigroups

In this section we define and characterize compact semigroups acting on a
Banach space X.

Definition 2.1.1 (Compact Operator). An linear operator L from a Ba-
nach Space X to another Banach Space Y is called compact if the image
under L of any bounded subset of X is a precompact subset of Y.

We will make use of the following standard results concerning compact
operators.

Theorem 2.1.1. [8, VI.5.3] Suppose (T},) is a sequence of compact operators
from one Banach space to another, and suppose that (T,) converges to a
operator T" with respect to the operator norm. Then T s also compact.

Theorem 2.1.2. [8, VI.5./] Linear combinations of compact operators are
compact operators, and the composition of a compact operator and a bounded
linear operator is a compact operator.

Definition 2.1.2 (Compact Semigroup). A Cy-semigroup T'(t), t > 0, is
called compact for t > t, > 0 if, for each t > to, T(t) is a compact linear
operator. A Cy-semigroup T'(t), t > 0, is called compact if it is compact for
t>0.

Theorem 2.1.3. [7, Theorem 7.1.4] If T(t), t > 0, is a Cy-semigroup, and
T(a) is compact for some a > 0, then T(t) is compact and continuous in the
uniform operator topology for allt > a.

Proof. Suppose T'(a) is compact and let ¢ > a. Since T'(t)x = T'(a)T(t — a)x
for all z € X, T(t) is compact by Theorem 2.1.2] Now suppose B is the
unit ball in X and X is the compact closure of the image of B under T'(a).
Because X is compact and T'(t), t > 0, is a Cj-semigroup, then for any € > 0
we can find a § > 0 such that if 0 <t < § then ||[T'(t) — []z|[x < € for all
z € X. Thus, f welet a <b<t<b+dandz € B,then 0 <t—b<J,
T(a)z € X, and

IT(t)x = T(b)xllx = [T(b—a)[T(t —b) = IIT(a)z|x
<76 —a)le.

Thus [|T(t) = T'(b)|| < Me where M = ||T(b— a)||. Hence T(t) is continuous
with respect to the uniform operator norm from the right on [a, co). Similarly
it can be shown that 7'(¢) is continuous with respect to the uniform operator
norm from the left on [a, 00). O
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Theorem 2.1.4. Suppose A : X D D(A) — X is a linear operator and
R(\, A) is compact for some A € p(A). Then R(\, A) is compact for all
A€ p(A).

Proof. Suppose A € p(A) such that R(\, A) is compact. For any u € p(A),
by the resolvent identity

Thus, by Theorem 2.1.2] R(, A) is compact for all u € p(A). O
To proceed we need the following Lemma.

Lemma 2.1.5. Let A: X D D(A) — X be the infinitesimal generator of a
Co-semigroup T(t), t > 0, satisfying ||T(t)|| < Me** for all t > 0 and for
some M > 1 and w € R. For X\ € p(A), if R\ > w then

R\ A) = / e MT(t)dt.
0
Proof. Consider A € p(A) with R\ > w. Let R(A\)z = / e MT(t)xdt for

0
all z € X. Since T'(t) is a Cy-semigroup, the mapping Rt > t — T'(¢)x is
continuous for each x € X, and by assumption ||T'(¢)|| < Me** for all t > 0
so that the integral exists. Thus for any z € X

IRzl x = H / " Nyt

X
< / YT () |l x e
0

o0
< / €PNt et
0

:MH:I:HX/ e~ A=t gy
0

M

= = lllx 1)
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Thus R(A) is a bounded linear operator. For A > 0

T(h)—1 1 [~ 1 [~
LR()\)x = —/ e MT(t + h)zdt — —/ e MT(t)xdt
I h ), h ),
1 [ 1 [
= E/ e AT (5)zds — E/ e MT(t)xdt
h 0
e/\h -1 e8] 6/\h h
= / e MT(xdt — — | e MT(t)adt
s n o,
M q h
_° - RNz — e)‘hh_I/ e MT(t)adt. (2.2)
0

Applying L’Hopital’s rule to the first term on the right-hand side of ([2.2)
and Theorem [1.4.3] (i) to the second, equation (2.2)) gives
T(h) —
lim L) =1
h—0+ h

RNz = AR(M\)x — x.

T(h) - I

Thus for each x € X, hlim+ R(\)x exists so that R(A)xz € D(A), and
—0

AR(N)z = AR(A)z — 2. Thus (M — A)R(N\)x = x for every x € X so that
(AL —A)R\) = 1. (2.3)

Furthermore, by Theorem [L.4.5] A is closed, so by Theorem [1.4.3] (i) and
Proposition [A.1.3] for all z € D(A) we have

R(\) Az :/ e MT(t) Axdt
0

= / e MAT(t)xdt
0

=A { /0 b e”T(t)xdt}

= AR(\)z. (2.4)
From and it follows that R(A\)(AM — A)z = z for all z € D(A).
Thus R(A) = (M — A)~! = R(\, A). O

The following is an important characterization of compact semigroups.

Theorem 2.1.6 (Characterization of Compact Semigroups). A Cy-
semigroup T'(t), t > 0, is compact if and only if it is continuous in the uniform
operator topology for t > 0 and the resolvent R(\, A) of its infinitesimal
generator A is a compact linear operator for every X\ in the resolvent set

p(A) of A.
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Proof. First suppose that T'(t) is a Cp-semigroup which is compact for ¢ > 0.
Then by Theorem [1.4.1] we can find an M > 1 and an w € R such that the
resolvent set contains {A € C | R\ > w}, and ||T(¢)]] < Me**. Thus, by
Lemma the resolvent operator is given by

RN\ A) = /00 e T (s)ds (2.5)

for all A € p(A), R\ > w. Furthermore, by Theorem the semigroup
T'(t) is continuous in the uniform operator topology for ¢ > 0 so that the
integral is convergent with respect to the operator norm. Fix € > 0 and
A € p(A), and define

R()\) = / e T (s)ds.
By Theorems [2.1.1], and the definition of the integral, for any a > €
we have that e T (s)ds will be compact since T'(s) is compact for all
s > 0. Thus since the integral converges with respect to the operator norm

«

lim e T(s)ds is compact, by Theorem [2.1.1, Thus R.()\) is compact.

a—o0

€
Furthermore

IROLA) — RV = \

/eAST(s)ds

0

§M/ le@=N9|ds
0

< Me.

Therefore R.(\) converges to R(\, A) with respect to the operator norm, so
by Theorem 2.1.1] R(), A) is compact. By Theorem then R(A, A) is
compact for all A € p(A).

Conversely suppose that R(\, A) is compact for A € p(A) and that T'(¢)
is continuous with respect to the operator norm for ¢ > 0. For all A € p(A),

RN > w -
RO\, A) = / T (s)ds
0

exists and converges with respect to the operator norm since
le™T(s)|| < |e ™[I T(s)|| < M=

for all s > 0. Let v € R* such that v > w. Then 7 € p(A). Note that
7/ e T (t)ds = WT(t)/ e ds =1T(t),
0 0
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and that if § > 0 then

5
/ ve ¥ds < 1.
0

Thus for any fixed 6 > 0 and ¢t > 0

IRy, AYT() — T(0)]| = Hv | e s) - rojas

)
g/ Ve Tt + 5) — T(1)||ds
0

+/ ve T (t+ s) — T(t)||ds
)

)
g/ Ve IT(E + 5) — T(1)||ds

0

+/m7€_ys||T(t)||||T(5) — Il|ds
5
< sup || T(t+s)—T()]

0<s<é
+/ Mrye e (Me*® + 1)ds
5

< sup |[T(t+s)—T@)|

0<s<d

+ My (y — w) et L MAyete™. (2.6)

Fix € > 0. Since ¢ is arbitrary we can take ¢ small enough so that

€
sup |[|[T(t+s) —T(t)] < 3
0<s<8

For that fixed § we can then take 7 large enough so that both

MQ’y(’y _ w)flew(t+5)67’y§ < %

and .
Mve‘*’te_w < 3"

It follows from (2.7)), (2.8]), (2.9) and ({2.6]) that
lim |[yR(y, A)T(t) = T(t)|| = 0.
=00

(2.7)

Now since R(A, A) is compact for every A € p(A) and p(A) contains all
real numbers 7 > w then yR(v, A)T'(t) is compact for all ¥ > w by Theorem
Thus, since YR(7y, A)T(t) converges to T'(t) with respect to the uniform
operator norm, then by Theorem m T(t) is compact for every ¢ > 0. [J
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Recall that the Cp-semigroup 7'(t), ¢ > 0, is continuous in the uniform
operator topology for ¢ > 0 if and only if it has a bounded infinitesimal
generator. Since we are interested in the case where A is an unbounded
operator, we have that T'(¢) is not continuous with respect to the uniform
operator norm for ¢ > 0. Thus

lim ||T'(¢) — I|| > 0O
T |1T(t) — 1]
or does not exist, while, for each ug € X,
li T(t)ug — =0.
Tim [T (¢)uo — ol

The characterization of compact semigroups given above requires that
the resolvent operator of the infinitesimal generator be compact and the
semigroup be continuous in the uniform operator topology for ¢ > 0. Thus

lim || T(t) — T(a)|| =0

t—at
for all @ > 0. In the following section, Section [2.2] we show that if A is an
elliptic operator acting on £2(£2) then A has a compact resolvent. In Section
2.3] we show that analytic semigroups are semigroups whose infinitesimal
generator is a sectorial operator, and that these semigroups are strongly
continuous for ¢ > 0 and continuous in the uniform operator topology for
t>0.

2.2 Elliptic Operators on a Hilbert Space

In this section we show that if A is an elliptic operator on £2({2) for suitable
open sets {2 C R™ then p(A) contains {A € R | A > w} for some w > 0 and
the resolvent operator R(\, A) is compact for some A € p(A). This result
is extremely useful in application to elliptic and parabolic problems, as we
demonstrate in Chapter [4]

We first recall from and what it means for A to be an elliptic
operator. Suppose € is an open and bounded subset of R™ and 0f2 is smooth.
Then A : £2(Q) D D(A) — L2(Q) is called a uniformly elliptic operator in
divergence form if we can write A in the form

n

Au =Y (09 (2)ug)e, + Y B ()ua, + () (2.10)

3,7=1
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and there exists a constant 6 > 0 such that for all ( € R" then

n

> a(@)G¢ > 0| (211)
ij=1
where o € C1(Q), B € L>(Q) and v € L®(Q) fori,j = 1,...,n.
To proceed we need the following theorem from Evans [9]:

Theorem 2.2.1 (Energy Estimates). ([9/, Section 6.2.2, Theorem 2) Sup-
pose B : HY(Q) x H}(Q) — R given by

Blu,v] = /Q [Z o (2)ug, vy, + Zﬂl(x)uxv +y(x)uv| dx

i,j=1 i=1

is the bilinear form corresponding to an elliptic operator A : D(A) — L2(Q2)

in divergence form (12.10)).

Then there exist constants 6,¢ > 0 and w > 0 such that
(i) [Blu,v]| < d0llullmye)llvllmy@)
and
(ii) EH””?[&(Q) < Blu, u] +WHU”%Z(Q)
for all u,v € Hj(Q).

Theorem 2.2.2. Suppose ) is an open and bounded subset of R™, OS2 is
smooth, D(A) = HLQ) N H*(Q), and A : D(A) — L2(Q) is a uniformly
elliptic operator in divergence form. Then there exists a constant w > 0
such that the resolvent set p(A) of A contains the ray {A € R| A > w}.
Furthermore, R(\, A) is compact for each A > w.

Proof. We begin by showing that there exists a A € R such that (A — A)~!
exists, that is, for all g € £2(Q) there exists a unique u € D(A) such that
(M — A)u=g.
Let A € R be arbitrary, and let u € D(A). Then there exists an f € £2(Q)
such that
(A — A)u = f. (2.12)

Multiplying both sides of (2.12)) with v € H}(2) and integrating over €, we
get
/\(U,7 'U),C2(Q) - (AU,, U)£2(Q) = (f, U)LQ(Q)- (213)
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Equations (2.13]) and give us

n

A, v) g2() — / [Z (7 ug,)z,v + Z Bz, v + yuv
Q i=1

2,j=1

dr = (f,v)r2q)

Applying integration by parts to / Z auy, )y Judr with v € H{ () gives
2,7=1

)\(u (% 52(9) +/

Z a”uxlvxj Z By, v — Pyuv] dr = (f,v)r2(0)
i=1

4,7=1

We define bilinear forms Blu, v] and B [u, v] associated with —A and (A —A)
respectively, for each v € H}(Q), by

/ [Z oz”uzlvxj iﬁiuxiv — fyuv] dx
i=1

ij=1
and
Bilu,v] = Xu,v) g2 + Blu, v]. (2.14)
Then
Bilu,v] = (f,v) 20 (2.15)

for each v € H}(2). Since A is elliptic, by Theorem [2.2.1, we can find
constants € > 0 and w > 0 such that

ellullf o) < Blu, u] + wllull 22
Let A > w > 0. Then

GHUHJQLI(}(Q) < Blu, u] 4+ Allul[ 220
= Bi[u, ul. (2.16)

It is clear that (A — A) is elliptic. Thus by Theorem we can find a
constant 6 > 0 such that

| Balu, 0l| < 0lull o 0] 30 (2.17)

for all u,v € H}(Q). From (2.16) and (2.17)) the requirements for the Lax-
Milgram Theorem, Theorem are met. Furthermore, the function hy :
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L£%(Q) — R defined by hs(v) = (f,v)2@@) is a bounded linear functional
on L£2(2) by the Reisz Representation Theorem, Theorem m Thus, for
every g € £L*(Q) we can find a unique u € D(A) so that (g, v)z2) = Balu, v]
for all v € H}(Q). This holds whenever g = (Al — A)u. Thus (A — A)~!
exists and u = (A — A) g,

We now show that (A — A)~! is a bounded linear operator. Substituting
into and applying Cauchy-Schwartz inequality we have that

ellullz o) < (9,u) 20

< lgllz2@llull 22
< lgll 2@ llull 2 )

Thus for every g € £2(2)
ell(AL = A) " gl ) < llglle2)- (2.18)

It follows from that (A\] — A)~! is a bounded linear operator, and
thus A\ € p(A). Since this is true for all A > w then p(A) contains the ray
{AeR| A >w}.

Furthermore, by the Rellich-Kondrachov Compactness Theorem, Theo-

rem |C.0.8] H}(Q) is compactly embedded in £2(2). Thus (2.18)) implies that
R(\, A) is compact. O

2.3 Analytic Semigroups

We now consider sectorial operators, and define analytic semigroups in terms
of these operators. In this section X denotes a complex Banach space, and
A is a linear operator on X.

The definition of analytic function is given by [A.2.1] A function from C
into X is called holomorphic at point a € C if it is infinitely differentiable
within some open disk containing a. A function is holomorphic if and only if it
is complex analytic, see [4, Page 46]. Thus, due to the equivalent definitions,
the words holomorphic and analytic are used interchangeably, even though
one can also have real analytic functions.

Before we proceed we show that for a linear operator A : X D D(A) — X
with a non-empty resolvent set, the mapping p(4) 2 A — R(\, A) € B(X)
is analytic on p(A).

Theorem 2.3.1. Consider a linear operator A : X D D(A) — X. Let
Xo € p(A). Then the open ball

D={XeC||x= 2| <[[R(X, A"}
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is contained in p(A), and if X\ € D, then

o0

RN A) =) (—=1)"(A = A)"R" (Xo, A)
= R(Ao, A)[T + (A = Xg)R(Ao, A)] 7

Therefore the resolvent set p(A) is open in C and A — R(X, A) is analytic
on p(A).

Proof. Consider A € D ={A € C | |A— Xo| < |[[R(No,A)||7'} and y € X. To
show that R(A, A) exists we show that there exists a unique z € D(A) such
that Az — Az = y. We then show that R(A, A) is a bounded linear operator.
The equation Az — Az = y is equivalent to (A — Xg)x + (Aol — A)x = y. Thus
letting z = (Ao — A)x so that x = R()\g, A)z we get the equivalent equation

2+ (A= A)B(Ao, A)z = [T + (A — M) R(Ao, A)]z = .

Consider the series

o0

S() = Y _(=1)"(A = 2)"R" (o, A).

n=0
Since |\ — Ao| < [[R(X\o, A)|| 7" implies that
[(A = Ao)R(Xo, A)|| < 1

the series S(\) converges absolutely with respect to the operator norm, thus
defining a bounded linear operator on X. Thus, if A € D then S()) is a
bounded linear operator and

S+ (A= A0) R(Xo, A)]

(=1)"(A = 20)"B" (Ao, A) I + (A = Ao) B(Ao, A)]

Mg

3
Il
o

(—=1)™(A = X0)"R"(Ao, A) + > (=1)"(A = Ao)" TR (A, A)
n=0

+ (A= Xo)R(Xo, A) — (A = X)R(Ng, A) — (A — Xo)2R*( Mo, A) +

M8

[e=]

Il
~ o~

Similarly, [/ 4+ (A—Xg)R(Xo, A)]S(X) = I. Thus for A € D, S()) is the inverse
of [I + (A — Xo)R(No, A)], so that the equation

24+ (A=) R(ho, A)z =y
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has a unique solution z € X for every y € X. Thus for every y € X,
(M — A)x = y if and only if

x = RN, A)z = R(Ng, A)S(N)y.

Thus, since R(\g, A)S(A) a bounded linear operator then A € p(A). Hence
D is contained in p(A). Furthermore,

R(A, A) = R(A, A)S(A) =Y (=1)"(A = Xo)"R" (Ao, A),
n=0
so that the mapping A — R(A, A) is analytic. ]

Sectorial Operators

Definition 2.3.1 (Sector). For w € R and 6 > 0 we define the sector Sy,
as

Sow={A€C: A#w,|arg(A —w)| < 0}

If w =0 then we write Sy as Syp. See Figure for a graphical repre-
sentation of the sector Sy,.

N

/|

Figure 2.2: The sector Sp,,.

Definition 2.3.2 (Sectorial Operator). An operator A: X D D(A) — X
is said to be sectorial if there exist constants w € R, 6 € (g, 7r), and M >0
such that

(1) S@,w C p(A)
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(ii) |RO\,A)|| < for all A € Sy...

M
A —wl
The following is a useful sufficient condition for an operator to be sectorial.

Theorem 2.3.2. [74, Theorem 2.1.11] Let A : X D D(A) — X be a linear
operator such that p(A) contains a half-plane I = {\ € C | R\ > w}, and

IAR(A, A)|| < M when RA > w,
with w €R and M > 0. Then A 1s sectorial.

Proof. We start by showing that there exists a § € (3, 7) such that Sy, C
p(A). If w < 0 then we can choose any w* > 0 and use it to define a
sector Sy~ on which the conditions for A being sectorial hold true. Thus we
assume that w > 0. For any r € R, w +ir € II C p(A). Since ||[AR(\, A)|| <

M for R\ > w, then |R(w + ir, A)|| 7 > jw + ir] for all » € R. Thus, from

Theorem for all 7 € R the open ball By-1j444 (W ir) is contained
within the resolvent set p(A). Let

S={AeC|N+£w, |larg(A —w)| <7 — arctan 2M }.

We show that S is contained in U Byr-1jwir| (w4 ir) UIL so that S C p(A).

reR
To do this assume r > 0 and let = + iy € S, with y > 0. If x > w then

x + iy € II and we are done. If z < w, let § = arg(x + iy — w) so that
Y

= tan(f
——— = tan(0)
< tan(m — arctan 2M)
= — tan(arctan 2 )
= —2M.
2
Thus ( ) > 4M? > M? and
T —w
z—w\’ e
|x+iy—(w+i7‘)|2:y2( ; ) +(y—r)t< W—i—(y—r)Z.
2 2,2
Setting r = y gives |z + iy — (w +ir)|* < % < w]\;;r . Thus x + iy is

contained in the open ball By-1j,44(w + 7). The case for y < 0 follows

similarly with
Y

r — W

> tan(m — arctan(2M)) = 2M.
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Thus S C U B (w +ir) UIL

reR

M*
We now show that there exists an M* > 0 such that |R(\, A)|| < B |
—w
for all A € S. Suppose A € S. If 0 < w < R then
M M
IR A < : (2.19)
NS h—w)

Suppose SA > 0. If R\ < w then g < arg A < 7w — arctan2M, so that

1
tan(arg \) < —2M. Thus A = w + ir — % for some r # 0 and «a € <O, 5}
By Theorem [2.3.1] since R\ < w we have that

IR A = > (- — (w+ )" [R(w + ir, A"
n=0
i ar M et
<
- HZ; [ ] [w+zr|]
< ey ]
Vw42 i \/m
- - () ()
w? + 12 \/W Vw412
2M
<= (2.20)
|
i ar | oly ith A = w +ir — — we h
SINCe | ————— —. owever, wl =w 17 — — We nave
Vw2 4 72| T 2 ’ M

N[

2\~ 1 —%
\r|:|)\—w\<1~l—m> 2\A—w[(1+4M2>

since 0 < a < 1. Substituting this back into (2.20) gives

1 \:2
IR\, A)|| < 2M (1 + 4M2> A —w| ™ (2.21)

1

1 \2
Setting M* = 2M (1 + 4M2) > M, (2.19) and (|2.21]) gives our result, and
thus A is sectorial. O

34

© University of Pretoria



&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

Analytic Semigroups

We begin this section by associating with the sectorial operator A a family
of bounded linear operators e, t > 0, on X. We then show that 4, t > 0,
with e = I, is a semigroup. Lunardi [I4] calls this family of bounded
operators the analytic semigroup generated by A.

Unlike with Cp-semigroups, when dealing with sectorial operators it is no
longer necessary that D(A) is dense in X, see [14, Page X]. This is demon-
strated by Lunardi in [14] Proposition 2.1.4], where he shows that analytic
semigroups have all the properties of Cy-semigroups listed in Theorem [1.4.3
on D(A), where D(A) is not necessarily the whole of X. However, some
results are true when D(A) is dense in X and other results not, see [3, Page
102]. Furthermore, suppose D(A) was not dense in X. Let Xy = D(A) and
Ap be the part of A in X,. Then X, a Banach space with respect to || - || x
and all the results proved in this section hold true for Ay acting on Xy. In
particular, if A is sectorial on X then Aq is sectorial on X, Ag is the in-
finitesimal generator of an analytic semigroup e*4°, ¢t > 0, in X,, and this
semigroup is a Cp-semigroup in Xy, see [I4, Remark 2.1.5].

Therefore we assume that D(A) is dense in X. Under this assumption we
shall show in Theorem that analytic semigroups are Cy-semigroups on
X.

Proposition 2.3.3. Let A : X D D(A) — X be a sectorial operator such
that Sp., C p(A) for some w € R and 0 € (g,ﬂ'>. The operator et defined

as the integral
1
e = — ePR(N, A)d\, t > 0,

" 2mi WY
where r >0, n € (g,Q), and 7y, 1s the curve
{AeC|largAl =n,A| 2r}Uu{r e C| [argA| <n,[A| =r}

ortented counter-clockwise, is a bounded linear operator on X for allt > 0,
and the integral is absolutely uniformly convergent.

Proof. The curve w + 7, is shown in Figure 2.3] Since A is sectorial there
exists a M > 0 such that [|[R(\, A)|| <

’ | for all A € (w+ 7,,). For
—w

T} let T', = B, (w) N (w + Y.p), where B, (w)

cos(n

is the closed ball in C with radius n centred at w + 0i. Note that for all
— }, if X € (w+7,) \ 'y then RX = |A| cos(n) +w < 0.

any n € N, n > max{r,

n > maxyr,
cos(n)
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Ift >0and A € (w+ ) \ 'y then

le* RO\ A)|| < e[| RO A

M
-

< et(ncos(n)—i—w)%
— n )

with cos(n) < 0. Thus, since I';, is a compact piecewise differentiable curve,

for each t > 0 we have that / e R(\, A)x||xd\ < oo for every x € X.

'

Furthermore, the function p(A) > A — e*R(\, A) € B(X) is measurable by
Theorem m Thus, by Theorem [A.1.2) e*R(\, A) € LYT,; B(X)).

1

Fix a > 0. We now show that 2—/ e R(\, A)d)\ is absolutely and

i Jr,
uniformly convergent on [a,00). Fix € > 0 and ¢ € [o,00). Consider the
curve (w + 7,,) \ 'y with positive imaginary part, say (w + ;) \ I'y. For
each X € (w+~,7,)\I'n, there exists a real number § > n such that A = w-+de”.
Thus

1 1
o | PR < el [ R )
270 J (ot )\ T 27| | i\
1
51/ PN R(, A)d)
27 | (@trda\In
1 & ) .
_ / et(w+6cos(n))”R(w + 56177’A)Hemd5‘
2m |/,
1 o M .
< a(w+d cos(n)) 27 | Lin ds
“%), ¢ hs
< M [ atrscosm) g
- 2mn J,
_ Me™ acos(n)n
27| cos(n)|n
MeOlUJ
~ 2ma cos(n)|n
T on
Me* — K,
where K, = e > 0. It follows that if n > max{r, i , —
21| cos(n)| cos(n) €
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then
1

P e R(A, A)ldA
2mi /(W+’Yr+,n)\rn

Note that for each AT € (w4 7;,) \ Tn, AT = w + de, there exists a
corresponding A~ € (w + v,y) \ Ty A~ = w + de " with negative imaginary
part. However, since cos(n) = cos(—n), then RA~ = RAT. Thus if we
integrate over the curve (w + 7,,) \ ', with negative imaginary part
follows in the same way.

1
Thus for ¢ € [a, 00) we have that — e R(\, A)||d\ < oo so that
i

w+r,
e*R(\, A) € LY(w + v.py; B(X)). By Theorem

<e. (2.22)

1 1
lim — / PR\, A)d\ = — e R(N, A)d\
1%

n—o0 271 270 S iy

and the integral is absolutely and uniformly convergent on [a, 00). Taking
a — 0 gives that the convergence is absolute and uniform on (0, c0). Thus
for any sectorial operator A, we can define a bounded linear operator

1
et = — e R(\, A)d\

270 S iy

for t > 0, and the integral is absolutely uniformly convergent.

R

o

Figure 2.3: The curve w + 7.

The following basic proposition shows that, in general, we can take w = 0.
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Proposition 2.3.4 (Exponential Shift). Suppose A : X D D(A) — X
is a sectorial operator such that there exist constants w € R and 0 € (3, )
such that Sy, is contained in p(A), and there exists an M > 0 such that if

X € Spo, then |R(N, A)| <

. Then the operator
A —w

B:XDDA)szx— Ar—wr e X
is sectorial and satisfies the following properties:
(i) If N\ +w € p(A) then A € p(B) and R(\,B) = R(\ + w, A);
(it) Sy C p(B);
(111) If X € Sy then ||AR(\, B)|| < M.

(iv) The family e'P,

t >0, is a family of bounded linear operators, and
etB — e_"JtetA, t 2 0.

Proof.  (i): Suppose A +w € p(A). Then (A— (A+w)I)™t=(B—-X)"is
a bounded linear operator. Thus A € p(B) and R(\, B) = R(A+w, A).

(ii): Let A € Sp. Then A +w € Sy, C p(A). Thus, by (i), A € p(B). Hence
Sy C p(B)

(ili): Let A € Sy C p(B). Then, by (i),

M
IR B)|| = [|RA +w, A)|| < ok
(iv): For t > 0 we have by Proposition ({2.3.3) that

1
tB At
- B
e 5 Z/ e R(\, B)dA

Yrn
1
= _— e RN — w, B)dA
2710 Sy,
1
= —e ¢ / e R(N, A)d\
271 W
— e—wtetA

I

is a bounded linear operator. In the case of ¢ = 0 then we just have
the identity.

]
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Theorem 2.3.5. Suppose A is a sectorial operator with p(A) containing Sp..,

forj\/;onstants 0 € (5,7) and w € R, and that if X\ € Sy, then |[R(\, A)|| <

A =l

for some M > 0. Then the family of bounded linear operators

1
e = — ePR(N, A)d)\, t > 0,

2mi w+Yrn

e =1, re X,

has the following properties:

(i) ez € D(A*) for eacht >0, v € X, k € N. If x € D(A¥) for some
k € N, then
Arety = e AF sz, fort > 0.

(i) eest = A for allt,s > 0.

(111) (a) ||| < Mye®t, t > 0;
(b) For every k € N there exists a constant My > 0 such that

[tF(A — wl)Fe' || < Mye*', t > 0.

(¢) For every € > 0 and k € N there exists a C > 0 such that

[t AR < O ettt > 0.

(iv) The function t — et belongs to C*°((0,00); B(X)), and for all k € N

d" 4 k tA

—e =A%, t > 0.
dtk

Moreover this function has an analytic extension to the sector

Se-z ={teC|t#0, |argt|<0—g}.

Proof. The following equations are used in the subsequent proofs. Let ¢t > 0.
For each A\ € p(A), since (\] — A)R(\, A)x = x for z € X and R(\, A)(A\] —
A)x = x for x € D(A) we have that

R(\, A)Ax = AR(\, A)z, for x € D(A), (2.23)
AR\, A)x = AR\, A)x — z, for z € X. (2.24)
39
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(1): Fix t > 0. Note that

r 0
—in 0 .
/ eAtdA:/ ewtie e Z77d(5—|—/ et ret? dp
WHYr,n 0 -n
T] o0
0 - in
+ / et ret?de + / e o i s
0 r
=0.

From ([2.24) we have
[MAR, A)allx = €™ AR, A)z — z]x

[AlM
S 6t§R>\ (m—i‘l ||JI||X

forall A € Spo O (W+,y) and € X. For all x € X, since

) M|\
RN _
plim ™ (L1 ) el =0
then .
— MAR(N, A)xd\
i eARN, A)x

WHYr,n

(2.25)

(2.26)

exists. By Theorem the sectorial operator A is closed. Thus by

Propositions 2.3.3] and [A.1.3| we have, for all z € X, that

1
ey = — eMR(\, A)zd) € D(A)
270 )iy,
and
1 At 1 At
—A "R\, A)zd\ = — e AR(N, A)xdA.
2mi wtyr,n T Sty

From (12.27)), (2.24) and ([2.25]), we have

1
Aty = —,A/ eMR(\, A)xd\
wt+yr,n

2me
1
= — eMAR(N, A)zd)
27TZ w+Yr,n
1
= — MAR(N, A)x — 2]d\
270 J g,
1
= — AeMR(N, A)zd.
2 J, e
40
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In a similar manner to (2.26)) we get that

, B . L1 M
k—1 _M\t < tRA k—1
i [N ARM, A)e| < lim e (,A — 1) ] x

—0 (2.29)

for all k € N and = € X. Thus, from (2.28) and ([2.29)), it follows in a
similar manner to before that for all k € N and z € X, 'z € D(A*)
and

1
Akeldy = — NeMR(N, A)zd. (2.30)
270 S gy

From and (| , if x € D(A) then

1
Aty = — MAR(N, A)zd)

2mi wWHYr,n

1
— eMR(\, A) Azd)

T 2mi W+Yem
= Ax.

Similarly, for any k € N, if 2 € D(AF) then Afe!y = !4 Akz.

Let ¢t,s > 0. From Proposition we can define a sectorial operator
B : X D D(A) — X such that p(B) contains Sy, ||R(A, B)|| = ||R(\ +

w, A)|| < = for A € Sp, and €' = et for t > 0. If et+9)B = ¢tBesB

then

[Al
e(t+s)A _ ew(t-l—s)e(t—f—s) _ ewtetBewsesB AesA.

Thus it is sufficient to prove that e“t9)8 = etBesB Let 0 < 1 < 75 and
5 <m2 <m. It is clear that

/ e R(N, B)R (i, B)dA\dp
ot

r1m Y Yra.m2

M
exists due to the fact that || R(\, B)|| < o for A € Sy. Thus by Fubini’s
Theorem, Theorem [A.1.4] and the Resolvent Identity, Theorem
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we have

e R(\, B)d\ / "R, B)du

1M1 Yro,ng

/ e HR(N, B)R(u, B)d\dp
N

) / / t)\+8,u, )\ B)_R(/"L7B)d)\du
Yrimy Y Ir N’_>\

25712

e R(\, B) / e — N) " tdud\

Yra,m2

_ (i)z/7 MR, B)/ e (1 — A)TdAdy.

T9,M2 Tr1.m

By Lemma (1)(a), since 7y, lies to the left of ~,,,, in the
complex plane and e** is analytic and bounded on 7, ,, and everything

to the left of it, we have that

1 2
etBesB:<_,) / e R(\, B)(2mie*)dA
ot

21
T1:M1

_ <L> / (HHAR(N, B)dA
211 .

S RL
— e(t-i—s)B )

(7ii)(a): To prove (iii)(a) we again use the operator B as described in the proof

M
of (ii), so that ||R(\, B)| < o for A € Sy. Then

4] = fleteP]| = e et?|

for all t > 0. Thus, for My > 0, et < Mye®* if and only if ||e'B] < M,
for all ¢ > 0. Hence it is sufficient to show that there exists an My > 0
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such that ||e!?|| < M, for all ¢t > 0. For any fixed ¢ > 0, we have

1

B __ || L
e = | 5

/ e R(\, B)d\

Yrn

T om

/ et‘seinR((Sei",B)emd(SjL/ e " R(5e", B)e "dS

o0

+ / "’ R(re®, B)z"rewdQ‘
-1

2/00 6t5c0s(n)%d5 + /77 etTCOS(G)%TdQ

T 5 - r

(2 /OO 5—letécos(n)d6 + /77 etrcos(O)de) )
T -n

Note that cos(n) < 0 so that / 5 tetdeosM s exists. Then

<

¥l ¥l-

<

MN
] < —— = Mo
2m
o0 1
when N > 0 is greater than (2/ s Letocosm gy +/ etmos(e)dQ).
r -

(731)(b): Fix k € N. Note that if there exists a positive constant M} such that
|tk Bke!B|| < M, for all t > 0 then

“tk(A i w])ketAH — ||thkewt€tB|| < Mkewt

for all ¢t > 0 and we have our result. Thus we show that there exists
a positive constant M, such that |[t*B¥e!B| < M, for all t > 0. Fix
t > 0. From (i), for any x € X we have that e'®x € D(B). Thus, by
(12.27), and , and using the same integral manipulation as

in (ii)(a), we have

1
|Be?| = || =— e BR(\, B)d\
211 Yo
1 ) 1 )
= ||— Ae*R(\, B)d\ — — e dA
271 Yo 21 e
1 A
= — Ae"*R(\, B)dA
27—‘- ’YT,’V]
00 n
< % <2/ et&cos(n)d5+/ etrcos(@)rd9> )
2m , —n
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Letting ¢ =t and (y = tr gives

M > g M
| Be'?|| < (2 / et g¢ + / e<OC°S<9>gode> =—
2 t G - t

M o "
for 0 < M; = — 2/ eCCOS“?)dg+/ e dh ) < co. Fix k €
2m Go -

N. Since e'®x € D(B) for all x € X, t > 0, and Be'® = ¢! B on D(B)
by (i), then B*e!® = (Be#®)*. Thus letting M, = (Myk)* > 0 we have

Mk M,
e = peiny < (M) M
Fix ¢ > 0 and k& € N. Note that k¥ < e*k! so that (2.31)) gives
M
| BFe!B|| < t—kk < (Mye)*k!t™*. Thus, by the binomial formula, we

get
44 = B+ wD)ete?)

k jB] tB

IA

o
€
&

VAN

o

&

El
O

w/\@/‘\
vv\/

??‘

:

vyl

b

5
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k
Let Ck . = k! max {(Mle)k, (M) (Mye)*, .., (M> } > (. Then
€

k i
“AketAH S ewtt—kC«hE ( (tel) )
2!
=0

)

S ewtt—k Ok756t6

_ Ck,ee(w—i_e)tt_k.

Let t > 0 and z € X. Then by (i), ¢z € D(A). Since the integral
defining e is uniformly convergent in ¢, then by ([2.28)

1
ietA = —/ iet’\R()\,A)d)\
w+Yr,n

- 2mi dt
1
= — AeAR(N, A)d\
270 Sy
= Aet.
dk
Similarly, for k € N, we have that e'4z € D(AF) and by (2.30)), %em =

AFe! Thus the function ¢ +— e belongs to C((0,00); B(X)). Now
let € > 0 such that 26<9—g, and let n = 0 — ¢, so that g <n<é.

Then, following an argument similar to that of Proposition [2.3.3] the
function

1
ts et = — / e R(N, A)d\
211 .-

is well-defined if R(tA) < 0 as RA — —oo. Note that this is the case if
i :
5 < |arg(t\)| = |argt + arg A|. But if

tESEZ{tE(CH#O,|argt|<0—2€_g}

then |arg(tA)| > 2 + €. Hence the map ¢ — €' extends to S, for all
e > 0 such that 2¢ < 6 — g Thus we may take the derivative with

respect to t and we see that the mapping ¢ — €' is analytic on S, with
dk
dtk
such that 2e € (0,0 — 2), t — ¢ is analytic on

et = AFe! for all k € N as before. Since this is true for each e

59_5:{te<0|t7éo,|argt|<9—g}.
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]

Most commonly, the properties of above theorem are used to define an
analytic semigroup, as is done in Pazy [18], Goldstein [10] and Showalter [22].
For our purposes, however, it is more useful to define the semigroup in terms
of its infinitesimal generator A, since in applications to PDEs A is directly
linked to the physical problem that we are dealing with. Thus we follow the
method of Lundardi [14]. This definition is given below.

Definition 2.3.3 (Analytic Semigroup). Let A : X O D(A) — X be a
sectorial operator. The family {4 | t > 0} defined as

1
et = — e R(N, A)d\, t > 0,

21 J,, e

e =z, 1 e X,

where r > 0, n € (5,0), and v, is the curve
{AeC|lagAl =n, A Zr}U{re C||argA| <n,[A =71}
oriented counter-clockwise, is the analytic semigroup generated by A on X.

It follows, by Theorem [2.3.7] (i4), that the family of bounded linear op-
erators e, t > 0, as defined in Definition [2.3.3] is indeed a semigroup. We
now show that e*4, ¢t > 0, is a Cy-semigroup.

Theorem 2.3.6. If A is a sectorial operator, then the analytic semigroup
generated by A is a Cy-semigroup with infinitesimal generator A.

T
Proof. Since A is sectorial there exist constants w € R, 0 € (5, 7T> and M >

M
0 such that S, » C p(A) and |R(X, A)|| < Dowl for A € S, 5. Furthermore,
—w

the operator A generates an analytic semigroup e*4, ¢t > 0, defined as €% = |

1
and et = — / e R(\, A)d) for all t > 0 and for some r > 0. Suppose
w+'}"r,n

2me
x € D(A). Consider ¢ € R such that ( > w+r. Then ¢ € p(A). Let
y=({I — A)x, then z = R((, A)y.
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Fix t > 0. By the resolvent identity, Theorem [1.4.6, we have that
ez =" R(C, A)y

1
5= ¢ R(X\, A)R(C, A)yd)
T o Wty

1 A) — A
- 6t>\ R<>\’ ) R(C? )ydA
o W+ ¢—A

—1 n B A) B¢ A)

A\ + — ————ydA\. 2.32

" 2mi wﬂme A— Cy +27m wﬂme )\—Cy (2:32)

If RA < w, then

I R(¢, A)yllx < e™MR(C, Dlllyllx < e IR, lllyllx

and e*R((, A) is bounded. Thus, since ( lies to the right of w+1,.,, it follows

from Lemma (1)(b) that

e?R(¢, A) B
/L:H_%nn )\——Cyd)\ = 0. (233)

For A € (w+ 7,.,,) with ¥\ <0,

<A>y i Mlyllx
A—¢ T P =wla=(
Miylx
T A= wl]A =]
Hence RO\ A)
t)\
= yd\ (2.34)
/W“F’Y'rn >\ C

is uniformly convergent in ¢t > 0. Therefore, by (2.32)), (2.33)) and ([2.34]),

—1 A
lim ¢4z = lim —/ t’\R()\ ) ydA
wW+Yr,n

t—0+ t—0+ 271 A=

= _—1 lim e ——2" R\ 4)
270 J gy, t20F A—(

-1 R(\ A)
——=ydA\. 2.
=5 /wﬂm N ¢ ydA (2.35)

ydA

We have that |R(\, A)|| < ——— P for all A € S, 9. Thus, for any p € (0,7),

R(\, A) will be bounded on D = Swﬂ \ B,(w), where B,(w) is the open ball
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with radius p centred at w + 0i. Furthermore, D contains the half-plane
{A € C| RA > w} and the curve w + 4,,,. By Theorem the mapping
p(A) 3 A= R(\, A) € B(X) is analytic. It follows from Lemmal[A.2.3](2)(a)
with ¢ to the right of w + ~,, that

/ Myd)\ = —27miR(C, A)y. (2.36)
wW+Yrn A=¢

Substituting (2.36]) into (2.35)) gives
lim ez = R((, Ay = (2.37)

t—0t
for every x € D(A). We now prove this result for x € X. Fix x € X. Since
D(A) = X, there exists a sequence (x,) € D(A) such that (z,) converges
to z in X. By Theorem [2.3.5 (iii)(a) there exists a M, > 0 such that
et < Mye*t. Thus

e e — x| x < |lea — eanllx + € nn — zallx + |20 — zl|x
< (Me“t +1)||x — x| x + Hemxn — Znlx (2.38)

for all n € N. Fix € > 0. Since R 5 ¢t — Mye*" € R is continuous and (z,,)
converges to x there exists a 0y > 0 and a N € N such that if ¢ € (0, ;) then

(Me*' +1)||z — zn|lx < (2.39)

N

Since xy € D(A), (2.37) gives us that lim e

t—0t
d € (0,4;] such that if £ € (0,) then

xn = xn. Thus there exists a

€
||€tA.IN — ZL’N”X < 5 (240)

Substituting (2.39) and (2.40) into (2.38)) gives that if ¢ € (0,0) then

e s — x| x < e

Hence
lim ez =z (2.41)
t—0+
for all x € X so that e*4, ¢t > 0, is a Cy-semigroup on X.
Next we show that A is the infinitesimal generator of €', ¢ > 0. That is,
we show that, for all z € D(A),

A

lim —(e"z —z) = Ax.

t—0t ¢
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Fix 7 € D(A). Then Aetz = e Az for t > 0 by Theorem [2.3.5 (i). We
show that the function t — Ae!z is continuous on [0, o). Since the mapping
t — €z is an belongs to C*((0,00); B(X)) by Theorem [2.3.5 (iv) then
t > Aet4z is continuous on (0,00). Thus we only need to show continuity
at t =0. Let s > 0, then

[Ae*te — Ae™a|lx = [[A(e™! — D]l

= |l = I) Az x.

By (2.41)), lim (e** — I)Az = 0. Thus

s—0t

lim ||Ae*tz — Ae’z||x = 0,
s—0+t

and the function t — Aex is continuous on [0,00). Thus ¢ — Ae'dz is

Bochner integrable.
By Proposition (a), the function

¢
F(t) = / Ae*txds, t > 0
0
is differentiable on (0, c0) and, by Theorem (1v),

d
F'(t) = Aety = Eemx

for t > 0. Thus
F(t) =€z +c,

for t > 0 and for some ¢, € X. However,
0=F0)=z+c,
so that ¢, = —z. Hence

t
/ Ae*txds = F(t) = o —
0

for t > 0. Thus, for every ¢t > 0,

1 1 [
—(er —x) == [ Ae*uds. (2.42)
t t
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By Proposition (b) we have that for ¢t > 0

I I
lim —/ Ae*Ards — Az|| = lim —/ (Ae*z — Ax)ds
=0t || T Jo x =0t ||t Jy X
1 t
< lim —/ |Aestz — Ae®z|| xds
t—0t ¢ 0
= 0.
Thus for ¢t > 0 .
1
lim — [ Aetzds = Awx. (2.43)

t—0t t 0

From (12.42) and (22.43) it follows that for all £ > 0

lim —(e"r — x) = Ax.
t—0+ ¢
Thus A is the infinitesimal generator of the Cy-semigroup e*4. m

It follows that all the properties of Cp-semigroups stated in Theorem[1.4.3
hold for analytic semigroups. However, Theorem m (1) is a stronger result
than Theorem [1.4.3] (iii).

Theorem 2.3.7. Ifet4, t > 0, is an analytic semigroup then e is uniformly
continuous for t > 0.

Proof. Suppose A : X D D(A) + X is the infinitesimal generator of e/,
t > 0. Let b > 0 be arbitrary and let M, be an upper bound for {||e*}| | t €

d
(0,0)}. By Theorem [2.3.5( (i) and (iv), e"*z € D(A) and Eemx = Ae'x

for any z € X and ¢ > 0. Thus the domain of Aet4, ¢t > 0, is all of X.
Furthermore, since A is a closed linear operator and since e is bounded on
(0,b), then Ae* is a closed operator for each t € (0,b). Thus, by the Closed
Graph Theorem, Theorem Aet is a bounded linear operator on X
for each ¢t € (0,b). To show that e is uniform continuous for ¢ > 0, consider
t; € (0,b) and t, € R such that 0 < t; <ty <t +b. Since e, t > 0, is a
Co-semigroup, by Theorem [2.3.6] then by Theorem [1.4.3] (iv), for any z € X

we have
to
/ Ae*Axds
t1 X

to
/ 514 gt Ag g

‘ t1 X
< (ta — t1) My|| Ae™ ||| ]| x-
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Therefore |[e2? — ') < (ty — t1) M| Ae" 4| so that

lim [[e2? — 4| = 0.
to—t
In the same way
lim [|e"*? — 24| = 0.
tzﬁ)t;
Since b is arbitrary e4 is uniformly continuous for ¢ > 0. m

2.4 Perturbation Theory

As mentioned in the introduction, one of the main benefits of semigroup
theory is the relatively easy way it lends itself to perturbation theory. This
allows one to generalise results that hold for a given operator A to operators
of type A + B. In particular, if A is the infinitesimal generator of a Cjy-
semigroup then perturbation theory determines specific conditions on the
operator B for A + B to be the infinitesimal generator of a Cy-semigroup.
The simplest cases are when B is bounded. We consider only a few basic
results related to strongly continuous and analytic semigroups, since this
enables us to extend our existence theorem to a broader class of problems,
as discussed in Remark [2.4.3] These results can be found in [I8, Chapter 3].
For a more complete discussion on the perturbation of semigroups we refer
the reader to [7, Chapter 11].

Let X be a Banach space.

In what follows we make use of the following technical Lemma.

Lemma 2.4.1. [18, Lemma 1.5.1] Let A be a linear operator on a Banach
space X for which p(A) contains (0,00). If there exists an M > 0 such that

[A"RON, A < M forn=1,2,..., A>0

then there exists a norm || - ||% on X which is equivalent to the original norm
|- lx on X in the sense that

lellx < llzllx < Mllz|x for every x € X

and

IAR(A, A)z||% < ||z|% for allz € X, A > 0.

Remark 2.4.1. 1t is clear that we can extend this theorem to the case where
p(A) contains (w, 00) for some w € R. In this case,

lOA = w)R(AN, A)z||x < ||z for every z € X, A > w.

o1
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Furthermore, Pazy shows in the proof of [I8, Theorem 1.5.2] that if A is the
infinitesimal generator of a Cy-semigroup T'(t), t > 0, such that [|T'(¢)|| < M
for some M > 1 and for all ¢t > 0, then ||T'(¢)z||% < ||z|/% for each z € X and
t > 0. This estimate can be generalized to the case where p(A) D (w, 00) in

the same way as before, and, as Pazy suggests in [I8, Section 1.5, Equation
(5.17)], if |T(t)| < Me“* then

1Tzl < =5
for each z € X.

Theorem 2.4.2. Suppose A: X D D(A) — X is the infinitesimal generator
of a Cy-semigroup T(t), t > 0, on X, satisfying |T(t)|| < Me**, t > 0, for
some M > 1 and w > 0. If B is a bounded linear operator on X then A+ B
is the infinitesimal generator of a Cy-semigroup S(t), t > 0, on X satisfying
1S < Me&HMIBDE for ¢ > 0.

Proof. From the Hille-Yosida Theorem, Theorem [1.4.8] we have that A is
closed, D(A) is dense in X, p(A) contains (w,00) and

IR\, A)|| < for A > w, n € N.

M
(A —w)

Since B is bounded, A+ B is closed and D(A+ B) is dense in X . Furthermore,
from Lemma and Remark there exists a norm || - [|% on X such
that, for every x € X, the following hold:

() llzllx <zl < Mljz]lx,
(i) RO, Azllx < (A —w) Hzlk for A >w
(i) 1Tz ]% < folxe.

Denote by || - ||* the operator norm on the set of bounded linear operators on
X with respect to the norm || - ||%. That is,

171" = sup{[|Tz[% [ = € X, [lz[[x = 1}.

It follows from (i) that ||-||* is equivalent to the standard operator norm || - ||.
Furthermore,
IR A" < (A =w)™ (2.44)

for A > w by (ii) and ||T()||* < e**, t > 0, by (iii).
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We now show that there exist A € p(A) such that the operator I —
BR(), A) is invertible. Fix A € p(A) such that A > w + || B||*. Then ([2.44))
gives

IBROA A" < BIF(A —w) ™" < 1. (2.45)

Suppose
[[ — BR(A, A)lx =[I — BR(\, A)y,

for some z,y € X. Then, by the reverse triangle inequality and ([2.45)),
0=[[{ = BR(\, A)(z —y)llx
2 |[lz = yllx — [BRA, A)(z —y)lx|
=z —ylx = IBR(X, A)(z —y)lx
> [z = ylx (1 = [ BR(X, A)["). (2.46)

From ([2.45)) and (2.46|) we have that ||z — y||% = 0 and so # = y. Thus the
operator [ — BR(A, A)] is injective. Furthermore, for all x € X

1 = BR(X\, A)] ) [BR(A\, A)]"x = I — BR(\, A)z + BR(\, A)x —
n=0
= . (2.47)

Thus [I — BR(), A)] is surjective. In a similar manner to (2.47) we can show
that » [BR(X, A)]"[I — BR(A, A)|z = x for all # € X. Thus [I — BR(), A)]

n=0
is invertible and

(e 9]

[I = BR(\, A)|7" =) [BR(\, A)]™.

Set
R = R(\ A)[I — BR(), A)] ZR (A, A)[BR(\, A)]". (2.48)
Now

[N — (A+ B)R = [()J — A) — BJR(\, A)[I — BR(X\, A)]
= A = BR(), A) [1 BR(\, A) ™t
= [I — BR(\, A)][I — BR(\, A)|™!
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We also have from ([2.48)) that for each x € D(A)

RIM — (A+ B)a = i RO\, A)BRO, AN — (A + Ba

—R(\, A)[(M — A) — Bz

+ i RN\, A)[BR(X, A)]"[A — (A+ B)lz

=z —n;%(A, A)Bx + R(A\,A)BR(\, A)[(M — A) — Blz
+ R(\, A)[BR(A, A)P[(M — A) — Bl + ...

=z — R(\,A)Bz + R(\, A)Bx — R(\, A)BR(\, A)Bx
+ RO\, A)BR(\, A)Bx — R(\, A)[BR(\, A)?B + ...

Thus A € p(A+ B) and
R\ A+ B)=R=R(\ Al — BR(\, A)]". (2.49)

Moreover, from (2.48]), (2.44) and (2.45)) we have

IR(A, A+ B)|I* = > R(A A)BR(), A"

n=0

o0

< (A=w) D (IBRO A"
n=0
=(A=w) 1~ IBRO AN (2.50)
Now, from we have that

(A= WIBRA, A" < (A =) B[" |1, A" < [IBII"

Thus i}
| < (A —w) = (A =w)||BR(A, A)||
B (A —w) —[|B]*
so that | [BROLA)*
A—w) Tt < — : :
SO R e 17T &
and we conclude that
A—w) A= BRNAI) T <A —w— B (2.51)
54
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Substituting (2.51)) into (2.50]) gives that
IR A+ B)I" < (A —w—|IBII) " (2.52)

Thus p(A 4+ B) contains @ = {\ € p(A) | A > w + || B||*} and (2.52) holds
for A € (). By the Hille-Yosida Theorem we then have that A + B is the
infinitesimal generator of a Cy-semigroup S(t), t > 0, satisfying

1S(t)|[* < elwrlBIM
for ¢ > 0. Returning to the original, equivalent norm || - || on B(X) gives
1S(t)|| < MelwrMIBl

for ¢ > 0 as desired. O

In is natural to wonder how the Cy-semigroup T'(t), t > 0, generated by
A, and the Cy-semigroup S(t), t > 0, generated by A + B, where B is a
bounded linear operator, are related. For more on this topic we refer the
reader to [18, Proposition 3.1.2, Corollary 3.1.3].

We now consider perturbations of the infinitesimal generators of analytic
semigroups. The first result in this regard is the following.

Theorem 2.4.3. Suppose A : X D D(A) — X is a sectorial operator and
B : X D D(B) — X is a closed linear operators such that D(A) C D(B).
Then there exists a 6 € (0,%) such that if there exist constants a € [0, 6] and
b > 0 such that

|Bx||x < a||Az|x + b||z||x for all x € D(A), (2.53)

then A + B is a sectorial operator.

Proof. Since A is sectorial, there exist constants w € R, 6 € (g,ﬂ), and
M > 0 such that
Sg’w C ,O(A)
and
M
IR\, A)|| < B | for all A € Sp,. (2.54)
—w

Let 6 = 2(14+ M)~ € (0,3). Assume that (3.44) holds for some a € [0, 4]
and b > 0. From (2.53)), (2.54) and (2.24)) we have that for every z € X and
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A€ Sg,w

IBR(A, A)z||x < al[ AR, A)z|lx + bl[R(A, A)z||x
= a| AR\, A)z — 2|/ x + bI[R(N, A)z | x
= af[(A = w)R(\, A)z + wR(A, A)z — || x + b R(A, A)z[|x

M(b+ alw|)
<o + ey + A o
M(b+ |w|)
< a(M +1)||z|[x + D 2]l x- (2.55)

Thus BR(A, A) is bounded. In particular, if ®A > w + 2M (b + |w|) then
(2.55)) implies that | BR(A, A)|| < 1. Then, in the same way as the proof of

Theorem [2.4.2 in particular (2.46) and (2.47)), the operator [I — BR(\, A)]

is invertible with a bounded inverse.
Continuing with the same reasoning as in the proof of Theorem [2.4.2

in particular (2.48)) and (2.49), we have that if R\ > w + 2M (b + |w|) then
A€ p(A+ B) and

N — (A+ B)] ™' = RO\, A)[I — BR(), A)] (2.56)

Let w' > w+2M (b+|wl|). Then Sy C Sy, and, from (2.56)), Sp.» C p(A+DB).
Furthermore, for A € Sy, we have

IR\, A+ B[l = [R(X, AL — BR(A, A)] Y|
MN
A —wl

where N = ||[I — BR()\, A)]™!||. Thus A + B is a sectorial operator. O

Remark 2.4.2. If A and B satisfy the relationship (2.53) then they are called
relatively bounded, see [7, Section 11.1].

Corollary 2.4.4. Let A: X D D(A) — X be the infinitesimal generator of
an analytic semigroup. If B is a bounded linear operator on X then A+ B
15 the infinitesimal generator of an analytic semigroup.

Proof. Since B is bounded we have
|Bz|[x < allAz|lx + [ Bll[|l<]lx

for every a > 0 and x € X. The result follows from Theorem [2.4.3 O
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Remark 2.4.3. Pazy shows in [I8] Section 3.1, Proposition 1.4] that if X is a
Banach space, A : X D D(A) — X is the infinitesimal generator of a compact
semigroup T'(t), t > 0, and B is a bounded linear operator on X, then A+ B
is the infinitesimal generator of a compact semigroup S(t), t > 0. However,
we do not need this result since our aim is to apply our existence theory
to parabolic problems. Indeed, in such cases we obtain compactness of the
semigroup via analyticity of the semigroup and compactness of the resolvent
operator of its infinitesimal generator, see Theorems [2.1.6] and 2.3.7] Note
that, in the case of parabolic problems, A is an elliptic operator acting on
L£2(Q) for some open set 2 C R". A perturbation of A by an operator of the
form

Bu = ZB’ ) Uy, + y(2)u, (2.57)

is also elliptic, and therefore has a compact resolvent operator R(\, A + B)
for some A € p(A + B), by Theorem [2.2.2]

To make Remark [2.4.3| precise we consider the complexification of A acting
on the complexification of Hilbert space £2(9).

2.5 Complexification of Operators

In order to apply the existence, regularity and perturbation results for the
abstract Cauchy problem from sections [3.2] and [2.4] respectively, we need
to work with analytic semigroups defined on a complex Banach space. How-
ever, the problems we are considering are set in a real Hilbert space, and it
is intuitive that the physical solutions should take values in a real Hilbert
space. In this section we show how to associate with a real Hilbert space
H a complex space_ H. For each operator A on H there is a correspond-
ing operator A on H, and for each semigroup T'(t), ¢ > 0, on H there is a
corresponding semigroup T( ), t > 0, on H. Many of the properties of a
semigroup on H can be deduced from the semigroup induced on H. For a
more generous discussion on the complexification of Banach spaces we refer
the reader to [16].

Operators on the Complexification of a Real Hilbert Space

Definition 2.5.1 (Complexification of a real Hilbert Space). Let H be
a real Hilbert space. The complexification of H is the complex vector space
H defined as

f[::{x+iy|x€H,y€H}

57

© University of Pretoria



&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

with addition and scalar multiplication given by

(z +iy) 4+ (u+w) = (z +u) +i(y +v)
(a+if)(x +iy) = (ax — By) +i(ay + Px)
for all (z + iy), (u + iv) € H and (a +1i3) € C.
In the following two theorems we show that H is a complex Hilbert space.

Theorem 2.5.1. The function (-,-)g : H x H — C defined as
(x+ 1y, u+iv)g = (x,u)g + (y,v)u +i(y,w)g —i(z, )y
s an inner product on H.

Proof. The function (-,-)z is an inner product on H if, for any a,b € C and
x,u,q € H, we have

(i) (xu)g = (%)
(i) (x+u,p)z = (x.p)g + (W P)s-
(ili) (ax,p)s = a(x.P)z
(iv) (x,%x) > 0.
(v) (%) =0 = x=0.

Properties (7) to (v) above all follow easily from the properties of (-, )y and
the definition of (-,-)7. We demonstrate the general idea by proving (7).
Letx=a2+4+iyec H, p=p+ig€ Hand a=a+i8 € C. Then

(alp +iql,x +iy) g = ([ap — Ba] +i[Bp + aql,x +iy) 5
= (ap — Bg, x)u + (Bp + aq,y)u — i(lap — B, y)u
+i(Bp+ aq,r)uy
= (a+iB)[(p,x)m + (¢, y)u] + (B —i)[(p,y)n — (¢ ) ]
= (a+iB){[(p,2)u + (¢ y)u] —i[(p,y)u — (¢, 2)u]}
=a(p+ig,x+1iy)g.

Remark 2.5.1. Note that if z + iy € H then
|l + iyl = (v + iy, x +iy) g = llollF + [yl

Furthermore, for each « € H, x + 0i € H and ||z z = |z + 0i]| 5.
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Theorem 2.5.2. The vector space H is a Hilbert space with respect to the
inner product (-,-) -

Proof. We have already shown in Theorem that H is an inner product
space with inner product (-,-)5. We need to show that H is complete with
respect to the norm || - ||5. Suppose (z,) is a Cauchy sequence in H with
respect to || - || z. For n € N, z,, = x,, + iy, with x,,y, € H. If n,m € N we
have

|2 — 2ol = ll2n = @7 + 190 — Yl (2.58)

so that
|20 = Zmlla < |20 — 2l g

and
Hyn - ymHH < Hzn - ZmHH'

Thus (z,,) and (y, ) are Cauchy sequences in H, and since H is a Hilbert space
they converge to limits in H, say x and y respectively. Thus the sequence (z,,)
converges to z = x + iy € H, since ||z, — 2|}, = ||z, — ||} + [|yn —yl|F. O

Definition 2.5.2 (Complexification of a Linear Operator). Let H be
a real Hilbert space and A a linear operator on H with domain D(A). The
complexification of A, denoted A, acts on the complex Hilbert space H and
is given by

D(A) = {z+iy |z € D(A),y € D(A)} C H,

Az +1iy) == Az + 1Ay, x + iy € D(A).

Theorem 2.5.3. An operator A : H 2 D(A) — H is closed if and only if
its complezification A : H O D(A) — H is closed.

Proof. Suppose that the operator A : H O D(A) — H is closed. That is,
if (x,) C D(A) is a sequence converging to z € H and (Az,) converges to
y € H, both with respect to || - ||z, then z € D(A) and Az = y. Now suppose
A is the complexification of A. We consider a sequence (z,) = (z, + iyn) C
D(A) such that (z,) converges to z = x + iy € H and (Az,) converges to
w = u + iv € H, both with respect to || - || 5. That is,

Jim 12 7]l 5 = 0 and lim || Az, — wi|z =0.

By Definition Zn, Yn € D(A) for each n € N. By Remark we have
that lim ||z, — z||[g = 0, lim ||y, — y|]lg = 0, lim ||Az, — ullg = 0 and
n—00 n—00 n—o0

39

© University of Pretoria



&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

lim ||Ay, — v||g = 0. Since A is closed, z,y € D(A) and u = Az, v = Ay.
n—00

Hence z € D(A) and w = Az. Thus A is closed.

Conversely suppose A is closed, and that (z,) C D(A) is a sequence
converging to x € H, such that (Axn) converges to y € H, both with respect
to || - ||z. It is clear that x,, = z,, + 0i € D(A) and that Ax, = Ax, + 0i for
each n € N. Since (x,) converges to z and (Az,) converges to y, it follows
that (x,) converges to x = x + 0i and (Axn) converges to y = y + 0i, both
with respect to || - || z. Thus since A is closed, x € D(A) and y = Az. By
Definition it follows that # € D(A) and y = Az. Thus A is closed. [

Proposition 2.5.4. Consider a linear operator A on H. Then D(A) = H
if and only if D( )= H.
Proof. Suppose that D(A) — H and let z = 2 + iy € H. Then by the

definition of H, z,y € H and we can find sequences (z,) and (y,) contained
in D(A) such that lim ||z, — z||[g = 0 and lim ||y, — y|]lg = 0. Define
n—00 n—00

Zy, = T, + iy, € D(A) for each n € N. Then by Remark
lim ||z, — 2|3 = lm ||z, — 2[5 + lim [y, — yll7; = 0.
n—00 n—00

Thus m =H.

Conversely suppose that Tfl) — H. Let € H. Then x = 2 + 0i € H.
Now since D(A) = H we can find a sequence (z,) = (z, + iy,) in D(A)
converging to x. Since

lo = 2ullfy < Ml — 2llfy + llynllr = Ix — 2all

for every n € N it follows that (z,) converges to x. Furthermore, z, =
Ty + 1y, € D(A) for every n € N, so z,, € D(A) for every n € N by definition
of A. Hence D(A) = H. O

Theorem 2.5.5. A linear operator T': H — H s bounded if and only if its

complexification T : H — H is bounded. Furthermore, in the case that they
are bounded, ||T|| = ||T.

Proof. Suppose T : H — H is bounded. Then for all z = 2 + iy € H we
have that
Tz = | T2 +iTyll%
= ||Tx||% + | Tyl
< TIP(llZ + llyliz)

= | T1l|zl1%-
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Thus |Tz| 7 < ||T|||z| 5 for all z € ﬁ,~so T is bounded and ||T|| < ||T.
Conversely, suppose that T": H — H is bounded. Then for all z € H we
have

T3 = |IT(x + 00)]
< |17l + 0l

= IT)1%| 1%
Thus |7z < ||T||||z|| for all z € H, so T is bounded and ||T|| < ||T||. O

Theorem 2.5.6. Suppose that A : H D D(A) — H is the infinitesimal
generator of a Co-semigroup T(t) for t >0 . Then the following hold:

(i) zii : H D D(A) — H is the infinitesimal generator of the Cy-semigroup
T(t) fort>0;

(i) If T(t) satisfies |T(t)|| < Me“* for t > 0 and for some M > 1 and
w € R, then ||T(t)|| < Me*t for all t > 0.

Proof. We first prove (i). Suppose A : H D D(A) — H is the infinitesimal
generator of a Cyp-semigroup 7'(t), t > 0. Then the complexification of A is
A:HD>D D(fl) — H where Az = Az +iAy for z = o + iy € D(A). We
have that 7'(t ) H — H is defined as T(t)z = T(t)z + iT(t)y for t > 0 and
z =z + iy € H. We now show that T'(t) is a Cy-semigroup generated by A.
For each t > 0 the operator T(t) is bounded by Theorem . For t,s >0
and z = x + iy € H we have that

T(t+s)z=T(t+s)[x] +iT(t + s)[y]
T()[T(s)x] +4T(t)[T(s)y]
=T(t)[T(s)x +iT(s)y]

T(H)T(s)z.

Furthermore, T(0)z = T'(0)z 4iT(0)y = z for all z = = +iy € H. Thus T'(t),
t > 0 is a semigroup. Furthermore

lim T(t)z = lim T(t)z + 4 lim T(t)y = = + iy = =.

t—0t+ t—0t t—0t

Thus T(t), t > 0, is a Cy-semigroup. Let A* be the infinitesimal generator
of T(t), t > 0. Choose z = x + iy € D(A*). Then

Az = lim h™(T(h) — I)[z + iy]

h—0+
= lim R (T(h) — I i lim A~ Y(T(R) — 1)y.
Jm h=H(T(h) = Dz +4 lim h™(T(h) — D)y
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Now since z = z+iy € D(A*) then A*z exists. Thus lim h~'(T'(h)—I)x and

h—0t+

lim h~Y(T(h)—1)y exist so that x,y € D(A), and lim A~ (T(h)—I)x = Ax

h—0+ h—0+

and lim h~Y(T(h) — I)y = Ay. It follows that
h—0t

Az = Ax + 1Ay
= Az.

Thus D(A*) € D(A) and A is an extension of A*.

We now show that D(A) C D(A*), that is, if x +iy € D(A) then x+iy €

D(A*). Let x + 1y € D(A) so that x € D(A) and y € D(A). Thus
lim A~ (T'(h) — Iz and lim h~'(T'(h) — I)y exist. (2.59)

h—0t h—0t

Now consider

WY T (h) — I)(z + iy) = h"Y(T(h) — D + ik Y(T(h) — I)y. (2.60)

From ([2.59) and (2.60) we have that hlirn+ h~Y(T(h) — I)(z +iy) exists. Thus
—0

z 4 iy € D(A*) so that D(A) C D(A*). Hence A* = A.
The statement (ii) follows immediately from Theorem [2.5.5] O

Theorem 2.5.7. Suppose T > 0 and U is an open bounded subset of H. Let
U be the complexification of U. Further suppose A : H D D(A) — H is the
infinitesimal generator of a Cy-semigroup T'(t), t > 0, and f : (0,T)xU — H
is continuous. Consider the function f: (0,T) x U — H given by

flt,u+iv) = f(t,u) + 0i.

Ifu:[0,T) = H is a mild solution of (1.13)) with initial condition uy € H,
then the function @ : [0,T) — H given by u(t) = u(t) + 0i is a mild solution
of

a(t) = Aa(t) + f(t.alt)), t € (0,7)

(0) = g + 0. (2.61)

dt

Proof. Clearly U is an open bounded subset of H. Fix t € (0,7) and u, € H.
Since u is a mild solution of (|1.13) with initial condition ug then u satisfies
the integral equation

u(t) = T(t)uo +/0 T(t—s)f(s,u(s))ds, t > 0.
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By Theorem [2.5.6, A is the infinitesimal generator of a Cy-semigroup 7'(t),
t > 0. For t > 0, consider the integral equation

T(t)(uo + 07) + /0 T(t — s)f(s,u(s))ds =T (t)ug + 0i

+/O T(t — s)[f(s,u(s)) + 0i]ds

+ /0 [T(t —s)f(s,u(s)) + 0i]ds
=T (t)up + /0 T(t—s)f(s,u(s))ds

+ 02
=u(t) + 0i
=au(t).
Thus u(t) is a mild solution of (2.61)). O

Theorem 2.5.8. A linear operator T': H — H is compact if and only if its
complexification T : H — H 1is compact.

Proof. Suppose that T is a compact operator on a real Hilbert space H.
Then T maps any bounded subset U of H onto a precompact subset of H by
definition. By Theorem this is equivalent to saying that if (z,) C H
is a bounded sequence then (T'x,) C H has a convergent subsequence. Now
consider the complexification T of T acting on the complex Hilbert space H,
and suppose (z,) C H is a bounded sequence. We want to show that the
sequence (T'z,) has a convergent subsequence.

By the definition of H, for every n € N we can find z,,y, € H such
that z, = x, + iy,. Since ||z,||lg < ||zn]lg and ||yn||ln < ||zn]| 5 for every
n € N, it follows that (x,) and (y,) are bounded sequences in H. Thus,
since T' is compact, (Tx,) has a convergent subsequences, say, (T'z,,) with
limit * € H. Since (y,,) is a subsequence of (y,), it is bounded. By the
compactness of T', (T'y,,) has a subsequence (Tynij) that converges to some

y € H. Since (Tx,,) converges to x, then so does its subsequence (Txmj).
Hence (Tznij) = (Txmj —|—z'Tymj) converges to z = x+iy so that T is compact.

Conversely suppose that T is a compact operator on H. Consider a
bounded sequence (x,) C H. We want to show that the sequence (T'z,) has
a convergent subsequence. We define z, = z, + 0i € H for every n € N,
It follows that (z,) C H is a bounded sequence, since ||z, 7 = ||[za|lz for
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all n € N. Thus, by the compactness of 7" and by Theorem |C.0.9, (Tz@)

has a convergent subsequence, say (1'z,,), converging to z = x + iy € H.
Furthermore, for every k& € N we have that T'z,, = T(z,, + 0i). Hence
z =+ 07 and

0= lim |Ta,, —Tzlz = lm [T, —Talu.

Thus (T'z,, ) is a convergent subsequence of (T'x,,), converging to Tz, so that
T is compact. O

The Resolvent and its Complexification

In order to prove the main results of this section we make use of the following
proposition and theorem.

Proposition 2.5.9. [14, Proposition A.0.2] Let 2 C C be an open set and
let {F(\) | X € Q} be a family of bounded linear operators satisfying the
resolvent identity

F\) = F(u) = (u— NEN)E(p), for every A\, ju € Q. (2.62)

Assume that for some A\ € €, the operator ﬁ()xg) is injective. Then there
exists a unique linear operator A : H > D(A) — H such that Q C p(A), and
R(M\, A) = F(X) for X € Q.

Proof. Since F()\o) is injective for some g € ©, we can define an operator A
such that

D(A) = Range F(\y), Az = Nz — F(\g) 'z for all z € D(A).
Fix y € H. By the resolvent identity, equation 1) for every A € Q

F(/\)y = F(/\o)y - (A= /\O)F(AO)F()‘)Q
= FM)ly — (A = 2)F(\)y] (2.63)

so that F'(A)y € D(A). Thus F(A\)(H) = D(A) for every A € Q.

For any z € D(A), y € H and A € Q
(M — Az =y (2.64)
if and only if .
A =Xz + F(X) tr =y, (2.65)
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If we now apply F()\) to both sides of the equation then
A= X)ENz+ FO\F(X\) 'z = F(\)y. (2.66)

Now by applying~}~7 ()\Q)*l to both sides of the resolvent identity F(\) —
F()\o) = ()\0 — /\)F()\)F()\()) we get

FNEX) ™ =T =—=(\=X)EF(\). (2.67)
Substituting (2.67)) into (2.66) gives us

FNy=A=X)FNzx—A=X)F(N)z+2==x.

Thus if (A — fl)x~: y, then z = F(\)y. Conversely, if for some y € H and
A € Q we set © = F(\)y, then by (2.63)

(A=) + F(ho) o= (A= A)F(\)y + F(Xg) ™!
= (A — )\O)F()‘)y + F()\o)_l

F(\y
F(Ao)ly — (A= Ao) F'(A)y]
Thus for any z € D(A), y € H and \ € Q,

(M — Az =y iff z = F(\)y.

Thus (A — A) has a bounded inverse R(\, A) = F(\) for all A € Q.
To show uniqueness, suppose that there was an operator B such that

F(X\) = R(\o, B). Then D(B) = F(X\o)(H) = D(A). Thus, for all = € D(A)
F(Xo)(Aol = B)z =2 = F(X) (Aol — A)z,
which implies that
F(X\) " F (M) (Mol — B)z = F(Xo) " F (M) (Mol — A)z,
from which it follows that
(Ml — B)z = (Ml — A)z.
Thus B = A. u

Remark 2.5.2. Operators F()\) which satisfy the resolvent identity, as in
Proposition [2.5.9} are called pseudo resolvents, see[I8, Chapter 1.9].

Theorem 2.5.10. [1]], Proposition 2.1.9 (b)] Let {T(t) | t > 0} be a family
of bounded linear operators on H such that the following hold:
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(i) T(t)T(s) = T(t + ), for every t,s > 0;

(ii) There exist constants w € R and M > 0 such that | T(t)|| < Me“* for
each t > 0;

(i11) Either
(a) there is at > 0 such that T(t) is one-to-one, or
(b) for every x € H, lim T(h)x = .
h—0+
Then there exists an unique linear operator A : H > D(A) — H such that
RO\, A) — / NP8t
0
forall el ={A e C | R\ > w}.
Proof. By (ii), for all t >0
e NT@)) < Mele
Thus the integral F(\) = / e MT(t)dt exists for all A € II. Furthermore,
0

for any x € H,

/ e MT(t)zdt

0

< [ e T et
0

< / Me(w_m)tHxHHdt
0

- M,
RN —w Tl

POyl = | )

Hence F()\) is a bounded linear operator for each A € II. We now show that
the family {F(\) | A € II} satisfies the conditions of Proposition To
do this let A, p € II. Then by Fubini’s Theorem, Theorem [A.1.4]

F(\F(p) :/ e”f(t)dt/ e M T(s)ds
0 0
:/ / e NT(t)e™T(s)dtds
o Jo
:/ {/ e M) ==t (t 4 5)dt| ds.
0 0
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Let 0 =t + s. Then

FOVE(u) = /0 " (o) /0 T e Oy

o0 - (b=XNo _q
= / e_’“’T(U)e—da
0

w—=A
— M%)\ [/OOO e T (0)do — /OOO G_WT(U)dU}
= [P0 = P

Thus F' satisfies the resolvent identity on the half-plane II.

We now show that F'(\) is one-to-one for A € II. For the sake of con-
tradiction assume that for some A € II, F()) is not one-to-one. That is, for
some x # 0 we can find a Ay € II such that F'(\g)z = 0. Then for any X € II,
by the resolvent identity,

FNz = F(\o)z + (Ao — N EN)F(X)z = 0.

Therefore, for every z* € H and A € II,

0= (FNz,2") g

= (/OOO e MT(t)xdt, m) .

_ / TN (), )t (2.68)

since the inner product is continuous. Note that L(x) = / e (T (t)x, 2*) gdt
0

is the Laplace transform of (T'(¢)z,2*);. Furthermore, Laplace transforms
are injective. Thus implies that 0 = (T(t)z,z*); for every t > 0.
Hence T'(t)z = 0 for t > 0 since z* is arbitrary.

However, if (iii)(a) holds, then there exists a t* > 0 such that T(t*) is
one-to-one. Then

T(t*)x =0 = T(t")0

so that = 0, a contradiction.

Alternatively, if (ii)(b) holds, then z* = lim T(t)z* = 0, also a contra-

t—0t
diction.

Hence F(A)}s injective. Thus by Proposition m there exists a unique
operator A : H D D(A) — H, where D(A) = Range F'()\), such that
R(\, A) = F(\) for A € 11 O
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Theorem 2.5.11. Suppose A : H D D(A) — H is the infinitesimal gener-
ator of a Cy-semigroup T(t), t > 0, satisfying || T(t)|| < Me**, t > 0, for
some M > 1 and w € R. Then the resolvent set of the complexification of

A, p(A), contains the half-plane I1 = {\ € C | ReA > w}. Furthermore, for
~ M
Axell, |RNA| < ——.
€T IROA) < 2o

Proof. By Theorem we have that A:H>DA) — I? is the infinites-
imal generator of a Cp-semigroup T'(¢), t > 0, satisfying [|T'(¢)|| < Me“* for
t > 0. By Lemma we have that

R\ A) = / h e MT(t)dt

for all A € p(A). Now T'(t) satisfies conditions (i), (4i) and (ii7)(b) of Theorem
2.5.10) and thus we can find an unique operator B : H D D(B) — H such
that

RO\ B) = / T e d

for all A € II. Fix A € R, A > w. By the Hille-Yosida Theorem, Theorem
A € p(A). Thus A € 1N p(A) and R(\, A) = R(\, B). It follows that

and for z € D(A) = D(B)
R\, A)M — A)x = 2 = R(\, A) (M — B)z.
By the injectivity of R(\, A) it follows that
(M — A)z = (M — B)x

so that Az = Bz. Thus A = B so that IT C p(A).
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Furthermore, if A\ € II and z € H then
/00 e MT(t)zdt )
<(>Jo H
SA YT (1) |2t
< [ emeareal g
0

= Mzl [N
0

- el
SR -

|W@Amm=\

< M g
—||Z|| 7.
S ool

M
Thus, for A € II, [|[R(\, A)|| < —— P O
w

Theorem 2.5.12. Let A be the infinitesimal generator of a Cy-semigroup
T(t), t >0, satisfying ||T( )| < Me“t for some M > 1 and some w € R. If
A €R and XA > w, then R()\, A) = R()\, A).

Proof. Consider A € R such that A > w. It follows directly from the Hille-

Yosida Theorem, Theorem m that A € p(A). Thus X € p(A). By Lemma
we have, for each z = x 4+ i1y € H, that

—~—

R\ A)z = R(\, Az +iR(\, A)y
j/e“a%n+ﬁu>d

/ _’\tT )zdt
R(A

]

Note that the results presented in this section hold if the Hilbert space H
is replaced with a Banach space X, see for example [14, Proposition 2.1.9].
However,

1
Iz + iyl = (% + llyll%)

does not define a norm on X, so that the norm on X must be defined in
some other way. Furthermore, since we apply the results in this section to
parabolic problems, the Hilbert space setting considered here is sufficient.
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Chapter 3
Mild Solutions

In this chapter we investigate mild solutions to the abstract Cauchy problem
(.13). We start by showing that classical solutions to are indeed
mild solutions. Then we prove an existence result showing under which
conditions local mild solutions exist. Furthermore, we investigate conditions
under which these local mild solutions are global mild solutions. Finally, we
prove a regularity result for the mild solutions of (1.13)), giving conditions on
A and f so that all mild solutions of are classical solutions.
Throughout this chapter, X denotes a Banach space.

3.1 Classical vs Mild Solutions

We now show that a classical solution of ([L.13]), in the sense of Definition
is a mild solution of (1.13). To do this we prove the following two

propositions.

Proposition 3.1.1. Suppose T(t) is a Cy-semigroup fort >0, I CR is an
open interval, and f : I — X 1s a continuous function. Then fort > 0 and
s € I we have

lim T(t+ h)f(s+ h) = T(£)f(s).

h—0t+

Proof. For any fixed s € I, t > 0 and real number A > 0, we have

[T(t+h)f(s+h) =T@)f(s)lx <ITE+h)f(s+h) =Tt +h)f(s)llx
+ [T+ h)f(s) = T()f(s)lx
<IT@E+ LS (s +h) = Fs)llx
HINTOMT ) f(s) = f(s)lx- (3.1)
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Since T'(t), t > 0, is a Cy-semigroup, then by Theorem there exists an
M >1 and an w € R such that | T(t + )| < Me**™ . Furthermore, since
f is continuous, then

tim [T+ B) (s + b) — £()]x = 0. (32)

Furthermore, since | T(¢)| < Me*" and T'(t), t > 0, is a Cy-semigroup, then
A ITOIT(R)f(s) = f(s)llx = 0. (3.3)
-0t

Thus substituting (3.2)) and (3.3)) into (3.1]), and taking the limit as h — 07,

we have our result. O

Proposition 3.1.2. Fiz >0 and 0 < T < oo. Suppose T(t), t > 0, is a
Co-semigroup with infinitesimal generator A, and the function f : (0,T) —
D(A) is differentiable. Consider the functions g : (0,T) — X given by
g(0) = T(O+B)f(0), and h: [3,T) — X given by h(d) = T(0—3)f(0). Then
g and h are differentiable from the right on (0,T) and (B8,T) respectively.
Furthermore

g'(0) = AT(0 + B)f(0) + T(0 + 5)f'(6),

and

W(0) = —AT(6 — B)f(6) + T — B)f(0).
Proof. Fix 0 € (0,T) and h > 0. We have

g0 +h)—g(0) TO+L+h)fO+h) —TO+06)f0)

h h
_TO+ BTG +h) ~T(O+H)f(6)
h
o+ 5T D~ 10

10+ B! (T(h) O+ h) — £(6)]
+[T'(h) — ]]f(é’)) (3.4)

We now define a function

() w for x € (—0,00), 2 #0
Jr) = 71(60) for x =0,
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which is continuous on (—6, 00) since f is differentiable. Thus by Proposition
B.L1] we have that

TR0 +h) — )

e U
=3j(0)
= f'(0). (3.5)
By Definition we have, since f(0) € D(A) for all § € (0,T), that
o (Th) = 1)
tim TO=D ) — ). 36

Thus, considering (3.5 and (3.6)), taking the limit as A — 07 in (3.4) we see
that ¢ is differentiable from the right at # and that

g'(0) = AT(0 + B) f(0) + T(0 + B)f'(0).
That h is differentiable from the right at any 6 > 3, and that
W(0) = AT - B)f(0) +T(0 - B)f'(9),
follows in the same way. 0

Theorem 3.1.3. Let 0 < T < o0, and U be an open subset of X. If
A: X DD(A) — X is the infinitesimal generator of a Cy-semigroup, then a

classical solution of s a mild solution of .

Proof. Since u is a classical solution, u(t) € D(A) for 0 < t < T and u is
differentiable on (0,7"). Thus, from Proposition [3.1.2) we have that

(
_ / t < C Tt — 8) Au(s) + T(t — s)%u(s)) ds
T

_ /O T s) (%u(s)—Au(s))ds
= [7=rts.atsnas,

taking each derivative from the right and the final identity following from
the fact that u is a classical solution of ([1.13]). O
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3.2 Existence

In this section we consider an existence theorem from Pazy [17] for mild
solutions of the abstract Cauchy problem ([1.13)) in the case where A is the
infinitesimal generator of a compact semigroup 7'(t), t > 0.

This existence theorem follows from two classical results, namely, the
Arzela-Ascoli Theorem [8, IV.6.7] and the Schauder Fixed Point Theorem [8|
V.10.6]. For the convenience of the reader the results are given below.

Definition 3.2.1 (Equicontinuous Functions). Suppose S is a compact
metric space. A subset F' of C(S;X) is equicontinuous if, for every = € S
and e > 0, there exists a neighbourhood U, of x so that ||f(y) — f(z)|x <€
whenever f € F' and y € U,.

Theorem 3.2.1 (Arzela-Ascoli Theorem). Let S be a compact metric
space. Then a subset F' of C(S; X) is precompact with respect to the uniform
norm if and only if it is bounded and equicontinuous.

Theorem 3.2.2 (Schauder Fixed Point Theorem). Suppose K is a non-
empty convexr subset of X. If T is a continuous mapping from K to itself
such that T(K) is contained in a compact subset of K, then T has a fized
point.

The previous two theorems hold under more general assumptions. Namely,
the Arzela-Ascoli Theorem holds for any subset I of the set continuous func-
tions acting on a compact Hausdorff space S, and the Schauder Fixed Point
Theorem holds for any locally convex linear topological space X.

Theorem 3.2.3 (Local Existence). Let U be an open subset of X and let
0<T <oo. If f:[0,T)x U+ X is continuous and A is the infinitesimal
generator of a compact semigroup T(t), t > 0, then for every ug € U there
exists a t* = t*(up), 0 < t* < T, and a continuous mapping u from [0,t*] to
U which is a mild solution of on [0,t*].

Proof. Fix ug € U, ty € (0,7) and let M > 0 be an upper bound for the
non-empty set {||T(¢)]| | t € [0,%o]}.

We now show that there exists a p > 0 such that B,(ug) C U and the set
{f(t,v) |t €[0,%0], v € By(ug)} is bounded in X. Fix € > 0 and ¢ € [0, to],
and let f; = f(t,up). By the continuity of f we can find a §; > 0 and a p; > 0
such that if s € [0,t0] N (¢t — &, t + 6;) and v € B,,(up) C U then f(s,v) €
B(f). Let Iy = (t — 0y,t + &) for each ¢t € [0,t9]. Then {[; | t € [0,%0]}
is an open cover for [0,%5]. Thus there exists t1,ts,...t,, € [0, %] such that
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[0,t0] C UIti‘ Let p = min{p,,, ..., pr, }, then B,(ug) = ﬂ (uo). Thus
i=1 =

for all t € [0,t], if v € B,(up) then f(t,v) € B.(fi,) for some i = 1,...,n.
Thus we can find an N > 0 such that ||f(¢,v)]|x < N for all ¢ € [0,¢y] and
v € By(up).

Since T'(t) is a Cy-semigroup for ¢ > 0, we can find a constant b > 0 such
that

1T (t) o — wol|x < g for t € [0,0].

Let

o P }
t _mm{to’b7—2MN > 0.

Set Y = C([0,t*]; X), and
={u €Y | u(0) = up, u(t) € B,(uo) for t € [0,t*]}.

It is clear that Yj is a closed, bounded, convex and non-empty subset of Y.
We define a mapping F' on Y by setting

(Fu)(t) = T(t)ug + /OtT(t —s)f(s,u(s))ds, 0 <t <t

Using the Schauder Fixed Point Theorem we show that F' has a fixed point
in Yy. We begin by showing that if u € Y, then Fu € Y. It is clear that
(Fu)(0) = wy. We also have that Fu is continuous on [0,t*], since f is
continuous on [0,t*] x U and T'(t), t > 0, is a Cy-semigroup. Furthermore,
for each t € [0,t*],

IFa)(0) = ol = [T+ [ 70— 9)7(s.uts))ds —

X

< T (t)uo — wollx + / T(t — 5) (s, u(s))ds

X

A

< -+ t"MN

AN
bw

Thus F maps Yy into Yy. We now show that F' is a continuous mapping of
Yy into Y. Fix u € Yy and € > 0, and consider v € Yj and ¢ € [0,¢*]. Then

t

[(Fu)(t) = (Fo) (@)l x = i T(t = s)[f(s,uls)) = f(s,v(s))]ds

X

<M [ sls) = S o@lxds. 6D
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By the continuity of f and u, for every ¢ € [0,¢*] there exists a §, > 0 and a
p; > 0 such that if s € [0,#*] N (t — d;,t + 6,) and |Ju(t) — w|x < p; then

€

1 u(t) = fls,w)x < 57 (3.8)
and )
() = u(s)lx < 5.

Let I, = (t — &;,t + 6;) for each t € [0,+*]. Then {I, |t € [0,t"]} is an
open cover for [0,t*]. Therefore there exists t;,t,,...,t, € [0,t*] such that

[0,t] C UI;/. Let p = %min{p;,,...,p;,} and assume that sup ||u(s) —
7 1 n

i=1 s€[0,t*]
v(s)||lx < p. It follows that for all s € [0,#*], there exists an i = 1, ..., n such
that [[u(t;) — u(s)|x < p; and

[u(ts) = v(s)llx < llut:) = u(s)llx + lluls) = v(s)lx

Hence from (3.8]) we have that

1f (s, uls)) = f(s,0(s))lx <If(s,uls)) — f(ti, u(t)]| x
+ (i u(t) = fs,0(s)) ] x

€

< .
Mt~

Thus, considering (3.7), we have that there exists a p > 0 such that if
sup |lu(s) — v(s)||x < p then ||(Fu)(t) — (Fv)(t)|x < € for all t € [0,¢*].
s€[0,t%]
It follows that F'is a continuous mapping from Yj to Y.

We now show that F' maps Y onto a precompact subset of Y using the

Arzela-Ascoli Theorem. Consider the set
Z*={Fu|ue€Yy}

We need to show that Z* is an equicontinuous family of functions. Fix
s1, 82 € [0,t*] and u € Yy. Without loss of generality, assume that s; > so.
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Then

[(Fu)(s1)=(Fu)(s2)[[x < [[(T(s1) = T(s2))uollx

+ /081 T(s1—s)f(s,u(s))ds — /082 T(sg —s)f(s,u(s))ds .
<o) = Tl + || [ o1 = )75, u(s))ds

+ ‘ /0 D50 — 8) — T(sa — )]/ (s u(s))ds )
<[[(T'(s1) = T(s2))uollx + (51— s2)MN

+ N/o IT(s1 —s) — T(s2 — s)||ds. (3.9)

Note that right-hand side of is independent of u € Yy. Fix € > 0. Since
T(t), t > 0, is a Cy-semigroup there exists a §; such that if (s; — s2) < &y
then .

1T (s1) = T(s2))uollx < 3. (3.10)

If € > 12M N sy then
52
N/ IT(s1 —s) —T(s2 — $)||ds < 2N Msq
0

< (3.11)

Wl o

€
12MN

Now suppose € < 12M N s, so that v = € (0, s3). Then

/082 IT(s1 — 5) — T(s — s)|/ds — /052_7 T (s1 — 8) — T(s5 — s)||ds
+/_ (51 — 5) — T(ss — s)||ds

s2—7
<[ 171 = ) = T(sa = 9)lds + 201
0

£
6N
(3.12)

$2—=7Y
<[ IT 9 - Tl s)ds +
0

By Theorem [2.1.6} since T'(¢), t > 0, is compact for ¢t > 0, T'(t) is continuous
in the uniform operator topology for ¢ > 0. Since [7,t*] is compact, T'(t) is
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uniformly continuous with respect to the uniform norm on [y, t*]. Thus there
exists a do > 0 such that, for all v,y € [y,t*], if |r; — re| < d2 then

(3.13)
If0<s < s9g—then s; —s9+7v < s1—s < s1. Since s; > s9 then
7 <s1—8+7< s —s < s <t Thus (s —s) € [v,t"]. Similarly,

if 0 < s < sy —y then (s9 —s) € [y,t*]. Thus, by (3.13), if |s3 — s2] =
(51— s) — (52 — 8)| < g then

52— €
/0 [T (s~ ) = T2 — 5)lds < . (3.14)

Substituting (3.14)) into (3.12)) we get that if (s; — s2) < d2 then

3N’

Let 6 = min{él,dg, ?LMLN} Then, from 1) 3.10), (3.11) and (3.15)), we
have that if (s; — s2) < § then

/082 (51— 8) — T(ss — 8)||ds < —— (3.15)

[(Fu)(s1) — (Fu)(s2)|lx <e

Thus Z* is equicontinuous.

We have already shown that Z* = F(Yy) C Yp, so that Z* is bounded.
Thus by the Arzela-Ascoli Theorem, Theorem [3.2.1) Z* is a precompact set.
Since Yy is closed, Z* = F'(Y)) is contained in a compact subset of Yj.

Thus F' is a continuous mapping from Yj to itself, and F(Y}) is contained
in a compact subset of Yy. Therefore, by Schauder’s Fixed Point Theorem,

Theorem [3.2.2] F has a fixed point, say u, in Yp. Thus u € C([0,t], X),
u(0) = ug, u(t) € U for all t € [0,t*] and

u(t) = T(t)ug + /0 T(t—s)f(s,u(s))ds

for t € [0,¢*]. O

Note that the proof of Theorem [3.2.3| shows that under the conditions of
the theorem, we can find a solution to the integral equation

ut) = 9(0)+ [ Tt = ) (s, uls)is

for any continuous function g : [0, ) — X.
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We mention two weaknesses of this existence theorem. Firstly, the theo-
rem assumes that A generates a compact semigroup and yet, as previously
mentioned, it is difficult to prove that A generates a compact semigroup.

Secondly, existence theorems using semigroup theory are numerically

weak, as demonstrated by [7, Theorem 8.3.10]. This shows that if an estimate

M
of ||[R(A, A)|| differs from the required bound, that is, | R(\, A)| < T — o]
—w

when RA > w, by even an infinitesimally small amount, then a correspond-
ing semigroup does not necessarily exist. Thus it is easy to err when using a
numerical method to approximate R(\, A)x for x € X.

3.3 Asymptotic Behaviour

In this section we show that under certain conditions a local mild solution of
(1.13) can be extended to a global solution.

Note that if ' is a subspace of X, f : E+— R and a is a limit point of F,
then the limit superior of f(x) as z — a, denoted E f(z), is defined by

Tin f(a) = lim (sup{f(2) | 7 € B Bo(a)\ {a}).
r—a e—0t

Theorem 3.3.1. Suppose A is the infinitesimal generator of a compact semi-
group T(t), t >0, and f : [0,00) x X — X is continuous. If f maps bounded
sets in [0,00) x X into bounded sets in X, then for every ug € X a mild
solution (1.14) of (1.13)) can be extended to mazximal interval of existence
[0, tmax) - If tmax < 00 then

T [u(n)] = oo

Proof. Suppose u is a mild solution of ((1.13]) on [0, ;] and consider the prob-

lem

w(t) = Aw(t) + f(t + t1,w(t)), t >0
w(0) = u(ty) (3.16)

where w(0) = wu(t;) € X. Then, by Theorem there exists a ty =
ta(u(t1)) > 0 and a continuous function w : [0, ¢3] — X such that

w(t) =T(t)u(ty) + /0 T(t—s)f(s+t1,w(s))ds

is a mild solution to (3.16) on [0,3]. We now show that we can extend the

mild solution u of ((1.13]) to [0, + ).
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For t = t; + 7, 0 < <y, let u(t) = w(y). For t; <t < t; + to, with
t =t; + v, we have

T(t)ug + /0 T(t—s)f(s,u(s))ds =T (t1 + v)uo
+ /0 1 WT(tl +v—35)f(s,u(s))ds
=T ()T (t1)uo

/ T(ty +v—s)f(s,u(s))ds

o

+ / o Tty +v—s)f(s,w(s —t1))ds
=T(v) [T(tl)uo + /0 1 T(ty — s)f(s,u(s))ds

tity
+/ T(ty+v—s)f(s,w(s—t1))ds

T(y)ulty
t1+’Y
+ T(ty+v—s)f(s,w(s —t1))ds.

(3.17)

—

Letting a = s — 14, gives
T(tyuo + / T(t — ) (s, u(s))ds =T()u(ts)

+/07T('y—0z)f(oz+t1,w(a))da

=w(7)
=u(t).
Thus w is a mild solution of ((1.13) on [0,#; + to].
Suppose [0, tmax); tmax < 00, is the maximal interval to which the so-

lution can be extended. For the sake of attaining a contradiction, sup-
pose tlitm |u(t)|] < oo. Then there exist constants M, K > 0 such that
_)

IT(t)]] < M and ||u(t)|| < K for all t € [0,tyax). Furthermore, by our as-
sumption that f maps bounded sets in [0, 00) x X into bounded sets in X,
there exists an N > 0 such that ||f(¢,u(t))]] < N for all t € [0, tyay]. Fix
e>0and 0 <t <t <ty Define p € (0,t) by

. € t
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Then
umw—uwmxzww%m+4fﬂﬂ—@ﬂaﬁ@ﬂs
Tty — /0 T(t — 5)f (s, u(s))ds

X

SMﬁ%m—T@Wﬂx+Hl$TW—SU@w@D

X

H/ Tt —s) = T(t = s)]f (s, uls))ds

H/t T(t' =) =T(t = 5)|f (s, uls))ds
<||T UO— ()UJOHX“‘(t _t)MN

X

t—p

+N/ Tt —s)—T(t—s)|ds
0
¢

+N [T =)l + 1T = s)llds
t—p

<|IT(¢)uo — T(t)uollx + (' —t)MN +2MNp

+ N/O TNr = ) — Tt — 8)|ds. (3.19)

By the definition of a compact semigroup, T'(t), t > 0, is a Cyp-semigroup.
Thus there exists a d; > 0 such that if (¢’ —¢) < 0; then

17 ()0 = T(Buollx < 5. (3.20)

Since T'(t), t > 0, is a compact semigroup, it is continuous in the uni-

form operator topology for ¢ > 0 by Theorem [2.1.6, Hence it is uniformly

continuous in the uniform operator topology on the compact set [p,¢']. If

0<s<t—pthen (' —s) € [p,t] and (t —s) € [p,t']. Thus there exists a
d2 > 0 such that if [(t —s) — (t — s)] = (¢ — t) < J5 then

€
4Ntmax

IT(t —s) — Tt — s)|| < (3.21)

for all s € (0,¢—p). Let 6* = min{él,éz,ﬁ}. Then (3.18), (3.20), (3.21
and (3.19) imply that if (¢’ —t) < (fmax — t) < 0* then

lu(t) = u(t)]|x <e
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Therefore lim wu(f) = u(tmax) exists. But then we can apply the same

—tmax

procedure as at the beginning of the proof to extend the solution u(t) to

[0,0] where b > tn.x, contradicting the fact that [0,#m.x) is the maximal

interval of existence. Thus . litm l|u(t)]| = oo. O
—

max

Corollary 3.3.2. Suppose A is the infinitesimal generator of a compact semi-
group T(t), t >0, and f : [0,00) x X — X is continuous. If f maps bounded
sets in [0,00) x X into bounded sets in X, and there exist two real-valued
locally Lebesque-integrable functions ki and ko on [0,00) such that

1 w)llx < k(@) ]lullx + ks ()

forallt € [0,00) and u € X, then, for every ug € X, any local mild solution

(11.14)) of (1.13) can be extended to a global mild solution.

Proof. Fix ug € X. By Theorem there exists a t* = t*(ug) such that a
local mild solution wu(t) of exists on [0,t*]. Assume that [0, ¢,.x) is the
maximal interval of existence of u(t) with t,,.x < co. There exists a constant
M > 0 such that ||T(t)|| < M for all ¢t € [0, tpay]. Let

t
c%@:wmm+M/@@%
0

for t € [0,00). Then for ¢ € [0, tax)

IMMXZW®W+[TWﬂﬁ@MW%

X

< IT(H)uollx + /Ot IT(t — 5)f(s,u(s))||xds

< Ml + 1 156l

< Mljuglx + M/Ot o (s)ds + /Ot M (s)][us)| xds

= (U, (1) + /Ot ME(s)||u(s)||xds. (3.22)
By Gronwall’s Inequality, Theorem , gives

¢
lu(®)||x < v, (t) +/ ozuO(s)Mkl(s)efs Mk (r)dr (3.23)
0
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for all t € [0, timax). Define @, (t) : [0, 00) — [0, 00) by

D, (1) = Qg (1) + fot O‘UO(S)M]CI(S)GI: Mia(dr s, t € [0, tmax)
" B Qo (tmax) + fomax aUO(S)Mkl (8)6fstmax Mkl(r)drds’ te [tma)n OO)

Clearly ®,,(t) is continuous on [0, 00) and from ([3.23))
[u(@)]x < Puy (2)

for t € [0, tmax). It follows that t@ |lu(t)||x < oo contradicting Theorem
%

max

3.3.1 Hence any mild solution u of (1.13)) can be extended to a global

solution. O

3.4 Regularity

Recall from Section that a mild solution of need not be a classical
solution of since it need not be differentiable. Indeed, a mild solution
is classical if and only if it is continuously differentiable, see [2, Propositions
3.1.2 and 3.1.9].

In this section we prove a regularity result for the mild solutions of .
This result gives sufficient conditions on f and A for the mild solutions of
to be classical solutions. In particular, f is required to be Holder
continuous. See Appendix [B]for the relevant definitions and results regarding
Holder continuous functions.

Before proceeding to the main result for the regularity of mild solutions
to , we consider useful regularity results for the homogeneous abstract
Cauchy problem and the linear non-homogeneous abstract Cauchy problem.
We do not prove the results concerning the homogeneous problem for the
sake of presentation, but we do for the linear non-homogeneous problem, as
the result for the semi-linear case relies heavily on it and it lends intuition
to the relationship between the mild and classical solutions of . This
section is based on work done by Pazy in [I7] and [I8] Sections 3.1-3.2], and
Arendt et al. in [2].

In this section X is a complex Banach space.

The Homogeneous Problem

The homogeneous case of the abstract Cauchy problem is given by

ug(t) = Au(t), t >0
u(0) = ug (3.24)
with ug € X.
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Remark 3.4.1. If A: X D D(A) — X is the infinitesimal generator of a Cy-
semigroup T'(t), t > 0, then u(t) = T'(t)uo is a mild solution to (3.24). If ug €
D(A) then u(t) = T(t)up is a classical solution to (3.24)), see [2, Proposition
3.1.9 (h)]. Continuously differentiable semigroups give us a stronger result.
If A is the infinitesimal generator of a continuously differentiable semigroup
T(t), t > 0, then for all ug € X the function u(t) = T'(t)ug is a classical
solution to . It follows that if A is the infinitesimal generator of an

analytic semigroup e‘4, ¢ > 0, then for all ug € X the function u(t) = e'ug

is a classical solution to (3.24)), see [2, Corollary 3.7.21].

The Linear Problem
We now consider the linear non-homogeneous abstract Cauchy problem

u(t) = Au(t) +g(t), t >0
u(0) = ug (3.25)
where uy € X and ¢ : [0,00) — R is independent of u. Assume A : X D

D(A) — X is the infinitesimal generator of an analytic semigroup e, ¢ > 0.
Then

¢
u(t) = euyg +/ e=)4g(s)ds (3.26)
0

is a mild solution to (3.25)).

The idea is to first prove that if ¢ is Holder continuous, then a mild

solution ([3.26]) of (3.25)) is a classical solution of (3.25)). We then show that a
mild solution (3.26)) is Holder continuous, which enables us to prove a similar

result for the semi-linear case where g acts on w.

Theorem 3.4.1. Let A be the infinitesimal generator of an analytic semi-
group e, t > 0. If, for some T > 0, the function g € L(0,T; X) is Holder
continuous on (0,T), then for every ug € X the mild solution to prob-
lem 15 a classical solution.

Proof. Fix ug € X. We split this proof into two parts:
1) We show that if

is an element of D(A) for t € (0,7), and Av(t) is continuous on (0, 7)),
then every mild solution

t
u(t) = ey + / e =94g(s)ds = eug + v(t) (3.27)
0
of (3.25)) is a classical solution of ([3.25]).
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2) We show that if ¢ satisfies the conditions stated in the theorem then
v(t) € D(A) for t € (0,T) and Aw(-) is continuous on (0, 7).

We begin with the proof of part 1. Suppose that u(t) is a mild solution to

the linear abstract Cauchy problem ([3.25)), that is, u(t) satisfies (3.27)). Fur-
thermore, assume that v(t) € D(A) for all t € (0,7T) and Av(-) is continuous
on (0,7). Fix t € (0,7) and h > 0 is such that ¢t + h € (0,T). Then

t+h
W ol ) o] < [ g (s)ds
t+h t t th
:h—l/ etHh=940(5)ds — h_l/ e~ g(s)ds — h‘l/ =44 (s)ds
0 0 !

¢ t
:hfl / e(tJrhfs)Ag(S)ds . h*l / e(tfs)Ag(S>dS

0 0
=h~ (e — Du(t). (3.28)
Since v(t) € D(A) for t € (0,T), we have

lim A7t (e" — DNo(t) = Av(t). (3.29)

h—0+

Furthermore we have

t+h
Hh_l/ e(t+h_5)Ag(s)ds —g(t)
t X
t+h
_ Hh [ e t) - gt
t

t+h
< Hh—l / [6(t+h—s)Ag(s) _ €(t+h_S)Ag(t)]d8
t

X

X

N Hh_l /tt+h[€(t+h—s)Ag(t) — g(1)|ds (3.30)

X

Fix € > 0 and let My be an upper bound for the set {|[e**| | 0 < s < T'}.
Then

t+h
Hh—l / [e(t-l-h—s)Ag(S) . €(t+h_S)Ag(t”dS
t

X
1 bh h A h A
<h / eltHh=94g(s) — e 0(1)[| cds
t

M. t+h
<2 [ o) - g(0lxds
t
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1 t+h
Since g is continuous, by Proposition |A.1.5] hlim+ 7 / llg(s) — g(t)||xds =
—0

0, thus there exists a ¢; > 0 such that it h < d; then

t+h
Hh—l / [e(t-i—h—s)Ag(S) . e(t—i-h—s)Ag(t)]dS <
t

(3.31)

DO | ™

X

Furthermore, by letting v =t + h — s we get

it [ et nate — gtojas| <[ [etato - gt

X

X 0
h
<7t [ e g(e) - gto)
0

Since e*4, v > 0, is a Cy-semigroup then v — e*4¢g(¢) is continuous, and thus

h
Bochner integrable. Hence, by Proposition |A.1.5) lim h_l/ le*?g(t) —
0

h—0t

g(t)||xdv = 0. Therefore there exists a d; > 0 such that if A < Jy then

I | e =9 g () — g(t)]ds

Substituting (3.31)) and (3.32)) into (3.30]) gives that if h < min{d;, d2} then

<
X

. (3.32)

DO | ™

t+h
Hh_l/ eHh=)44(5)ds — g(t)|| < e
t X
Thus
t+h
hlir& h_l/ eEh=944(5)ds = g(t). (3.33)
¢

Substituting (3.29) and (3.33)) into (3.28)) and taking h — 07 gives that v(t)
is differentiable from the right on (0,7), and

L) = Tim A= olt + h) — o(t)] = Av(t) + g(b). (3.34)

—
dt h—0+

Furthermore, since Av(t) and ¢(t) are continuous on (0,7), it follows that
v(t) is continuously differentiable on this interval, and

v(0) = 0. (3.35)

From Remark since A is the infinitesimal generator of an analytic
semigroup e, ¢ > 0, then e is a classical solution to the homogeneous
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abstract Cauchy problem (3.24)) for all uy € X. Therefore e*4uy is continu-
ously differentiable on (0,7") and

%y = wy. (3.36)

Thus, from (3.27), (3.35) and (3.36), we have that w(0) = wuo, and u(t)

is continuously differentiable on (0,7") for each uy € X. Furthermore, from

(3.27)), Theorem (1v) and ([3.34]), we have

d d ia
Eu(t) = %[6 up + v(t)]

= Ae'ug + Av(t) + g(t)
= Au(t) + g(t)

for all up € X and t € (0,7). Thus u(t) is a classical solution of (3.25)).
We now prove part 2. For ¢t € (0,7) we have

v(t) = /o e =g (s)ds = vy (t) + vo(t)

where
and

From Theorem [1.4.3 (ii) we have that vy(t) € D(A) for each t € (0,T) and
that

Avs(t) = (€ = I)g(t).

Since g(t) is continuous on (0,7), it follows that Awvy() is continuous on this

interval.
We now show that vy (t) € D(A) for each ¢t € (0,T) using the fact that A
is closed. Fix t € (0,7) and let € € (0,t). Define the function vy (t) by

t—e
vt = [ gls) ~ glods
0
Clearly

e—0Tt

lim vy (t) = /Ot e g(s) — g(t)]ds = vy (t). (3.37)

We now show that vy () € D(A). Let f(s) = e=*)4[g(s)—g(t)], s € [0,t—€].
By Theorem (1) we have that f(s) € D(A) for each s € [0, — €.
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Furthermore, for any s1, s, € [0,t — €], assuming without loss of generality
that s; > s9, we have

1F(s1) = f(s2)llx =lle"™[g(s1) = g(8)] = e~ [g(s2) — g()]]|x

<[l (Hg(sl) — e g (s)| x

+ e 24 g(s1) — g(s2)]llx + [lg(t) — et =2 g(2)] Hx>-

It follows that f is continuous on [0, ¢ — €] since e*=*)4 is bounded on [0, ¢ — €|

by Theorem [2.3.5] (iii)(a), e, t > 0, is a Cy-semigroup by Theorem g

is continuous, and from Proposition [3.1.1] Thus f is Bochner integrable.
For s € [0,t — €] Theorem (iv) gives that

Af(s) = A" [g(s) — g(#)]
~ s o) - ate

Since s € [0,t—¢] then (t—s) € [e,t] and thus, by Theorem [2.3.5] (iv), Ao f is
continuous on [0,t—e¢|. Thus Ao f is Bochner integrable. Hence, by Theorem

v1.e(t) € D(A) and

Al = [ Ag(5) — gt (3.39)

¢
We now show that / Ae'=94g(s) — g(t)]ds exists and that
0

lim Av, (t) = /Ot Ae=94g(s) — g(t)]ds.

e—0t

By Theorem [2.3.5 (iv),

Ae=M[g(s) — g(t)] = { 0 tci S)e(t‘s)"‘} l9(s) — g(t)]

is continuous on [0,¢). Furthermore, by Theorem [2.3.5| (iii)(c), there exists
constants Cj; > 0 and w € R such that

1A= [g(s) — g(®)][lx < Crae ™t~ 5) 7 g(s) — g(t)llx  (3.39)

on [0,1). Since ¢(t) is Hélder continuous on (0, T") there exist constants C' > 0
and « € (0,1] such that

lg(s) —g(@)llx < Cls —t|° (3.40)
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for all s € (0,¢]. Thus, by Proposition [B.0.5, we can take o < 1. From ((3.39)
and (3.40) we have that

1A= [g(s) — g(#)]l|lx < Le DI (t — 5)27 (3.41)

t

for s € [0,t) with o < 1 where L = C,,C. Thus [ Ae""4[g(s) — g(t)]ds
0

exists for every s € [0,t¢). Now from ({3.38) and (3.41)) we have

X

/ " AIg(5) — g(t))ds — Ay (1) / " A (s) — gt

0

X

< / 1A€A [g(s) — g(t)]lxds

—€

t
< / Le(oﬂrl)(tfs) (t . S)aflds
t—e

for s € [0,¢) with a < 1. Let K = max{L,e“ "™ L} Then K is independent
of € and

/ " Ae9[g(s) — g(t)]ds — Avy. ()

¢
< K/ (t—s)* 'ds
X t—e
K

= —¢™. 3.42
~ (3.42)

Thus .
lim Av, (t) — /O Ae=947g(5) — g(8)]ds. (3.43)

e—0F

Since A is closed, (3.37) and (3.43)) give that vi(t) € D(A) and

Anio) = | " Ae9I4g() — g(t))ds.

We now show that Awv; is continuous on (0,7"). From it follows
that, for each 6 € (0,7), Avy. — Av; uniformly on [0, 7)) as e — 0F. Since
Awy () is continuous on (0,T) for all e € (0,7T), it follows that, taking 6 — 0,
Aw;(t) is continuous on (0,7).

Thus v(t) € D(A) for t € (0,T) and Av(-) is continuous on (0, 7).

[

The following lemma will be useful to us in the proof of a regularity result,
similar to the one above, for the semi-linear problem.
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Lemma 3.4.2. Suppose A : X D D(A) — X is the infinitesimal generator
of an analytic semigroup e, t > 0, and g € L*(0,T;X). If u(t) is a mild
solution to the linear Cauchy problem (3.25)), that is, u(t) satisfies (3.26]) with

ug € X, then, for every e € (0,T), u(t) is Hélder continuous with exponent

1

5 on [¢,T). That is, for every e > 0 there exists a constant K. > 0 such that

lu(t) = u(s)llx < Kelt —s|?
forallt,s € [e,T). Furthermore, if ug € D(A) then u(t) is Holder continuous
on [0,T) with exponent 5.
Proof. Fix e € (0,T). Let ||e*4|| < M on [0,T). From Theorem [2.3.5 (iii)(c)
there exist constants w € R and C}; > 0 such that
||A6tA|| S 0171€(w+1)tt_1 S Ct_l (344)

on (0,7") where C' = max{C' 1, C’Lle(w“)T}. If z € X then from 1) the
mapping [e,T) > t — Ae!z belongs to L!([e, T); X). Thus, from Theorems

(17) and (1), and using (3.44)), if t,¢ + h € (0,T") then

||€(t+h)A.’L’ . 61514‘%,”)(_ _ ||6tA<€hAl‘ o CL’)HX

h
= etA/ Ae*Axds
0

X

h
= / Aeltt9)A2ds

X

0
t+h

= Ae™ xdr

t

X

t+h
< [ lacH el xar
t

t+h
< / Cr 12| xdr
t

t+h
< CHIL‘HXt_l/ dr
¢

< Ot 'hlz| x,

so that
|etHMA — et < hot L. (3.45)

In particular, if ¢, + h € [¢,T) then
hC

e+ — )] <
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Thus ¢ +— ez is Lipschitz continuous on [¢, T) for all z € X.
However, if x € D(A) and ¢,t+h € [0,7), then by Theorem (i) and
(7i1)(a) there exists an M* > 0 such that

t+h t+h
/ A" wdr / e Axdr
¢ ¢ X

t+h
< / ler Al xdr

/ M*||x|| xdr

= hM*||z||x,

X

where M* is an upper bound for the bounded operator |[e“AA| on (0,T).
Thus t — ez is Lipschitz continuous on [0, 7T) for all z € D(A).

Hence, Proposition gives that the first term on the right-hand side
of

t
u(t) = eug —|—/ et~ g(s)ds
0

will be Holder continuous with exponent 3 on [¢,T) if up € X, and on [0 T)

if up € D(A). Hence, for u(t) to be Holder continuous with exponent ; on

[e,T) and [0,7T) for uy € X and uy € D(A) respectively, it is sufﬁ(nent to
¢

show that v(t) = / elt=)4¢(s)ds is Holder continuous with exponent 1 on

0
[0,7).
To do this fix t € [0,7) and h > 0 such that t + h < 7. Then

t+h t
v(t+h) —o(t) :/ et h=944(5)ds — / et~ g (s)ds
0 0
t+h
_ / €(t+h_S)Ag(8)d8
t

t
+/ [etFh=94 _ o(t=9)4) g (5)ds. (3.46)
0

We deal with each integral in (3.46]) independently. Consider the norm of
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the first integral. By the Cauchy-Schwartz inequality

t+h t+h
[ eeoitgtsas| <ar [ ol
t X t

<ar([7 ds)é ([ ||g<s>||§<ds>é

< Mh||g]l c207x)
= K h? (3.47)

where K1 = M]||g|| z2(0,7;x)-
Before we proceed with the second integral, note that

|e®MA — et < 2M (3.48)
on [0,7). Thus, from and (3.48), letting C* = max{C,2M} and
w(h,t) = min {1, %} we get that

|eFMA — et < C*p(h, t). (3.49)
Now, by the Cauchy-Schwartz inequality and we have

. t
[l g yas|| < [ et g s
0 X 0

t
<c* / iyt — )lllg(s) 1 xds
0

<C* ( /0 t pu(h,t — s>2ds> 2
(f Hg<s>u§(ds)é

t 3
<C*|gllz20,7;x) (/ wu(h,t — s)2ds) .
0

(3.50)
Letting 7 =t — s we have
t t
/ w(h,t — s)ds :/ w(h, 7)2dr
0 0
h o0 h2
S / dr + / —2d7'
0 o T
= 2h. (3.51)
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Substituting (3.51)) into (3.50]) gives
t
‘ / [etFh=94 _ ot=9)4) g (5)ds|| < Kyh? (3.52)

0 X

where Ky = \/§O*||gH c2(0,1:x)- Finally, substituting 1} and 1' into
(3.46) gives that

ot + h) — v(t)||x < K*h2

where K* = K + K,. Hence v(t) is Holder continuous with exponent £ on
[0,T"). Therefore

u(t) = T(t)ug + /0 T(t—s)g(s)ds

is Holder continuous with exponent 3 on [e, T') for ug € X, and on [0,T) for

Uy € D(A) ]

The Semi-Linear Problem

We now proceed to the semi-linear problem (1.13]), and show that if f is
Holder continuous then a mild solution ([1.14]) of (1.13)) is a classical solution

of (LT3,

Theorem 3.4.3. Suppose T > 0, U is an open subset of X and A : X D
D(A) — X is the infinitesimal generator of an analytic semigroup e, t > 0.
If f:]0,T) x U — X is Hélder continuous in both of its variables, that is,
there exist constants K > 0 and « € (0, 1] such that

[f(t1,u1) — flto,ua)llx < K([tr —ta|” + [lur — ua[|%) (3.53)

for every ty,ta € [0,T) and uy,us € U, then every mild solution u(t) of (1.13)
is a classical solution of ((1.13)).

Proof. Suppose u(t) is a mild solution to (L.13), that is
u(t) = ey + /Ot e DA f (s, u(s))ds (3.54)
for t € [0,T). If we let g(t) = f(¢,u(t)) for each ¢t € [0,T), then
u(t) = eug + /t e~ (s)ds (3.55)
0
is a mild solution of problem (3.25).
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We now show that u(t) is Holder continuous with exponent j% on [0,7).
By Lemma u(t) is Holder continuous with exponent 3 on [£,7). Thus
there exists a constant C; > 0 such that, if ¢1,%5 € [ ,T) then

Jut) —ultz)|x < Cilts — tz\%- (3.56)

Fort € [0,2F), let v(t) = u (t + %) and h(t,v(t)) = f (t + g, v(t)). Then,

for t € [0, %), we have

v@):u(ﬁ+§>

:e(t+%>Au0 n /t+3 e<t+%_s)Af<S, u(s))ds
0

w0l

_etAegAu + etA/ 6(%_S)Af(S,U,(S))dS
0

t+L .
—I—/ e(H?*s)Af(s,u(s))ds

t+% -
=y (g) +/ e(H?*S)Af(s,u(s))ds. (3.57)
Letting a = s — g, 1) gives

T ¢ T T
v(t) =e'u + / A (ot —ula+ =) )da
3)7 ), 3 3
T t
=My <3> —i—/ e (a, v(a))de.
0

Thus v(t) is a mild solution to the problem

V'(t) = Av(t) + h(t,v(t)), t € <0, E)

Let gn(t) = h(t,v(t)) for t € (0,2"

, %), then v(t) is a mild solution to the
problem

V(1) = Av(t) +gnlt). 1 € (O’ §>

3
2(0) = u (%) |
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v(t) is Holder continuous with exponent £ on [%, 2F).

Thus, by Lemma 5> 3

Since u(t) = v (t — = |, then u(t) is Hélder continuous with exponent 1 on

[0, %) Thus there exists a constant Cy > 0 such that, if ¢1,t5 € [0, g) then

lu(ty) — ults)llx < Calty — tal2. (3.58)
Now we have that v is Holder continuous with exponent on both [0 )
and [, T). Suppose t; € [0,%) and ¢, € [£,T). Then (3.56) and - glve
that
T T
futt) = el < ate) — (5 )] + o (z) ~ u(ts)
X X
T 12 2
< Cylty — — Cy|te — —
s Gzlhi=7 + O |2 1
T2 T2
§rnaX{C'1,C'2} (tl—z + tg—z )

S Qmax{C'l,CgHtl - t2|%

Thus u(t) is Holder continuous with exponent 3 on [0, 7).

By Proposition f and w are continuous on [0,7], and thus g €
L£10,7T; X). Furthermore from and the fact that u(t) is Holder con-
tinuous with exponent = on [0,T), there exist constants D > 0, K > 0 and
a € (0, 1] such that if tl,tg € [0,7) then

lg(t1) — g(t2)llx = [ (tr, ultr)) — f(t2, ulta2))l[x
< K ([t = tof* + [Ju(ty) — u(t2)[%)
< K ([t — o] + D[ty — to]2%)
= K(|ty — o] 2% + DY)t — t,]2°
< Oty — ty)3
where C = K(T2* + D®). Thus g is Holder continuous on [0,7)). Hence,

by Theorem (3.55) is a classical solution to the linear Cauchy problem
(3.25]) for each uy € X. It follows that (3.54) is a classical solution to the

abstract Cauchy problem ([1.13]). ]
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Chapter 4

Example

4.1 Biological Model

Many biological organisms are heavily reliant on the stability of their core
body temperature to survive. Being able to maintain a constant body tem-
perature is therefore imperative. Warm-blooded animals like elephants cool
themselves off by flapping their ears, splashing themselves with water, and
covering themselves in a layer of mud or dust. Cold-blooded animals like
snakes lie on rocks in the sun to warm themselves up.

Apart from regulating their body temperatures by making use of their
environments, these organisms may also have an internal thermoregulatory
mechanism. In humans these mechanisms work to maintain a core body
temperature averaging 36.2°C, “with most of the internal temperatures con-
trolled within the range of 35 — 39°C”, [26, Introduction]. An example of
this is the way humans constrict their blood vessels near the skin and shiver
if they get too cold, or dilate their blood vessels near the skin or sweat if
they get too hot. Often these mechanisms will only operate when their body
temperature has exceeded, or dropped below, some threshold limit.

Tests done by Wyndham and Atkins [25] show that in humans “sweat
rate does not increase until rectal temperature rises above a threshold value
of 36.5°C; thereafter the increase in sweat rate depends upon the level of
mean skin temperature, being greater the higher the mean skin temperature
is”. Furthermore, they claim that “sweat rate does not increase markedly un-
til mean skin temperature rises above 33°C”. There has been “considerable
disagreement as to whether the peripheral or core temperature is the control-
ling factor for the sweat mechanism”, [24, Introduction]. Therefore further
investigations and refinement of the mathematical models for perspiration as
a thermoregulatory mechanism may be necessary.
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We consider a simple mathematical model for the distribution of heat on
the skin of humans who are at rest, with particular consideration of perspi-
ration as a thermoregulatory mechanism. Suppose 2 € R? is an open and
bounded set representing the spatial domain of the skin surface in question.
We suppose that the boundary 902 of 2 is smooth, that is, 92 € C*°. For
some fixed T' > 0, let Qp = Q x (0,7). Let u(z,t) represent the skin temper-
ature at point z € Q and time ¢t € (0,7"), and L : Q — R the threshold limit.
That is, perspiration starts at = € 2 and ¢t € (0,7) whenever u(z,t) > L(z).
The function ug is the distribution of heat on the surface of the skin at
time ¢ = 0. We assume that we have Dirichlet boundary conditions, that is,
u(z,t) =0 for x € 9N for each t € [0, 7). A biological interpretation of this
assumption is that we take the average heat at the surface of the skin, say
H € R, to correspond with u(x,t) = 0 and assume that the skin surrounding
the area in question remains at that temperature. In the case of Wyndam
and Atkins [25], L(z) = 33°C — H for all x € Q. We consider only the
diffusion across the skin due to the laws of thermodynamics, as described by
the heat equation

0 2
au(m,t) = Vu(x,t),

and the contribution of perspiration, given by p(z,t), when the skin temper-
ature exceeds the threshold L(z).

This provides us with a simple semi-linear parabolic problem ([1.10)) given
by

uy(z,t) = V2u(x,t) + p(z,t) max{u(z,t) — L(x),0}, (z,t) € Qr
u(z,0) = ug, v € Q (4.1)
u(z,t) =0, x € 09

where p(x,t) : Q x [0,00) + R~ is assumed to be continuous and uniformly
bounded on its domain, and L € £3(f2). It is clear that the operator V? is
in divergence form (1.11)) taking «; ;(x,t) = 1, f(z,t) = 0 and y(z,t) =0
on Qp, with 7, j = 1, 2. Furthermore, it is clear that the operator — — V2 is

ot

parabolic on Q7.

We reformulate this problem as an infinite-dimensional dynamical system,
in the form of an abstract Cauchy problem . Our Banach space X, as
referred to throughout this thesis, shall be taken to be the Hilbert space
L£2(2). Due to the Dirichlet boundary conditions, we take D(A) = H} () N
H?(Q). Let u(t) : [0,T) — L*(Q) be the state of u at time ¢, that is,

u(t) :x € Q— u(t)[z] = u(z,t).
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Furthermore, define p : [0,T) — £2() by
p(t) :x € Q p(t)[a] == p(z,t) €R
for each ¢ € [0,T) and f : [0,T) x £2(Q) — L£2(2) by
Ftou) -z € Qs f(t,u)[z] == p(x, t) max{u(z, t) — L(z),0}.

Then
f(t,u(t)) = p(t) sup{u(t) — L,0}

for each ¢t € [0,T) and our problem is given by

uy(t) = V3u(t) + f(t,u(t)), t € (0,7)
u(0) = up. (4.2)

Remark 4.1.1. The fact that f maps [0,7) x £2(Q2) into £3(Q2) and is con-
tinuous is non-trivial

Firstly, for t € [0,T) and u € £%(Q), f need not belong to £2(2) since the
product of two functions p and u belonging to £2(£2) is itself not necessarily
contained in £?(Q2). However, in our case it is true. For all ¢ € [0,T"), since
p is uniformly bounded on Q x [0,7), there exists a K > 0 such that

Ip(z, 1) < K

for all z € Q and ¢ € [0,T). Thus for any ¢ € [0,T) and u € L*(Q),

/ f(t,u)de = /p(x,t)2 max{u(z) — L(x),0}*dx
Q Q

< K? /Q max{u(z) — L(xz),0}2dz.

Since L € £%*(Q) and u € L*(Q), the integral exists and is finite so that
f(t,u) € L2(Q) for all t € [0,T).

Secondly, f is continuous. It is easily verified that for every uy, uy € £L2(Q)
and z € 2

| max{u(z) — L(z),0} — max{us(x) — L(x),0}|
< fur(2) = L(z) — [uz(x) — L()]|
= [ur(x) — uz(z)]. (4.3)
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Fix € > 0, uy € £%(Q) and t, € [0,T). Then, for every t; € [0,T) and
up € L) we have

[ f(t1,u1) — f(ta, U2)||£2(Q)
<t un) — f(t, u2)ll ez + [1f (B, ua) — ft2, ua)l c2 (0

- < /Q (e, t1)2[max{us (z) — L(z), 0} — max{us(z) — L(), 0}]2619;)

1
2

1

< (K2 /Q s () —u2(x)|2d:13)%

1 2
T (ualZagy + 1Z02y)? ( JARs —p(x,t2>12dx)
1
=K |Juy — sl 20 + ([[u2llZz0y + 1 L1 Z22()2 Ip(t) = p(t2) | 220y (4:4)

Since p is continuous on Qx [0, T') there exists a d; > 0 such that if [t; —t,| < &

then
€

T
2(”“2”%2(9) + ”LH%Q(Q))2

€ . .
Let d; = 5. Then from 1; and 1; it follows that if [t; — to| < & and

lu1 — ug|| £2() < 02 then

[p(t1) — p(t2)llc2(0) < (4.5)

Hf(tla ul) - f<t27 U2)H[,2(Q) < €.

Thus f is continuous on [0,7) x L£%(Q).

4.2 Mild Solutions of the Biological Model

We begin this section by showing that a local mild solution to the semi-
linear problem exists. We then consider the asymptotic behaviour and
regularity of this solution. Finally, we consider whether solutions to more
complex models of the mechanism of sweating exist.

Let 22_(\/9) be the complexification of £2() as defined in Definition [2.5.1
By Theorem [2.5.2| the vector space £2(€2) is a complex Hilbert space with

inner product (-, -) ) 3 defined in Theorem [2.5.1] Let A be the complexi-

fication of A = V? acting on £2(f2), as in Definition [2.5.2]
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4.2.1 Existence

We begin this subsection by showing that the operator A satisfies the condi-
tions of the Hille-Yosida theorem, so that a mild solution to the homogeneous
problem exists. We then use results from Section [2.5| on the complexifica-
tion of operators to show that A is the infinitesimal generator of an analytic
semigroup and that a local mild solution to the semi-linear problem (4.2)
exists.

Theorem 4.2.1. The closure of the domain D(A) = HL(Q) N H*(Q) of
A =V? on LX) is L2(Q), and A is closed.

Proof. Since C§°(€2) is dense in £2(Q) and C5°(Q) C D(A) then L2(Q) =
D(A).

Furthermore, since A is an elliptic operator in divergence form, then by
Theorem the resolvent set p(A) of A is non-empty. Thus by Theorem
the operator A is closed.

]

Theorem 4.2.2. The resolvent set p(A) of A: D(A) — L3(Q) contains RT,
and there exists an M > 0 such that

IAR(A A <M, A>0.
Proof. Suppose Blu,v] : H}(Q) x H}(Q) — R given by

2
Blu, v] —/ Z Ug, Vg, dT
Q!

i,7=1

is the bilinear form corresponding to the uniform elliptic operator —A =
—V? in divergence form (2.10). Then it follows directly from the ellipticity
condition (2.11)) on A that there exists a # > 0 such that

Ollullry (o) < Blu, u] (4.6)

for u € H}(Q). If we compare (4.6) with Theorem and the proof of
Theorem in particular , then we can choose the w in Theorem
[2.2.2)to be 0, and the resolvent set p(A) of A contains the ray {\ € R | A > 0}.

We now show that there exists a M > 0 such that for all A > 0 and
fe L)

_ M
lellez@) = IO = A) 7 fllexe) < = 1fllez.
Let A > 0 and u € D(A) so that
(M —VHu=f (4.7)
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where f € £%(Q). Multiplying both sides of (4.7) by u and integrating, we

get
/)\uzdx—/(VQU)ud:v:/fudx.
Q 0 Q

Applying Integration by Parts gives

Mullz @) + IVl Zz2 () = (f ) c2@)-

Thus by the Cauchy-Swartz inequality

MullZe ) < () 2@ < Lz llullcz@
and we have that ]
lulle2@) < 1 lle2- (4.8)
The result follows upon setting M = 1. O]

Theorem 4.2.3. The operator A is the infinitesimal generator of a contrac-
tion Co-semigroup T(t), t > 0. That is, the semigroup satisfies ||T(t)| < 1
fort > 0.

Proof. From Theorems [4.2.1] and 4.2.2] the conditions of the Hille-Yosida
Theorem, Theorem [1.4.8, are satisfied, with M =1 and w = 0. O

It follows that, for all ug € £2(2), u(t) = T(t)ug, t > 0, is a mild solution
to in the case where f = 0.

Recall Figure 2.1} We now have all the required knowledge to show how
the flow-chart works out in practice. Consider the complexification, A of A,

—_——

acting on L£2(12).

Theorem 4.2.4. The complezification A of A is a sectorial operator.

Proof. By Theorems [4.2.3 and [2.5.11| the resolvent set of A contains the half-
~ M
plane [I={A € C : A > 0} and |R(\, A)|| < — for A € II. Thus, for any

A

e>0 }
{AeC : RA>¢€} Cp(A). (4.9)

Furthermore,
~ 1

IR(A, A < o (4.10)
for all A € C, R\ > e. From (4.9) and (4.10)), Theorem gives that A is
a sectorial operator. O
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Corollary 4.2.5. The complexification A of A is the infinitesimal generator
of an analytic semigroup e, t > 0.

Proof. This follows directly from Theorem 4.2.4] O

Theorem 4.2.6. For every ug € L*(Q) there exists at* = t*(ug), 0 < t* < T,
and a continuous mapping u from [0,t*] to L%(Q) that is a mild solution on
[0,t*] to the abstract Cauchy problem (4.2)).

Proof. We will use Theorem [3.2.3] to prove the result.
From Corollary [4.2.5 we have that A is the infinitesimal generator of an

—~—

analytic semigroup etA, t >0, on L£2(2). Thus etA, t > 0, is a Cy-semigroup,

and, by Theorem m, et4, t > 0, is continuous in the uniform operator
topology for ¢ > 0.

Furthermore, since A is uniformly elliptic, by Theorem [2.2.2]the resolvent
operator R(A, A) is compact for all A > 0. Thus, by Theorems
and the resolvent operator R(\, A) will be compact for all A € p(A).
Therefore, by Theorem the semigroup e*4, ¢ > 0, is compact.

By Theorem m, A is the infinitesimal generator of the Cy-semigroup
T(t), t > 0. By Theorem |14_4| the semigroup generated by Ais unique, so
that 7(t) = e*4 for each t > 0. Hence T'(t), t > 0, is compact.

Thus, by Theorem [2.5.8] the Cy-semigroup 7'(t), t > 0, with infinitesimal
generator A, is compact. Furthermore, f is continuous on [0,7) x £*(Q) as
shown in Remark .11

Thus by Theorem the result holds. O

We now investigate the asymptotic behaviour and regularity of the local

mild solution u of (4.2)).

4.2.2 Asymptotic Behaviour
Theorem 4.2.7. For each ug € L2(Q) the local mild solution u(t) of (4.2)) is

a global solution.

Proof. Recall our assumption that p is continuous and uniformly bounded
on 2 x [0,00). Thus f is defined on [0, 00) x £2(2) with values in £2(Q2). We
begin by showing that f maps bounded sets in [0,00) x £2(2) to bounded
sets in £2(Q2). Consider bounded sets [a,b] C [0,00) and U C L£2(Q2). Let
K > 0 be an upper bound for the set {|p(z,t)| | t € [a,b], x € Q} and M > 0
be an upper bound for the set {|lu||z2() | v € U}. Then for t € [a,b] and
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uelU

||f(t,u)||%2(9) = /929(90715)2 max{u(z) — L(x),0}?dx

< K*(|lull 22 + 1L(2) [ 22(0) (4.11)
< K*(M? + || L(2) | 22(0)-

Thus f maps [a,b] x U onto a bounded set.
Note that (4.11]) holds for all ¢ € [0,00) and u € £2(£2). Thus

1f(t )l e20) < B2 [Jull 20y + B2 L(2) |1 22
for all t € [0,00) and u € £2(2). Thus, by Corollary [3.3.2] the local mild
solution u of (4.2) can be extended to a global solution. O]

4.2.3 Regularity

In this subsection we show that a mild solution of (4.2)) is a classical solution,
provided that p : Q x [0,7) — R is Hélder continuous in ¢. In order to prove
this regularity result, we first establish the Holder continuity of f.

Theorem 4.2.8. Suppose the function p : Q x [0,T) — R~ is Hélder con-
tinuous in t, such that there exist constants C' > 0 and a € (0, 1] such that

Ip(x,t1) — plx, ta)| < Clty — o

for allz € Q, t1,t, € [0,T). Then f is Hélder continuous on [0,T) x B,(0)
for all p > 0, where B,(0) is the open ball in L*(Q) centred at 0 with radius
p.

Proof. Fix p >0, t1,t2 € [0,7), and uy,u2 € B,(0). Then

[ f(t,w) = f(t2,ua)ll 2 <I[f(tw) — ft2,w)l| ez
+ [ f (t2 u1) — f (2, u2) || 2(0)- (4.12)

We have that
| f(t1,u1) — f(ta,uy) ||£2 /[p z, 1)) — p(z, t5)]? max{u, (z) — L(x),0}*dx

< C?ty — o)™ /Q[ul(x) — L(z))*dw

< Oty =t [lual| 22 () + L1172 (0]
< C[p? + || Ll|Z2 (It — taf**.
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Thus
[ f(t1,ur) — fto, w2y < Mty —ta]”. (4.13)

where M = C[p? + HL|]%2(Q)]% > 0. Since p(z,t) is uniformly bounded there

exists a K > 0 such that |p(x,t)| < K for all (z,t) € Q x [0,T). Thus from
(4.3)) we have

1f(t2,ur) = f(t2, u2) 220 Z/Qp(%b)Q[max{ul(ff) — L(x),0}
— max{ug(z) — L(x),0})%dz
SKQ/Q[ul(x) — uy(r)]*dx

:K2||U1 - U2||322(Q)'

Thus
1S (2, ur) = f(t2, u2)ll c20) < Kllur — s 22(0)- (4.14)
Proposition and (4.14) imply that there exists a N > 0 such that
1f(t2,ur) — ft2,u2)ll 2 < Nlur — ual| 220 (4.15)

for all uy,us € B,(0). Substituting (4.13) and (4.15) into (4.12) gives that
[ f(t,ur) — fta,ua)ll 20y < Mts — o] + Nllur — uz| 220
< max{M, N}(|t1 — t2|” + [[ur — u2[|z2(q));

and f is Holder continuous with exponent a. m

Theorem 4.2.9. Suppose the function p : Q x [0,T) — R~ is Hélder con-
tinuous in t, such that there exist constants C' > 0 and a € (0, 1] such that

Ip(z,t1) — p(z, t2)| < Cltr — t2|*
forallx € Q, ty,ty € [0, T). Then every mild solution of 1S a classical
solution of (£.2).
Proof. Sgp\pgse u(ﬁ)\m/ a mild solution of . Consider the functions f :
[0,T) x L2(2) — L2(2) given by f(t,u+ )= f(t,u)+0iand @:[0,T) —

L£2(Q) given by @(t) = u(t) + 0i. By Theorem 4.2.8| the function f is Hoélder
continuous on [0,7) x B,(0) for all p > 0. It is clear that taking p — oo, f
will be Holder continuous on [0,7) x £2(€2). Furthermore, by Theorem
u(t) is a mild solution of

%a(t) = Aa(t) + f(t,a(t)), t € (0,7)

i(0) = ug + 04, (4.16)
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where A is the infinitesimal generator of an analytic semigroup. Thus, by
Theorem , u(t) is a classical solution of . Hence a(t) € D(A) for
0 <t<T,u(t)is continuous on [0,7"), and u(t) is continuously differentiable
on (0,7). If follows that u(t) € D(A) for 0 < t < T, u(t) is continuous on
[0,7) and wu(t) is continuously differentiable on (0,7). Furthermore, u(0) +

0i = @(0) = up + 0i and

= Aa(t) + f(t,a(t))
— A(u(t) + 0i) + f(t, u(t) + 0i)

d
for all t € (0,7). It follows that u(0) = uy and Eu(t) = Au(t) + f(t,u(t))
for all t € (0, 7). Thus u(t) is a classical solution to (4.2]). O

4.3 Comments on the Model

Although this is an overly simplistic model, we use it for two reasons: First,
it demonstrates the applicability of the main results of this thesis in showing
the existence of a solution to a parabolic semi-linear equation.

Second, most more accurate models that consider perspiration in research
include many factors other than perspiration and diffusion, since the core
body temperature, not the skin temperature, is what the researchers are
mostly interested in. Accordingly they add more terms to the operator A or
adjust f(t,u(t)) in appropriate ways. Indeed, many terms such as the zeroth-
order term pu(t), where p € R, can be included as an additional term in either
Aorin f(t,u(t)). These additional terms are generally either zeroth-order
or first-order terms. Models such as [28, Chapter 9, Equation (46)] add a
zeroth-order term, and models such as [24], (2.1)] and [24, (2.14)] add both.
Thus we can follow the ideas mentioned in Remark 2.4.3]to show existence for
this broader class of problem. Therefore the existence and regularity results
will still apply to many of these more complex models.

To demonstrate this, suppose the additional terms are zeroth-order and
are given by linear operator B : £L2(2) D D(B) — L£*(Q) such that D(A) C
D(B). Since A is elliptic the operator A + B will be elliptic, since the
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ellipticity only depends on the second-order term, that is, the diffusion A.
Thus by Theorem R(\, A+ B) will be compact for some A\ € p(A+ B).
Furthermore, B will be bounded when D(A) = H}(Q) N H*(2). Thus since
A is the inﬁnit/eairgal generator of an analytic semigroup, by Corollary
the operator A+ B = A + B is the infinitesimal generator of an analytic
semigroup.

It follows that a local mild solution to the problem

u(t) = (A+ B)u(t) + f(t,u(t)), t >0
u(0) = g (4.17)

exists.

Note that the regularity result only depends on the behaviour of f, thus
it will also hold for problem . In particular, Theorem shows that
the regularity of the solution depends on conditions for the function p, which
represents the contribution of perspiration. Whether or not these conditions
for p are realistic assumptions falls outside the scope of this thesis.

For a discussion on some of the better known models, we refer the reader
to [24, Review of Thermoregulatory Modelling] and [26], Literature Survey].
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Chapter 5

Conclusion

At the beginning of this thesis we stipulated the main aims of this thesis.
Here we discuss whether those goals have been met.

We considered a parabolic semi-linear PDE and reformulated it as an
infinite-dimensional system. We then developed theory concerning compact
and analytic semigroups, and used this knowledge to find conditions under
which a local mild solution to the infinite-dimensional dynamical system
exists. This required proving some results on integration over a complex
plane. To make this theory applicable we discussed the complexification of
operators acting on a real Hilbert space to operators acting on a complex
Hilbert space.

We then investigated the asymptotic behaviour of the solution, show-
ing when the local mild solution was global. Furthermore, we developed
a regularity result, showing under which conditions a mild solution of the
infinite-dimensional system will be a classical solution. This required some
basic knowledge of Holder continuous functions.

Finally we demonstrated that these results are applicable in “real-life” with
a biologically motivated example, making use of perturbation theory devel-
oped earlier to demonstrate the applicability of the presented research to
more complex problems.

Thus we believe that the main aims of the thesis were met.

As demonstrated, the results of this thesis are applicable to certain bio-
logical problems. Indeed, a large number of other physical models fall into
the class of problems discussed throughout this thesis. Thus the work is of
real world significance. The key benefit of this thesis is to develop the main
results from the foundation of the real world problem, as opposed to devel-
oping the theory independently. This makes it easy to see the relevance of
the work to real world problems.

This thesis could be expanded to include a broader group of problems,
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most obviously by considering fully non-linear parabolic PDEs or by devel-
oping wider-reaching perturbation theory. Furthermore, numerical solutions
could be developed to approximate the mild solutions shown to exist. How-
ever, as mentioned previously, this theory does not easily lend itself to the
development of corresponding numerical methods, so this would be a task
largely independent of the work discussed in this thesis.
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Appendix A

Integration

In this appendix we introduce some results on integration of vector-valued
functions and integration along curves in C.

A.1 The Bochner Integral

We begin by defining an integral for vector-valued functions and giving a few
basic results. In this case, we use the Bochner integral. We refer the reader to
[8, III.2] for an introduction to measure theory. Unless otherwise indicated,
the results and definitions of this section can be found in [2, Section 1.1],
along with a more detailed analysis of the Bochner Integral.

In this section X denotes a Banach space and I denotes an interval in R
or rectangle in R2.

Definition A.1.1 (Step Function). A function f : I — X is a step function
if it can be written in the form f(t) = inxfi (t) for some n € N. Here
i=1

r; € X and [; C I is measurable for cach i = 1,...,n and xj, denotes the
characteristic (indicator) function of I;.

Definition A.1.2 (Measurable Function). A function f : I — X is mea-
surable if there is a sequence of step functions g,, such that f(t) = lim g,(t)
n—oo

for almost all ¢t € 1.

Proposition A.1.1. A function f : I — X is measurable if it is continuous,
or if there exists a sequence (f,) of measurable functions f, : I — X such
that (f,) converges pointwise to f almost everywhere.
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For a step function g : I +— X given by g¢(t) = ZwiX_[i(t), tel, we
i=1
define

/Ig(t)dt = lem(lz)

where m(I;) is the Lebesgue measure of ;.

Definition A.1.3 (Bochner Integral). A function f : I — X is called
Bochner integrable if there exist step functions g, : I +— X such that (g,)
converges to f pointwise almost everywhere, and

lim [ [[f(t) = gn(t) ]| xdt = 0.
n—oo I

If f is Bochner Integrable then the Bochner Integral of f on I is

/f(t)dt = lim [ g,(t)dt.

I nee Jr

Remark A.1.1. Another integral we could use for functions with values in a
Banach space is the Pettis integral. On a Banach space the Pettis integral
is more general than the Bochner integral. However, we choose to use the
Bochner integral for the following three reasons: Firstly, the Bochner integral
is more intuitive as a natural extension of the Lebesgue integral to vector-
valued functions. Secondly, we are interested in integrating functions that
are continuous on [, and these are Bochner integrable. Thirdly, the class of
Bochner integrable functions is easily characterized, as shown in the following
theorem.

Theorem A.1.2 (Bochner). A function f : I — X is Bochner integrable if
and only if f is measurable and ||f||x is Lebesque integrable. If f is Bochner

integrable then
[ st < [1rla
1 X 1

It is clear by definition that if f : [ — X is Bochner integrable and T" is
a bounded linear operator from X to a Banach space Y then To f: I >t —

T(f(t)) is Bochner integrable and T/f(t)dt = /Tf(t)dt. We shall need a
I I

result similar to this for a closed operator A.
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Proposition A.1.3. Suppose A : X D D(A) — X is a closed linear operator
on X and f : I — D(A) is Bochner integrable. If Ao f : I — X is Bochner

integrable, then /f(t)dt € D(A) and

A/If(t)dt:/lAf(t)dt

The following Theorem, introduced by Guido Fubini in 1907 for scalar-
valued functions, is a result that gives conditions under which it is possible
to compute an integral over a two-dimensional area using iterated integrals.
A direct result of this theorem, which is useful for us, is that the order of
integration can be changed for iterated integrals.

Theorem A.1.4 (Fubini’s Theorem). Suppose I = I, x I5 is a rectangle
in R, f: 1+ X is measurable and

[ [ 1ststxcnds < o
I JIo

Then f is Bochner integrable and the iterated integrals

/ f(s,t)dtds and/ f(s,t)dsdt
nJn

exist and are equal, and they coincide with the integral /f(s,t)d(s, t).
I

Proposition A.1.5. Let f : [a,b] — X be Bochner integrable and F(t) :=
t
/ f(s)ds fort € [a,b]. Then

a) F is differentiable almost everywhere in (a,b) and F' = f almost ev-
erywhere.

b) hm / |f(s) = f(t)||xds =0 fort almost everywhere in (a,b).

We can now define £P-spaces for X-valued functions. The definition and
properties are analogous to the case of scalar-valued functions.

Definition A.1.4. The set £!(I; X) denotes the set of Bochner integrable
functions equipped with norm

1 fllcrorx) = /Illf(t)||th.
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For 1 < p < oo the space LP(I;X) consists of all measurable functions
f I+~ X such that

lwwﬂw<w

ruvmux>::<ﬂuf@w§ﬁ>”.

The set £>°(1; X) consists of all measurable functions f : I — X such that

equipped with norm

esssup [|£(1)]1x < o
tel

equipped with norm
[Nl (13x) := esssup || f(2)]|x-
tel

In the usual way, we identify functions which differ only on sets of measure
zero, that is, two functions are considered equal if they are equal pointwise
almost everywhere. For 1 < p < oo the space LP([; X) is a Banach space
equipped with its respective norm || - ||zr(1.x), see [2, Theorem 1.1.10] and
[13, Chapter 6, Theorem 6.28]. Furthermore, it can be shown that for 1 <
p < oo both the collection of all step functions ¢ : I — X and the collection

of functions of the form g(t) = chgbl(t) for t € I, where ¢; € X and
i=1

¢; € CP(I) for all i = 1,...,n, are dense in LP([; X), see [13, Chapter 6,

Proposition 6.29].

Definition A.1.5. Suppose I = [a,00) for some a € R. If f € L([a,7]; X)

for all 7 € [a,00) then we say that f(t)dt converges as an improper

integral and we define

/00 f(t)dt :== lim Tf(t)dt,

T—00 a

If fe £YI;X), that is, / || f(t)||xdt < oo, then we say that the integral

is absolutely convergent. ‘

If f is a scalar-valued function then the above definition holds in a similar
manner and is taken as pre-knowledge, see [20, Chapter 6, Exercise 8].
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A.2 Cauchy’s Integral Formula

We now consider some results on the integration of both complex-valued and
vector-valued functions on the complex plane. In particular, we consider ana-
lytic functions. We refer the reader to [I] for more on the topic of integration
on the complex plane.

In this section X denotes a complex Banach space.

Definition A.2.1 (Analytic Function). A function f on C with values
either in C or in X is called (complex) analytic if we can write f(z) as a
power series around zy for x near xg, that is

[e.9]

f(x) =) an(z —x0)"

i=0
where a,, is either in C or X.

Definition A.2.2 (Integral Along a Curve). Suppose Q2 C C is open and
[' € Q is a smooth curve with parametrization z : R O [ — C. Furthermore,
suppose that f is a function on 2 with values in either C or X such that
f(2(t)) is Lebesgue or Bochner integrable on I respectively. Then

= [ penGa

If T is piecewise smooth such that ' =Ty U’y U... UT', with I'; smooth for
each ¢ = 1,...,n then

/Ff(z)dz = Zil/r f(2)dz.

The following theorem follows straight from Definitions [A. 1.5 and [A.2.2]

Theorem A.2.1. Suppose Q2 C C is open and ' C Q is a piecewise smooth
curve of infinite length. Let B, (0) be the disk in C with radius n € R centred
at the origin and T, = T N B,(0). If f € LY(T,; X) for every n € R, then

/ f(t)dt converges as an improper integral and
r

/f(t)dt = lim f(t)dt.

n—oo T

If f e LYI;X), that is, /Hf(t)Hth < 00, then the integral is absolutely
r

convergent.
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If f is a scalar-valued function then the above theorem holds in a similar
manner, and is taken as pre-knowledge.

Theorem A.2.2 (Cauchy’s Integral Formula). [1, Theorem 6, page 119]
Suppose that f is an analytic on an open disk 2 C C, with values in either
C or X. Let T be a piecewise differentiable, closed and positively oriented
curve in §2. For any point a not on I’
1
w(T,0) - fla) = - [ L.,

2 Jrz—a
where n(I'; a) is the indezx of a with respect to I.

A bit of further explanation here is useful. The index n(I';a) is also
called the winding number of I with respect to a. In essence it is the number
of times the curve I' winds around, or encloses, the point a, while moving
in the counter-clockwise direction. Thus if a lies outside the curve I' then
n(I,a) = 0. Supposing I' does not form a loop within itself, that is, I" does
not loop around any point more than once, and that I' is positively oriented,
then if a lies within curve I" then n(I";a) = 1. If I were negatively oriented
and were to loop around a then n(T",a) = —1. Indeed, n(—T",a) = —n(T, a).

Although the theorem stated above from Ahlfors is for an open disk (2,
the theorem can be extended to any open, simply connected region 2, see
[T, Sections 4.2-4.3] and , in particular, [I, Theorem 16]. The intuition is
that a simply connected region is a region without any holes, and thus its
complement is a single connected piece.

We can thus conclude from Theorem that if €2 is any open simply
connected region containing a piecewise differentiable, closed, and positively
oriented curve I', which does not form a loop within itself, and f(z) is an
analytic function on €2, then

()

rz—a

f(z)

rz—a

dx = 0 for any point a outside of I,

dx = 2mif(a) for any point @ inside of T

This is what we shall refer to as Cauchy’s Integral Formula. We now
provide a version of Cauchy’s Integral Formula for the case where I' is a curve
that is not closed and has infinite length, in particular, the curve w + ., as
shown in Figure [2.3] This curve splits the complex plane into two parts.

Lemma A.2.3. Suppose ., is the curve

{AeClarghl =n,[A| = r} U{A € C | [argA] <n,[A] = 7}
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oriented counter-clockwise, where r >0 and n € (3,7). Let w € R. Suppose
f is a bounded analytic function on an open set D with values either in C or

X. Let
Sp={z+iyeClz<uu+t+iy € (w+v,}

that is, everything to the left of (w+ v,,), and
Sp={z+iyeC|lz>v,v+iy € (wW+ vy}
that is, everything to the right of (w + v,,). Then
(1) If D contains S;, U (w+ ,.,), then for p € D
f)

(a) ~——d\ =2mif(n) whenever p € Sp.
w+Yr,n 2
(b) mal/\ = 0 whenever y1 € Sg.
w+Yr,n -
(2) If D contains Sp U (w + 7ry), then for e D
A
(a) MaD\ = —2mif(u) whenever p € Sg.
w+Yrn A—p
A
(b) MalAzO whenever u € S,
w+Yr,n - ,LL

Proof. We start with case (1) where D contains the curve (w + 7,,) and
everything to the left of it. Without loss of generality take w = 0. Fix
R >1r>0and p € D. Consider the curve

Cr={NeC||arg | > n,|\ = R}
and the closed curve
IFr={\eC||arg\| =n,r <|\ < R}U
A eC | largAl <A =} UCh,

both oriented counter-clockwise. By Cauchy’s Integral Theorem, since [' is
)

) is analytic on D which contains I'g, then

closed for every R, and

A
&d)\ = 2mif(p) if p inside T'g
rp A=l

A
L)Cp\ = 0 if p outside I'g.
I'r A— H
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Note that anything the right of +,, would lie outside I'y for all R > r, while
anything to the left of v, , would lie inside I'r for R sufficiently large. Thus

A
}%i_r)r;o /FR /‘\f(TLd)\ = 2mif(p) if o to the left of ,, (A.1)
I%Lngo /FR %d/\ = 0 if i to the right of v,,. (A.2)
Since f is bounded on D, we can find a number M > 0 such that || f(A)[| < M
for all A € D. We parametrise Cp as A(s) = Re'1=sInFsCm=n) f5, 0 < 5 < 1,
and use the reverse triangle inequality to get
M
LB |
cr A= cr A — 1l
1
= 27rM/ | Rei(t-o)mtismn) _ 171 g
0
1
< 27TM/ ||R€i(l—s)n+is(27r—n)| . |,M||_1d8
0
— 20 M|R — ||
Thus \
lim ’MH dr = 0. (A.3)
R—oo o || A —

Thus by Theorem (A.2.1])

with I's positively oriented and the integral converges absolutely. Substitut-

ing equations (A.1]), (A.2) and (A.3) into (A.4]) gives our result.

The proof for case (2) follows in the same manner. Here we define Cr by
Cr={AeC||arg)| <n, |\ = R},

and define I' as before. However, for I'g to be positively oriented we reverse
the orientation of v, ,, thus

f) f) fN)
ot [ e [Ee]

Yr,
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Appendix B

Holder Continuous Functions

In this section [ is an interval in R.

Definition B.0.3 (Holder Continuous Functions). A function f: I — X is
called Hélder continuous if there exist constants C' > 0 and a € (0, 1] such
that

1F(2) = fs)llx < CJt —s]*
for all s,t € I. The number « is called the exponent of the Holder condition.

If the inequality holds true for & = 1 then the function is called Lipschitz
continuous.

Note that continuously differentiable functions are Holder continuous. In
particular, they are Lipschitz continuous. Furthermore Hoélder continuous
functions are continuous.

We will require the following two basic propositions.

Proposition B.0.4. Suppose that, for some open interval I = (a,b) and
1 <p < oo, the function f € Ep(IiX) 1s Holder continuous on I. Then f is
continuous on the closed interval I = |a,b].

Proof. We start by showing that f is continuous at a. Consider a sequence
(tn) such that ¢, € (a,b) for every n € N and

lim |¢, —a| =0. (B.1)
n—oo

Since f is Holder continuous on (a,b) there exist constants a € (0,1] and
C > 0 such that

1F(&) = fs)llx < ClJt —s]*
for all t, s € (a,b). Thus for every n,m € N

Hf(tn) - f(tm)”X < C’tn - tm|a' (B-Q)
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Since (t,) is convergent it is a Cauchy sequence. It follows from (B.2)) that
(f(t,)) is a Cauchy sequence with respect to || - ||x. However, X is a Banach
space with respect to || - ||x. Thus there exists a f* € X such that

T [[7(t) — S llx =0. (B.3)

By the continuity of f on (a,b), (B.1)) and (B.3) imply that f* = f(a). Thus
f is continuous at a. In the same way we can show that f is continuous at
b. m

Proposition B.0.5. Suppose f : I — X is a Holder continuous function on
I with exponent € (0,1]. Then f is Hélder continuous with exponent « for
every a € (0, 3).

Proof. For any I C R, by Proposition , f is continuous on I. Thus f
is bounded on I and there exists a constant K such that ||f(¢)| < K for all
t € 1. Furthermore, since f is Holder continuous with exponent 3 € (0, 1],
there exists a constant C' > 0 such that

1£(8) = f(s)llx < Clt = s|”

forall t,s € I. Let a € (0,3). If [t — s| < 1 then [t — s/~ < 1 and

1f(t) = f(s)]lx < CJt — 5]
= C|t—s|a\t—s|ﬁ_a
< C|t — s|*.

If |t —s| > 1 then |t — s|* > 1 and

1F(8) = F(s)llx < NF@Nx + 17 ()l x

<2K
< 2Kt — 5|
Therefore
1F(8) = F(s)llx < max{C, 2K}t — 5|
for all t,s € I. Thus f is Holder continuous on I with exponent a. O

117

© University of Pretoria



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

ey
e
<

Appendix C

Miscellaneous

Here we collect together some useful results which are used in the thesis but
which do not belong to the scope of the thesis.

Theorem C.0.6 (Lax-Milgram Theorem). ([9/, Section 6.2.1, Theorem
1) Suppose H is a Hilbert space. Assume that B : H x H — R is a bilinear
mapping, for which there exist constants o, B > 0 such that

(i) |Blu,v]| < aflullgllv]g (u,v € H)
and
(i) Bllull} < Blu,u] (ue€ H).

Finally, let f : H — R be a bounded linear functional, that is, f belongs to
the dual space of H.
Then there exists a unique element uw € H such that

Blu,v] = f(v)
forallv e H.

Theorem C.0.7 (Reisz Representation Theorem). [J, Appendiz D.3.
Theorem 2] Let H be a Hilbert space with inner product (-,-)y, and let H*
denote its dual space, consisting of all bounded linear functionals from H into
the field R or C. If x is an element of H, then the function y,, for all y in
H defined by

1s an element of H*. Furthermore, every element of H* can be written
uniquely in this form.
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Theorem C.0.8 (Rellich-Kondrachov Compactness Theorem). [J,
Theorem 1, Section 5.7] Assume U is a bounded open subset of R™ and OU

n
P . Then
n—p

WP (U) cc LYU)

is Ct. Suppose 1 < p <n and p* =

for each 1 < g < p*.

The statement W'?(U) cC LY(U) is that W'P(U) is compactly embedded
in £9(U). That is,
[zl cawy < Cllzllwrrw)
for some constant C, and each bounded sequence in W'P(U) is precompact

in L9(U).

Theorem C.0.9. ([§], 1.6.15) If K is a set in a metric space X then the
following are equivalent:

(i) K is sequentially compact.
(i1) K is precompact.
(iii) K is totally bounded and K is complete.
Furthermore, a compact metric space is complete and separable.

Theorem C.0.10 (Closed Graph Theorem). [9, Appendiz D.3. Theorem
1] If X and Y are Banach spaces, and T : X w— Y is a linear operator, then
T is continuous if and only if its graph is closed in X X Y.

Theorem C.0.11 (Gronwall’s Inequality in Integral Form). [9, Ap-
pendiz B.2. (k)] Let I be an interval on the real line with a greatest lower
bound a, and let a, B be real-valued functions defined on I. Assume that
and u are continuous and that the negative part of « is integrable on every
closed and bounded subinterval of I. If B is non-negative and if u satisfies
the integral inequality

u(t) < aft) +/ B(s)u(s)ds,

then .
u(t) < aft) + / a(s)B(s)el Arrgs,
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Theorem C.0.12 (Uniform Boundedness Principle). [21, Theorem 2.5]
Let X be a Banach space and Y a normed vector space. If a sequence of
bounded operators (T,,) from X ontoY converges pointwise, that is, the limit
of (T,x) exists for all x € X, then these pointwise limits define a bounded

operator T. Furthermore, (T,,) converges to T uniformly on compact subsets
of X.
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