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Abstract

Energy and water are two inseparable resources that are crucial for human survival, yet, most
developing nations are struggling to reliably provide them to the population especially in rapidly
growing urban areas. Increasing demand is forcing governments, organizations and private sectors
to encourage end-users to increase efficiency and conservation measures for these resources. Wa-
ter heating is one of the largest energy users in residential buildings thus has a huge potential to
improve the efficiency of both energy and water. In this regard, heat pump water heaters (HPWHs)
have been found to improve energy efficiency while providing domestic hot water. However, im-
pediments such as optimal operation, integration and high initial cost especially in developing
nations hinder their uptake. Further, since they are normally centrally located in a house, there
are water and associated energy losses during hot water conveyance to the end-use, as the once
hot water in the pipes that cooled off has to be poured away while end-user awaits for hot wa-
ter. Therefore, this paper advances the previously developed open loop optimal control model
by using the closed-loop model predictive control (MPC) to operate a HPWH and instantaneous
shower powered using integrated renewable energy systems. This control strategy has the benefit
of robustly and reliably dealing with disturbances that are present in the system as well as turnpike
phenomenon. It has the potential to save 32.24% and 19 [ of energy and water in a day respec-
tively, while also promising lower energy and water bills to the end users. In addition, there is
revenue benefit through the sale of excess renewable energy back to the grid through an appropri-
ate feed-in tariff. Life cycle cost (LCC) analysis is conducted to determine the total cost of setting
up and operating the system over its life, which shows that the benefits would pay back the cost
of the system even before half of its life elapses. This control strategy of both hot water devices
powered using integrated renewable systems is suitable for peri-urban home owners.
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Nomenclature

A, area of photovoltaic (PV) array (m?)

App, A surface area of HPWH’s, instantaneous shower’s storage (m?)
A, sweeping area of turbine rotor (m?)

COP coefficient of performance

C, power coeflicient of wind turbine

Cy specific heat capacity of water (J/kg°C)

D, D;, HPWH, instantaneous shower water demand (kg/h)

Ax thickness of insulation material ()

h coeflicient of surface heat transfer (W/m?K)

Ng> Mt generator, gearbox efficiency

Nis efficiency of instantaneous shower’s heating element
Npv efficiency of photovoltaic generator

I, solar irradiation on photovoltaic array (kWh/m?)

J objective function

k coeflicient of thermal conductivity (W/mK)

My, Mg mass of water inside HPWH, instantaneous shower (kg)
N total number of samples during the 24-h operating cycle
Pa density of air (kg/m?)

De price of electricity using TOU tarift (currency/kWh)

P, grid power (kW)

Py, Pis power rating of HPWH, instantaneous shower (kW)

P, domestic load (kW)

Poff> Ppea  Off-peak, peak electricity price in the TOU tariff (currency/kWh)
Py, P, photovoltaic, wind power (kW)

04, 0, thermal power loss due to water flow, standby losses (W)

Rpp, Ris thermal resistance of insulating material (m*K/W)

TOU time-of-use tariff

T, ambient temperature (°C)

Thp, T temperature of water inside HPWH, instantaneous shower (°C)

T,i’; , Tf;’ temperature of incoming water to HPWH, instantaneous shower (°C)
tyand j sampling period (k) and j” sampling interval

Upp, Ui status of HPWH’s, instantaneous shower’s switch

V.,Vi, Vy  cutout, cut in, rated wind speed (m/s)

w weighting factor

Rand (R)  South African currency ((1 Rand =0.075 USD), as at 02 May 2017)

1. Introduction

In most developing nations, such as African countries, increasing population has the proclivity
of concentrating in urban areas and cities. Many nations in Sub-Saharan Africa have been experi-
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encing rapid urban expansion averaging at 5% per annum [1]]. The rapid growth has many social,
economic and physical repercussions including increased demand for key services such as energy
and water. These factors have made Sub-Saharan Africa to be the most energy insecure region in
the world with the average urban and rural electrification standing at 59% and 17% respectively
[2], while over 40% of the population do not have safe clean water. This is despite renewable
energy having the potential to increase the energy capacity through micro grids, combined heat
and power systems and production of bio fuels. Tapping into this potential would increase elec-
trification, improve grid quality, also lower the cost of electricity which eventually would lead to
improved quality of life. In South Africa, access to electricity increased from 35% to 84% between
1990 and 2011. The increased demand led to a very narrow reserve margin in the grid eventually
causing power shortages (black outs) and load shedding from 2008, with huge negative economic
ramifications [3]]. In addition, electricity is mainly generated from coal leading to a very high car-
bon footprint, and the government is considering introduction of carbon tax [4]. To deal with these
challenges, the government introduced both supply and demand side management initiatives. In
supply side, the government sought to increase the generation capacity through building of new
coal power stations, return to service of some coal power stations and explore co-generation and
renewable energy options [S]. The existing coal power plants have become outdated, while the
coal reserves are dwindling, making construction of new plants not only environmentally haz-
ardous but also prohibitively expensive to implement. Therefore, the only viable option in supply
side is co-generation and renewable energy options. The demand side management (DSM) mea-
sures introduced sought to reduce the demand for power by up to 5000 MW by 2025 [3]. DSM
seeks to reduce the gap between supply and demand through improving energy efficiency (EE) as
well as load management (LM) [6]. LM is tailored to reduce the demand for electricity during
peak period by offering incentives to shift load to oftf-peak periods. This is normally done through
the use of time-of-use tariffs or demand response programs [7]. Following the above reasons, this
study seeks to consider a more grid independent system using available renewable energy sources
while also ensuring EE takes place.

Energy efficiency and DSM have also become very attractive research topics [8]. Areas of
interests and applications have been in industrial systems [9, (10} [11} [12} 13} [14]], power systems
(15 116k (17, (18], building energy systems [19, 20, 21]], and the eventual measurement and ver-
ification [22]. Water heating is one of the most important energy intensive components in the
building energy systems. In a typical South African residence, water heating leads to 40-60% of
total energy consumption [23] There is therefore a huge potential for EE and energy conservation
measures for water heating especially in South Africa. One such way is through the use of ef-
ficient technologies such as HPWHs [24]]. They have a high coefficient of performance making
them a suitable alternative to electric storage water heaters (geysers) in reducing the monthly peak
electricity demand charges. Despite their superiority and government intervention, their market
penetration is still low standing at about 16% [25]. Coupled with high investment cost, there are
technological challenges in HPWH’s optimal operation, sizing and integration [26].

HPWHs are not only ideal in enhancing EE for domestic hot water systems [24], but have also
been proven to be economically feasible [27]]. Further, it is possible to shift the load using HPWHs
increasing the prospect of integrating it with renewable energy sources [28]]. Various control algo-
rithms aiming to reduce energy consumption and its associated cost have been developed. A feed
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forward artificial neural network (ANN) was desined to control HPWHs [29]. However, of the
control algorithms tested, including proportional-integral-derivative (PID) controllers, predictive
control algorithms proved to be most effective [30]. Use of renewable energy systems to power
HPWHs and other domestic loads has a huge potential to save more energy, cost and reducing
greenhouse gas emissions [31]. Various open looop predictive control algorithms for controlling
HPWHs with distributed renewable energy systems have been designed. An optimal control model
operating a HPWH powered using grid tied photovoltaic (PV) and diesel generator integrated sys-
tem was developed for application in areas with intermittent power supply [26]. An optimal power
dispatch model of a grid tied photovoltaic system was used to power HPWH. The cost of grid
energy was structured as a time-of-use (TOU) tariff and the model not only showed the potential
to save energy but also the ability to use the energy stored in the battery in case of either power
black out or during peak time [32]. In addition, an optimal controller was designed to operate
a HPWH powered using integrated wind generator-photovoltaic-grid system. This controller led
to energy and cost savings from renewable energy systems. The grid was designed such that it
could accept power back from renewable energy systems whenever it was not required [33]]. The
optimal control model was advanced by incorporating a fuel cell storage system that improved the
reliability of the intermittent renewable power supplies [34]].

All the above open loop control algorithms can only deal with disturbances and uncertainties
that are almost predictable or known in advance as open loop optimal control assumes a perfectly
predictable system behaviour. However, in cases where random disturbances such as sudden hot
water draws that really affect the operation of the HPWH are present, closed-loop model predictive
control (MPC) robustly deals with them through feedback. For effective control, it is more desir-
able to pro-actively respond to upcoming draw events than reactively turn on the HPWH when the
temperature is already too low. In this regard, the volume of hot water to be drawn can be estimated
using the past hot water consumption and incorporated into a closed-loop MPC framework which
would predict the future behaviour on-line [35)]. In addition, HPWHs have a slow rate of heat-
ing water such that they cannot provide hot water in case of high demand [36]]. Previous studies
have also mainly concentrated on improving EE, though it is improtant to look at the energy-water
nexus demand management [37/]]. For instance, HPWHs are normally located in a central place in
the house, and then distributes hot water to various end-uses. There are consequent energy and
water losses from hot water conveyance to the consumption point. This arises as the previously
heated water stored in the pipes cools down before the next use takes place. Normally, end-users
open the shower and allow the cold water to run until hot water arrives. Worse still, upon finishing
with the use, the remaining water in the pipe quickly cools down [38]]. Therefore an instantaneous
heater, placed at the point of consumption can be used to eliminate water wastage [39]. Since
shower is one of the most intensive hot water end-use in a domestic house [40], an instantaneous
shower is suitable to eliminate this water wastage and provide hot water in the shower when there
is high demand [41].

This paper is an advancement of previously developed open loop optimal model used to op-
erate both HPWH and instantaneous shower powered using integrated renewable energy systems
[36]. A robust and economical closed-loop model predictive control strategy is introduced. The
MPC strategy ensures both energy and water are efficiently consumed by using HPWH and instan-
taneous shower to conveniently meet domestic hot water demand. Integrated renewable energy
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sources comprising of wind and photovoltaic (PV) solar are used to power the hot water devices,
while grid power is only used as back up. Importantly, the grid is designed such that it can accept
excess renewable energy through an appropriate feed-in tariff. This control strategy seeks to opti-
mally operate both hot water devices, maximize the use of renewable energy and minimize water
loss during conveyance to the shower. Unlike the previously designed open loop control strategy,
the closed loop MPC has feedback, that is, temperature of water in both hot water devices at the
current instant, that is used to predict the future behaviour of both devices in each iteration. This
greatly improves the robustness of the controller in dealing with random disturbances that could
occur. In addition, life cycle cost (LCC) analysis is carried out over the expected lifetime of the
system in order to determine the economic feasibility of the system. The proposed interventions
provide sustainable measures to achieve EE and energy-water conservation in a convenient and
affordable manner.

2. Controller design

2.1. Schematic layout
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Figure 1: Schematic layout of the energy and hot water flow

Figure [I] shows the schematic diagram of the water heating model comprising of HPWH and
instantaneous shower powered by photovoltaic solar, P,,, and wind generator, P,,, with grid, P,,
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acting as back up whenever the renewable sources are insufficient. The HPWH, centrally located
in the house, meets the total hot water demand while the instantaneous shower is placed in the
shower to act as back up whenever water from the HPWH is not at the required temperature.
Switches u;,, and u;; control the power flow to the HPWH and instantaneous shower respectively.
Since the house under consideration in this study is currently connected to the grid, power from
the renewable sources is mainly used in the house. However, if renewable power is insufficient,
grid power supplements power, while it also accepts excess renewable energy to be used by other
users in the network.

2.2. Wind energy

Wind energy is one of the integrated renewable energy system used to power the hot water
devices and whenever it is more than the energy required by the hot water devices, it is fed back
to the grid. For wind speed between cut in, V;, and rated, Vy, the power output of a typical
wind turbine is proportional to the cubed wind speed of the turbine. The power output, P,, of a
simplified model of a wind generator at the rated wind speed is [42],

P, = 0.571,0.C,A,V; (1)

where 7, and 7, are the gearbox and generator efficiency respectively. p, is the density of air
(kg/m?), C » 1s the power coeflicient of the turbine, A,, is the sweeping area of the turbine rotor
(m?) while V, is the speed of wind (m/s). Whenever the wind speed is above Vy, aerodynamic
efficiency is reduced by pitching the blades so that shaft power remains constant. However, if
the wind speed exceeds the pitch control limit, it reaches the cut-out wind speed, V., and power
production is stopped [43]].

2.3. Photovoltaic solar energy

The power generated by a PV array, which is the series-parallel connection of solar modules
[44], is given as,
va = nvaprv (2)

where A, is the area of the PV array, I,,, is the solar irradiation incident on the PV array (kWh/ m?)
and it depends on the time of the day. 7, is the efficiency of the PV generator which is dependent
on I, and ambient temperature, T4, [45]. The PV array is also a part of the integrated renewable
energy system supplying power to the hot water devices, while excess PV power is also sold back
to the grid.

2.4. Grid energy

The grid is modelled as an infinite bar capable of either supplying power to hot water devices
whenever renewable energy is insuffient or accepting excess renewable power to meet other energy
demands within its network. In supply mode, the grid electricity’s price is structured as a time-of-
use (TOU) tariff. In this study, Eskom’s TOU Homeflex structure is used [46], whose hourly price
of electricity, p.(1), is,

e = 0.5510 R/Kwh ifte]0,6]U][10,18]U [20,24
pe(t):{l’ff /Kw [0,6]U[ 1Ul ] 3)

DPpea = 17487 R/Kwh ift€[7,10] U [18,20]
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where p, is the off peak price, p,.« 1s the peak price, R is the South African currency, Rand,
and ¢ is the time of day in hours [20]. The National Energy Regulator of South Africa (NERSA)
has developed the renewable energy feed-in tariff (REFIT) [3]. Municipalities are allowed to buy
electricity from small scale embedded systems producing below 100 kW at the same price as
Eskom’s retail price. So far, a few municipalities have started buying electricity from residential
customers like the City of Cape Town and eThekwini municipality [47]].

The hourly power balance for meeting the demand of the hot water devices is modelled as,

Phpuhp(t) + Pisuis(t) + Pl(l) = Pg(t) + Pw(t) + va(t)- (4)

where Pj,;, and P;, are the power rating (kW) of the HPWH and instantaneous shower respectively,
whose on/off status are represented as uy,,() and u;,(¢) respectively. P(¢) is the hourly power (kW)
demand from other domestic load.

2.5. Heat pump water heater

Unlike a refrigerator that moves heat from an enclosed box to the surrounding air, HPWHs
operate in reverse refrigeration process by taking heat from the surrounding air and transferring it
to water in an enclosed reservoir. A HPWH is generally composed of the heat pumping and hot
water reservoir parts. Although mechanical and thermal inertia are important in modelling the heat
pumping part, HPWHs take much shorter time in stabilizing from mechanical inertia than thermal
inertia. In this paper, the compressor of the HPWH is taken to be operating at constant speed
condition, and therefore, suction and discharge are used to model the steady state characteristics
of the HPWH. [48]]. The hot water reservoir stores the hot water heated upon being forced to
circulate through the condenser absorbing the heat [49]. The overall efficiency of the HPWH’s
thermal components, mainly evaporator, refrigerant and compressor, are accounted for by the
coeflicient of performance (COP) obtained in the case study. Therefore, energy losses in these
components have been neglected during modelling. Further, it is assumed that the temperature of
water throughout the reservoir is uniform. Hence, the energy losses considered in this model are
standby losses and losses associated to the hot water demand.

Whenever hot water is stored in the HPWH’s reservoir, there are thermal losses to the environ-
ment resulting from heat conduction through the surface of the tank and natural convection that
transfer heat from the surface of the tank to the environment. These losses can be reduced through
the use of improved thermal insulated material [S0]. Standby losses are modelled as,

Ty, — T,
Q= Ay, (’”’—) (5)

where Aj, is the surface area of the HPWH’s tank (m?) while Ty, and T, are the hot water and
ambient temperatures (°C) respectively. Ry, is the thermal resistance of the insulation material

(m?K/W) which can be written as,
r=20,1 ©6)
k h
where Ax is thickness of insulation material (in) while k and /& are the coefficients of thermal

conductivity (W/mk) and surface heat transfer (W/m>k) respectively [51].
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Demand for hot water from the HPWH causes hot water to flow out of the reservoir which is
consequently replaced by the same volume of cold water [52]. The flow of hot and cold water
through the HPWH’s reservoir leads to a drop in the average temperature, 7, of hot water in the
reservoir [S3]]. Thermal power losses due to water flow, Q,;, can be modelled as,

Qd = CyDior (Thp - T}llr;) 5 (7)

where c,, is the specific heat capacity of water (J/(kg.°C)). T;;’; is the temperature of the cold water
into the tank (°C) and D,,, is the total hot water demand, given as mass flow rate of hot water
(kg/h).

Water is maintained at the required temperature by overcoming above losses. Electrical power
required from the HPWH, Q,, is [54]],

Q= COP X Py, (8)

where COP is the coeflicient of performance. In meeting hot water demand, the dynamic model of
the HPWH is based on open energy balance [55], that leads to a differential equation that describes
the average thermal response of water in the tank as [S6],

dT,
cwmh,,d—f” = Q- 01— 04 ©9)

where my,, is the mass of water (kg) in the HPWH’s storage tank. Substituting for Q;, Q; and Qy
in equation (9) leads to,

Thp(t) - Ta

T,
Cwmhpd_:p = (COP)Phpuhp(t) - Ahp( R

) ~ D) (Tip0) = T ) (10)

To simplify the modelling process, the differential equation can be written as

dTy,
o = —a(O) Ty (1) + Buyy(1) + y(1), (1)
where A b
oty = -ty D@ (12a)
CwmhpR My
COP)P
_ COPPy (12b)
Cywhipyp
Ay Ta DT (1)
Y1) = ote | T T (12¢)

cwmppR My,

Differential equation (11]) can be expressed in discrete-time domain such that temperature of water
in the HPWH’s storage at the j” sampling interval becomes,

Thp(j + 1) = (1 - tsa(j))Thp(j) + tsﬁuhp(j) + ts)/(]) (13)
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where f, is the sampling period (h). The status of the HPWH’s switch, u,(j), is such that,
upp(j) € {0, 1} 1<j<N, (14)

where N is the total number of samples in a 24-h operating cycle (N = 24) Through recurrence
manipulation, equation (13) can be expressed in terms of the initial temperature T},,(0), as,

J J
Tip()) = Tp(O) | | (1 = 1500) + Bt Y (i) ]_[ (1 - t,a(k) +, Z 0 ﬂ (1 - t,(k)
i=1

i=1 k=i+1 k=i+1
I<j<N

(15)

2.6. Instantaneous shower

Instantaneous, demand or tank-less water heaters have heating elements that are activated by
the flow of water thereby heating the water instantly as it passes through [57]. Although they can
be electric, gas or propane powered [38]], this paper focuses on the electric powered instantaneous
showers. Storage water heaters, that are normally centrally located in a house, lead to water
wastage in supplying remote end-uses such as shower. This arises as end users have to open the
tap/shower to pour the cold water in the pipe until hot water arrives and the remaining hot water
in the pipe after the tap/shower is closed becomes cold quickly. In the case of shower end-use,
an instantaneous shower would improve the efficiency of these resources by nearly eliminating
distribution losses. They also offer a perfect candidate to support central storage hot water systems
that cannot conveninently meet hot water demand such as central solar tanks and HPWHs [39].
Assuming that the water in the pipe is losing heat at the same rate as that in the instantaneous
shower, the instantaneous shower can be modelled in two states [59]];

2.6.1. Active state

Whenever there is demand for shower water, hot water from the HPWH is flowing. Assum-
ing negligible heat loss as water flows along the pipes to the shower, the energy balance of the
instantaneous shower in active state can be represented by a first order differential equation as,

is(t) - Ta
Ris

CyMjs—— = nlstuls(r) AI.S ( ) - CwDis(t) (Tis(t) - T,l;l(t)) (16)

dt
where m;; is the mass of water inside the instantaneous shower’s chamber (kg), 1;, is the efficiency
of the heating element rated at P;; in kW. A, is the surface area of the instantaneous shower
while R, is the thermal resistance of the shower’s material and T{;’ is the temperature of water
(°C) flowing into the instantaneous shower. u;4(?) is the state of the instantaneous shower’s switch
at time, f, while D;(¢) is the hot water demand in the shower (kg/hr). Just like in equation (10),
the second and third terms of the right hand side of equation (I6) represent the standby and water
usage thermal losses respectively [60]. Differential equation (I6) can be simplified to,

dTls
dt

= —¢(OTis(1) + Au;s(1) + (), (17



where A Do)
is is !
+ ,

1= 18
¢( ) CwmisRis o ( a)
Piv
A=t (18b)
CyMis
AT,  Dis(OT™¢
L) = + © ’s(). (18¢)
CwmisRis N
Discretizing equation yields,
Tis(j+ 1) = (1 = t,¢(OTis()) + tsAuis(j) + 1:()) (19)
where the status of the instantaneous shower’s switch, u;,(j), is such that,
uis(j) € {0, 1} I<j<N, (20)

Expressing equation (19)) in terms of the initial temperature, 7;,(0), of water in the instantaneous
shower becomes,

J J J J J
Ti(j) = TiO) [ [ (1 =10 + At D i) | | (1 =100 +1, Y 2 | | (1 = 1,60)
i=1 i=1 i=1

k=i+1 k=i+1
1<j<N.

21

2.6.2. Idle state

The idle status takes place whenever the instantaneous shower is not in use implying that
previously hot water is stagnant in the pipes between HPWH and instantaneous shower as well as
in the instantaneous shower’s small reservoir. Assuming that this stagnant water in the pipes is
losing heat at the same rate as that in the instantaeous shower, the differential equation governing
the behaviour of water in the instantaneous shower can be modelled as [59],

dTi Tis(t) - Ta
wlltis Ais ————1=0 22
Cyim 7 + ( R, ) (22)

2.7. MPC optimization problem

Closed-loop MPC strategy employs explicit plant’s (HPWH and instantaneous shower) model
to predict the future behaviour [61]. Using the principle of receding horizon control, only the first
element of the control vector is implemented after each iteration, ignoring the rest of the elements
[46]]. The temperature of hot water in both HPWH and instantaneous shower is measured during
each time step and fed back to the controller in order to provide stability and robustness against
uncertainties and disturbances present in the plant [62]. This temperature is used as the initial
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temperature during the next time step, such that the state equations (I5)) and (21)) are modified as
follows,

J J J
Thp (1K) = Tip(®) | ] (1 =50 + Bt Y wnpGlh) | | (1 = tsemy) +
i=k i=k m=i+1
. . (23)

2 Z 70 ﬂ (1 - r,a(m)),

i=k m=i+1

T (i) = ,s(k>]_[(1 — 1,6(D) + A, Zummk) ]—[ (1 = t,p(m) +

m=i+1
2 Z £(i) ]_[ (1 = t,¢(m)),

m=i+1

(24)

k<j<k+N.-1.

where T,(jlk) and T;(jlk) are predicted temperature of water in the HPWH and instantaneous
shower, respectively, at the j” sampling interval based in information measured at time k.

The controller, firstly, seeks to minimize the cost of grid power consumed. This minimization
aims at using the devices during cheaper off-peak TOU periods and only use them in peak period
only if it is inevitable. It further ensures that renewable energy, which is treated as free energy
during consumption, is used first and only use grid energy if renewable energy is insufficient.
Secondly, the use of instantaneous shower is minimized in order to ensure that HPWH, which is
more efficient, is used to heat water while the instantaneous shower is used if the HPWH is unable
to meet the demand. In this paper, we consider an evaluation period of a 24-h operating cycle from
0 to hour 24. A sampling period 7, = 5 min is chosen bearing in mind that a shower on average
takes about six minutes [63]]. The objective function, J, is modelled as,

k+N.—1 k+N.—1
J=0 ) tp PP+ =w) > t,Pisuis(jlK) (25)
=k Jj=k

where w is a weighting factor used as indicator of relative importance of minimizing each term in
the objective function [64]. N. is the control horizon while P,(jlk) and u;s(jlk) are the predicted
values of grid power and status of the instantaneous shower’s switch, respectively, at the j” sam-
pling interval based on the information available at time k. Normally, MPC optimization problems
include both control, N, and predicting, N, horizons. However, only N. is considered in this
paper as no state variables are included in the objective function [46]. Hence, N, is obtained as,

N.=N-k+1. (26)
The first term in objective function aims at minimizing the cost of grid power used to power

the hot water devices while the second term minimizes the use of the instantaneous shower. To
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achieve this, the following technical and operational constraints are considered to affect the system,

Py()) + pe(J1k) + Ppu(j) = Pupitrp(jIk) + Pisuis(JIK) + Pi()), (27)
T < Typ(jlk) < T, (28)

T < Ti(jlk) < T, (29)

—00 < P,(jlk) < oo, (30)

unp(Jjlk) € {0, 1}, (1)

u;s(jk) € {0, 1}, (32)

where TZZ" and T;?”’ are the minimum allowable temperature (°C) of HPWH and instantaneous
shower respectively, while 77** is the maximum allowable temperature (°C) for both devices.
Equality constraint represents power balance in the system, whereby, power from renewable
energy sources and grid are used to meet the demand from hot water devices together with the
domestic load during every sampling interval, j. Constraints (28) and (29) show the state variables,
that is, temperature of water from HPWH and instantaneous shower respectively, must be between
set minimum and maximum acceptable temperature in every sampling interval, j. Constraints
(30)-(32) show how the control variables are bound. Grid power, P,, is bound such that it not
only provides but also accepts power back from the renewable sources. Finally, the status of the
HPWH and instantaneous shower switches can take the values of either O or 1 representing off and
on status respectively.

2.7.1. MPC Algorithm

Closed-loop MPC control strategy is designed for multi-variable control problems over a finite
control horizon. The control action is obtained by solving the open loop optimal control problem
starting at the current state during each sampling interval [65]. The algorithm for the open loop
optimal control problem has been developed in [36]. In comparison to other control approaches,
optimal control and MPC strategies enable the inclusion of constraints in the control problem,
by making feasibility of the optimization problem a condition in the decision-making process.
Although MPC strategy can be computationally expensive, it provides the only real framework for
addressing control of systems involving the state in the presence of constraints. In practice, the
predictive aspect of MPC is superior due to its ability to account for the risk of future constraint
violation during the current control decision [66].

Just like in the open loop algorithm [36]], control vector X contains all the control variables
such that,

X = upp(klk) . .. upp(k + Ne = 1k)uis(klk) . . . uis(k + N = 1]k)
T (33)
Py(klk) ... Py(k + N, — 1lk)
3NX1
The controller determines the time, k, and first works out the control horizon, N,.. It thereafter
solves an open loop optimization problem with the operating horizon as N, and obtains an optimal
solution, where only the first element of control variables uy,,, u;; and P, are implemented in the
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plant. Subsequently, the temperature of water in both devices is measured and fed back to the
controller. In the next time step, k + 1, this temperature is used by the controller as the initial
temperature for the new N.. Other control inputs are updated and the process is repeated until the
predetermined end of the operating cycle. In summary, the MPC algorithm solves the optimization
problem on-line as follows [67];

1. For time, , find the control horizon (N,(k)) using equation (26)).

2. Optimization: Find the optimal solution within the control horizon;

minimize objective function (23)),
subject to constraints (27)-(32).

(98]

. From the optimal solution, implement [u,(1]k), u;s(1[k), Pg(llk)]T to the plant.
4. Feed back: Measure the states (temperature) 77,(jlk) and T,(jlk).

5. Set k = k + 1 and update system states and inputs and outputs.

@)

. Repeat steps 1-5 until &k reaches a predefined value.

This optimization problem is solved using the SCIP solver in optimization interface (OPTI) tool-
box, which is a Matlab toolbox for solving optimization problems.

3. General data

3.1. Case study

The farm house in Port Elizabeth, South Africa, studied in [36] is the case used in this paper.
The existing thermostatically controlled HPWH, used to provide hot water in the house, has the
parameters shown in Table|I| In order to satisfy hot water demand, the thermostat is set at 50 °C.

Table 1: Parameters of the HPWH

Power (kW) COP Volume (/) Ax (m) k(W/mK) h(W/m’K)
6 3.8 260 0.035 0.055 6.3

Further, plumbing pipes used to transport hot water in the house are 1/2 inch in diameter, with
the length from the location of the HPWH to the shower being about 25 m. In this study, Stiebel
Eltron IS 60EE] instantaneous shower, rated at 8.5 kW is used. Since the shower is the end-use
requiring hottest water from the HPWH, instantaneous shower is set to maintain the temperature
of hot water at 47 < T;; < 50 while the HPWH is set at 45 < T},, < 50.

The hourly hot water demand for the house was measured, with Figure [2] showing the demand
pattern for a period of one day. Generally, the demand curves for hot water from the HPWH and
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Figure 2: Overall and shower hot water demand pattern.

the shower have two peaks in a day, that is, in the morning and evening, when occupants mostly
use hot water for their household chores.

Further, the ambient temperature for this region and hourly temperature variation, are obtained
from the Southern African Universities Radiometric Network]

3.2. Renewable energy

Wind and photovoltaic solar power are inputs into this control model. The input parameters of
the wind generator and the photovoltaic solar power are given in [33]] and [36]. In addition, the

average hourly wind speed pattern for a typical day in Port Elizabeth is obtained from the Southern
African Universities Radiometric NetworkZ.,

3.3. Uncertainty analysis of the measured data

An uncertainty or error analysis is important in order to ascertain the confidence level of the
measured hot water demand for both HPWH and instantaneous shower. The uncertainty analysis of
the experimental data is carried out using the approach taken by Sichilalu and Xia [26]]. Random
and instrument’s error are considered to affect the measurements of hot water demand in this
study. Random errors are generated in MATLAB software with a distribution mean and standard
deviation of 0 and 1 respectively while the instrument’s absolute uncertainty of +0.01 is provided

"http://www.stiebel-eltron.co.za/is60e.html
*http://www.sauran.net/
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by the manufacturer. The measured value, S ,,,..s, 1s therefore given as,
Smeas = Sactual + (Errrandom X Errinst) (34)

where Err,quq0m and Erry,, are the random and instrument errors respectively, while S 4., 18 the
true value. The relative error, Err,.uive, 1S then obtained as,

Erreff

Erryeiative =

Smeas % (35)
Using the rule of the weakest link, the measurement with the largest relative error is used to
determine the final absolute error of the performance index [68], which is the cost of energy in this
case.

4. MPC results and discussion

This section includes simulation results of using MPC to optimally operate the hot water de-
vices, optimal consumption of grid power and the effect on the temperature of hot water from the
hot water devices. The legend showing peak and off-peak periods of the TOU tariff is the same
throughout this paper. Thereafter, benefits of the MPC strategy controlling the hot water devices
having integrated renewable energy sources are discussed.

4.1. Optimal operation of HPWH

The MPC strategy optimally operates the HPWH as shown in Figure 3|in meeting the overall
hot water demand in the house. The HPWH is only operated during the cheaper off-peak TOU

[ C_—J0ff Peak 1 Peak|

0 4 8 12 16 20 24
Time (h)

Figure 3: Optimal operation HPWH to meet overall hot water demand.

period effectively minimizing cost of energy. The controller switches on the HPWH from 03:25-
05:15, and predicts that this hot water will be sufficient to meet the high hot water demand in
the morning thereby avoiding operating it during the expensive morning TOU peak period. The
controller later switches on the HPWH again at 14:15-14:55 and 16:35-17:05 upon predicting an
increase in water demand in the evening coinciding with the evening TOU peak period. Just like
during the morning TOU peak period, it predicts the need to avoid the evening TOU peak, thereby
switching the HPWH off until 21:10-21:25 where it switches on to enable meeting the demand for
the remaining period of the 24-h operating cycle.
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4.2. Optimal operation of instantaneous shower

Figure A shows the optimal operation of instantaneous shower. Just like in optimal operation of

1

0 4 8 12 16 20 24
Time (h)

Figure 4: Optimal operation of instantaneous shower.

HPWH, the MPC controller operates the instantaneous shower during the cheaper TOU off-peak
periods, effectively minimizing the cost of energy. The controller determines that hot water from
HPWH to the instantaneous shower is sufficiently hot to meet the morning shower’s water demand.
There is therefore no need to switch it on during this period. On the other hand, as the demand
from the shower is predicted to rise in the evening, the controller switches on the instantaneous
shower on between 21:40-22:05 and 22:40-23:00 to meet the demand for the shower in this period
as the water from HPWH was not sufficiently hot.

4.2.1. Optimal power flow through the grid
When the MPC controller optimally operates the hot water devices, the consequent grid power
flow is shown in Figure 5] The power sold to the grid appears irregular as the control model

P (kW)

[N

) — | I

0 4 8 12 16 20 24
Time (h)

Figure 5: Optimal grid power flow.

assumes no energy storage takes place in the house. The grid provides minimal power of 0.12 kW
from 00:00-03:25 to cater for the domestic load, in the absence of renewable energy. Thereafter,
the operation of HPWH in the absence of renewable power from 03:25-05:15 leads to an increase
in grid power consumption. During the morning TOU peak, both devices are off and the presence
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of solar power leads to excess power being sold back to the grid. This is actually important in
providing power to other households that need power during the peak TOU period. The sale of
power back to the grid increases during the day as the amount of renewable energy increases. The
grid power consumption again rises to supplement renewable energy in powering HPWH at 14:15-
14:55 and 16:35-17:05. Thereafter, excess power being sold to the grid starts to decline as evening
approaches, and by the time the hot water devices are switched on at 21:10-21:25, 21:40-22:05
and 22:40-23:00, only grid energy can be used.

4.2.2. Hot water temperature variation
Using the MPC strategy for the 24-h operating cycle, the temperature of hot water in both
devices varies as shown in Figure [6] It can be noted that the MPC controller meets all the set

SOF =====+= T======= F====== F======= ======= F====== —
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Figure 6: Variation of temperature of hot water in both devices

constraints in operating both hot water devices. Before switching them on, the temperature of
hot water falls gradually due to either standby losses or losses due to drawing of hot water. The
temperature of hot water stored in HPWH rises from 45.92 — 48.32°C between 03:25-05:15 when
the HPWH is in operation. Thereafter, the temperature starts to fall as the demand for hot water in-
creases up to 45.04°C at 14:15. The risk of violating the minimum temperature constraint necessi-
tates the controller to switch on the HPWH at 14:15-14:55 raising the temperature to 46.05°C. The
controller predicts the rising evening water demand and the TOU peak tariff and further switches
on the HPWH at 16:35-17:05 raising the temperature up to 46.53°C. This water meets the demand
during this peak period until it falls to 45.09°C at 21:10. Again, to avoid violating the minimum
temperature constraint, the controller switches on the HPWH up to 21:25 heating the water to
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45.49°C. As the controller predicted, this water is sufficient to meet the demand for the remaining
period.

In idle state, that is, when the instantaneous shower is not in use, the temperature of water
keeps dropping due to standby losses. Such is the case at 00:00-05:45 and 08:05-20:50. However,
in its active state, that is, whenever there is demand of hot water in the shower, the temperature
variation is caused either by switching on the instantaneous shower or sufficiently hot water is
flowing from the HPWH. In the morning, between 05:45-08:00, the MPC controller detects that
water from the HPWH is sufficiently hot for shower use. There is therefore no need of switching
on the instantaneous shower as the demand leads to a drop in this temperature to 47.59°C. On
the contrary, in the evening shower demand, that is, from 20:55-23:00, the controller operates
the instantaneous shower twice as it detects that shower’s minimum temperature constraint could
be violated as the water becomes cold. Eventually, the controller maintains the water within the
required temperature range in the shower.

It is further evident that the temperature of hot water in both hot water devices at the end of the
24-h operating horizon is different from the initial temperatures, implying that initial temperature
for the following day will be different from previous day’s. This problem is called the turnpike
phenomenon and is normally observed in optimization problems with or without terminal con-
straints [69]. Although open loop optimal controllers do not guarantee proper operation in the
presence of turnpike phenomenon, MPC controllers have been shown to automatically correct it
over several days as it uses the previous state of the plant rather than the initial condition [46 70]].
To ascertain proper operation of the MPC controller, simulations are carried out for several days
with temperature variation in both devices shown in Figure[/| This is carried out with the assump-
tion that conditions remain similar over these days. Even though initial temperature is different
from the final temperature in the first day, the MPC controller adjusts itself such that if subsequent
days have same conditions, the temperature of water in both devices would be the same at the
end of each day. This subsequently means that initial temperature would also be the same at the
start of each new day. In line with the controller’s objective to minimize cost of energy and use
of instantaneous shower, the temperature of water in both devices at the end of each day is almost
the minimum allowable temperature.

4.3. Discussion

Figure 8| shows the flow of power in the system throughout the operating cycle. In the legend,
P, mpc, 1s the optimal flow of power in the grid resulting from the use of closed-loop MPC strat-
egy, Py paseiine 15 the grid power consumption when the HPWH is controlled by a thermostat and
solely powered by grid in the case study. P,, and P, represent the renewable energy generated
through PV and wind sources respectively. It can be seen that renewable sources are available
during the day, from 07:00 and 12:00 up to 17:00 and 21:00 for PV and wind respectively. As
the amount of renewable energy increases during day time, more of it is sold back to the grid
(appearing as negative values of P, ypc) whenever the MPC controller switches off both devices.
The consumption of power from the grid reaches maximum in the evening when the instantaneous
shower is switched on. This is because the renewable energy being generated in this period is too
little making the grid to meet the power demand. The baseline power flow, P, p,eiine, 1 Operated
throughout the morning TOU peak to maintain water at the set temperature. This not only leads
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Figure 7: Temperature variation for three days

to higher energy costs being incurred by the end-user but it is also against the desire of the power
utility to shift load to off-peak periods in order improve the quality of the grid.

The comparison of the day’s energy consumption and associated cost in the house is shown in
Table 2] The baseline in the table is the current scenario in the case study, where the thermostat-

Table 2: Energy consumption, sales, savings and associated costs.

Baseline MPC Savings Feed-in
Energy Cost Energy Cost  Energy Cost Energy  Revenue
(kWh/day) (R/day) (kWh/day) (R/day) (%) (%)  (kWh/day) (R/day)
41.00 50.33 27.78 17.46 3224  65.30 18.76 11.79

ically controlled HPWH is powered by grid power. Moreover, it is used to meet all the hot water
demand in the house necessitating its temperature to be set at a range acceptable in the shower, de-
spite other hot water demands requiring less hot water. This means that the baseline cost of energy
is the cost incurred by the thermostatically controlled HPWH under the TOU electricity tariff. The
MPC energy is the grid energy consumed upon using the MPC controller integrated with renew-
able energy sources, while the cost of energy is obtained using the TOU electricity tariff. Savings
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Figure 8: Power flow throughout the 24-h operating cycle

are obtained from the difference between the baseline and optimal energy consumption and cost
respectively. Finally, feed-in energy is the energy from the renewable energy sources, that is, wind
and solar PV, that is not used by the two hot water devices as well as domestic load and is therefore
sold back to the grid. Since no energy storage is considered, the excess renewable energy is fed
back to the grid through an appropriate feed-in tariff to be used by other users within the network.
The MPC strategy for heating water using a HPWH and an instantaneous shower powered using
integrated renewable energy sources has the potential to save 32.24% grid energy in a day when
compared to the baseline. These energy savings result from operation of the HPWH at a lower
temperature, meaning, only the required water is heated to higher temperature by the instanta-
neous shower, and also the use of available renewable energy whenever the devices are switched
on. Further, the strategy can lead to a cost savings of up to 65.30% in a day when compared to
the thermostat controlled baseline arising from the cost of the energy saved as well as shifting the
load to the cheaper off-peak period of the TOU tariff. Incorporation of renewable energy sources
capable of selling excess power back to the grid through an feed-in tariff can lead to the sale of up
to 18.76 kWh in a day with a revenue of R 11.79 in that day. This revenue is obtained using the
off peak price of the TOU tariff as municipalities in South Africa are allowed to buy power back
from domestic consumers at the same rate as they sell it. The energy and cost savings obtained in
this study compare well with a study conducted on open loop optimal control of HPWH powered
by integrated renewable energy systems [33]]. The cost savings in that study are higher (70.74%)
as the study only has HPWH as the only energy consuming device, and consequently sells more
renewable energy back to the grid.

A further benefit of the strategy involving heating the water for showering at the end-use, is
the elimination of water wastage through conveyance as the end-user waits for hot water to arrive
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to the shower. For the house in this case, up to 19 [/ of water is saved from being wasted in a day,
as this amount is heated by the instantaneous shower whenever there is demand for the shower.
Saving this potable water is very important for a dry and developing nation like South Africa,
which has high water insecurity.

All measurements have errors or uncertainties present and in this regard, the maximum relative
error Ertyeiume = 1.99% 1s obtained in this study, whose effect on the performance index is shown
in Table [3| The performance index when actual values are used in the controller is 2.29% lower

Table 3: Uncertainty of the performance index

Optimal energy  Cost Savings (%)
(kWh/day) (R/day) Energy Cost

Baseline 41.00 50.33 - -
Measured 27.78 17.46 3224  65.30
Actual 27.14 17.06 33.80 66.10

than with measured values, leading to 66.10% cost savings compared to the baseline. Therefore,
the final absolute error of the control strategy is (50.33 — 17.06) X 1.99% = 0.66, such that the
final cost saving of the model is R(17.06 + 0.66) in a day. This performance compares well
with Sichilalu and Xia [26]], with the difference in final absolute error arising due to the different
sampling intervals considered.

The combination of HPWH and instantaneous shower powered using renewable energy sources
can operate efficiently saving both energy, water and their associated cost if proper control strate-
gies are employed. In reality, there are unpredictable disturbances present in any system. Previous
research has shown that open loop optimal control normally deals with uncertainties that do not
significantly change the demand pattern and are more predictable while closed-loop MPC strategy
robustly deals with disturbances that aren’t easily predictable and significantly change the pattern
of water demand [46, 62]]. This benefit comes at more comlplexity and a higher computation and
implementation cost than open loop optimal control strategy [46].

5. Economic analysis

It is important to evaluate the cost effectiveness of implementing the renewable energy and
control strategies based on comprehensive consideration of various cost and revenue components.
One effective method is the present worth method that discounts back all future elements of the
financial analysis of a project to their present worth, apart from capital costs that are already given
in present terms. Thereafter, positive and negative elements of the cash flow are summed and if
the net present value (NPV) is positive, then the investment is financially attractive [71]. When
such an analysis is carried out throughout the life of the project, it is called life cycle cost (LCC)
analysis. Costs included in analysis of LCC include cost of acquisition, operation, maintenance
and disposal [[72]]. Therefore,

LCC=C.+C,+C; (36)

where C. is the capital cost, C, is the operation cost and C; is the salvage cost at the end of life
of the system. Capital cost includes total cost of labour, acquiring and installing the system. In
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the operation stage, operation cost mainly includes energy and maintenance cost incurred during
the service life. Finally, salvage cost is the cost incurred at the end of system’s life including the
salvage value of the system, cost of removal and disposal. Equation (36) can be written in terms
of the discounting factor, that is, the factor by which future cash flows must be multiplied with to
get the present worth, as,

Co(n)

TR 7

m
LCC=C.+ )
n=1
where n and m are the number of years and project lifetime respectively, while r is the discounting
factor. In this study, the real discount rate is used as it represents a more realistic purchasing
power. The real discount rate is normally given by the difference between the average interest and
inflation rate. The interest rate represents the opportunity value of time, that is, the compensation
that should be paid to defer additional expenditure in the current year until a later year. The price
of the equipment, useful life and cost of labour are based on the South African market rate{f] as
well as estimates found in relevant literature [73]]. Some assumptions are made while carrying
out LCC analysis of the system; The real discount rate and maintenance costs are assumed to be
constant throughout the life of the system. The annual maintenance cost is assumed to be 1% of
the total cost of the system. Further, cost of electricity has been increasing annually at an average
rate of 9.6% over the last ten years%ﬂ With this increase expected to continue in future, and
the introduction of carbon tax set to begin, the operation cost and control benefits are assumed to
increase proportionately.

4
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Table 4: Life cycle costing of the water heating strategy.

Salvage Annual cost (R) Revenue (R) Total Discounting Cash flows (R)
Year Initial investment (R) value Operation Maintenance  Control Renewable R) factor Discounted Cumulative
R) benefit energy (1+nrn™"

Heat pump (25 775.85) 2300

Instantaneous (3 000.00)

shower
0 Solar panels (27 500.00)

Wind generator (23 500.00) 1200

Controller (22 900.00)

Accessories (15 000.00)

Installation (14 000.00)

cost

Total Capital (128 175.87) 1.00 (128 175.87) (128 175.87)
1 (5 861.90) (1141.76) 12 117.09 3927.30 9 040.73 0.99 8 982.35 (119 193.52)
2 (6 424.64) (1 141.76) 13 280.33 4304.32 10018.25 0.99 9 889.27 (109 304.25)
3 (7041.41) (1 141.76) 14 555.24 4717.54 11 089.61 0.98 10 876.14 (98 428.11)
4 (7717.38) (1141.76) 15 952.55 5170.42 12 263.82 0.97 11 950.08 (86 478.03)
5 (8 458.25) (1141.76) 17 483.99 5 666.78 13 550.76 0.97 13 118.82 (73 359.21)
6 (9 270.24) (1 141.76) 19 162.45 6210.79 14 961.24 0.96 14 390.80 (58968.41)
7 (10 160.19) (1141.76) 21 002.05 6 807.03 16 507.13 0.96 15 775.21 (43 193.20)
8 (11 135.57) (1141.76) 23 018.25 7 460.50 18 201.42 0.95 17 282.04 (25911.16)
9 (12 204.58) (1141.76)  25228.00 8176.71 20 058.37 0.94 18 922.20 (6 988.97)
10 (13 376.22) (1141.76) 27 649.88 8961.67 22 093.58 0.94 20 707.53 13 718.56
11 (14 660.34) (1141.76)  30304.27 9821.99  24324.17 0.93 22 650.95 36 369.52
12 (16 067.73) (1141.76) 3321348 1076490 26 768.90 0.93 24.766.53 61 136.05
13 (17 610.23) (1141.76) 36401.98 11798.34 29448.32 0.92 27 069.58 88 205.62
14 (19 300.81) (1141.76) 39896.57 1293098 32 384.97 0.91 29 576.76 117 782.38
15 (21 153.69) (1141.76) 43726.64 1417235 35603.54 0.91 32 306.24 150 088.63
16 (23 184.45) (1141.76) 4792440 15532.89 39 131.09 0.90 35277.79 185 366.42
17 (25 410.15) (1141.76) 52525.14 17024.05 42997.28 0.90 38 512.94 223 879.37
18 (27 849.53) (1141.76) 57 567.55 18 658.36 47 234.63 0.89 42 035.14 265 914.50
19 (30 523.08) (1141.76) 63094.04 20449.56 51 878.76 0.88 45 869.90 311 784.40
20 (33 453.30) (1141.76) 69 151.06 2241272 56 968.73 0.88 50 045.03 361 829.43




The annualized cost and revenue are average values from daily values obtained when the model
is run over the four seasons having varying hot water consumption behaviour as well as weather
parameters. It is important to note that although the HPWH’s COP varies with variation of ambient
temperature [74], the average temperature variation in the case studied is not large, and therefore,
the COP was assumed to be constant throughout all the seasons. Table @] shows the LCC analysis
of the MPC control of both hot water devices powered by integrated renewable energy systems. It
is taken that all capital investment is done in the beginning of the project, and all components of
the system will be operational for the 20 year duration. In the analysis, the expenses are indicated
using negative values (brackets) while revenue is indicated as positive values. The interestE] and
inﬂatimﬂ rates of 6.95% and 6.3%, respectively, which are the average rates in South Africa for the
last 5 years are used to obtain the time value of money. The discounted cash flows continuously
increase the cumulative cash flows in each year, and the year which the cumulative cash flows
becomes zero indicates the break even point or the payback period. Further, the renewable energy
benefit is obtained using the REFIT tariff in eThekwini Municipality. In this study, the strategy
has a payback period of about 9 years and 4 months. Although this payback compares well with
a similar study carried out in the same region by Sichilalu [75], which had a payback period of
8 years and 8 months, the methodology is slightly different. This study is more realistic, despite
having an extra energy consuming device, since it uses the real discount rate while Sichilalu used
the inflation rate. Further, the expected increase in operation cost and resulting effect on the
benefits have been included in this study. This high payback period could even go lower if the
low REFIT rates in South Africa are enhanced to make investing in domestic renewable energy
more attractive. It is therefore recommended that policy makers should look at ways of making
the REFIT rates in the country more attractive. Finally, the instantaneous shower is an energy
consuming device that has a significant merit of increasing water efficiency and convenience in
the shower at a minimal investment.

6. Conclusion

In this paper, a closed-loop MPC strategy for optimally operating both HPWH and instan-
taneous shower is designed. This strategy ensures efficient use of both energy and water while
meeting hot water demand in the house. The MPC controller operates the devices during the
cheaper TOU off-peak period, hence leading to savings on cost of energy. Additionally, maximiz-
ing the use of renewable energy not only saves energy-not-delivered from the grid, but also brings
in revenue by selling excess renewable energy back to the grid through an appropriate feed-in tar-
iff. The closed-loop MPC strategy is superior than open loop optimal control strategy due to its
robustness in dealing with unpredictable disturbances present in the system. This however, comes
at a higher computational and implementation cost, though the choice of the controller depends
on the specific application. The use of instantaneous shower placed at the shower end-use has
double benefits. First, it allows the HPWH to be operated at a slightly lower temperature that
is allowable for most other end uses leading to lower energy consumption. Secondly, it helps in
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saving water that cools in the pipes, which is normally drained as end users wait for hot water to
arrive. This control strategy can potentially save 32.24% and 19 [/ of energy and water in a day re-
spectively. This robust closed-loop control strategy operating both water heating devices powered
mainly using renewable energy sources marks a step closer to zero-energy buildings. A realis-
tic LCC analysis is carried out to determine the economic feasibility of investing in this strategy.
The analysis shows that the system would have payback period of 9 years and 4 months, which
compares well with similar studies carried out in South Africa.

This model is suitable for home owners who intend to increase the efficiency of use of both
energy and water, and simultaneously lower the cost of both resources. It is suitable for owners
keen on lowering the green gas house emission by integrating renewable energy to supply energy-
efficient equipment. The MPC strategy is a cost-effective solution to overcome the weaknesses of
thermostatic control. To implement the control strategy in a real word scenario, the model must be
translated to C and then compiled for a specific hardware while verifying in each stelﬂ An open
loop optimal controller solves a given optimization problem for the entire operating cycle and then
sends optimal commands to power the devices either using grid or renewable energy. The MPC
strategy requires temperature sensors to feed back the temperature of water in both devices to the
controller during every time step. The controller then uses the current temperature to predict the
future behaviour of the devices. This research can be advanced by incorporating other renewable
energy sources such as biogas as well as considering energy storage systems like batteries and fuel
cells. The effect of using energy storage systems on LCC analysis for countries whose REFIT
rates are not very attractive should be investigated further.
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