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Mapping the Potential for Hay Making in Rangela
A Methodological Proposition
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On the Ground

• We present information useful to various stakeholders,
including land managers, agency personnel,
practitioners, and researchers, as it presents method-
ology for
○ Determining the best period for hay harvest

corresponding to peak productivity of the vegetation
in rangelands;

○ Estimating the amount of hay available (biomass) at
peak productivity, using commonly available satellite
imagery; and

○ Highlighting the best areas for hay production based
on grassland availability.

• All of this is done by employing the readily available
tools of remote sensing and geographical information
system.
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Addressing global environmental change has been 
on the international agenda for many decades. 
Climate change, as an “undesirable” consequence of 

the increased concentration of greenhouse gases in 
the atmosphere, has remarkably undermined 
agricultural productivity, translating into alarming levels 
of food insecurity.1 The devastating effects of climate change 
on agricultural productivity are more pronounced in arid 
and semi-arid ecosystems. With or without climatic 
changes, the climate of rangeland ecosystems is characterized 
by stochastic rainfall events on spatial and temporal 
scale and high atmospheric temperatures and evaporation 
rates.2 Climate change is exerting more pressure on the 
functionality and resilience of rangeland systems, yet 
rangelands support a significant number of the livestock 
around the world. This is placing the sustainability, 
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productivity, and competitiveness of livestock production 
systems in rangelands under threat. In Uganda, rangelands 
account for 43% of the total land area, and livestock 
production is the major source of livelihood for over 60% of 
households in the rangelands of Uganda. Livestock 
production in these locations is largely constrained by 
climatic changes, with devastating effects on forage and water 
availability leading to variable milk and meat outputs.3

Furthermore, climate change and variability has been
shown to have negative impacts on livestock birth rates,
mortality rates, and meat quality in Uganda.4,5 The rapidly
increasing population, changes in land use, and alterations in
policies regarding pastoralism are constraining pastoral
movements, leading to increased transhumant pastoralism,
transitions to livestock-crop integration, and commencement
of permanent grazing areas.6,7 Pastoralists in Uganda who
depend on rain-fed pastures find challenges in maintaining
herds during prolonged droughts, but they will have burned
the previous season’s pasture in the belief that better pastures
will sprout in the next rainy season.5

In the face of climate change and variability with dwindling
grazing land, areas available for grazing would have to be
effectively managed to ensure a sustainable supply of pasture
resources. The trends observed in the pastoral production
systems have led to discourse on how to ensure sustainable
livestock production amidst pressing climate change and
variability patterns. Consequently, hay production has been
identified as a key leverage action that will allow pastoral
communities to increase livestock productivity and quality and
at the same time ensure sustainable income streams and build
their resilience to the impacts of climate change and
variability.8,9 Hay making is advantageous because it ensures
that forage, which would have been wasted by burning and
rotting, is available in the next season of feed shortage. Hay
production also has potential to enhance the income, wealth,
and livelihoods of the producer communities if production is
stepped up to realize surpluses. The production of hay
promotes environmental conservation and sustainable use of
rangelands for improved livelihood and set guidelines for the
development of appropriate feed resources, which is a key



objective of rangeland policy.9,10 Stimulating community
engagement and promotion of adoption of hay production
offers an opportunity for livestock farmers to cope with
climate-change-induced forage scarcity, but this requires
explicit description of the hay production potential in
such areas.

Hay production can be optimized when grasses are at their most
productive period, and thismay becomemore pressing in the advent
of unpredicted climate/weather patterns in African rangelands.
However, the lack of sufficient data on hay availability and
production in most areas has limited decision-making in the
livestock sector in Uganda. There is a paucity of information
regarding the hay production potential in the rangelands of Africa.
Several studies11,12 have highlighted the role of Geographic
Information System (GIS) data, particularly remote sensing (RS)
data acquired using space-borne platforms, as a cost-effective and
rapidmeans of providing data on pasture quality and quantity at any
given period of the year.11,12 Information on suitable sites for hay
production and the temporal and spatial variations in quantity and
quality of hay is particularly deficient. Therefore, the study sought to
employ RS and GIS to determine hay production potential and
dynamics, developing a methodology for rapidly mapping and
establishing the potential of hay production in rangelands.
Study Area
The study was conducted in the districts of Nakasongola,

Nakaseke, and Luwero in the Cattle Corridor of Uganda. The
Figure 1. Location
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Cattle Corridor of Uganda stretches diagonally from the
southwest to northeast of the country (Fig. 1). Nakasongola,
Nakaseke, and Luwero are located at 00°57’44.89”N and
310°58’03.77”E, at the central part of the Cattle Corridor of
Uganda. The districts receive a bimodal rainfall regime with the
first rainy season occurring in the months ofMarch toMay and
the second in September to November. The mean daily
minimum temperature ranges between 15.0°C and 20.9°C,
while the mean daily maximum temperature ranges between
25.4°C and 33.7°C. Average humidity ranges from 80% in the
morning to 56% in the afternoon. The potential evapotranspi-
ration remains high throughout the year (~130 mm/month and
~1,586 mm/annum) and shows less variability than rainfall.
Methods
Methodological Structure and Interrelationship

This study set out to determine the optimum period for
hay harvest at peak vegetation production and the method for
assessing the available hay at peak production (i.e., herbaceous
grass biomass). Uganda has a tropical climate with two rainy
seasons (March to May and September to November) and
two dry periods. The three districts that make up the project
area experience this bimodal seasonal calendar. Figure 2
presents a summary of the methodological logical structure
and interrelationship that were undertaken to achieve the
of study area.



Figure 2. A methodological approach that can help determine the period for hay harvest and potential quantity (biomass) of hay developed.
study’s focus. This methodology was used to monitor
vegetation production throughout the four seasons and to
determine the period of peak vegetation production, which
constitutes the best period of hay harvest in the project area.

Modeling Peak Herbaceous Biomass Production

A time series of 8-day composite Normalized Difference
Vegetation Index (NDVI) derived fromModerate Resolution
Imagery Spectrometer (MODIS) imagery was used to
determine the peak/optimum production period. MODIS
imagery is recommended for this purpose because it provides a
higher temporal resolution (1 day revisit time) than Landsat 8
(16 days). On the other hand, the higher spatial resolution of
Landsat 8 is better suited to determine variability of
herbaceous biomass and quality at peak production in the
rangelands because of the patchiness often associated with
these locations.

The MODIS sensor was launched into space in 1999
aboard the TERRA satellite and in 2002 aboard the AQUA
satellite. MODIS provides data at various spatial resolutions,
including two bands (red and near infrared [NIR]) at 250 m
and five visible to short-wave infrared (SWIR) bands at 500m.
The MODIS two-band image at 250 m resolution
(MOD09Q1 products – surface reflectance, i.e., atmospher-
ically corrected 8-day composites) is proposed for this project.
The images were downloaded from http://earthexplorer.usgs.
3

gov/. The 250 m resolution provided better spatial variability
of grass patches in the project area, whose sizes are generally
smaller than 500 m by 500 m.

The normalized difference vegetation index (NDVI)
(NIR-R)/(NIR+R), a well-established RS index or indicator
for vegetation productivity, was computed from the MODIS
image to determine the peak production. NDVI images for
the year (e.g., 2014) were stacked to generate a time series that
could be used to monitor the trend in vegetation production.
The time series are usually noisy due to the presence of clouds.
Therefore, smoothing was required to tease out the trend in
vegetation productivity. The Savitzky-Golay filter was used to
smooth theNDVI time series. A two-stage smoothing process is
proposed, first using a straight line model (one-degree
polynomial), followed by a second-degree polynomial smooth-
ing function.

Profiles of 350 randomly selected pixels were extracted
from the time series, and the mean and standard deviation of
the profiles were computed (e.g., see Fig. 3 for 2014 NDVI
profiles). The peak production period was determined from
the mean profiles (i.e., the period of maximum NDVIs).
The first derivative of the NDVI time series or profile can be
used to monitor the changes in NDVI. At peak production
(i.e., maximum turning point of the time series), the first
derivative is equal to zero. The first derivative profile can be
produced using the first difference transformation of the
NDVI profile.



Figure 3. Graph 1 is the 2014 NDVI time series analysis and 2015 NDVI time series analysis.
Modeling Hay Quantity (Spatial Variability) at Peak 
Vegetation Productivity

An eight-step approach was established for assessing grass
biomass maps (spatial variability of biomass) at the peak
4

production period of the vegetation in the Cattle Corridor:
Landsat 8 image acquisition; Landsat 8 atmospheric correction;
cloud removal; vegetation type cover classification; field sampling
of leaf area index (LAI) and grass biomass; radiative transfer

image of Figure 3


Figure 4. Cloud removal using thresholding of sum of red, green, and blue bands (picture on the right). R indicates red; G, green; B, blue.
modeling and developing predictive equation for LAI; predicting
LAI on the Landsat image; and predicting grass biomass.
Results
Part I: Best Period for Hay Harvesting and Available 
Hay Using Remote Sensing Data

A first derivative profile of the mean NDVI profile for 2014
was used to determine the maximum production (maximum
turning point of the NDVI profile) date (i.e., where the profile
igure 5. Mosaic of two image scenes acquired on 29 October and 16
ovember 2014 after cloud removal. Figure 6. Vegetation type classification in the project site.
F
N
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cuts the horizontal axis at slope = 0). Potential hay harvesting
(NDVI/biomass) was found to peak on the 130th day and 320th

day (Fig. 3). Vertical lines in the graphs indicate dates of
maximum vegetation productivity within the project site. Graph 2
of Figure 3 shows the evolution of the NDVI profile for 2015.
Monitoring the evolution of the 2015NDVI profile can be used to
determine the maximum turning point or peak production for this
year.

In summary, determining the best period for hay harvest
includes image acquisition and pre-processing, creation of



NDVI time series images, and determination of peak
production.

Part II: Process of Modeling Hay Quantity (Spatial 
Variability) at Peak Vegetation Productivity
Step 1 – Landsat 8 Image Acquisition

LANDSAT 8 Operational Land Imager (OLI) images
were proposed for this modeling of grass biomass because
LANDSAT 8 OLI images are obtained from a
medium-resolution sensor (30 m) consisting of 11 bands in
the visible, NIR, SWIR, and thermal infrared (TIR),
although the TIR is not required for this research. The
Figure 7. Patterns of NDVI and GNDVI at peak vegetation pro

6

data obtained were used to obtain patterns in vegetation
and grass conditions in the study area. Landsat 8 images
for the peak production period were downloaded from http://
earthexplorer.usgs.gov/.13 Two main scenes made up the area
(171059 and 172059). Images of different dates were used
because of the presence of clouds.
Step 2 – Landsat 8 Atmospheric Correction
The images required cloud removal and atmospheric

correction. Atmospheric/Topographic Correction for Satellite
Imagery (ATCOR 2/3) was used for atmospheric correction.
duction (November 2014) in the Cattle Corridor of Uganda.



Figure 8. Relationship between field-measured LAI using plant canopy
Analyzer (LAI 2200) and fresh grass biomass or dry (oven dry) grass
biomass.

Figure 9. Relationship between fresh grass biomass and dry biomass.
Step 3 – Cloud Removal
Band math in ENVI was used to find the sum of the blue,

red, and NIR bands. A threshold value was applied to mask
out the cloud-free portions of the image (see Fig. 4 for the
detailed process). After cloud removal from various image
scenes of the region, the new cloud-free scenes were
mosaicked, as shown in Figure 5.

Step 4 – Vegetation Type Cover Classification
Maximum likelihood support vector machine (SVM)

(random forest [RF] algorithm) was used to classify the
image into grass and tree pixels (Fig. 6). We recommend the
use of SVM or RF because of the high intraclass variability.
The area was classified into pasture (grasslands) that included
crop areas and seasonally flooded wetlands and woodlands.
Training and validation was obtained from field sampling and
Google Earth.

The classification using the SVM classifier produced an
overall accuracy of 82%: grasslands and farms (producer
accuracy = 97%, user accuracy = 60%); woodlands (producer
accuracy = 91%, user accuracy = 99%); and vegetated riverbeds
(producer accuracy = 73%, user accuracy = 95%). The low
accuracy of grassland was due to the classification of vegetated
riverbeds as grassland, which was understandable because
most of the riverbeds were grasslands.

Step 5 – NDVI Images
To highlight patterns in vegetation and grass condition,

the traditional NDVI (NIR-R)/(NIR+R) and green NDVI
or GNDVI (G-R)/(G+R), where G and R are the reflectance
in the green and red bands, respectively, were calculated from
the Landsat mosaic (Fig. 7). The vegetation index value
increases with increasing vigor (e.g., amount of leaf
chlorophyll of the vegetation). It is also well established that
the nutrient (e.g., leaf N) content of grass generally increases
with increasing chlorophyll.

Step 6 – Field Sampling of LAI and Grass Biomass
Fieldwork was conducted in the area to collect data on LAI

and fresh and dry biomass. LAI was measured using the plant
canopy analyzer (LAI 2200; LI-COR Inc), a handheld optical
device. Aboveground fresh biomass (grass) was harvested and
immediately weighed. A sensitive balance (at least ±10 g) was
used for the measurement. The fresh grass for each sample
was placed in a paper bag and oven dried at 60° to 70°C for 24
hours before measurement of the dry biomass.

Field LAI data were collected for only 10 randomly
selected plots because the LAI 2200 was available for only 1
day. The fresh and dry biomass data were measured for five
other plots. The data were used to establish the relationship
(predictive model) between LAI and fresh or dry biomass in
the region (see Fig. 8 for November 2014). We assumed that
these relationships were generic in nature and were used to
convert LAI measurements to biomass. The power functions
(predictive models) in Figure 8 were preferred to the linear
predictive models because they could be extrapolated to
predict realistic values for biomass below LAI of 1. The linear
model for LAI values predicted negative biomass values. The
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mass of the dried grass was about half the mass of fresh grass.
The relationship between the fresh and dry mass was also
established (Fig. 9).

Step 7 – Radiative Transfer Modeling and Developing 
Predictive Equation for LAI

The PROSAIL-5 radiative transfer model was used to
simulate 3000 spectral reflectance, mimicking the Landsat 8
reflectance spectra of the project area. PROSAIL had a
combination of PROSPECT (a leaf optical properties model)
and SAIL (a four-stream canopy RTM).14,15 Figure 10 shows



Figure 10. Parameter ranges for forward modeling of PROSAIL (i.e., for
the simulation of synthetic spectra).

Figure 11. Predictive model of LAI derived from simulated spectra using
PROSAIL radiative transfer model.

Figure 12. LAI map of the region.
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the input parameters used in the forward modeling of
PROSAIL. PROSAIL-5B was downloaded from http://
teledetection.ipgp.jussieu.fr/prosail/.16 The simulated models
were achieved in Matlab.

NDVI (NIR-R)/(NIR+R) and GNDVI (G-R)/(G+R)
values were derived from the simulated spectra. A predictive
model between LAI and NDVI or GNDVI was made using
simulated data. The green NDVI derived from the green and
red bands provided a better fit (R2 = 0.70) when compared
Figure 13. Correlation between measured and predicated LAI.



Figure 14. Grass biomass maps derived for the project area.
with the traditional NDVI derived from the NIR and red
reflectance (R2 = 0.35). The predictive equations are shown
on the graphs in Figure 11. These predictive models were used
to predict LAI on the satellite image.
Step 8 – Predicting LAI on the Landsat Image
First, a GNDVI image (the green NDVI in this project

provided higher accuracies when compared with the tradi-
tional NDVI) was derived from the Landsat data. Second, we
used grass class mask derived from the vegetation type map
established in step 4 to mask out the grass areas on the NDVI
image. The LAI predictive model developed from the
PROSAIL data (Step 6) was inverted on the Landsat GNDVI
image to predict LAI from the Landsat 8 image (Fig. 12).
Figure 15. Fresh and dry (oven dry) grass biomass of the region.
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The LAI map was produced by inverting the predictive model
between the green NDVI derived from the simulated data
using the PROSAIL model:

Y ¼ 1:437e4:108x

R2 ¼ 0:6984
ð1Þ

LAI was predicted with a root mean square error (RMSE)
of 1.28 (39% of the mean), that is, the error between the
predicted LAI using the PROSAIL RTM and the field
measured LAI (Fig. 13). We recommend the use of many
more points to validate the predicted LAI.

Step 9 – Predicting Grass Biomass
A grass biomass map was produced from the LAI map by

applying the biomass/LAI model established between the



Figure 16. Three grass biomass classes (vector map).
field measured biomass and LAI (Fig. 8). The units were
converted from g/m2 to kg/ha by multiplying g/m2 by 10 (i.e.,
1 g/m2 → 10 kg/ha). The strength of the relationship
between the predicted LAI and field-measured fresh or dry
mass was assessed as shown in Figure 14. A stronger
relationship was observed for the dry mass (R2 = 0.60)
when compared with the fresh mass (R2 = 0.47; Fig. 15).

Accuracy Estimation
TheRMSEbetween the predicted biomass and field-measured

biomass was assessed. TheRMSEwas lower for the drymass (121
kg/ha; 39%) compared with the fresh biomass (323 kg/ha; 45%).

The grass biomass map was binned into several classes
(e.g., low, medium, and high biomass classes), as shown in
Figure 16, to highlight the regions of high production. The
central and western region showed the highest biomass during
October to November 2014.
Discussion
The best period for hay harvesting and available hay using

RS data indeed coincides with the rainfall season in the Cattle
Corridor of Uganda. Most of the areas in the Cattle Corridor,
including the study area, largely receive a bimodal rainfall.17

This implies that the harvest of hay in the Cattle Corridor
should be shortly after the rainfall peaks in May and toward
the end of November and beginning of December in the
seasonal calendar year. However, the rainfall increasingly is
10
highly variable. This trend agrees with studies done in the
Cattle Corridor of Uganda, which receives rainfall between
500 and 1000 mm annually.3,6 The implication of this has
been a more sedentary lifestyle in the Cattle Corridor. This,
therefore, presents an opportunity for haymaking, but it also
presents the challenge of increased pressure on the available
resources.

Modeling hay production quantity brings out the impor-
tance of GIS and RS in mapping of potential hay areas. Use of
geospatial technology (GIS and RS) in haymaking highlights
the importance of optimizing hay production in rural
rangelands, and the findings indeed substantiate the findings
presented in the paper. This shows the usefulness of such tools
and, if integrated with different spatial environmental and
socio-economic variables such as climate, topography,
geology, soils, drainage patterns, road networks, and popu-
lation, presents an important tool for decision-making and
investment.11 Boyd&Foody (2010) provide similar observation
from recent research in ecological informatics involving RS and
GIS. We need to focus on a selected range of issues including
topics such as the nature of RS data sets, issues of accuracy and
uncertainty, data visualization and sharing activities, as well as
developments in aspects of ecological modeling research. Indeed,
considerable advances have been made over recent years and
foundations for future research established.

This methodology (step-by-step modeling) provides a
rapid tool for data collection, minimizing fieldwork and hence
reducing the cost of obtaining critical information. The steps
in modeling hay quantity present a new methodology for
monitoring biomass production in semi-arid areas such as the
Cattle Corridor of Uganda. With this, plans can be made for
when, where, and how much to harvest. In addition, this
methodology provides an adaptation approach/coping strat-
egy for the increased changes in climate in such areas. From
the findings and field observations, there is high spread of
woody species that affect grasslands. Other studies have
observed the same thing: One major challenge in the
management of rangeland ecosystems is the perceived
widespread encroachment of woody species, which reduce
grazing area, suppress palatable grass species, and increase
production costs.18 Woody encroachment is often associated
with alteration of above- and below-ground productivity, litter
quality, altered hydrology, and changes in microclimate and
earth’s surface albedo, among others.19 Moving forward, the
next step is to map species type and nutrient value of these
species. Some technologies and satellite data are available that
can be used to map hay species type and quality.
Conclusions
In conclusion, this study presents a methodology that may

guide livestock managers, extension workers, and farmers in
1) determining the best period for hay harvest corresponding
to peak productivity of the vegetation in rangelands, 2)
estimating the amount of hay available (biomass) at peak
productivity, using commonly available satellite imagery,
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and 3) highlighting the best areas for hay production based on
grassland availability. It is recommended that this method-
ology (monitoring framework for hay mapping) be scaled up
to regional scales so we are able to map biomass areas and hence
potential hay making areas over wider areas. It is recommended
that further studies be done taking into consideration separation
of non-grass biomasses from the total vegetative biomass.
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