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Abstract: Fault-tolerant control is important for the autonomous operation of complex
processes. When model predictive control is used, fault detection and diagnosis is often based
on the available process model used by the controller. Unanticipated faults can however cause
misdiagnosis of faults, and consequently incorrect compensation actions. A fault-tolerant model
predictive controller is presented in this article and tested on a grinding mill circuit simulator.
The fault diagnosis algorithm quickly and accurately detects anticipated faults based on the
generalized likelihood ratio test. Unanticipated faults are isolated when the process data do
not sufficiently match the most probable anticipated fault data. The scheme is applicable to
nonlinear multiple-input multiple-output systems.
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1. INTRODUCTION

Automation is an important tool for modern processing
plants to operate profitably under increasingly stringent
environmental and safety regulations. If a failure occurs
on the processing plant (including failure of a piece of
processing equipment, an actuator, or a measurement de-
vice) the plant operating performance will likely decrease
(Zhang and Jiang, 2008), and such faults easily lead to
production stoppages (Blanke et al., 1997). Fault-tolerant
control (FTC), which is specifically concerned with the
ability to regulate the plant when faults occur, can gen-
erally alleviate the effects of faults, and may be able to
prevent plant stoppages.

FTC is broadly classified as being either passive or active
(Zhang and Jiang, 2008). Passive FTC has the objective
to design the controller to be robust against a class
of presumed faults. Active FTC aims to isolate faults
(the source and sometimes the magnitude) and then to
adapt the control strategy such that the stability and
control performance of the system might be maintained.
Active FTC relies heavily on real-time fault detection and
diagnosis (FDD) algorithms to provide accurate, and up-
to-date information about the true system status. FDD
algorithms can be classified as either being data driven or
model-based, depending on the process knowledge that is
required a priori (Venkatasubramanian et al., 2003).

Model predictive control (MPC) is the most widely used
advanced control strategy in the process industry (Bauer
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and Craig, 2008). The implementation of a successful MPC
requires a sufficiently accurate process model. Using FTC
along with MPC therefore makes model-based FDD a
logical choice. Model-based fault diagnosis often relies on
the analysis of residuals (Alcorta Garcia and Frank, 1997),
which may generally be regarded as an indication of the
difference between the expected plant response and the
measured plant response. The expected plant response is
commonly supplied by a state observer, and Deshpande
et al. (2009) regards the design of the state observer as
the key to successful integration of fault tolerance with
predictive control.

The generalized likelihood ratio (GLR) method for fault
diagnosis presented in Deshpande et al. (2009), is based on
comparing the measured plant response with those from
a group of observers, each designed with a different fault
presumed. The fault presumed by the observer that best
explains the plant measurements is chosen as the fault that
has occurred. An observer has to be designed for each an-
ticipated fault, and the method can therefore not directly
handle novel (or unanticipated) faults. Novel identifiability
is listed by Venkatasubramanian et al. (2003) as one of the
ideal characteristics of a fault diagnosis system.

Farrell et al. (1993) notes that unanticipated faults may
trigger the fault detection test, but does not match any of
the expected faulty behaviours (of the anticipated faults).
This unanticipated fault may then affect the system in
a number of different ways. Firstly there may be very
little impact on the process. This is the ideal case, and is
often handled by setting up the fault detection test to not
be triggered in this case. Secondly this fault may trigger
the false isolation of an anticipated fault. The controller



reaction to such a false diagnosis may be worse than
with no diagnosis, and therefore this situation should be
avoided. Lastly the fault could remain unaccommodated.
Farrell et al. (1993) addressed how the effects of such
an unanticipated fault may be offset for aircraft control
by representing the unanticipated fault as an unmeasured
force on the body of the aircraft. This approach is helpful,
but is not generally expandable for process control.

Venkatasubramanian et al. (2003) notes that there is usu-
ally enough process data available to characterize nominal
behaviour, but generally not enough to satisfactorily char-
acterize abnormal operating regions (such as with faults).
It is for this reason that some form of relation of how
the fault affects the plant is useful. Wan et al. (2013) used
signed digraphs to determine the root cause of novel faults,
where novel faults are defined as faults for which historical
data are not available. The digraphs are set up according
to operational knowledge of how the novel faults affect the
plant, which is often available.

A modelling approach is presented by Yen and Ho (2004),
where an artificial neural network is used as an online es-
timator of the unknown failure dynamics of a single-input
single-output system. There does however not seem to be
much literature available regarding handling unanticipated
faults for multiple-input multiple-output systems within a
model-based control framework.

In this work, the nonlinear GLR method is used to diag-
nose faults. Fault detection is completed first. Anticipated
faults, for which fault mode observers are set-up, are then
identified when the corresponding fault mode observer
sufficiently matches the measured plant outputs. If no fault
mode observer sufficiently matches the measurements, an
unanticipated fault is assumed, the effects of which are
subsequently dealt with via feedback as performed by the
MPC.

This method is illustrated through simulation of a nonlin-
ear run-of-mine ore milling circuit, for which various faults
are introduced, but fault-mode observers are only defined
for some faults.

2. FAULT DETECTION AND ISOLATION

Most methods for model-based fault detection and diagno-
sis are based on residual analysis (see e.g. Alcorta Garcia
and Frank (1997)). In this work the nonlinear version
of the GLR method (as described by Deshpande et al.
(2009)) is used. In this section an overview of the nonlinear
GLR method is given along with the fault representation
expressions.

2.1 Fault detection

Consider the innovation sequence calculated from the
outputs of the nominal state observer (refer to Fig. 1):

γ(k) = y(k)− ŷ(k), (1)

with k ∈ [t, t + N ], and ŷ = g(x̂k, θk) the outputs
generated from the estimated states. Without any faults,
and with a model that sufficiently encapsulates the system
dynamics, the innovation sequence is zero-mean Gaussian
white noise. If however any faults are present the state
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Fig. 1. Fault detection and isolation

estimates become biased (Deshpande et al., 2009) and the
innovation sequence is no longer zero-mean Gaussian noise.

Hotelling’s T 2 statistic is an often-used metric for fault
detection (Qin, 2012). The purpose of the statistic is to
indicate a deviation in the data from normal operation,
and can be expressed as:

T 2 = (x− x̄)
T
V −1 (x− x̄) (2)

where x is the current observation with historical mean x̄,
and V is the covariance matrix. Akin to the T 2 statistic,
a test statistic over an evaluation window, expressed as

ε(t,N) =

t+N∑
k=t

γ(k)TV (k)−1γ(k) (3)

is used to detect the fault. If this test statistic exceeds a
threshold the fault is confirmed. The threshold and win-
dow length are tuning parameters for the fault detection
test. A longer window length ensures more reliable but
slower fault detection (because of its inherent filtering).
The threshold is related to the severity of the fault as well
as the window length.

2.2 Fault diagnosis

Suppose a set of observers is used, each operating with
a different postulated fault, and each generates outputs
along with the nominal observer (also indicated in Fig. 1).
The problem of fault isolation is then finding the fault
mode observer that best explains the measurement se-
quence {y(t) . . . y(t+N)} generated over the time window
for which the fault was detected. The NL-GLR method
can then be stated in mathematical form as:

min
bfj

(
Jfj
)

=

t+N∑
i=t

γfj (i)
TVfj (i)

−1γfj (i), (4)

where γfj (i) and Vfj (i) are respectively the innovations
and innovation covariance matrices generated by the fault
mode observer corresponding to fault fj . The isolated fault
corresponds to the fault mode observer for which Jfj is the

smallest, with b̂fj , the fault magnitude that produces this
minimum value.

Because the innovation sequence of (1) and the innovation
covariance matrix (V (k)) appear directly in the Kalman



filtering framework, it is natural to make use of the
Kalman filter as the state observer (or the extended
Kalman filter (EKF) in the nonlinear case). The EKF
however, as is often used in the nonlinear case, suffers
some known limitations (see Julier and Uhlmann (2004)
for a more complete discussion). It is for this reason that
particle filtering is rather used to complete the estimation
task in this work. A more complete discussion of particle
filtering in the nonlinear GLR framework is given by
Olivier and Craig (2016).

2.3 Representing faults

The fault diagnosis effort in this paper is limited to
actuator errors for simplicity of illustration, although
many other errors can also be represented in the GLR
framework (see e.g. Olivier and Craig (2016)).

If the j-th actuator is stuck abruptly at time t then the
corresponding plant input can be represented as:

uuj (k) = m(k) +
[
buj − eTujm(k)

]
eujσ(k − t) (5)

where m is the requested actuator value, buj represents the
constant value at which the j-th actuator is stuck, euj is
the fault vector with element j equal to one and all other
elements equal to zero, and σ(t) is the unit step function:

σ(t) = 0 if t < 0; σ(t) = 1 if t ≥ 0. (6)

3. PREVENTING INCORRECT ANTICIPATED
FAULT ISOLATION

When a significant, unanticipated fault enters the system
(i.e. a fault for which no fault-mode observer is defined)
the fault detection test will still be triggered because
of the biasing effect on the residuals. During the fault
diagnosis step, the fault-mode observer that best explains
the output measurements is chosen as the candidate for the
actual fault that occurred. If the candidate observer is the
incorrect choice, such as in the case with an unanticipated
fault, the residuals generated by this fault-mode observer
will not be Gaussian noise, because the residuals will be
biased by the effect of the unexplained fault.

It is now important to determine whether the candi-
date fault-mode observer sufficiently explains the measure-
ments, or whether a significant bias is still present in the
residuals. Again the test statistic of (3) is used, with the
residuals based on the most optimal fault-mode observer
as:

ε∗(t,N) =

t+N∑
k=t

γf∗(k)TVf∗(k)−1γf∗(k) (7)

where f∗ represents the fault mode observer that min-
imizes Jfj in (4). If the fault-mode observer sufficiently
explains the measurements, this error statistic will have a
low value. If the value of the test statistic is too large, it is
likely that an unanticipated fault is affecting the system.

The threshold for not isolating an anticipated fault is a
tuning value, and generally has to be more strict than the
fault confirmation threshold. This is because even an in-
correct fault-mode observer may reduce the residual error
somewhat, in accordance with the optimization intent of
(4).

Unanticipated faults will therefore not be incorrectly di-
agnosed as one of the anticipated faults for which a fault-
mode observer has been identified. Unanticipated faults
are handled in line with passive FTC, where the controller
rather tolerates faults. Maciejowski (1998) notes that con-
strained predictive control has an implicit degree of fault
tolerance. This is because an unavailable actuator will
likely saturate (become equal to the high or low limit)
and the MPC will merely use the next available actuator
to achieve the control objectives.

The implicit fault-tolerance and disturbance rejection ca-
pabilities inherent in an MPC controller are therefore
deemed acceptable to deal with faults that are not antici-
pated to occur frequently enough, or for which the effects
of non-diagnosis are not large enough to warrant the use
of separate fault-mode observers.

4. FAULT-TOLERANT NONLINEAR MPC

This section briefly explains the fault-tolerant nonlinear
MPC implementation. The discussion pertains to the gen-
eral discrete time state-space representation of a dynamic
system

xk = f (xk−1, uk−1, θk−1, vk−1) (8)

yk = g (xk, θk, ek) (9)

where x ∈ Rn is the state vector and y ∈ Rm is the output
vector, f(·) and g(·) are possibly nonlinear functions de-
scribing the state transitions and the outputs respectively,
uk contains the exogenous inputs, θk represents the pa-
rameters, vk is the state noise and ek is the measurement
noise.

The objective of a model predictive controller at each
sampling instant is to minimise the scalar performance
index

min
u

Φ(u, xk) (10)

s.t. x ∈ X,u ∈ U (11)

θc(x, u) ≤ 0 (12)

where x : R→ Rnx is the state trajectory, u : R→ Rnu is
the control trajectory, xk is the state at time step k and
θc(x, u) is the constraint vector.

The performance index (or objective function) to be mini-
mized penalizes output values different from the reference
values as well as excessive control moves. The objective
function used in this work is similar to that shown in Qin
and Bagwell (2003) as:

Φ(·) =

Np∑
i=1

(
‖yr,i − yi‖2Qr +Qlyi

)
+

Nc−1∑
i=0

‖∆ui‖2R (13)

where Np and Nc are the prediction and control horizons
respectively; ‖ · ‖Q represents the Q-weighted 2-norm;
Qr, Ql, and R are weighting matrices corresponding to
the reference tracking, linear optimization objectives, and
control movements; yr is the output reference and y is the
output prediction.

The only difference in this formulation between the linear
and nonlinear versions of the MPC is whether the output
predictions are supplied by propagating the control vector
through a linear or nonlinear model. The state estimates
required by the MPC are also provided by means of a
particle filter.



Fig. 2. Grinding mill circuit

5. APPLICATION EXAMPLE

The efficacy of the method is illustrated through appli-
cation on a milling circuit simulator. A full nonlinear
description of the plant is used by the NMPC, with faults
being diagnosed through the nonlinear GLR method.

5.1 Process description

Only a brief description is given here of the grinding mill
circuit. A much more complete description can be found
in Le Roux et al. (2013), from which all of the parameter
values listed in Table 1 can also be obtained.

The layout of the milling circuit is shown in Fig. 2. Ore
from the mine is added to the grinding mill along with steel
balls and water. Ore is ground down into fine particles
inside the mill, and exits as a slurry through an end-
discharge grate. Note that coarse ore and steel balls cannot
pass through the grate. The slurry is sent to a sump where
further water is added before being pumped to a cyclone
for classification. Sufficiently ground down material leaves
the top of the cyclone as the product of the milling circuit.
Material that should be ground down further leaves the
bottom of the cyclone and re-enters the mill.

The inputs into the milling circuit are the mill water feed
(MIW), mill solids feed (MFS), mill steel balls feed (MFB),
the sump water feed (SFW), and the cyclone feed flow-rate
(CFF). These are all manipulated variables in the MPC.
The milling circuit outputs are the mill load (LOAD),
sump volume (SVOL), particle size estimate (PSE), circuit
throughput (THP), the mill power draw (Pmill), and the
cyclone feed density (CFD). The MPC controlled variables
are the PSE, LOAD, and THP. The other measurements
are used for fault detection and diagnosis.

The mill state equations are given by:

Ẋmw =MIW − Vmwo (14)

Ẋms = (1− αr)
MFS

Ds
− Vmso +RC (15)

Ẋmf = αf
MFS

Ds
− Vmfo + FP (16)

Ẋmr = αr
MFS

Ds
−RC (17)

Ẋmb =
MFB

Db
−BC. (18)

with

Vmwo = VV · ϕ ·Xmw

(
Xmw

Xmw +Xms

)
(19)

Vmso = VV · ϕ ·Xmw

(
Xms

Xmw +Xms

)
(20)

Vmfo = VV · ϕ ·Xmw

(
Xmf

Xmr +Xms

)
(21)

BC =
1

Dbφb
· Pmill · ϕ ·

(
Xmr

Xmr +Xms

)
(22)

RC =
1

Dsφr
· Pmill · ϕ ·

(
Xmr

Xmr +Xms

)
(23)

FP =
Pmill

Dsφf

[
1 + αφf

(
LOAD
vmill

− vPmax
)] (24)

ϕ =

max
[
0,
(
Xmw −

(
1
εws
− 1
)
Xms

)]
Xmw

0.5

(25)

Pmill = Pmax · {1− δPvZ2
x − δPsZ2

r} · (αspeed)
αP (26)

Zx =
LOAD

vPmax · vmill
− 1 (27)

Zr =
ϕ

ϕPmax
− 1. (28)

The sump state equations are:

Ẋsw = Vmwo + SFW − Vswo (29)

Ẋss = Vmso − Vsso (30)

Ẋsf = Vmfo − Vsfo; (31)

Vswo =CFF ·
(

Xsw

Xss +Xsw

)
(32)

Vsso =CFF ·
(

Xss

Xss +Xsw

)
(33)

Vsfo =CFF ·
(

Xsf

Xss +Xsw

)
. (34)

The cyclone is described as:

Vccu = (Vsso − Vsfo) ·
(

1− 0.6 e−
CFF
εc

)
· (35)(

1−
[
Fi
0.7

]4)
·
(
1− P 4

i

)
Vcwu = Vswo ·

Vccu − Fu · Vccu
Fu · Vswo + Fu · Vsfo − Vsfo

(36)

Vcfu = Vsfo ·
Vccu − Fu · Vccu

Fu · Vswo + Fu · Vsfo − Vsfo
(37)

Fu = 0.6− (0.6− Fi) · e−
Vccu
αsuεc , (38)

Fi =
Vsso

Vswo + Vsso
(39)

Pi =
Vsfo
Vsso

. (40)

with Vcfo = Vsfo − Vcfu and Vcco = (Vsso − Vsfo)− Vccu.



Table 1. Parameters and constants contained
in the milling circuit equations.

Parameter Value Description

αf 0.055 Fraction of fines in the ore
αr 0.465 Fraction of rocks in the ore
φf 29.57 Power per ton of fines produced [kW·h/t]
φr 6.03 Rock abrasion factor [kW·h/t]
φb 90 Steel abrasion factor [kW·h/t]
Ds 3.2 Feed ore density [t/m3]
Db 7.8 Steel ball density [t/m3]
εws 0.6 Maximum water-to-solids volumetric

flow at zero slurry flow
VV 84 Volumetric flow per “flowing volume”

driving force [h−1]
Pmax 1661 Maximum mill motor power [kW]
δPv 0.5 Power change parameter for volume of

mill filled
δPs 0.5 Power change parameter for fraction

solids in the mill
vPmax 0.34 Fraction of mill volume filled for maxi-

mum power
ϕPmax 0.57 Rheology factor for maximum mill

power
αP 1.0 Fractional power reduction per frac-

tional reduction from maximum mill
speed

vmill 59.1 Mill volume [m3]
αφf 0.01 Fractional change in kW/fines produced

per change in fractional filling of mill
εc 128.85 Coarse split parameter
αsu 0.87 Parameter related to solids in cyclone

underflow

The milling circuit outputs are:

LOAD = Xmw +Xms +Xmr +Xmb

SV OL = Xsw +Xss

PSE =
Vfo

Vco+Vfo
THP = Vco + Vfo
CFD = Xsw+DsXss

Xsw+Xss

(41)

as well as Pmill given in (26). The parameter values
contained in the process equations are listed in Table 1.

The specific values used by the NMPC and particle filters
for the simulation are as listed in Olivier and Craig (2016).

5.2 Simulation results

The simulation is run for a total of 5 hours, and is
propagated at a sampling period of 10 seconds. Fault-mode
observers are only defined for MIW and CFF actuator
errors. This limited number is merely to keep the example
simple.

Firstly one of the anticipated faults are introduced. After
0.8 hours the valve supplying MIW fails such that the feed
water reduces to 0 m3/h. One hour into the simulation
the PSE setpoint is increased by 15 % to illustrate the
reference tracking performance in the presence of the fault.

The fault is detected shortly after its introduction. The
FDI selects an MIW fault as the most probable from the
set of fault-mode observers. The residuals are calculated
and the test statistic for isolating an anticipated fault
(7) is smaller than the threshold. The MIW fault is
therefore successfully diagnosed and the MPC continues
to control with the fault information. Fig. 3 shows the
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Fig. 3. Process measurements (red) and output predictions
from MIW (light blue dotted) and CFF (dark blue
dashed) fault-mode observers with an MIW fault
present.

0 1 2 3 4 5
0.25

0.3

0.35

0.4

L
O

A
D

  
[−

]

t [h]

0 1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

P
S

E
 [
−

]

t [h]

0 1 2 3 4 5
10

15

20

25

T
H

P
 [
m

3
/h

]

t [h]

0 1 2 3 4 5
0

5

10

15

20

S
V

O
L
 [
m

3
]

t [h]

Fig. 4. Control performance with MIW fault.

measurements and output predictions from the MIW
and CFF fault-mode observers over the fault diagnosis
window. It can be confirmed visually that the predictions
from the MIW fault-mode observer corresponds better
with the predictions.

Fig. 4 shows the control performance over the entire
simulation run. The control performance is affected by
the MIW error (especially PSE tracking), but recovery
is swift owing to the quick and correct fault diagnosis.
The introduction of the fault is indicated by the horizontal
dashed line.

In the second simulation an unanticipated fault is intro-
duced. After 0.8 hours the value of φf is decreased by
20 % to simulate a decrease in feed ore hardness. This
large unmeasured disturbance biases the residuals to the
extent that the fault detection test is triggered. The fault
diagnosis algorithm executes and selects a CFF error
as the candidate fault. The predictions (see Fig. 5) do
however not sufficiently encapsulate the changes in the
outputs to pass the threshold for confirming an anticipated
fault. It is therefore assumed that an unanticipated fault
has occurred, and the MPC is allowed to continue.



0 10 20 30
0.3

0.32

0.34

0.36

L
O

A
D

N [time step]
0 10 20 30

9

9.5

10

10.5

S
V

O
L

N [time step]

0 10 20 30
0.68

0.7

0.72

0.74

0.76

P
S

E

N [time step]
0 10 20 30

19.5

20

20.5

21

21.5

T
H

P

N [time step]

0 10 20 30
1150

1160

1170

1180

1190

1200

P
m

ill

N [time step]
0 10 20 30

1.6

1.62

1.64

1.66

1.68

1.7

C
F

D

N [time step]

Fig. 5. Process measurements (red) and output predictions
from MIW (light blue dotted) and CFF (dark blue
dashed) fault-mode observers with a feed ore hardness
disturbance.
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Fig. 6. Control performance with feed ore hardness dis-
turbance without selecting an anticipated fault (blue)
and when incorrectly selecting the CFF fault (black
dashed).

Fig. 6 shows the control performance with the feed ore
hardness disturbance (the introduction of which is indi-
cated by the horizontal dashed line). The control perfor-
mance (shown in blue) is better than if the CFF error
was incorrectly diagnosed (shown in black); for similar
throughputs the PSE tracking in blue is better.

6. CONCLUSION

Fault-tolerant MPC using the GLR method for FDD is
presented in the paper. A bank of estimators provide
the estimates for different presumed faults, from which
the most likely fault is selected. The core contribution of
this paper is the expansion of the method to not falsely
diagnose an anticipated fault when an unanticipated fault
occurs.

The method presented efficiently handles anticipated
faults, and has the ability to not incorrectly diagnose
faults in the presence of unanticipated faults. Successful

application is illustrated through simulation of a run-of-
mine ore milling circuit.
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