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ABSTRACT 
 
The paper considers a two-component continuous review inventory system where 
one of two components is produced by the organisation and the other is supplied by 
an outside supplier. The two components are assembled into an end product. There 
are two different product types. Demand occurs according to a Poisson process for 
each of the product types. It is assumed that product 1 is produced and its production 
time is arbitrarily distributed. Production is interrupted when the inventory level of 
product 1 reaches its maximum level. Replenishment of product 2 is done according 
to an adjustable reorder policy, and the lead-time follows an exponential distribution. 
Identifying the stochastic process as a semi-regenerative process, steady-state 
measures such as mean stationary rate of the number of demands lost, mean number 
of demands satisfied, mean number of replenishments made, are found. The total 
unutilised capacity of the production system is found, and a cost analysis is also 
studied. A numerical example is provided to illustrate the results obtained. 
 

OPSOMMING 
 
‘n Voorraadsisteem wat kontinu hersien word vir twee verskillende komponenttipes 
word bestudeer. Die komponente word gebruik vir twee verskillende produktipes. 
Die verbruik van elke produktipe word beskryf deur ‘n Poissonverdeling. Die 
produksietyd vir produktipe 1 is arbitrêr verdeel. Sodra die voorraadpeil van produk 
1 die maksimum bereik, word produksie gestaak.  Aanvulling van produktipe 2 word 
gedoen volgens ‘n verstelbare herbestelbeleid met eksponensiele leityd. 
Identifisering van die stogastiese proses as half-regenererend lei vervolgens tot 
bepaling van gestadigde maatstawe soos gemiddelde aantal verlore eenhede, 
gemiddelde bevredigde vraag, en gemiddelde aantal aanvullings. Die totale ledigheid 
van die sisteem word bepaal en die gepaardgaande koste bereken. ‘n Syfervoorbeeld 
word voorgehou om die resultate te bevestig. 
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1.  INTRODUCTION 
 
There are many organisations that manufacture some or all of the subcomponents of 
the assembly system they are dealing with. For example, in an automotive industry a 
car manufacturer needs chassis, steering, wheels, etc. to assemble a car. Some of the 
components, like tyres and electric bulbs, may be outsourced, while components like 
the engine, the chassis, etc. may be manufactured by the organisation itself. Not only 
must the inventory of outsourced components be controlled, but also the inventory of 
the different components that are self-manufactured. Further, the production system 
that is used to manufacture these components may also be subject to failure and 
repair. Arreola-Risa (1996) considered a multi-item production-inventory system, 
and obtained optimal base stock levels when the unit manufacturing times are either 
determinate or exponential. 
 
Bourland et al (1996) studied a timely demand information model. According to this 
model, two factories use a standard periodic base-stock policy for one particular 
item, but the equal-length production cycles of the two factories do not necessarily 
coincide. A similar study was done by Arbib and Marinelli (2004) for a glass 
industry, using the 0-1 linear programming formulation based on the p-model. 
However, attention has not been paid so far in the literature to the continuous review 
of inventory systems (Raafat [1991], Yadavalli et al [2004]) where good control of 
the production process is required to maintain the inventory of the manufactured 
components. To fill the gap, an attempt is made in this paper to study a model of a 
two-component-assembly system in which one component is outsourced and the 
other is manufactured by the organisation itself, with the assumption that the life-
time of the production system is an arbitrarily distributed random variable and that 
the system can be repaired after failure. 
 
The organisation of the paper is as follows: 
 
In section 2 the model, with its assumptions and the notation used in the paper, is 
presented. The auxiliary functions needed to derive the inventory level distribution 
are obtained in section 3. The inventory level distribution is discussed in section 4, 
and the limiting distribution of the inventory level is obtained in section 5. The 
system performance measures are found in section 6. In section 7, a numerical 
illustration is given to illustrate the results obtained. 
 
2.  THE MODEL ASSUMPTIONS AND NOTATION 
 
Consider a two-component-assembly system in which one component is outsourced 
and the other is manufactured by the organisation itself. To be specific, let the 
component manufactured by the organisation itself be called “component 1”, and the 
outsourced one “component 2”. 
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Assumptions: 
 
1. The production time of component 1 is an arbitrary random variable with p.d.f. 

( ) ( ). , . . . .g c d f G  and survivor function G
_

.b g  . 
2. The life-time of the production system of component 1 is exponential with 

parameter α , and its repair time has an arbitrary distribution with p.d.f. gr .b g  
3. If the production system fails during the course of the production of a unit of 

component 1, the production starts afresh after completion of repair. After 
production completion, component 1 goes directly to the inventory. 

4. The maximum inventory level of component 1 is S1.  
5. When the inventory level of component 1 reaches the maximum level, the   

production is stopped; it restarts when a demand for the end-product is 
satisfied. During the production stoppage period, the production system cannot 
fail. 

6. The maximum inventory level of component 2 is S2  and it is reordered when 
its inventory level reaches s2 , and is replenished according to an adjustable 
reordering policy. The lead-time is assumed to be exponentially distributed 
with parameter μ.  

7. The demands for the end-products occur according to a Poisson process with   
parameter λ.  

8. On the occurrence of a demand, the two components are instantly assembled 
and the demand is met. Even if one component is out of stock, the demand is 
lost and is not back-logged. 

 
Notation: 
 
L ti b g :   The inventory level of the product i  at any time t t i, , , .≥ =0 1 2  
X t L t L tb g b g b gc h= 1 2, ,  the vector process representing the state of the system  

at time t.   
Ri :   Event that a reorder is placed for product i i, , .= 1 2  
l :   Event that a demand is lost. 
d :    Event that a demand is satisfied. 
b :    Event that the production system fails. 
N t tη 1 2, :d i   Random variable representing the number of η  – events that  

have occurred in the interval t t1 2. ,c  where η  can be any one  
of the types R d bi , , , .l  N t N tη ηb g b g= 0.  

E0 :    Event that denotes the initial condition that the production for product  
1 commences and the inventory level of product 2 is 0. 
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3.  AUXILIARY FUNCTION 
 
Consider the inventory system component 2 as a single product inventory system that 
has the function μ μe t−  as the p. d. f. of the lead-time, and is replenished according to 
an adjustable reorder policy. We define 
ϕ i j k t P r L t j N t k L id, , , , .b g b g b g b g= = = =2 2 0  
 
We restrict the usage of this function to the period of production of a unit of 
component 1 or to the period of repair time of the production system.  
Accordingly, to derive an expression for  ϕ i j k t, , , ,b g  we consider the following 
cases separately: 
 
Case 1: 
 
0 2≤ ≤i s  
 
Using probabilistic arguments, we have: 
 
ϕ λ λ μi j k t e t, , ,b g b g= − + © 

ϕ μ λ μi j k t e t− − + − +1 1, , ,b g b g ©ϕ S j k t i k2 0 1, , , , , ;b g > >                                      (1) 
 
ϕ μ0 , , ,j k t e utb g = − © ϕ S j k t k2 0, , , ,b g >                                (2) 

ϕ λ μi i t e it, , , ,0 0b g b g= >− +                                                (3) 
ϕ μ0 0 0, , , t e tb g = −

                                                       (4) 
ϕ λ μ0 0 12, , ,S t e et tb g c h= −− −                                               (5) 
 
Case 2: 
 
i s> 2  
 
ϕ λ λi j k t e t, , ,b g = − © j i j k t k− − >1 1 0. , . , .b g                               (6) 
ϕ λi i t e t, , ,0b g = −                                                        (7) 
 
4.   INVENTORY LEVEL 
 
Let 0 0 1 2= T T T, , ,...... denote the successive time points at which the production of a 

unit of component 1 is started, and let X X T nn n= + =b g , , , ,.....0 1 2  be the inventory 

level of the system at Tn .  Then X T X T nn n, , : , , .....b g b gm r= = 0 1 2  is a Markov 
renewal process with state space  
 
E i j i s S j s S= = =, , , ,...., ,...... ; , , ,..., , ...,b gm r0 1 2 0 1 21 1 2 2 .  
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The semi-Markov kernel Q i j t l m, , ,c h  of this process (see Cinlar [1975]) is  
the family of probabilities defined by 
 
Q i j t l m P r X i j T T t X l mn n n n, , , , , , ,c h b g b gn s= = − ≤ =+ +1 1             (8) 
 
where i j l m E, , , .b g b g∈  We write 
 
Q i j dt l m P r X i j t T T t dt X l mn n n n, , , , , , .c h b g b gn s= = < − < + =+ +1 1  
 
To derive an expression for the function Q  we observe the following: 
 
(i) Some of the epochs Tn  are also epochs of production completion. In such 
(ii) cases , L Tn1 0+ >b g . 
 
Since Tn+1  is an epoch of production commencement, the production of a unit that 
commenced at the epoch Tn  is completed at Tn+1  or the production systems fails in 

T Tn n, +1d i  and the repair is completed at Tn+1.  
 
The inventory level of product 1 can reach the state S1 1−  at Tn+ +1  in the following 
ways: 
 
L T Sn1 1 2+ = −b g  and the production then commenced is completed at Tn+1  and no 

demand is satisfied in T Tn n, .+1d i  
 
a. L T Sn1 1 1+ = −b g  and the production system fails, and this repair is completed at 

Tn+1  and no demand is satisfied in T Tn n, .+1d i  
b. L T Sn1 1 1+ = −b g ,  the production then commenced is completed prior to Tn+1,  

say in u u du u Tn, .+ < +b g 1  and the production is stopped at u  and the first 
demand after the stoppage of production occurs at Tn+1.  

 
We have the following cases for j m S, , , ,......, := 0 1 2 2  
 
Case 1: 
 
l i= =0 0,  
 
Since i = 0,  we note that  
 

(i)   The epoch Tn+1  cannot synchronise with production completion. 
(ii)   No demand can be satisfied. 
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Hence we have: 
 

Q j t m G u g u m j u d uu
r

t
0 0 0

0
, , , , , , .c h b g b g b g= ©RST

UVW
−

−z a ja        (9) 

 
Case 2: 
 
l i= >0 0,  
 

Q i j t m g u e m j u d u
t u, , , , , , .0 0
0

c h b g b g= z −a                                (10) 

 
Case 3: 
 
0 1 01< ≤ − =l S i,  
 
As in case 1, the epoch Tn + 1  cannot be an epoch of production completion.    
 
Accordingly we have: 
 

Q j t l m e G u g u m j l u d ua u
r

t
0

0
, , , , , , .c h b g b g b g= ©RST

UVW
−

−z α ϕ                     (11) 

 
Case 4: 
 
0 2 0 11 1< ≤ − < ≤ −l S i S,  
 

Q i j t l m e g t m j l i t e G t g t m j l i t H l it t
r, , , , , , , , ,c h b g b g b g b gn s b g b g= − + + © − −− −a aj a j1

 
+ −

+e g t m j tt
i l

α ϕ δb g b g, , , .,0 1                                                       (12) 
 
Where H .b g  is a Heaviside function and di j  is a Kronecker’s delta function. 
 
Case 5: 
 
l S i S= − = −1 11 1,  
 
Q S j t S m H j e g t e m j tt t

1 11 1 1 0− − = − ©− −, , , , . ,c h b g b gm r b gα λλ ϕ
 
+ +− −e g t m j l t e G t m j ta t a tb g b g b gn s b gφ α ϕ, , , , , , .0                           (13) 

The semi-Markov kernel of X T,b g  is the matrix  Q tb g = Q i j t l m, , ,c h  
 



 151

and is of order  S S S S1 2 1 21 1 1 1+ + × + +b g b g b g b g.  
 
Next we define the Markov renewal function of X T,b g  as  

R i j t l m Q i j t l mn

n

, , , , , ,c h c hb g=
=

∞

∑
0

                                    (14) 

 

The Markov renewal kernel of X T,b g  is the matrix R
−

t R i j t l mb g c h= , , , .  

From the theory of Markov renewal processes, we have R ∗ ∗ −
= −s I Q sb g b g 1

.  
To study the distribution of the inventory level, we consider the vector process  
 
X t L t L t tb g b g b gc h= ≥1 2 0, , .  

 
This process is a semi-regenerative process on the set E.  It is clear the Markov 
renewal process X T,b g  is embedded in Z tb g  (see Cinlar [1975]). 
 
Define for any i j l m E, , , ,b g b g∈  
 
P i j t l m P r X t i j X l m, , , , , ,c h b g b g b gn s= = =0  
 
K i j t l m P r X t i j T t X l m, , , , , , .c h b g b g b gn s= = > =1 0  
 
The K  function describes the behaviour of the inventory level at any time t T< 1.  
Using probabilistic arguments, we have the following cases: 
 
Case 1: 
 
l = 0 
 
K i j t m G t e e G t G t m j ti

t t
r, , , , , ,,0 1 01c h n s b g b g b g b g= − + ©− −δ α ϕα α           (15) 

 
Case 2: 
 
0 1 01< ≤ − =l S i,  
 
K j t l m G t e e G t G t m j l tt t

r0 , , , , , ,c h b g b g b g b g= + ©− −α αα ϕ                       (16) 

 
Case 3: 
 
0 2 0 11 1< ≤ − < ≤ −l S i S,  
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K i j t l m G t e m j l i t e G t G t m j l i t H l it t
r, , , , , , , , ,c h b g b g b g b gn s b g b g− −− + + © − −a aj a j1

                                                                    (17) 
Case 4: 
 
l S i S= − = −1 11 1,  
 
K S j t S m G t e m j t e G t G t m j tt t

r1 11 1 0 0− − = + ©− −, , , , , , , , ,c h b g b g b g b gn s b gα αϕ α ϕ

                                                                       (18) 
Case 5: 
 
i S l S= = −1 1 1,  
 
K S j t S m e g t e m j ta t t

1 1 1 0, , , , , ,− = ©− −c h b gm b g ql j                         (19) 
 
Next, to obtain an expression for P i j t l m, , ,c h  we condition on T1  and use the 
regenerative property of X tb g  to write 
 

P i j t t m K i j t l m Q i j du l m P i j t u i j
t

i j E

, , , , , , , , , , , ,
,

c h c h c h c h
b g

= = −z∑
∈

0 1 1 1 1
1 1

 
                                                                         (20) 
 
The above equation is a Markov renewal equation, the solution of which is given by  
 

P i j t l m R i j d u l m K i j t u i j
t

i j E

, , , , , , , , ,
,

c h c h c h
b g

= −z∑
∈

1 1 1 10
1 1

                   (21) 

 
5.  THE LIMITING DISTRIBUTION OF THE INVENTORY LEVEL 
 
Consider the imbedded Markov chain X L T L Tn n n= + +1 2b g b gc h, .  Let the stationary 
distribution of the Markov chain Xn  be 
 
π = + −0 0 0 1 0 2 1 11 2 1 2 1 2, , , , , ,....., , , , ,...., ,b g b g b g b g b g b gm rs s s s S S  
 

Solving the matrix equation π Q
•

= π along with the normalizing condition  
 

π e
•

= 1  we obtain π .  
 
Next, we consider the mean sojourn time m i j,b g  of the Markov renewal process 

X T,b g  in the state i j, .b g  It is defined by 
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m i j E T T X l mn n n, , .b g b g= − =+1                                              (22) 
 
where l m E, .b g∈  Using the theory of Markov renewal process, we have: 
 

m i j Q i j t l m d t
i j E

, , , , .
,

b g c h
b g

= −
L
N
MM

O
Q
PP∈

∞

∑z 1
0

 

 
 Now we define P i j P i j t l m

t
, lim , , , ,b g c h=

−∞
 where i j E, .b g∈  Then, by a theorem 

of semi-regenerative processes, we have: 
 

P i j
P l m K i j t l m d t

m
l m E,

, , , ,

.
,b g
b g c h

b g=

∞

∈
z∑ 0

π
                                        (23) 

 
The above equation gives the limiting distribution of the inventory level. 
 
6.  MEASURES OF SYSTEM PERFORMANCE 
 
The performance of the system can best be studied by considering the measures such 
as the mean number of reorders for product 2, the mean number of lost demands, and 
the mean number of times the system goes for repair. To obtain these measures, we 
require the corresponding first-order product density 
 
h t P r N t t Eη ηb g b gn s= + ≥

→
lim , / ,
Δ

Δ Δ
0 01  

 
where η  is any one of the various events of the system. Then the mean number of 
η − events occurring in the interval 0, tb  is given by 
 

E N t h u d u
t

η ηb g b g= z0  

 
and the stationary mean-rate of η − events by 
 

E N
t

E N t h t
t tη η η= =
→∞ →∞
lim lim .1 b g b g                             (24) 

 
6.1  Mean stationary rate of replenishments for product 1 
  
Since a replenishment can occur only when the inventory level of product 1 1≤ s , and 
that the lead-time rate is μ , the mean-stationary rate of product 1 is given by 

E R h t P i j
t R

ji

s

1
1

1

0

= =
→∞

=
∑∑lim , .b g b gμ                      (25) 
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6.2 Mean stationary rate of reorders for product 2 
 
Since a reorder for product 2 can only be made when a demand is satisfied 
and the inventory level of product 2 reaches s2 , we have the mean-stationary rate of 
reorder for product 2 given by  
 

E R h t P i s
t R

i

S

2 1
2

1

2
1

= = +
→∞

=
∑lim ,b g b gλ                   (26) 

 
6.3  Mean-stationary rate of lost demands 

E N h t P j i
t

ij
l l= +

RST
UVW−∞ ∑∑lim , , .b g b g b g0 0 λ                 (27) 

 
6.4  Mean-stationary rate of repair of production system: 

E r h t R i j t l m e G t
G

mt r t

tb g b g c h b g b g
= = © =

→∞ →∞

−lim lim , , ,
.

*

α
α α
π

α               (28) 

The following measures are also useful in the study of the system performance.  
 
6.5  Total unutilized capacity 
 
If A tb g  be defined by A t P rb g =  { the production system is idle at time t E0 }. 
Then the mean-fraction of unutilized time of the production system is given by 
 

lim , .
t

j

S

A t P S j
→∞

=

= ∑b g b g1
0

2

                          (29) 

 
6.6  Total repair time 
 
If B tb g  denotes the probability that the production system is under repair at time t,  
then the mean-stationary rate of the repair-time is given by  
 

lim lim lim , , ,
t

t

t t

t
r

t
B u d u B t R i j t l m e G t

→∞ →∞ →∞

−z = = ©
1

0
b g b g c h b gα α  

=
a a a

p
G G

m
r

* *

.
b g b g                              (30) 

 
6.7  Numerical illustration 
 
Assuming g(t) = a e-at, gr(t) = b e-bt, and considering the following values for the  
parameters: λ = 4.00, μ = 50.00, α = 0.005, a = 0.0001, b = 10.0, S1 = 5, S2 = 4, s1 = 
3, s2 =3, we present in Tables 1 to 5 the values of the mean-stationary rate of (i) the  
reorder for the product 2 (ER2), (ii) the lost demands (EL) (iii) repair production 
systems (ERP), and (iv) total repair time TRPT (using the equations (24)-(30)).  
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       λ               ER2              EL               ERP                   TRPT 
  4.000000     3.918395      0.024532     1194.192000      119.419200 
  8.000000     7.720486      0.089022     5677.691000      567.769200 
12.000000    11.417040     0.191839   13632.240000    1363.224000 
16.000000    15.013690     0.335029   25047.580000    2504.758000 
20.000000    18.512960     0.519991   39669.600000    3966.960000 
24.000000    21.913290     0.750279   57234.630000    5723.463000 
28.000000    25.220760     1.026292   77550.370000    7755.037000 

 

Table 1:  Increasing demand rate 
 
       μ                     ER2                EL               ERP            TRPT 
  50.000000      9.578207         0.136292    9191.772000   919.177200 
100.000000      9.439519         0.152779    6925.245000   692.524500 
150.000000      9.531513         0.123656    7342.198000   734.219800 
200.000000      9.616023         0.999907   7881 .722000   788.172200 
250.000000      9.677223         0.083293   8315.302000    831.530200 
300.000000      9.722398         0.071252   8627.994000    862.700400 
350.000000      9.756836         0.062171   8860.721000    886.072100 
400.000000      9.783290         0.055248   9109.823000    910.982300 
 

Table 2:  Increasing mean lead time 
 
       B             ER2                 EL                  ERP                TRPT 
  10.000000   3.918395        0.024532        1194.192000     119.419200 
  20.000000   3.918395        0.024532        1194.192000       59.709590 
  30.000000   3.919132        0.024450        1203.044000       40.101460 
  40.000000   3.918395        0.024532        1194.192000       29.854790 
  50.000000   3.919307        0.024306        1201.919000       24.038370 
  60.000000   3.919132        0.024450        1203.044000       20.050730 
  70.000000   3.919307        0.024306        1201.919000       17.170270 
  80.000000   3.918395        0.024532        1194.192000       14.927400 
  90.000000   3.918395        0.024532        1194.192000       13.268800 
 

Table 3:  Increasing repair rate of production system 
 
       A               ER2                  EL                  ERP                   TRPT 
0.000100       3.918395        0.024532           1194.192000       119.419200 
0.001100       3.885011        0.031607               74.788610           7.478861 
0.002100       3.860875        0.037080               30.009070           3.000907 
0.003100       3.840271        0.042133               16.885130           1.688513 
0.004100       3.824512        0.046133               11.450830           1.145083 
0.005100       3.811974        0.049424                 8.719021           0.871902 
0.006100       3.801872        0.052130                 7.176444           0.717644 
0.007100       3.793521        0.054414                 6.193297           0.619330 
0.008100       3.786610        0.056331                 5.518878           0.551888 
0.009100       3.780837        0.057954                 5.032046           0.503205 
 

Table 4:  Increasing failure rate of production system 
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         α              ER2                 EL                      ERP               TRPT 
0.005000          3.918395          0.024532        1194.192000    119.419200 
0.010000          3.816794          0.050205        1712.152000     171.215200 
0.015000          3.779261          0.059615        2906.625000     290.662500 
0.020000          3.762943          0.063705        4272.139000     427.213900 
0.025000          3.753937          0.065960        5734.917000     573.491700 
0.030000          3.748250          0.067382        7218.313000     721.831200 
0.035000          3.744323          0.068365        8723.482000     872.348300 
0.040000          3.741594          0.069047      10221.340000   1022.134000 
0.045000          3.739684          0.069525      11703.230000    1170.32300 
0.050000          3.738422          0.069840      13155.550000    1315.55500 
 

Table 5: Increasing rate of production 
 
7.  CONCLUSIONS 
 
A two-component production inventory system is studied, in which one component 
is produced by the organization itself, and the other by the outside supplier. Various 
measures of system performance have been obtained analytically, and the results are 
illustrated numerically. From Table 1 of the numerical illustration, we observe that as 
λ increases, the mean rate of reorder level of product 2, lost demands, repair of 
production system, and total repair time increases for a fixed reorder level of product 
1. From Table 2, it can be seen that as μ increases, the mean rate of reorder level 2 
decreases, whereas other measures increase with a fixed reorder level of product 1. 
Similar observations can be made from the other Tables. 
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