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Abstract: This study aims to indicate which measurements are required in order to estimate
the volume of rocks and balls in a semi-autogenous grinding mill as two separate states. The
nonlinear observer model used here includes the following process states: water, solids, rocks, and
balls in the mill, where solids are all ore small enough to discharge through the end-discharge
grate, and rocks are all ore too large to discharge. The model includes the discharge rate,
abrasion rate of rocks and the abrasion rate of balls as parameters. The available measurements
are the total mill filling, the discharge flow-rate, and the discharge density. As seen from an
observability analysis, the states and parameters become observable from the second-order time-
derivatives of the measurements. The minimum set of measurements required for observability of
all states and parameters is the mill filling, the discharge density, and the first and second-order
time-derivatives of the discharge density. However, modelling the second-order time-derivative
of the discharge density is problematic, as it assumes constant model parameters. Although
the combined volume of rocks and balls can be estimated using measurements of the mill
filling, the discharge flow-rate, the discharge density, and the first-order time-derivative of the
discharge density, these measurements remain insufficient to distinguish between rocks and balls.
To reliably distinguish between the rocks and balls in the mill, an additional measurement apart
from the ones mentioned above is required. Since power draw models introduce large parameters
sets of their own, another viable and reliable option is required.
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1. INTRODUCTION

The main impediment to implementing model-based con-
trol in the mineral processing industry, and specifically
grinding mills, is the lack of sufficient measurements to
estimate the necessary states and parameters (Wei and
Craig, 2009). The aim is to characterize plant operation
from real-time measurements without the need for expen-
sive and time-consuming sampling campaigns.

Considerable work has been done to estimate grinding
mill process variables using different modelling approaches
(Herbst et al., 1992). A very simple model along with
power and bearing pressure measurements is used by
Herbst et al. (1989) to estimate mill filling and rock
hardness. This work was extended in Herbst and Pate
(1996) to estimate ore, water, and ball inventories. A
commercialised soft-sensor is described by Herbst and Pate
(1999) to estimate mill inventories and breakage rates. In
all cases a Kalman filter is used to estimate the unknown
state vector. Although the filters capture the qualitative
trend of the unknown state vector, the studies above do
not explicitly include observability analyses to ensure the
filters produce reliable solutions.

A linear observability test is included in the inferential
measurement work of Apelt et al. (2002). The SAG mill
model of Napier-Munn et al. (2005) was used to describe
the grinding process, along with a novel ball charge model
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and a mill-liner model. Using measurements of the mill
charge weight and size-by-size solids discharge, Apelt et al.
(2002) used 29 measurements to estimate 37 states and
7 parameters with an extended Kalman filter (EKF).
However, the rank of the observability matrix of the
linearised system was only 20, which meant a unique
solution for the parameters and states was not available. In
Olivier et al. (2012) and Le Roux et al. (2016a), the states
are all observable such that a particle filter is capable
of estimating the states. However, it is assumed that
parameters such as ore hardness and ore size distribution
remain constant.

In an attempt to address the issue of observability of
grinding mill conditions, Le Roux et al. (2016¢) developed
a model for a semi-autogenous (SAG) grinding mill with
states and parameters locally (weakly) nonlinearly observ-
able. The states and parameters of the grinding mill model
are:

Ty, - volume of water in the mill,

s - volume of solids in the mill,

z, - volume of rocks in the mill,

Ty - volume of balls in the mill,

7 - discharge rate of slurry from the mill,
K, - abrasion rate of rocks, and

K, - abrasion rate of balls.

The measurements used to estimate the states and param-
eters listed above are:



e Jp - fraction of mill filled with charge,
e () - slurry discharge flowrate, and
® pg - density of slurry discharge.

A nonlinear observer such as a moving horizon estimator
(MHE) could potentially estimate the unknown states and
parameters, but it is necessary to correctly assume the
time-varying nature of the parameters for the MHE to es-
timate the true state and parameter values. A longer time
horizon for the MHE reduces the validity of modelling the
parameters as constants, but a shorter time horizon may
not include sufficient system dynamics for the observer to
estimate the unknown states and parameters.

As an alternative, an EKF could be considered to estimate
the states and parameters. However, not all the states
and parameters are observable for the linearised version
of the model in Le Roux et al. (2016¢). The rank of the
observability matrix of the linearised system is 6, implying
one of the states and parameters is not observable. Linear
observability is desirable for the EKF since the states and
parameters are estimated from a linearised version of the
system at each time step.

It is not surprising that the linearised system’s parameters
and states are not observable considering neither the rocks
(z,) or balls (xp) exit the mill. They are kept inside the
mill by the discharge grate. Apart from the mill filling
measurement Jpr, where these states appear as a linear
combination, no further information is available for these
states. However, the observability analysis of the nonlinear
system indicates that if sufficient dynamics are visible in
the output, and a nonlinear observer is used, the individual
contribution of the rocks and balls to Jr is distinguishable.

The model of Le Roux et al. (2016¢) is reduced in Le Roux
et al. (2016b) such that states and parameters are observ-
able from the linearised version of the reduced model. The
states and parameters for the reduced model are:

e 1, - volume of water in the mill

e 1. - volume of solids in the mill

e 1., - volume of total grinding media

e 77 - discharge rate of slurry from the mill
e Y - accumulation rate of solids

The reduced model made use of the same measurements as
the full model, but added the time-derivative of discharge
density. Consequently, an EKF is applied in simulation
to evaluate the effectiveness of the observer. Simulations
indicate that with accurate mill discharge flow-rate, mill
discharge density, and total mill charge measurements, it
is possible to estimate the states and parameters of the
reduced model. The main challenge is to accurately cal-
culate the first-order time-derivative of the mill discharge
density.

The disadvantage of the reduced model is that it lumps
the rocks and balls together into one state. Ideally, it is
necessary to estimate z;, independent of the rest of the
charge. SAG mills are generally designed with a constant
xp in mind in order to produce a specific grind. Because
accurate real-time measurements of x; are not available,
it remains a challenge to maintain a consistent x;. Apelt
et al. (2001) showed that z;, can be estimated using weight
or powerdraw models, but the minimum uncertainty in the
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Fig. 1. A semi-autogenous grinding mill.

estimate is 25%. Generally a linear relationship between
x, and K is assumed, such that the feed rate of balls to
the mill is set as a fraction of the feed rate of ore to the
mill. Measurement of x; will not only allow a controller to
maintain a consistent x, but also to manipulate the grind
by varying xp.

Le Roux et al. (2016b) and Le Roux et al. (2016¢) do not
resolve what will be required for the states and parameters
of the linearised version of the full nonlinear model to be
fully observable. The aim of this work is to indicate what
is required for all states and parameters of the full model
to be observable, especially such that x, and x; can be
uniquely distinguished.

Section 2 provides a description of the SAG milling pro-
cess, and a brief overview of the nonlinear model of
Le Roux et al. (2016¢). Section 3 proceeds with a descrip-
tion of the requirements for observability of the linearised
version of the nonlinear model. Conclusions are made in
Section 4.

2. GRINDING MILLS
2.1 Process Description

The open circuit SAG mill depicted in Fig. 1 receives three
streams: mined ore (M FO), water (MIW) and additional
steel balls (MFB) to assist with the breakage of ore.
If the mill circuit is closed with a classifier such as a
hydrocyclone, the underflow from the hydrocyclone also
flows into the mill. The mill charge constitutes a mixture
of grinding media and slurry. Grinding media refers to the
steel balls and large rocks used for breaking the ore, and
slurry refers to the mixture of water and all ore material
that exhibit the same flow characteristics as water. The
fractional volumetric filling of the mill by the total charge
is represented by Jp.

The mill is rotated along its longitudinal axis by a motor.
As shown in Fig. 2, the charge in the mill is lifted by the
inner liners on the walls of the mill to a certain height
from where it cascades down, only to be lifted again by
the rotating action of the mill. If the rotational speed is
sufficiently fast, the material in the charge will become
airborne after reaching the top of its travel on the mill
shell. The uppermost point where material leaves the mill
shell is defined as the shoulder of the charge. The airborne
particles follow a parabolic path, reaching a maximum
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Fig. 2. Cross-section of a semi-autogenous grinding mill.

Table 1. Description of circuit variables.

Variable  Unit Description

MIW [m3/h]  Flow-rate of water to the mill

MFO [t/h] Feed-rate of ore to the mill

MFB [t/h] Feed-rate of steel balls to the mill

Jr -] Fraction of mill volume filled with charge
Q [m3/h]  Mill discharge flow-rate

PQ [t/m3]  Mill discharge density

called the head and making contact again with the mill
charge at the bottom of the mill. The cascading motion
of the charge causes the ore to break through impact,
abrasion and attrition. The mill grind is the fraction of
material in the discharge of the mill below the specification
size and indicates the efficiency of the mill to break the ore.

The ground ore in the mill mixes with the water to create a
slurry. The slurry is discharged through an end-discharge
grate where the aperture size of the end-discharge grate
limits the particle size of the discharged slurry. The slurry
in a mill begins to form at the shoulder of the charge.
The toe of the slurry starts to grow downwards towards
the toe of the charge with increasing flow-rate. While the
toe of the slurry is less than or equal to the toe of the
charge, discharge occurs via the grinding media. When the
toe of the slurry exceeds the toe of the charge, a slurry
pool forms at the bottom of the mill. Slurry discharge is
then a combination of flow via the grinding media and the
slurry pool. Slurry pool conditions should be avoided as it
decreases the breakage rate by cushioning material falling
from the charge shoulder to the charge toe (Latchireddi
and Morrell, 2003). It is assumed that no slurry pooling
occurs in the case where the discharge grate has a large
open area of apertures, a high relative radial position of
the open area, and a high relative radial position of the
outermost apertures (Apelt et al., 2002). The flow-rate of
slurry at the mill discharge is given by Q. It is assumed
that the in-mill slurry density is equal to the discharge
slurry density (pg). The variables assumed to be measured
are listed in Table 1.

2.2 Model Description

A brief overview of the model in Le Roux et al. (2016c¢)
is presented here. The nomenclature for the model can be
seen in Table 2. The constituents in the mill are modelled
as four volumetric quantities: water (z,,), solids (zs), rocks
(z,), and balls (zp). The model makes use of only two size

classes to describe ore in the mill: solids includes all ore
smaller than the end-discharge grate aperture size, and
rocks is all ore larger than the aperture size.

Process Dynamics  The population balance used to de-
scribe the kinetics of the states defined above is

i‘w = Vwi — Vwo (1a)
iy = Vs — Vio+ RC (1b)
& = Vy; — RC (1c)
iy = Vi — BC (1d)

where Vi, Vi, Vi, and Vj; are the mill inflow of water,
solids, rocks, and balls respectively, V,,, and Vi, (m?/h)
are the discharge of water and solids from the mill respec-
tively, and RC' and BC (m3/h) are the consumption of
rocks and balls respectively. Because the mill is fitted with
an end-discharge grate, no rocks or balls are discharged
from the mill. It is assumed the mill is a fully mixed
reactor, and that discharge grate is such that no slurry
pooling occurs.

The mill inflow flow-rates are

Vi = MIW + V., (2a)
Vei = MFO(1 — o)/ po + Ves (2b)
Vi = a.MFO/p, (2¢)
Vi = MFB/py, (2d)
where p, (t/m?) is the density of the feed ore, p, (t/m?)

is the density of the steel balls, and V,,, and V., (m?/h)
is the flow of water and solids returned by the classifier
respectively. The parameter .. defines the fraction of rock
in MFO and is assumed to be measured as a function of
time (Wei and Craig, 2009). It is assumed that the flow
from the classifier to the mill is known.

Similar to the cumulative rates modelling approach (Hinde
and Kalala, 2009), the consumption of rocks (RC) and
balls (BC) in (1b) to (1d) are described as
RC =z, K, (3a)
BC = Tp Ky (3b)
where K, and Kj, (1/h) are the abrasion rates of rocks and
balls respectively.

As shown in Morrell and Stephenson (1996), @ is quadrat-
ically proportional to the volume of slurry in the mill if
there is no slurry pool. Thus, it is possible to express ) in
terms of x, and x,, as

Q=1n(zw+z,)° (4)
where (z,, + x5) represents the total slurry hold-up in the
mill, and 7 (h~'m™3) is the discharge rate per volume of

Table 2. Nomenclature

Parm  Unit Description

ar -] Fraction rock in the feed ore
Pb [t/m3] Density of steel balls

Po [t/m3] Density of feed ore

Pw [t/m3] Density of water

Ky (1/h] Ball abrasion factor

K, [l/h] Rock abrasion factor

Vmill [m ] Mill volume

n [h~'m~3]  Discharge rate

Tw [rn3] Volume of water in the mill
Ts [m3] Volume of solids in the mill
Ty [m3] Volume of rocks in the mill
xp [m3] Volume of balls in the mill




slurry. Therefore, the discharge of the water (V,,) and
solids (Vj,) in (1a) and (1b) can be expressed as

Vwo = 77(3Uw + xs)xw
Vvso = 77($w + xs)xs-

Process Measurements The assumed measurements are
modelled as

Ty +2s+ 2 +xp

Jpr = 6a
4 Umill ( )
Q =1 (ww + z5)* (6b)

_ PoZs + PuwTyw (60)
Ts + Ty

The combined mass of the mill and of the charge inside the
mill is generally measured using either load cells or bearing
pressure (Wei and Craig, 2009). However, this is not a
direct measurement of Jr, and a relation between Jr and
the mass measurement needs to be determined. As shown
by Powell et al. (2009, 2011), mill filling measurements
during mill stops can be used to calibrate the relationship
between the mass measurement and Jr. With careful
planning, the mass to Jr relationship can easily be checked
within half an hour from mill stop to start.

This study assumes measurements of () and pg are avail-
able. Because of space restrictions at the discharge trom-
mel of the mill, inclusion of flow and density instrumenta-
tion at the mill discharge is not yet a viable reality (Napier-
Munn et al., 2005). Through careful planning and design
of greenfield comminution circuits it should be possible to
install existing flow and density instrumentation at a mill
discharge trommel. In the case where the mill discharges
into a sump, pg and @ can be back-calculated from a
flow-balance if all inflows and outflows at the sump are
measured, but this is highly sensitive to the accuracy of
measurements at the sump. This study aims to illustrate
the benefits to be gained from including @) and pg mea-
surement instrumentation in industrial circuits.

3. OBSERVABILITY

A multi-input-multi-output control-affine non-linear state-
space model with dim(z) = n and dim(y) = m can be

written as
b= [ (@)+g(@)u 0
y =h(z).

The system in (7) is said to be locally (weakly) observable
at xg if there exists a neighbourhood Xg of xg such that
for every x; which is an element of the neighbourhood
X, C Xg of zp the indistinguishability of the states xg
and xq implies that zg = z1. The two states x1 and zg are
said to be indistinguishable if for every admissible input
u the output y of (7) for the initial state 2o and for the
initial state x; is identical. If the system satisfies the so
called observability rank condition, i.e. the observability
codistribution of 2y (Hermann and Krener, 1977)

40 = span {dh;, dLshs, .. ALy} =10 m
(8)
has dimension n at x, then the system is locally (weakly)
observable. Note, L’fchj refers to the k-th repeated Lie
derivative of the scalar function h;(z) along the vector field
f(x), and d is the exterior derivative. In the linear case,

the observability codistribution corresponds to the observ-
ability matrix O = [CT,ATCT, ..., (A""1)TCT] where
C= %|I:$0 and A = % (f(z) + g(x)u) |z:z0, u=ug-

8.1 Nonlinear Observability

The observer model described in Section 2.2 can be written
in the form of (7), such that
[ =1 (20 + 25) T
- w s s TKT
,Zr(f(r—i_x)x e [I4><4:|
—p Ky
| O3x1
M TwtZs+Tr+ap
VUmill

n ('Tw + 1‘3)2
PoTs+PwTw
L zstaw

O34 U (9a)

Y= (9b)

Where Tr = [wa, Lsy TyyThy T, K?"a Kb]T7 u = [Vwi7 ‘/s% ‘/T‘i7
Vbi]T, y = [Jr, Q,pQ]T, and parameters 7, K, and K, are
assumed to be unknown constants.

The repeated Lie derivatives of the system output with
respect to the system dynamics are collected in a single
vector, as shown below:

r TwtTs+Tr+Tp T
VUmill
NXows
PoZs+PwTw
Xuws
_ nX2 +Kyx
h gy Umill
Lih | = =20 X5 + 2K 2, Xops
L2h waerr(po_pw)
f 2

20° X3 —onK,z (v taw)+ Kizy

VUmill
3 yv4 2 2 2
6n° Xy — 8N Krx, X5 + 20Kz, Xoys
2w K (po—pu) (NX 2~ 2K, @r— Kr Xus )
X’E’}S

) (10)
where X, = Ty + Ts-

Two observability codistributions are defined:
dO; = span{dh,dLsh}
d0; = span {dh, dLsh,dL3h} .

The rank of dO1, which has 6 rows and 7 columns, is 6.
This indicates that the addition of only the first order
time-derivatives of the measurements are not sufficient for
nonlinear observability. This is self-evident, as dQ; is row
insufficient.

The rank of dOs, which has 9 rows and 7 columns, is
7. This indicates all system states are locally (weakly)
observable from the available measurements. Since full
rank is achieved for dOs, the addition of further Lie deriva-
tives is not necessary. This indicates that second-order
time-derivatives of the measurements are required for ob-
servability. This is comparable to the result of Le Roux
and Craig (2016), where it is shown that second-order
time-derivatives are required to algebraically calculate mill
states and parameters.

3.2 Linear Observability

The states and parameters of the linearised version of
the model in (9) is not observable (Le Roux et al.,



Table 3. Rank of observability matrix for dif-
ferent measurement sets.

Set [ Measurements [ Rank
LjJdr Q@ po Jr Q@ b 6
2 |Jr Q@ po Jr Q po Jr Q pq 7
3 Jr Q@ pq Jr Q pg Jr 7
4 | Jr Q@ pq Jr Q pg Q 7
5 | Jr Q@ pg Jr Q po pQ 7
6 Jr Q@ pq Jr Jro 6
T | Jr Q  pqQ Q Q 7
8 | Jr Q@ pqg PQ e 7
9 QR pq . Q po . Q pg 5
10 | Jr @ Jr  Q Jr  Q 6
1| Jr Q Q Q 6
12 | Jr rQ 0Q bQ 7
13 Q  rq pQ bQ 5
14 rQ £Q pQ 5

2016¢). However, from the discussion above, this can
be altered if the second-order time-derivatives of the
three measurements in (9) are included as measurements.
The question now becomes which of the derivatives are
essential, and which are superlative to achieve linear
observability?

The measurements and their respective derivatives are
shown in (11) below, where V,s = Vi, + Vi. The
rank of O = [CT,ATCT, ... (A""HTCT] is eval-
uated to determine linear observability. Matrix A
% (f(x) + g(x)u) | 3=z, u=u, 1S evaluated from (9a). Ma-
trix C = % le=z, is evaluated using different combinations
of the measurements listed in (11). These sets and the
corresponding rank of O is shown in Table 3. The combina-
tions were chosen heuristically such that the contribution
of each measurement and its second order derivative to the
observability of O is understood.

The 1st to 5th sets in Table 3 indicate that at least one
second order derivative is required for all states to be
estimated. The 6th set indicates that derivatives of Jp
alone are insufficient to produce linear observability for all
states. As seen from sets 7 and 8, if measurements of Jr,
@, and pg are available, derivatives of either @) or pg alone
contain sufficient information for observability of all states.
The 9th set indicates that Jr remains essential, even
though its derivatives are not essential for observability
of all states. The 10th and 11th sets indicate that pg is
an essential measurement. As seen from set 12, Jr, po,
and the derivatives of pg are the bare minimum for linear
observability. In the 13th set, only using @, pg and the

derivatives of pg is not sufficient for full observability.
The 14th set simply indicates that pg and its derivatives
are not sufficient by themselves. Therefore, the critical
measurements are Jr and pq.

The ability to distinguish between x, and z;, from the
measurements of Jr, @, pg and the derivatives of pg
is a desirable result. However, apart from the challenge
to determine n-th order derivatives in the presence of
significant measurement noise (Savitzky and Golay, 1964),
another issue is of major concern. The model in (9a)
assumes 17 = K, = K, = 0, which is a simplifying
assumption as the time-varying nature of these parameters
are unknown. When the time-derivatives of the outputs

in (9b) are taken, the assumption of consta arameters
inﬂglergce the expression ofmo%e gerivatives. 01% exampele,

Q@ is a function of 7. If the derivative of @) is taken, the
derivative of  should be taken into consideration such that
the symbolic representation of Q is a true representation
of Q. The only two derivatives which are not influenced
by the assumption of constant parameters are pg and Jr.
The aim of an observer can be formulated as

min|ly — h(z)]l2

where z is the state vector, y is the output measurement,
and h(xz) is the measurement as given by the model.
Although an z could possibly be found such that ||y —
h(z)||]2 = 0, this will not necessarily be the true system
state because of the model uncertainty and mismatch
between h(x) and y.

As mentioned in Section 1, the model considered here is
reduced in Le Roux et al. (2016b) such that the states and
parameters are linearly observable from the measurements
Jr, @, pg, and pg. The success of the filter can be
attributed to the fact that the representations of the
measurements in terms of the modelled states are not
dependent on the assumption of constant parameters, and
are therefore relatively accurate symbolic representations
of the measurements. However, this comes at the cost of
distinguishing between x, and zy, as these two states are
considered as one state x,; in the reduced model.

Ideally a further measurement is desired which can assist
with the estimation procedure. As mentioned previously, a
model of the power draw of the mill can be used to estimate
xp (Apelt et al., 2001). The difficulty with using the power
draw model is that it introduces further parameters to
estimate, which increases the complexity of the state and
parameter estimation task.

r Xwst+Zr+zsp 7
VUmill
_ _ n(zw + 1_3)2
Jr (pw(mw-ﬁ-po;rs)
Ty +Ts
p?g _77X12‘;s_Vb'i_vri_Vsi_‘/wi“l‘szb
'jT 72772X3;9 + 277er7:&ws + Qansts
Q — (po_pw)(xwzriét‘/;ixw_ wixs) (11)
PQ 202 X3 20K, 2r Xuws =20 Xuws (V —8i4Vipi) = Voi Ky +ap K2
J Ui
5 6773X3;s - 8772XZ)S (Krzr + Vips) + Qanx,, (z - Xuws) + 20K Vi Xus + 4nK2,:Vips + 277‘/;12;3
5 T Ko, (N X2 — 22, K, — K Xops) + (Vi X2, — Viiws X2,) — 2V2z,, + 2V.2 24
L PQ (Po—pw) ws ws ws st wi
+Kr(v;'ix’u1st — 4V Tr Ty + QVwixr(xs - -Tw)) + 2Vinsi(Is — Tw
X3, i



4. CONCLUSION

The model of Le Roux et al. (2016c) represents the
constituents of a mill using four states: water, solids, rocks
and balls. The grinding environment is modelled using
the following constant parameters: a discharge rate, an
abrasion rate for rocks, and an abrasion rate for balls.
Although all states and parameters are locally (weakly)
nonlinear observable from the measurements of the mill
filling, discharge flow-rate and discharge density, the states
and parameters are not observable from the linearised
system. The system can be reduced such that all states
and parameters are observable from the linearised version
of the reduced model, but this comes at the cost of lumping
rocks and balls together (Le Roux et al., 2016b).

This study aims to indicate what measurements are re-
quired to distinguish between the rocks and balls in the
mill. As seen from the observability analysis, the states
and parameters for the full model presented in Section
2.2 become nonlinearly observable from the second order
derivatives of the measurements. If the model is extended
to include these second order derivatives in the measure-
ment vector, all states and parameters are observable from
the linearised version of this extended model.

Of the three available measurements, the mill filling and
the discharge density are most valuable for gaining insight
into conditions inside the mill. The time-derivatives of the
discharge density is required for successful estimation of
all mill states, and consequently to successfully distinguish
between rocks and balls. The first-order time-derivative of
the discharge density can be represented fairly accurately
by the model states. However, modelling the second-order
derivative of the discharge density proves problematic, as
the symbolic expression of the derivative is dependent on
the assumption of constant model parameters.

Given the information regarding mill constituents which
can be obtained from measuring the mill discharge density,
this works aims to motivate the inclusion of measurement
instrumentation at the mill discharge. This would require
careful consideration of mill discharge trommel design to
allow sufficient space to install the required instrumenta-
tion. Although the combined volume of rocks and balls
can be estimated using mill filling, discharge flow-rate,
and discharge density measurements, these measurements
remain insufficient to distinguish between rocks and balls.
For future work, an additional, viable, and independent
measurement is required to reliably estimate and distin-
guish between the volume of balls and rocks in the mill.
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