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1 Introduction

The aim of this paper is to study a class of stochastic reaction-diffusion equations driven by
a Lévy noise. A motivating example is the following stochastic partial differential equation
with a Dirichlet boundary condition

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

du(t, ξ) = �u(t, ξ) dt + [u(t, ξ)− u(t, ξ)3] dt
+

√|u(t,ξ)|
1+√|u(t,ξ)| dL(t), t > 0,

u(t, ξ) = 0, ξ ∈ ∂O,
u(0, ξ) = u0(ξ), ξ ∈ O ,

where L = {L(t) : t ≥ 0} is a real valued Lévy process whose Lévy measure ν has finite
p-moment for some p ∈ (1, 2] and O ⊂ R

d is a bounded domain with smooth boundary.
One consequence of our main results is that for every u0 ∈ C0(O) there exists a C0(O)-

valued process u = {u(t) : t ≥ 0}, which is a martingale solution to problem (1.1). The
diffusion coefficient in Eq. 1.1, i.e., the function g(u) = √|u|/(1 +√|u|), is just a simple
example of a bounded and continuous function, the drift term f (u) = u− u3 is an example
of a dissipative function f : R → R of polynomial growth, and the Laplace operator � is
a special case of a second order operator. Our results allow us to treat equations with more
general coefficients than those in the model problem (1.1). In fact we can study stochas-
tic partial differential equations with second order uniformly elliptic dissipative operators
with non-constant coefficients and an unbounded nonlinear map as drift term. Moreover,
our results are applicable to equations with infinite-dimensional Lévy processes as well as
systems with more general initial data, for instance, elements of the Lebesgue or Sobolev
spaces Lq(O) orWγ,q

0 (O). The details are presented in Sections 4, 5 and 6.
In our paper we adopt the approach used in [10] by the first named author and Ga̧tarek, in

which a similar problem but driven by a Wiener process was treated. The major differences
of the current work with respect to [10] are as follows. Firstly, the approach [10] heavily
depends on the use of the theory of Itô integral in martingale type 2 Banach spaces with
respect to a cylindrical Wiener process, while we use an approach which relies on stochastic
integration in martingale type p Banach spaces with respect to a Poisson random measure,
see [13]. Secondly, the compactness argument in [10] relies on the Hölder continuity of
the trajectories of the corresponding stochastic convolution process. However, the trajecto-
ries of the stochastic convolution process driven by a Lévy process are not continuous, then
the use of the counterpart of the Hölder continuity, i.e. the càdlàg property of the trajecto-
ries seems natural to be used. Unfortunately, as many counterexamples have shown, see for
instance a recent monograph [65] as well as the recent papers [19] and [11], the trajectories
of the stochastic convolution processes driven by a Lévy process may not even be càdlàg in
the space in which the Lévy process lives. Hence, this issue has to be handled with special
care. Thirdly, we do not use martingale representation theorem, unlike the authors in [10]
who used a result by Dettweiler [27]. Instead we use an ad hoc method based on a generali-
sation of the Skorohod representation theorem, see Theorem C.1. Finally, in order to control
certain norms of the approximate solutions, instead of using stopping times as in [10], we
apply interpolation methods. Summarizing, this paper contains general results on the exis-
tence of martingale solutions to stochastic reaction-diffusion equations with dissipative type
coefficients of polynomial growth and with multiplicative Lévy noise. We should also point
out that, as a by-product of our results, we are able to fill a gap in the proof of the main
result in the article [43]. The gap is related to the Step I, see page 8, in the current paper.
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Our paper confirms an observation that has already been made in earlier papers [13,
42] that the theory of stochastic integration with respect to a Poisson random measure in
martingale type p Banach spaces is, to a large extend, analogous to the theory of stochastic
integration with respect to a cylindrical Wiener process in martingale type 2 Banach spaces
provided the space of γ -radonifying operators is replaced by the spaceLp(ν), where ν is the
intensity measure of the Poisson random measure in question. We would also like to point
out that the theory of Banach space valued stochastic integrals with respect to a Poisson
random measure is richer than the corresponding Gaussian theory, see the recent paper [30]
by S. Dirksen. It would be of great interest to develop a theory of inequalities for stochastic
convolutions and generalise the paper [13] in the framework of [30].

It is worth mentioning that although SPDEs with unbounded nonlinearity driven by a
Lévy process have not been as extensively studied as their Gaussian counterparts, there
exists a number of interesting recent publications on the subject. For instance, Truman
and Wu [74, 75], Jacob et al. [61], and Giri and Hausenblas [41] studied equations with
Burgers type nonlinearities driven by a Lévy noise. In addition, Dong and Xu in [31] con-
sidered the Burgers equation with the compound Poisson noise, thus in fact dealing with a
deterministic Burgers’ equation on random intervals and random jumps. Some discussion
of stochastic Burgers’ equations with additive Lévy noise is contained in [19], where it was
shown how integrability properties of trajectories of the corresponding Ornstein-Uhlenbeck
process play an important role in the existence and uniqueness of solutions. In the recent
paper [32] Dong and Xie studied the stochastic Navier-Stokes equations (NSEs) driven by
a Poisson random measure with finite intensity measure. Fernando and Sritharan [37] and
the first two named authours together with Zhu [17] studied the 2-D stochastic NSEs by
means of a local-monotonicity method of Barbu [4]. This method seems to be restricted to
the 2-D NSEs and does not require the use of compactness results. In their beautiful mono-
graph [65] Peszat and Zabczyk studied classes of reaction-diffusion equations driven by an
additive Lévy process. In this case, the stochastic evolution equations can be transformed
into an evolution equation with random coefficients, a method which usually does not work
with multiplicative noise. In another recent paper [55] Marinelli and Röckner investigated
a certain class of generalized solutions to problems similar to ours. Röckner and Zhang in
[67] established the existence and uniqueness of solution to and a large deviation principles
for a class of stochastic evolution equations driven by jump processes. Finally, Debussche
et al. in [25, 26] considered a stochastic Chafee-Infante equation driven by an additive Lévy
noise and investigated the dynamics of the equation, for instance, the first exit times from
domains of attraction of the stationary solutions of the deterministic equation.

The stochastic PDEs driven by Lévy processes in Banach spaces have not been inten-
sively studied, apart from a few papers by the second named author, like [42, 43], a very
recent paper [13] by the first two named authors and [54] by Mandrekar and Rüdiger
(who actually studied ordinary stochastic differential equations in martingale type 2 Banach
spaces). Martingale solution to SPDEs driven by Lévy processes in Hilbert spaces are not
often treated in the literature. Mytnik [60] constructed a weak solution to SPDEs with
non-Lipschitz coefficients driven by space-time stable Lévy noise. In [58] Mueller studied
non–Lipschitz SPDEs driven by nonnegative stable Lévy noise of index α ∈ (0, 1). Mueller,
Mytnik and Stan [59] investigated the heat equation with one-sided time independent stable
Lévy noise. One should add that the noise in the paper [58] does not satisfy the hypothesis
of the current work.

The current paper is organized as follows. In Section 2 we introduce the notations used
later on in the paper and we present the standing hypotheses and essential preliminary facts.
Our two main results, i.e Theorems 3.2 and 3.4 are stated in Section 3. In that section we also
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present Theorem 3.5 which could be seen as the reformulation of some of our main results
in terms of a Lévy process and not a Poisson random measure. Three examples illustrating
the applicability of our results are presented in Sections 4, 5 and 6. To be more precise,
SPDEs with dissipative polynomial drift driven by a real-valued α-stable tempered Lévy
process are treated in Section 4, SPDEs with a bounded drift driven by a space-time Lévy
white noise are treated in Section 5 and finally, stochastic reaction-diffusion equations with
dissipative polynomial growth drift, driven by a space-time Lévy white noise, are treated in
Section 6. In Section 7 we state and prove several preliminary results about the stochastic
convolution processes which we believe are interesting in themselves. Sections 8 and 9
are devoted to the proofs of our results. Unfortunately, these proofs are very technical and
long and hence their brief outline is presented just after the statement of Theorem 3.5, see
page 22. In the appendices we recall some definitions and well-known results in analysis
and probability theory. We also prove new results, amongst them a modified version of the
Skorohod representation theorem, see Theorem C.1, which are interesting in themselves.

We finish the Introduction by pointing out that the approach presented in this paper (or
rather it’s earlier arXiv version) has already been taken up and used for the proof of the
existence of solutions to Stochastic Navier-Stokes equations and second grade fluids driven
by Lévy noise, see [57] and [44], respectively.

Notation 1 By N we denote the set of natural numbers, i.e., N = {0, 1, 2, · · · } and by N,
respectively N

∗, we denote the set N ∪ {+∞}, respectively N \ {0}. Whenever we speak
about N, respectively N-valued measurable functions, we implicitly assume that the set N,
respectively N, is equipped with the full σ -field 2N, resp. 2N. By R+ we denote the set
[0,∞) of nonnegative real numbers and by R∗ the set R \ {0}. If X is a topological space,
then by B(X) we denote the Borel σ -field on X. By Leb we denote the Lebesgue measure
on (Rd ,B(Rd)) or (R,B(R)). The space of bounded linear operators from a Banach space
Y1 to a Banach space Y2 is denoted by L(Y1, Y2). The norm of A ∈ L(Y1, Y2) is denoted
by ‖A‖L(Y1,Y2). If O ⊂ R

d is a bounded domain with smooth boundary ∂O, by C0(O) we
denote the space of real continuous functions on O which vanish on the boundary ∂O.

Suppose that (Z,Z) is a measurable space. By M(Z), respectively M+(Z), we will
denote the set of all R, respectively [0,∞]-valued measures on (Z,Z). By M(Z), respec-
tively M+(Z), we will denote the σ -field on M(Z), respectively M+(Z), generated by
functions

iB : M(Z) � μ �→ μ(B) ∈ R,

respectively by functions

iB : M+(Z) � μ �→ μ(B) ∈ [0,∞],

for all B ∈ Z . Similarly, by MI(Z) we will denote the family of all N-valued measures on
(Z,Z), and by MI (Z) the σ -field on MI(Z) generated by functions iB : M(Z) � μ �→
μ(B) ∈ N, B ∈ Z .

Finally, by Z ⊗ B(R+) we denote the product σ -field on Z × R+ and by ν ⊗ Leb we
denote the product measure of ν and the Lebesgue measure Leb.

For a Banach space Y by D([0, T ], Y ) we denote the space of all càdlàg functions u :
[0, T ] → Y which we equip with the J1-Skorohod topology, i.e., the finest among all
Skorohod topologies.
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2 Hypotheses, Notations and Preliminaries

In this section we introduce the notation and hypotheses used throughout the whole paper.
Moreover, we present some preliminary results that will be frequently used later on.

2.1 Analytic Assumptions and Hypotheses

Let us begin with a list of assumptions. Whenever we use any of them this will be clearly
indicated.

Let E be a Banach space and let A be a closed linear densely defined map in E. The
norm in the space E is denoted by |·| and the norm of any other Banach space Y is denoted
by |·|Y .

In what follows we will frequently use the following assumptions about the Banach space
E and the linear map A.

Assumption 1 1(i) Assume that E is a separable UMD and type p, for a certain p ∈
(1, 2], Banach space.1

1(ii) A is a positive operator in E, i.e, a densely defined and closed operator for which
there existsM > 0 such that for λ > 0

‖(A+ λ)−1‖L(E) ≤ M

1 + λ .
1(iii) −A is the infinitesimal generator of an analytic semigroup denoted by (e−tA)t≥0 on

E. We also assume that A has compact resolvent.
1(iv) The semigroup (e−tA)t≥0 on E is of contraction type.
1(v) A has the bounded imaginary power (briefly BIP) property, i.e., there exist constants

K > 0 and ϑ ∈ [0, π2 ) such that

‖Ais‖L(E) ≤ Keϑ |s|, s ∈ R. (2.1)

2(i) There exists a separable Banach space X such that the embedding E ⊂ X is dense
and continuous.

2(ii) The linear map A has a unique extension to X. This extension map is still denoted
by A and satisfies Assumptions 1(ii), 1(iii) and 1(iv).

Notation 2 For any γ > 0, the completion of E with respect to the norm |A−γ ·| will be
denoted byD(A−γ ). For any γ > 0, the domain of the fractional power operator Aγ (in E)
will be denoted byD(Aγ ). With few exceptions we will only speak about fractional powers
of the operatorAwith respect to the spaceE and notX nor B and hence the notationAγ and
D(Aγ ) should be unambiguous. Those few exceptions are when we use notation D(AθY ),
for instance in Theorem 3.2. Finally, let us note that since by assumption A−1 exists and is
bounded (on E), the fractional powers A−γ , γ ≥ 0, are bounded (on E) too.

Before we proceed further we make the following useful remark.

Remark 2.1 Since E is a separable, UMD and martingale type p Banach space, we infer
from [9, Remark 4.2, also Theorem A.4] that for every β ∈ R, the spaceB0 = D(Aβ) is also

1It is known that if E has the UMD property and of type p then it is a martingale type p Banach space (see,
for instance, [9]).
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a UMD, martingale type p Banach space. The linear map A has an extension (or restriction
depending on whether β is smaller or larger than 0) A0 (usually denoted by A) to B0 which
satisfies Assumptions 1(ii), 1(iii) and 1(v). The operator −A0 generates a contraction type
semigroup which will still be denoted by

{
e−tA

}

t≥0 on B0. Moreover, if A has the BIP
property then so has A0.

One of the consequences of the BIP property in Assumption 1(v) is that the fractional
domains of the operator A are equal to the complex interpolation space of an appropriate
order between D(A) and E, see e.g. [72].

Finally, if a linear operator A on a Banach space E is positive, then −A is the
infinitesimal generator of a C0-semigroup in E, see for instance [10, Remark 2.1].

If E is a separable Banach space and q ∈ [1,∞), we denote by Lq(0, T ;E) (see,
for instance, [29]) the Lebesgue space consisting of (equivalence classes of) Lebesgue
measurable functions u : [0, T ] → E such that

‖u‖Lq(0,T ;E) :=
(∫ T

0
|u(s)|q ds

) 1
q

(2.2)

is finite. The Besov-Slobodetskii space Wα,q(0, T ;E), where α ∈ (0, 1), consists of all
u ∈ Lq(0, T ;E) such that the seminorm

|u|Wα,q (0,T ;E) :=
(∫ T

0

∫ T

0

|u(t)− u(s)|q
|t − s|1+αq ds dt

) 1
q

(2.3)

is finite. The space Lq(0, T ;E) and Wα,q(0, T ;E) equipped with the norms (2.2) and,
respectively,

‖ u‖Wα,q (0,T ;E) :=
(∫ T

0
|u(s)|q ds +

∫ T

0

∫ T

0

|u(t)− u(s)|q
|t − s|1+αq ds dt

) 1
q

(2.4)

are separable Banach spaces.
We will denote by C([0, T ];E) the Banach space of all E-valued continuous functions

defined on the interval [0, T ] equipped with the supremum norm. Similarly, if k ∈ N
∗, then

by Ck([0, T ];E) we will denote the Banach space of all E-valued functions of Ck-class.
We will denote by Cβ([0, T ];E), for β ∈ (0, 1), a (non-separable) Banach space of all
functions u ∈ C([0, T ];E) such that

‖u‖Cβ([0,T ];E) := sup
0≤t≤T

|u(t)| + sup
0≤s<t≤T

|u(t)− u(s)|
|t − s|β <∞. (2.5)

We will also denote by H 1,q (0, T ;E) the space of functions u ∈ Lq(0, T ;E) with
weak derivatives Bu := u′ ∈ Lq(0, T ;E). Endowed with the graph norm of B, the
space H 1,q (0, T ;E) is a Banach space. By H 1,q

0 (0, T ;E) we denote the subspace of
H 1,q (0, T ;E) consisting of all u ∈ H 1,q (0, T ;E) such that u(0) = 0.

Now we introduce an important operator � = �T which will play a crucial role in our
analysis. We start by setting

Bu = u′, u ∈ D(B),
D(B) = H

1,q
0 (0, T ;E).

The space D(B) is a Banach space when equipped with the graph norm

|u|D(B) := |u|Lq(0,T ;E) + |u′|Lq(0,T ;E), u ∈ D(B).



Stochastic Reaction-diffusion Equations Driven by Jump Processes

Define also a linear operator A by the formula

D(A) = {u ∈ Lq(0, T ;E) : Au(·) ∈ Lq(0, T ;E)}, (2.6)

Au := {[0, T ] � t �→ A(u(t)) ∈ E}. (2.7)

The domain D(A) of A is a Banach space with norm

|u|D(A) := |u′|Lq(0,T ;E) + |Au|Lq(0,T ;E), u ∈ D(A).
Let us note that if A+ κI , κ ≥ 0, satisfies parts 1(ii), 1(iii) and 1(v) of Assumption 1, then
A+ κI satisfies them as well, see Dore and Venni [33].

Finally, we define the operator � by

� := B +A,
D(�) := D(B) ∩D(A).

The domain D(�) is endowed with the graph norm., i.e,

|u|D(�) = |u|D(B) + |u|D(A), u ∈ D(�).
We recall that although � is the sum of the closed operators A and B, it is not necessarily
a closed operator. However, if E is an UMD Banach space and A + κI , for some κ ≥ 0,
satisfies parts 1(ii), 1(iii) and 1(v) of Assumption 1 then, since � = B − κI +A+ κI , by
Dore and Venni [33], see also Giga and Sohr [39], � is a positive operator. In particular, �
has a bounded inverse. Consequently, one can define the fractional powers �−α , α ≥ 0. In
particular, for α ∈ [0, 1], �−α is a bounded linear map in Lq(0, T ;E), and for α ∈ (0, 1),

(�−αf )(t) = 1

�(α)

∫ t

0
(t − s)α−1e−(t−s)Af (s)ds, (2.8)

for any t ∈ (0, T ), f ∈ Lq(0, T ;E). Under the parts 1(i)-1(v) of Assumption 1, the
parabolic operator � and its fractional powers �−α , α ∈ [0, 1], enjoy several nice prop-
erties for which we refer the reader to [10]. The properties of �−α which are the most
relevant to our study are summarized in the following lemma whose proof can be found in
[10, Theorem 2.6 and Corollary 2.8].

Lemma 2.2 Assume thatE is an UMDBanach space and an operatorA satisfying Assump-
tions 1(ii)-1(iii) is such that A + κI , for some κ ≥ 0, satisfies Assumption 1(v). We also
suppose that (A + κI)−1 is a compact operator in E. Let α, β, δ be nonnegative numbers
satisfying

0 ≤ β + δ < α − 1

q
. (2.9)

Then,�−α is a compact linear map fromLq(0, T ;E) intoCβ([0, T ];D(Aδ)). In particular,
if α > 1

q
, then �−α is a compact map from Lq(0, T ;E) into C([0, T ];E).

2.2 Stochastic Preliminaries

The aim of this subsection is to introduce some additional probabilistic notation. We also
present some basic results about stochastic integration with respect to compensated Poisson
random measure.

Assumption 2 Let us assume that (Z,Z) is a measurable space, ν ∈ M+(Z), i.e., ν is a
nonnegative measure on (Z,Z).
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We assume that P = (
�,F ,F,P

)
, where F = (

Ft )t≥0, is a filtered probability space
satisfying the so called usual conditions, i.e.,

(i) P is complete on (�,F),
(ii) for each t ∈ R+, Ft contains all (F ,P)-null sets,

(iii) the filtration F is right-continuous.

Let us start by recalling the following definition which is taken from [45, Definition
I.8.1].

Definition 2.3 In the framework of Assumption 2, a time-homogeneous Poisson random
measure on (Z,Z) over P with the intensity measure ν ⊗ Leb, is a random variable

η : (�,F)→ (MI (Z × R+),MI (Z × R+))

satisfying the following conditions

(a) for each U ∈ Z ⊗ B(R+), η(U) := iU ◦ η : � → N is a Poisson random variable
with parameter2

Eη(U);
(b) η is independently scattered, i.e., if the sets Uj ∈ Z ⊗ B(R+), j = 1, · · · , n

are pairwise disjoint, then the random variables η(Uj ), j = 1, · · · , n are pairwise
independent;

(c) for all U ∈ Z and I ∈ B(R+),

E
[
η(U × I )] = ν ⊗ Leb(U × I ) = ν(U)Leb(I );

(d) for each U ∈ Z , the N-valued process

(0,∞)×� � (t, ω) �→ η(ω)
(
U × (0, t])

is F-adapted and its increments are independent of the past, i.e., the increment between
times t and s, t > s > 0, are independent form the σ -field Fs .

If η is a time-homogenous Poisson random measure as above, then by η̃ we will denote
the corresponding compensated Poisson random measure defined by

η̃(U × I ) = η(U × I )− E(η(U × I )) = η(U × I )− ν(U)Leb(I ), U ∈ Z, I ∈ B(R+),

with the convention that ∞−∞ = 0.
We proceed to the definition of functional spaces that we need throughout the paper.

Suppose that Y is a separable Banach space. We denote by Lq(Z, ν; Y ), q ∈ [1,∞), the
space of all (equivalence classes of) measurable functions ξ : (Z,Z) → (Y,B(Y )) such
that

|ξ |Lq(Z,ν;Y ) :=
(∫

Z

|ξ |qY ν(dz)
) 1
q

<∞.
Similarly, we define the space Lp (�;Y ) and Lq(�T ;Y ), where�T = [0, T ]×�, see [29].
In the latter case, we consider the product σ -field B([0, T ])× F . By L0 (�;Y ) we denote
the set of measurable functions from (�,F) to Y .

For T ∈ (0,∞] let N (0, T ;Y ) be the space of (equivalence classes of) progressively
measurable processes ξ : [0, T )×�→ Y .

2If Eη(U) = ∞, then obviously η(U) = ∞ a.s..



Stochastic Reaction-diffusion Equations Driven by Jump Processes

For q ∈ (1,∞) we set

N q(0, T ;Y ) =
{

ξ ∈ N (0, T ;Y ) :
∫ T

0
|ξ(t)|qY dt <∞ P-a.s.

}

, (2.10)

Mq(0, T ;Y ) =
{

ξ ∈ N (0, T ;Y ) : E
∫ T

0
|ξ(t)|qY dt <∞

}

. (2.11)

Let Nstep(0, T ;Y ) be the space of all ξ ∈ N (0, T ;Y ) for which there exists a partition
0 = t0 < t1 < · · · < tn < T such that for k ∈ {1, · · · , n}, for t ∈ (tk−1, tk], ξ(t) =
ξ(tk) is Ftk−1 -measurable and ξ(t) = 0 for t ∈ (tn, b). We put Mq

step = Mq ∩ Nstep.
It can be easily shown that Mq(0, T ;Y ) is a closed subspace of Lq([0, T ) × �;Y ) ∼=
Lq([0, T );Lq(�;Y )).

Now for ξ ∈ Mp

step(0, T ;Lp(Z, ν;E)) we set

Ĩ (ξ ) =
n∑

j=1

∫

Z

ξ(tj , z)η̃(dz, (tj−1, tj ]). (2.12)

It is shown in [13] that if E is a Banach space of martingale type p ∈ (1, 2], then Ĩ is
a bounded linear map from Mp

step(0, T ;Lp(Z, ν;E)) (with respect to the norm inherited
from Mp(0, T ;Lp(Z, ν;E))) to Lp(�,E). In particular, there exists a positive constant
C > 0 which depends only on p and E such that

E|Ĩ (ξ )|p ≤ C
∫ T

0
E

∫

Z

|ξ(t, z)|pν(dz)dt (2.13)

and EĨ (ξ ) = 0 for any ξ ∈ Mp

step(0, T ;Lp(Z, ν;E)). From these facts, we can define

by Eq. 2.12 the stochastic integral of a process ξ ∈ Mp

step(0, T ;Lp(Z, ν;E)) with

respect to the compound random Poisson measure η̃. The extension of this integral to
Mp(0, T , Lp(Z, ν,H)) is possible, thanks to the density of Mp

step(0, T , L
p(Z, ν;E)) in

the space Mp(0, T , Lp(Z, ν;E)). More precisely, we recall the following result whose
proof can be found in [13, Theorem C.1].

Theorem 2.4 Assume that p ∈ (1, 2] and E is a martingale type p Banach space. Then
there exists a unique bounded linear operator

I : Mp(0, T , Lp(Z, ν;E))→ Lp(�,F , E),
such that for ξ ∈ Mp

step(0, T , L
p(Z, ν;E)) we have I (ξ) = Ĩ (ξ ). In particular, there exists

a positive constant C which depends only on E and p such that

E|I (ξ)|p ≤ CE
∫ ∞

0

∫

Z

|ξ(t, x)|p ν(dx) dt, (2.14)

for every ξ ∈ Mp(0, T , Lp(Z, ν;E)). Moreover, if ξ ∈ Mp(0, T , Lp(Z, ν;E)), then the
process I (1[0,t]ξ), t ≥ 0, where

[1[0,t]ξ ](r, x;ω) := 1[0,t](r)ξ(r, x, ω), t ≥ 0, r ∈ R+, x ∈ Z and ω ∈ �,
is an E-valued p-integrable martingale.

The above construction is done in the spirit of Métivier, see [56, Exercise 9, p. 195], see
also [13] for further details. As pointed out to the authours by the referee, the construction
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of the Itô stochastic integral can also be done by defining the stochastic integral first for pre-
dictable integrands, and then extending the stochastic integral to progressively measurable
integrands using the fact that the dual predictable projection of a Poisson random measure,
see Theorem II.1.8 in [46], is absolutely continuous with respect to the Lebesgue measure
(with respect to the ”time” variable). See also [3] for a recent use of this classical notion.

As usual, we put
∫ t

0

∫

Z

ξ(s, z)η̃(dz, ds) := I (1[0,t]ξ), t ∈ [0, T ].

Let us state the following useful result which can be proved using the argument of [15, Proof
of Theorem 3.4].

Proposition 2.5 Assume that (Z,Z) is a measurable space, ν is a nonnegative measure on
(Z,Z) andP = (�,F , (Ft )t≥0,P) is a filtered probability space. Assume also that η1 and
η2 are two time-homogeneous Poisson random measures on (Z,Z) over P, both with the
same intensity measures ν ⊗ Leb. Assume that p ∈ (1, 2], E is a martingale type p Banach
space and ξ ∈ Mp(0, T , Lp(Z, ν;E)).
If P-a.s. η1 = η2 onMI(Z × [0, T ]), then for any t ∈ [0, T ], P-a.s.

∫ t

0
ξ(s, z) η̃1(dz, ds) =

∫ t

0
ξ(s, z) η̃2(dz, ds). (2.15)

We close this section with the following maximal inequality whose proof can be found
in [13, Corollary C2].

Theorem 2.6 Assume that 1 ≤ q ≤ p < 2 and E is a martingale type p Banach
space. Then, there exists a constant C > 0 such that for any T > 0 and any process
ξ ∈ Mp(0, T , Lp(S, ν;E)) we have

E sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0

∫

S

ξ(r, x)η̃(dx, dr)

∣
∣
∣
∣

q

≤ CE
(∫ T

0

∫

S

|ξ(r, x)|p ν(dx) dr
)q/p

. (2.16)

2.3 Lévy Processes and Poisson Random Measures

The subject of this section is to give a short account on the correspondence between Lévy
processes and Poisson random measures. Namely, given a Lévy process on a Banach space,
one can construct a corresponding Poisson random measure. Conversely, given a Poisson
random measure on a Banach space, one may find the corresponding Lévy process. To
illustrate this fact, let us first recall the definition of a Lévy process.

Definition 2.7 Let Z be a Banach space. An Z-valued stochastic process L = {L(t) : t ≥
0} over a probability space (�,F ,P) is called an Z-valued Lévy process iff the following
conditions are satisfied.

(i) L0 = 0 a.s.;
(ii) for all n ∈ N

∗ and 0 ≤ t0 < t1 < · · · tn, the random variables L(t0), L(t1) − L(t0),
. . ., L(tn)− L(tn−1) are independent;

(iii) for all 0 ≤ s, t , the laws of L(t + s)− L(s) and L(t) are equal;
(iv) the process L is stochastically continuous;
(v) the trajectories of L are a.s. Z-valued cádlág.
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If F = {Ft }t≥0 is a filtration on F , we say that an Z-valued stochastic process L = {L(t) :
t ≥ 0} is a Lévy process over a filtered probability space (�,F ,F,P) iff it is F-adapted,
satisfies conditions (i), (iii-v), and

(ii)’ for all 0 ≤ s < t , the increment L(t)− L(s) is independent of Fs .

In order to discuss Lévy processes in more detail we need to recall a definition of a Lévy
measure.

Definition 2.8 (Linde [51, section 5.4]) A σ -finite Borel measure λ on a separable Banach
space Z is called a Lévy measure on Z iff its symmetric part λ + λ−, where λ−(A) :=
λ(−A), A ∈ B(Z), is a symmetric Lévy measure, i.e.,

(i) λ+ λ−({0}) = 0, and
(ii) the function, with Z′ being the dual of Z,

Z′ � a �→ exp

(∫

Z

(cos〈x, a〉 − 1) μ(dx)

)

is a characteristic function of a Borel3 probability measure on Z.

The class of all Lévy measures on Z is denoted by L (Z).

For the readers convenience let us now list a few basic properties of Lévy measures, see
[51], Theorem 5.4.8 (i,ii) and Proposition 5.4.5 (i,ii,iv). First let us recall a useful notation
[51, p. 68]:

K(x, a) := ei〈x,a〉 − 1 − i〈x, a〉1U1(x), x ∈ Z, a ∈ Z′,
where 〈x, a〉 is a shortcut notation for the duality pairing 〈x, a〉

Z Z′ and, for r > 0, Ur
denotes the closed ball with radius r and centered at 0 in Z.

Proposition 2.9 Suppose that λ is a σ -finite Borel measure on a separable Banach space
Z. Consider the following conditions.

(i’) λ({0}) = 0;
(i) λ is a Lévy measure on Z,

(ii) For every a ∈ Z′,
∫

Z
|K(x, a)| dλ(x) <∞ and the map

Z′ � a �→ e
∫

Z K(x,a) dλ(x) ∈ C

is a characteristic function of a Borel probability measure, denoted by es(λ), on Z;
(ii’) for every δ > 0, λ(Z \ Uδ) <∞;

(iv’) sup
{∫

U1
| 〈z, a〉
Z Z′ |2 ν(dz) : a ∈ Z′, |a| ≤ 1

}
<∞.

Then we have the following implication: (i) =⇒ (i′)∨(ii′)∨(iv′). Moreover, if (i′) holds,
then (i) ⇐⇒ (ii).

Suppose now that L = {L(t) : t ≥ 0} is an Z-valued Lévy process over a probability
space (�,F ,P), where Z is a separable Banach space. Then for each t ≥ 0 the measure
μt being the law of the Z-valued random variable L(t) is infinitely divisible and hence, see

3Since we assume that Z is a separable Banach space, then every Borel probability measure on Z is Radon,
see [62, Theorem II.3.2].
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[51, Theorem 5.7.3], there exist a Lévy measure νt on Z, a Gaussian measure ρt on Z and
a vector xt ∈ Z such that

μt = es(νt ) ∗ ρt ∗ δxt . (2.17)

A proof of a finite dimensional version of this result can be found in [70, Theorem 8.1].
From now on we will assume that the process L is purely non-Gaussian, i.e., that ρt = δ0

for all t ≥ 0, see [70, Definition 8.2]. We also assume that xt = 0 for all t ≥ 0. Thus, see
[51, Remark p.84],

μ̂t (a) = e
∫

Z K(x,a) dνt (x), a ∈ Z′,
i.e.,

Eei〈L(t),a〉 = e
∫

Z K(x,a) dνt (x), a ∈ Z′. (2.18)

Because L is a Lévy process, and not simply an additive process, the measures (μt )t≥0
form a convolution semigroup and therefore, the measure νt is equal to tν, where ν = ν1. A
purely non-Gaussian Z-valued Lévy process with xt = 0 for all t ≥ 0 satisfying (2.18) will
be called a Lévy process with generating triplets

{
0, tν, 0

}
.

The following theorem is a generalisation of (a version of) Theorem 19.2 from [70].
The result below is an infinite dimensional generalisation of a summary of the first two
steps of the proof of [70, Theorem 19.2]. This generalisation is possible because of three
important inequalities used by Sato are also true in general separable Banach spaces. Firstly,
Lemma 20.2 from [70] is true in Banach spaces, see for instance Prop 1.1.1 on p. 15 in
the monograph [50] by Kwapień and Woyczyński. Secondly, Remark 20.3 in [70] is just
Remark 1.1.1 p. 17 in [50]. Finally, Lemma 20.5 in [70] is Theorem 1 on p. 29 in the
Kahane’s book [49].

Theorem 2.10 Assume that L = {L(t) : t ≥ 0
}
is an Z-valued Lévy process defined on a

probability space (�,F ,P) with the system of generating triplets
{
δ0, tν, 0

}
. Let us define

a measure ν̃ on (0,∞)× (Z \ {0}) by
ν̃
(
(0, t] × B) = νt (B) = tν(B), B ∈ B(Z \ {0}).

Let �0 ∈ F be such that for every ω ∈ �0, the function

[0,∞) � t �→ L(t, ω) ∈ Z
is càdlàg. Define a map N by

N(B,ω) :=
{

#
{
s : (s, L(s, ω)− L(s−, ω)) ∈ B}, if ω ∈ �0,

0 if ω ∈ � \�0.
(2.19)

Then

• the function N is a time-homogenous Poisson random measure on (0,∞) × (Z \ {0})
with intensity measure ν̃ = Leb ⊗ ν,

• there exists a set �1 ∈ F with P(�1) = 1 such that for every ω ∈ �1 the following
hold:

(1) for every ε > 0 and t ∈ (0,∞) the measure N(·, ω) restricted to (0, t]× (Z \Uε
)

is supported on a finite number of points, each of which has N(·, ω)-measure 1;
(2) for every s ∈ (0,∞), N({s} × (Z \ {0}), ω) is equal to 0 or 1,

• there exists a set �3 ∈ F with P(�3) = 1 such that for every ω ∈ �3,

Sε(t, ω) :=
∫

(0,t]×
(
U1\Uε

)
[
xN(d(s, x), ω)− xν̃(d(s, x))] (2.20)



Stochastic Reaction-diffusion Equations Driven by Jump Processes

converges, as ε ↘ 0, to an element of the Skorohod space D([0,∞), Z), locally
uniformly, i.e., uniformly on any bounded interval ⊂ [0,∞),

• the Z-valued process Y = {Yt : t ≥ 0
}
defined, for ω ∈ �1

3 := �3 ∩�1 by

Yt (ω) := lim
ε↘0

Sε(t, ω)+
∫

(0,t]×
(
Z\U1

) xN(d(s, x), ω) (2.21)

is a Lévy process with generating triplets
{
0, tν, 0

}
. In particular, the process Y is

identical in law with the process L.

Remark 2.11 We have seen that since L is a Lévy process, νt = tν. This implies as above
that N is a time-homogenous Poisson random measure. Moreover, the equality (2.20) can
be written as,

Sε(t, ω) :=
∫

(0,t]×
(
U1\Uε

)
[
xN(d(s, x), ω)− xdsν(dx)]. (2.22)

The above theorem enables us to define an Itô integral with respect to the Lévy process
L in terms of the corresponding compensated Poisson random measure Ñ ,

∫ t

0
G(s)dL(s) :=

∫

(0,t]×U1

G(s)xÑ(d(s, x)) (2.23)

+
∫

(0,t]×
(
Z\U1

)G(s)xN(d(s, x)),

where G is an appropriate process taking values in the space L(Z, V ), where V is an
appropriate Banach space.

From now we will consider only such processes that N restricted to (0,∞) × (Z \ U1
)

is equal to 0.
Given a process G as above, we can define a process ξ

ξ : [0,∞)×� � (t, ω) �→ {
Z � x �→ 1U1(x)G(s)x ∈ V

} ∈ L0(Z, ν, V ). (2.24)

In view of Section 2.2, the integral
∫ t

0G(s)dL(s) is well defined for all t ∈ [0, T ], provided
V is a martingale type p Banach space for some p ∈ (1, 2] and the process ξ defined above
takes values in L0(Z, ν, V ) and belongs to the class Mp(0, T , Lp(Z, ν;V )). Moreover, for
every q ∈ (1, p], there exists a constant C > 0 independent of G such that

E

∣
∣
∣
∣ sup
t∈[0,T ]

∫ t

0
G(s)dL(s)

∣
∣
∣
∣

q

V

≤ CE
(∫ T

0

∫

Z

|ξ(r, x)|pV ν(dx) dr
)q/p

= CE
(∫ T

0

∫

U1

|G(r)x|pV ν(dx) dr
)q/p

. (2.25)

In fact, using the above approach, we can extend the definition of the Itô inte-
gral with respect to the Lévy process to the integrands belonging to the whole class
Mp(0, T , Lp(Z, ν;V )) by

∫ t

0
ξ(s)dL(s) :=

∫

(0,t]×U1

ξ(s)Ñ(d(s, x)). (2.26)

We finish this section with a result somehow converse to Theorem 2.10 but whose proof,
in the finite-dimensional case, can be traced to the Proof of Theorem 19.2 in [70, pp.132-
134]. As we have observed earlier, this proof generalises to an infinite dimensional setting.
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Theorem 2.12 Assume that on a probability space (�,F ,P), N is a time-homogenous
Poisson random measure on (0,∞)× (Z \ {0}), where Z is a separable Banach space, with
intensity measure Leb ⊗ ν. Then

• there exists a set �1 ∈ F with P(�1) = 1 such that for every ω ∈ �1 the following
hold:

(1) for every ε > 0 and t ∈ (0,∞) the measure N(·, ω) restricted to (0, t]× (Z \Uε
)

is supported on a finite number of points, each of which has N(·, ω)-measure 1;
(2) for every s ∈ (0,∞), N({s} × (Z \ {0}), ω) is equal to 0 or 1,

• there exists a set �3 ∈ F with P(�3) = 1 such that for every ω ∈ �3, as ε ↘ 0,

Sε(t, ω) :=
∫

(0,t]×
(
U1\Uε

)
[
xN(d(s, x), ω)− x dsν(dx)] (2.27)

converges to an element of the Skorohod space D([0,∞), Z), locally uniformly, i.e.,
uniformly on any bounded interval ⊂ [0,∞),

• an Z-valued process Y = {Y (t) : t ≥ 0
}
defined, for ω ∈ �1

3 := �1 ∩�3 by

Y (t, ω) := lim
ε↘0

Sε(t, ω)+
∫

(0,t]×
(
Z\U1

) xN(d(s, x), ω) (2.28)

is a Lévy process with generating triplets
{
0, tν, 0

}
.

The details of the results presented in this subsection will be dealt in a separate
publication [16].

3 Martingale Solutions of Stochastic Reaction-diffusion Equations

3.1 Statements of the Main Results

In this section we will state our main results. For this purpose, we will introduce the
problem, the concept of a martingale solution, and the main assumptions.

Let the Banach spaces E, X and the linear operator A be as in Assumption 1. We also
assume that we have a probability space (�,F ,P) and Poisson random measure η as in
Assumption 2 and Definition 2.3. Throughout we fix T > 0.

We consider the following stochastic evolution equation:
{
du(t)+ Au(t) dt = F(t, u(t)) dt + ∫

Z
G(t, u(t); z) η̃(dz, dt), t ∈ (0, T ],

u(0) = u0 ∈ X. (3.1)

where η̃ is the compensated Poisson random measure corresponding to η, see Definition 2.3.
Using the notation introduced in Notation 2, the assumptions on the nonlinear map G

read as follows.

Assumption 3 There exists ρ ∈ (0, 1
p
) and a bounded and separately continuous map

G : [0, T ] ×X→ Lp
(
Z, ν,D(A

ρ− 1
p )
)
.

Let us observe that this implies that the map Aρ−
1
p G : [0, T ] × X → Lp(Z, ν,E) is well

defined. In what follows, we will use the latter instead of G.
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Next we will present assumptions on the drift operator F . For this purpose we first recall
the notion of the subdifferential of the norm ϕ, for more detail see [23].

Given x, y ∈ X the map ϕ : R � s �→ |x + sy| ∈ R is convex and therefore is right
and left differentiable. Let us denote by D±|x|y the right/left derivative of ϕ at 0. Then the
subdifferential ∂|x| of |x|, x ∈ X, is defined by

∂|x| := {x∗ ∈ X∗ : D−|x|y ≤ 〈y, x∗〉 ≤ D+|x|y, y ∈ X
}
,

where X∗ is the dual space to X. One can show that not only ∂|x| is a nonempty, closed and
convex set, but also

∂|x| = {x∗ ∈ X∗ : 〈x, x∗〉 = |x| and |x∗| ≤ 1}.

In particular, ∂|0| is the unit ball in X∗.

Assumption 4 (i) The map F : [0, T ] ×X→ X is separately continuous.
(ii) There exist numbers k0 > 0, q > 1 and k ≥ 0 such that with

a(r) = k0(1 + rq), r ≥ 0,

the following condition holds for t ∈ [0, T ] ,

〈−Ax + F(t, x + y), z〉 ≤ a(|y|X)− k|x|X, x ∈ D(A), y ∈ X, z ∈ ∂|x|. (3.2)

(iii) There exists a sequence (Fn)n∈N of bounded separately continuous maps from
[0, T ] ×X to X such that

(a) Fn satisfies condition (ii) above uniformly in n,
(b) Fn converges in X pointwise on [0, T ] ×X to F .

With all the notations and concepts presented above we are ready to define a martingale
solution to the problem (3.1). Let us add a remark that is surely obvious to many readers
while leaving it out could lead to a confusion for some other readers. Although in order to
present the problem we have used a probability space and a PRM, these two objects are part
of the solution. The only given objects are the space (Z,Z) and measure ν ∈ M+(Z).

Definition 3.1 Let us assume that E and X are Banach spaces satisfying parts 1(i), 2(i) and
2(ii) of Assumption 1. Let us also assume that ν is a σ–finite nonnegative measure on a
measurable space (Z,Z), i.e., ν ∈ M+(Z). Let p ∈ (1, 2] a real number as in part 1(i) of
Assumption 1.

An X–valued martingale solution to the problem (3.1) is a system

(�,F ,P,F, η, u) (3.3)

such that

(i) (�,F ,F,P) is a complete filtered probability space with a filtration F = {Ft : t ∈
[0, T ]} satisfying the usual conditions,

(ii) η is a time-homogeneous Poisson random measure on (Z,B(Z)) with intensity
measure ν ⊗ Leb over (�,F ,F,P),
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(iii) u : [0, T ] × � → X is an F-progressively measurable process such that for any
t ∈ [0, T ], P a.s.

∫ t

0

∣
∣
∣e
−(t−r)AF (r, u(r))

∣
∣
∣
X
dr <∞, (3.4)

∫ t

0

∫

Z

∣
∣
∣e
−(t−r)AG(r, u(r); z)

∣
∣
∣
p

E
ν(dz) dr <∞, (3.5)

and for any t ∈ [0, T ], P a.s.,

u(t) = e−tAu(0)+
∫ t

0
e−(t−r)AF (r, u(r)) dr (3.6)

+
∫ t

0

∫

Z

e−(t−r)A G(r, u(r); z) η̃(dz, dr).
If in addition there exists a separable Banach space B such that

u ∈ D([0, T ];B), P-a.s.,

then the system (3.3) will be called an X–valued martingale solution to problem (3.1) with
càdlàg paths in B.

We will say that the X–valued martingale solution to problem (3.1) with càdlàg paths in
B is unique iff for any other martingale solution to Eq. 3.1 with càdlàg paths in B

(
�′,F ′,P′,F′, η′, u′

)
,

the laws of the processes u and u′ on the space D([0, T ];B) are equal.

We refer to a recent paper [15] where the uniqueness in law of processes defined by
stochastic convolutions with respect to PRM’s are discussed.

We we formulate our main theorem.

Theorem 3.2 Let p ∈ (1, 2], E, X and A be as in Assumption 1. Let ν be a σ–finite
nonnegative measure on a measurable space (Z,Z), i.e., ν ∈ M+(Z). Let the nonlinear
maps G and F satisfy Assumption 3 and Assumption 4, respectively. Assume that X ⊂
D(A

ρ− 1
p ) and that

the embedding X ↪→ D(A
ρ− 1

p ) is continuous.

Let q be the number from Assumption 4(ii). Assume that q < qmax, where

qmax =
{

p
1−ρp if − Agenerates a contraction type semigroup on D(Aρ−

1
p ),

p
1−ρ otherwise.

(3.7)

Assume also that there exists a separable UMD Banach space Y such that

(1) X ⊂ Y ,
(2) A has an extension AY which satisfies the parts 1(iii)-1(v) of Assumption 1 on Y ,
(3) and D(AθY ) ⊂ X for some θ ≤ 1 − q

qmax
.

Then, for any u0 ∈ X problem (3.1) has an X-valued martingale solution with càdlàg paths

in D(Aρ−
1
p ), see Definition 3.1.
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Moreover, for any q̃ ∈ (q, qmax) and r ∈ (1, p) the stochastic process u satisfies

E

(∫ T

0
|u(t)|q̃Xdt

) r

q̃2

<∞.

Remark 3.3 If the maps F(t, ·) and Aρ−
1
p G(t, ·) are Lipschitz continuous uniformly with

respect to t ∈ [0, T ], i.e., there exists K > 0 such that for all t ∈ [0, T ] and all u1, u2 ∈ X,

|F(t, u2)− F(t, u1)|X ≤ K|u2 − u1|X,
∫

Z

|Aρ− 1
p G(t, u2; z)− Aρ−

1
p G(t, u1; z)|pE ν(dz) ≤ K|u2 − u1|pX,

then the SPDEs (3.1) has a unique strong solution. In our work we are interested in the case
when both these conditions are relaxed.

In order to prove Theorem 3.2 we will consider an auxiliary problem for which we will
prove an auxiliary existence result (see Theorem 3.4) which holds under more restrictive
conditions than the ones stated above. More precisely, we require that the nonlinear maps
F and G satisfy the following set of conditions.

Assumption 5 There exists ρ ∈ [0, 1
p
) such that the (nonlinear) maps

F : [0, T ] ×X→ D(Aρ−1), (3.8)

G : [0, T ] ×X→ Lp(Z, ν,D(A
ρ− 1

p )), (3.9)

are bounded and separately continuous.

Remark The above assumption can also be stated in a more precise way, see Assumption 3.
To be precise, we could request that there exists ρ ∈ [0, 1

p
) such that the maps

Aρ−1F : [0, T ] ×X→ E, (3.10)

A
ρ− 1

p G : [0, T ] ×X→ Lp(Z, ν,E), (3.11)

are bounded and separately continuous.
We state the following theorem whose proof will be given in Section 8. Although it is

only an auxiliary result, it is still important as it is the main tool for the proof of Theorem
3.2 and we are not aware of a related result in the existing literature.

Theorem 3.4 Let E and A be as in Assumption 1 and (Z,Z, ν) be a measure space with

ν ∈ M+(Z). Let the hypothesis in Assumption 5 be satisfied. Then, for every u0 ∈ D(Aρ−
1
p )

problem (3.1) has an E-valued martingale solution

(�,F ,P,F, η, u)

with càdlàg trajectories in D(Aρ−
1
p ).

Moreover, the stochastic process u satisfies
∫ T

0
E|u(t)|pE dt <∞. (3.12)

In view of Section 2.3, Theorem 3.4 can be written in terms of a Lévy process as follows.
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3.2 Formulation of our Results in Terms of Lévy Processes

Let Z be a separable Banach space with the Borel σ -field Z = B(Z). Assume that L =
{L(t) : t ≥ 0} is a Z–valued Lévy process with generating triple (δ0, tν, 0), see Theorem
2.10, such that for some fixed p ∈ (1, 2],

∫

U1

|z|pZν(dz) <∞, (3.13)

where as in Section 2.3, U1 is the closed unit ball in Z. Note that if supp ν ⊂ U1, then the
Poisson random measureN corresponding to L restricted to (0,∞)×(Z \U1

)
is equal to 0.

Here, instead of Assumption 3 we assume the following set of hypotheses.

Assumption 6 There exists ρ ∈ (0, 1
p
) such that the diffusion coefficient G is bounded

and separately continuous map

A
ρ− 1

pG : [0, T ] ×X→ L(Z,E). (3.14)

Remark Let us notice that this framework is less general than the one of Poisson random
measures. In particular, if the map G satisfies Assumption 6 then the map G defined by

G : [0, T ] × E � (t, u) �→ {Z � z �→ 1U1(z)G(t, u)z} ∈ Lp(Z, ν;E).
satisfies, in view of Eq. 3.13 and the continuous embedding E ⊂ X, Assumption 3.

We consider the following stochastic evolution equation
⎧
⎨

⎩

du(t) + Au(t) dt = F(t, u(t)) dt +G(t, u(t)) dL(t),

u(0) = u0.

(3.15)

In view of above remark and Section 2.3 we get the following result which is crucial in
our reformulation of Theorem 3.4 in terms of Lévy processes.

Theorem 3.5 Assume that the Banach space E, the linear map A and the map F satisfy the
assumptions of Theorem 3.4. Let us assume that Z is a separable Banach space and Y ={
Y (t) : t ≥ 0

}
is an Z-valued Lévy process defined on a probability space (�0,F0,P0)

with the system of generating triplets
{
δ0, tν, 0

}
such that supp ν ⊂ U1 and, for some

p ∈ (1, 2], the condition (3.13) is satisfied. Assume that the map G satisfies Assumption 6.

Then, for every u0 ∈ D(Aρ−
1
p ) there exists a system

(�,F ,P,F, L, u)
such that

(i) (�,F ,F,P) is a complete filtered probability space with filtration F = {Ft }t∈[0,T ]
satisfying the usual conditions;

(ii) L = {L(t) : t ∈ [0, T ]} is a Z–valued Lévy process with Lévy measure ν over
(�,F ,F,P);

(iii) u = {u(t) : t ∈ [0, T ]} is an E-valued and adapted process, with D(Aρ−
1
p )-valued

càdlàg paths, such that
∫ T

0
E|u(t)|pE dt <∞, (3.16)
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(F (t, u(t)) : t ∈ [0, T ]) and (G(t, u(t)) : t ∈ [0, T ]) are well defined D(Aρ−
1
p )-

valued, resp. Lp(Z, ν;D(Aρ− 1
p ))-valued and progressively measurable processes,

and for all t ∈ [0, T ], P-a.s.
u(t) = e−tAu0 +

∫ t

0
e−(t−r)AF (r, u(r)) dr

+
∫ t

0
e−(t−r)A G(r, u(r)) dL(r). (3.17)

Proof of Theorem 3.5 This result readily follows from Theorem 3.4 because of the follow-
ing argument.

Let us consider a separable Banach space Z and an Z-valued Lévy process Y = {Y (t) :
t ≥ 0

}
, defined on a probability space (�0,F0,P0) with the system of generating triplets{

δ0, tν, 0
}

such that supp ν ⊂ U1, and condition (3.13) is satisfied for some p ∈ (1, 2]. Let
N be the corrsponding Poisson random measure given by Theorem 2.10.

Let us fix u0 ∈ D(Aρ− 1
p ). Since the map G satisfies Assumption 6, by Theorem 3.4,

there exists a system
(�,F ,P,F, η, u)

which is an E-valued martingale solution problem (3.1) (with càdlàg trajectories in

D(A
ρ− 1

p )). In particular, η is a time-homogeneous Poisson random measure on a Banach
space Z with the intensity measure ν⊗Leb such that condition (3.13) is satisfied. Applying
Theorem 2.12 we can find a Z-valued Lévy process L = {L(t) : t ≥ 0} with the generating
triplets

{
δ0, tν, 0

}
. By the results discussed in Section 2.3 we infer that the system

(�,F ,P,F, η, L)
is a martingale solution to problem (3.15).

3.3 Outline of the Proof of Theorems 3.2 and 3.4

The detail of the proofs of the theorems 3.2 and 3.4 are given in Sections 9 and 8, respec-
tively. These proofs are very technical and to make the reading of the paper easy, we outline
the proofs of Theorem 3.4 and Theorem 3.2 in this subsection.

Outline of the proof of Theorem 3.4 The proof relies on a combination of approximation
and compactness methods. Namely, we approximate the initial condition u0 by a sequence
(xn)n∈N ⊂ E satisfying

xn → u0 strongly in D(Aρ−
1
p ),

as n→∞. We also define a sequence (un)n∈N of adapted E–valued processes by

un(t) = e−tAxn +
∫ t

0
e−(t−s)AF (s, ûn(s)) ds

+
∫ t

0

∫

Z

e−(t−s)AG(s, ûn(s); z) η̃(dz; ds), t ∈ [0, T ], (3.18)

where ûn is defined by

ûn(s) :=
{
xn, if s ∈ [0, 2−n),
−
∫ φn(s)
φn(s)−2−n un(r) dr, if s ≥ 2−n, (3.19)
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and φn : [0,∞)→ [0,∞) is a function defined by φn(s) = k
2n , if k ∈ N and k

2n ≤ s < k+1
2n ,

i.e., φn(s) = 2−n[2ns], s ≥ 0, where [t] is the integer part of t ∈ R. Here we have used the
following shortcut notation

−
∫

A

f (t)dt := 1

Leb(A)

∫

A

f (t) dt, A ∈ B([0, T ]),

where Leb denotes the Lebesgue measure. Let us point out that between the grid points,
Eq. 3.18 is linear, therefore, un is well defined for all n ∈ N.

Secondly, we proved that for any α ∈ (0, ρ) and ρ′ ∈ (0, ρ) there exists a constant C
such that the following inequalities hold

sup
n∈N

E‖Aρ′un‖pLp(0,T ;E) ≤ C,

sup
n∈N

E‖Aρ′ ûn‖pLp(0,T ;E) ≤ C,

sup
n∈N

E‖un‖pWα,p(0,T ;E) ≤ C.

The proofs of these uniform estimates are non-trivial and rely on Lemmata 7.2 and 7.4,
Proposition E.1 and the maximal regularity for deterministic parabolic equations.

Thirdly, by defining a sequence of Poisson random measures (ηn)n∈N by putting ηn = η
for all n ∈ N, we will prove that for any ρ′ ∈ (0, ρ) the family of the laws of
random variables ((un, ηn))n∈N is tight on the cartesian product space

[
Lp(0, T ;E) ∩

D([0, T ];D(Aρ′−1))
]×MI(Z × [0, T ]). Because a cartesian product of two compact sets

is compact, it is sufficient to consider the tightness of the components of the sequence
((un, ηn))n∈N.

For this aim let us define two auxiliary sequences of stochastic processes by

fn(t) = F(t, ûn(t)), t ∈ [0, T ],
vn(t) =

∫ t

0

∫

Z

e−(t−s)AG(s, ûn(s); z) η̃(dz; ds), t ∈ [0, T ].

The tightness of laws of the processes (un)n∈N on Lp(0, T ;E) ∩ D([0, T ];D(Aρ′−1))

follows by observing that

un = vn +�−1fn + e−·Axn, n ∈ N,

and using Lemma 2.2 (for �−1fn) and the Lemmata 7.6 and 7.7 (for vn). The tightness of
the laws family of (ηn)n∈N follows from [62, Theorem 3.2].

This tightness result along with the Prokhorov theorem and the modified Skorohod
Representation Theorem, see Theorem C.1, implies that there exist a probability space
(�̂, F̂ , P̂) and Lp(0, T ;E) ∩ D([0, T ];D(Aρ′−1)) × MI(Z × [0, T ])- valued random
variables (u∗, η∗), (ûn, η̂n), n ∈ N, such that P̂-a.s.

(ûn, η̂n)→ (u∗, η∗) (3.20)

in Lp(0, T , E) ∩ D([0, T ],D(Aρ′−1))×MI(Z × [0, T ]), η̂n = η∗, and

L((ûn, η̂n)) = L((un, ηn)),

for all n ∈ N. Taking the new filtration F̂ as the natural filtration of (ûn, η̂n, u∗, η∗)
we prove that over the filtered probability space (�̂, F̂ , F̂, P̂) the objects η̂n and η∗ are
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time-homogeneous Poisson random measure with intensity measure ν⊗Leb. We also prove
that in appropriate topology

ûn − e−·Axn −�−1Fn(·, ûn(·))ds − v̂n = 0,

where a process v̂n is defined analogously to the way we have defined the process vn by
replacing un with ûn. Using (3.20) and the uniform a priori estimates we obtain earlier we
can pass to the limit and derive that P̂-a.s.

u∗(·) = e−·Au0 +
∫ ·

0
e−(t−s)AF (s, u∗(s))ds +

∫ ·

0

∫

Z

e−(t−s)AG(s, u∗(s))η̃∗(dz, ds).

This ends the proof of Theorem 3.4.

The scheme of the proof of Theorem 3.2 is very similar to the above idea, but it is longer
and more complicated. In the next paragraph we will simply outline the main ideas of the
proof and refer the reader to Section 9 for more details.

Outline of the proof of Theorem 3.2 The proof of Theorem 3.2 also relies on approxima-
tion and compactness methods. We mainly exploit the Assumption 4(iii) to set in the
Banach space E an approximating problem with bounded coefficients. This approximating
(auxiliary) problem takes the form

{
dun(t)+ (Aun(t)+ Fn(t, un(t))dt =

∫

Z
G(t, un(t))η̃(dz, dt),

un(0) = u0,
(3.21)

which, thanks to Theorem 3.4, has an E-valued martingale solution with càdlàg paths in

D(A
ρ− 1

p ). We denote this martingale solution by

(�n,Fn,Fn,Pn, ηn, un).
The stochastic process un can be written in the form

un(t) = e−tAu0 +
∫ t

0
e−(t−s)AFn(s, un(s))ds

+
∫ t

0

∫

Z

e−(t−s)AG(s, un(s))η̃n(dz, ds)

= e−tAu0 + zn(t)+ vn(t).
The first step of the proof is to derive uniform a priori estimates concerning the convolution
processes zn and vn. In this step the results obtained in Section 7, especially Lemmata 7.9
and 10, will play an important role. In fact, thanks to parts 1(i)-1(v) of Assumption 1, we
can apply these results and deduce that for any q̃ ∈ (q, qmax) and r ∈ (1, p),

sup
n∈N

En

[
‖vn‖rLq̃ (0,T ;E) + sup

t∈[0,T ]
|zn(t)|

r
q̃

X

]
<∞.

Let us fix q̃ ∈ (q, qmax) and ρ′ ∈ (0, ρ). We set B0 = D(Aρ′−1) and put

XT = C([0, T ];X)× Lq̃(0, T ;E) ∩ D([0, T ];B0)×MI(Z × [0, T ]). (3.22)

In the following step we will prove that the family of laws of (zn, vn, ηn)n∈N is tight on XT .
For this aim we will prove that the laws of the sequence (vn)n∈N, respectively (ηn)n∈N, are
tight on Lq̃(0, T ;E) ∩ D([0, T ];B0), respectively MI(Z × [0, T ])). The tightness of laws
of the sequence (vn)n∈N is a consequence of Lemmata 7.6 and 7.7. The tightness of the
family of laws of (ηn)n∈N is a consequence of [62, Theorem 3.2]. The tightness of family
of laws of the sequence (zn)n∈N on C([0, T ];X) is difficult to prove. A proof of this fact
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relies very much on the hypotheses (3.2)–(3.2) in Theorem 3.2. Firstly we will need to use
Lemma 9.1, see [23] for a proof, as well as the previous uniform estimates, to prove that for
some p̃ ∈ (1, qmax

q
) supn∈N|Fn(·, un(·))|Lp̃(0,T ;Y ) is bounded in probability. Observing that

zn = �−1Fn(·, un(·)) and using Lemma 2.2, which is applicable thanks to parts 1(i)-1(v)
of Assumption 1, we will deduce that for some θ ≤ 1 − 1

p̃
the family of laws of (zn)n∈N is

tight on C([0, T ];D(AθY )) and hence on C([0, T ];X).
This along with the Prokhorov Theorem and the modified Skorohod Representation The-

orem, see Theorem C.1, imply that there exist a probability space (�̂, F̂ , P̂) and XT - valued
random variables (z∗, v∗, η∗), (ẑn, v̂n, η̂n), n ∈ N, such that P̂-a.s.

(ẑn, v̂n, η̂n)→ (z∗, v∗, η∗) in XT , (3.23)

and, for all n ∈ N, η̂n = η∗ and

L((ẑn, v̂n, η̂n)) = L((zn, vn, ηn)).

Next we will carefully construct a new filtration F̂ and prove that over the new filtered
probability space (�̂, F̂ , F̂, P̂) the objects η̂n and η∗ are time-homogeneous Poisson random
measure with intensity measure ν ⊗ Leb. We also prove that in appropriate topology

ûn − e−·Au0 −
∫ ·

0
e−(·−s)AFn(s, ûn(s))ds −

∫ ·

0
e−(·−s)AG(s, ûn(s)) ˜̂η(dz, ds) = 0,

where ûn = e−·Au0 + ẑn + v̂n. Putting u∗ := e−·Au0 + z∗ + v∗ and using (3.23) and the
uniform a priori estimates we obtained earlier we can take the limit and deduce that P̂-a.s.

u∗(·) = e−·Au0 +
∫ ·

0
e−(t−s)AF (s, u∗(s))ds +

∫ ·

0

∫

Z

e−(t−s)AG(s, u∗(s))η̃∗(dz, ds).

This ends the hardest part of the proof of Theorem 3.2. The scheme of the proof of Theorem
3.4 is very similar to the above idea and simpler. We refer the reader to Sections 9 and 8 for
the omitted details.

4 Application I: Reaction-diffusion Equations with Lévy Noise
of the Spectral Type

Throughout this section, we assume that O is a bounded open domain in R
d , d ∈ N

∗, with
C∞ boundary. We also fix real numbers T > 0, α ∈ (0, 2), p ∈ (1, 2] and q ∈ (1,∞).
Finally we assume that L = {L(t) : t ∈ [0,∞)} is a real-valued tempered α-stable Lévy
process, i.e., a Lévy process with the Lévy measure να given by

να(dz) = 1|z|<1|z|−α−1e−|z| dz, z ∈ R. (4.1)

Our aim in this section is to study an equation of the following type,

(4.2)
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

du(t, ξ) = �u(t, ξ) dt − |u(t, ξ)|q−1 sgn(u(t, ξ))+ u(t, ξ) dt
+ √|u(t, ξ)|/(1 +√|u(t, ξ)|) dL(t), t ∈ (0, T ], ξ ∈ O,

u(t, ξ) = 0, ξ ∈ ∂O, t ∈ (0, T ],
u(0, ξ) = u0(ξ), ξ ∈ O,

.
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We will achieve our aim by finding the conditions on the coefficients so that Theorem 3.2 is
applicable. For this purpose we will reformulate problem (4.2) using a more general setting
and the language of the Poisson random measures.

Firstly, we denote by X = C0(O) the space of real continuous functions on O which
vanish on the boundary ∂O. For γ ∈ R and r ∈ (1,∞) by the symbol Hγ,r (O) we will
denote the fractional order Sobolev space defined by mean of the complex interpolation
method, see [73, Definition 1, page 301]. By Hγ,r0 (O) we will denote the closure of the
space C0(O) in Hγ,r (O), see also [73, Definition 2, page 301]. We will simply write Hγ,r

and Hγ,r0 when there is no risk of ambiguity.
Let us briefly recall the definitions of these spaces. If k is a natural number and p ∈

[1,∞) is a real number, we denote by Hk,p(O), see [38, section I.6], the space of all
functions u ∈ Lp(O) whose weak derivatives Dαu of degree |α| ≤ k exist and belong to
Lp(O). Endowed with a natural norm ‖ · ‖k,p

‖u‖pk,p :=
∑

|γ |≤k
|Dγ u|pLp , u ∈ Hk,p(O),

this space is a separable Banach space. The closure of the space C∞
0 (O) in the space

Hk,p(O) is denoted by Hk,p0 (O). In the case β ∈ R
+ \ N, the fractional order Sobolev

spaces Hβ,p(O) can be defined by the complex interpolation method, i.e.,

Hβ,p(O) = [Hk,p(O),Hm,p(O)]ϑ , (4.3)

where k,m ∈ N, k < m, and ϑ ∈ (0, 1) satisfy β = (1−ϑ)k+ϑm. It is well known, see e.g.
[52, Theorem 11.1, chapter I] and [73, Theorem 1.4.3.2 on p. 317] thatHs,p0 (O) = Hs,p(O)
iff s ≤ 1

p
.

We denote by A the operator −� in Lp(O) with the Dirichlet boundary conditions, i.e.,
{
D(A) = H 1,p

0 (O) ∩H 2,p(O),
Au = −�u, u ∈ D(A). (4.4)

Next, let us consider a separately continuous real valued functions f defined on [0, T ]×
O × R satisfying the following condition. There exists a number K > 0 such that for
t ≥ 0, x ∈ O, u ∈ R,

−K(1 + |u|q1[0,∞)(u)) ≤ f (t, x, u) ≤ K(1 + |u|q1(−∞,0](u)). (4.5)

It is not difficult to prove that if f satisfies (4.5), then

f (t, v + z) sgn(v) ≤ K(1 + |z|q), for all v, z ∈ R, t ∈ [0, T ].
Therefore, by [10, Proposition 6.2] the Nemytskii map F defined by

F(t, u)(ξ) := f (t, ξ, u(ξ)), u ∈ X, ξ ∈ O, t ∈ [0, T ], (4.6)

satisfies items (i) and (ii) of Assumption 4 on X.
Approximating f by a sequence (fn)∞n=1, where for any t ∈ [0, T ] and ξ ∈ O

fn(t, ξ, u) :=
⎧
⎨

⎩

f (t, ξ, u), if u ∈ [−n, n]
f (t, ξ, n), if u ≥ n,
f (t, ξ,−n), if u ≤ −n,

we obtain a sequence (Fn)n∈N defined by

Fn : [0, T ] ×X � (t, u) �→ {O � x �→ fn(t, ξ, u(ξ))} ∈ X,
which satisfies Assumption 4(iii).
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Next we reformulate the noise appearing in the problem that we want to study. In view
of the results of Section 2.3, see [1], to the real-valued Lévy process L there corresponds a
time-homogeneous Poisson random measure η with Lévy measure να on Z = R defined by
Eq. 4.1. Moreover, the Lévy processes L = {L(t) : t ≥ 0} and L̃ = {L̃(t) : t ≥ 0}, where

L̃(t) :=
∫ t

0

∫

R

z η̃(dz, ds), t ≥ 0,

have the same law on D([0,∞);R).
Now, let g be a bounded and separately continuous function defined on [0, T ] ×O × R

and taking values in R. Furthermore, we assume that g(t, x, ·) is continuous uniformly w.r.t.
(t, x). Let G be defined by

G(t, u; z)(ξ) = g(t, ξ, u(ξ))z, t ∈ [0, T ], u ∈ L1(O), z ∈ R, ξ ∈ O. (4.7)

With this notation problem (4.2) can be rewritten in the following form
⎧
⎨

⎩

du(t)+ Au(t) dt = F(u(t)) dt + ∫

R
G(t, u, z) η̃(dz, dt), t ∈ (0, T ],

u(t) = u0.
(4.8)

The following theorem is a corollary of Theorem 3.2.

Theorem 4.1 Assume that α ∈ (0, 2), p ∈ (1, 2], p > α, d ∈ N
∗. Let να be a Lévy measure

on R given by Eq. 4.1. Assume that q > 1 and let r be a number satisfying

r > max{qd, 2d}.
Then, for any u0 ∈ C0(O) there exists a C0(O)-valued martingale solution
(�,F ,F,P, η, u) to problem (4.8) with càdlàg trajectories in Lr(O) such that η is a
time-homogeneous Poisson random measure on (R,B(R)) with intensity measure να⊗Leb.

Proof Let us fix parameters α, p, d, q as in the assumptions. Next let us choose real num-
bers r > max{qd, 2d} and κ ∈ ( d

r
, 1
q
). Let us also choose X = C0(O), E = H

κ,r
0 and

B = Lr . Let us put δ = κ
2 . Then, since 1

2 ≤ 1
p

we infer that δ < 1
2q <

1
2 and δ < 1

p
. We

also deduce that

qmax = 1

δ
> q.

Next, we denote by A = Ar the minus Laplace operator −� with the Dirichlet boundary
conditions in the space B. Since r ≥ p, r ≥ 2d and p ∈ (1, 2] we infer that E and B are
separable, UMD and type p Banach spaces. Now it is well known that the assumptions of
the first and second part of Theorem 3.2 are satisfied by Ar .

We put Z = R and ν = να . Then, we immediately see that

Cp :=
∫

Z

|z|p ν(dz) <∞.

We define a map G̃ by

G̃(t, ·) : X � u �→ {Z � z �→ zg ◦ u} ∈ Lp(Z, ν;E), t ∈ [0, T ].
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The map G̃may not be defined on the whole space X, but the map A−δ
r G̃ is because δ = κ

2 .
Indeed, we have the following chain of inequalities.

∫

Z

|A−δ
r G̃(u)(z)|pE ν(dz) =

∫

Z

|A−δ
r ((g ◦ u)z) |pE ν(dz)

=
∫

Z

|A−δ
r (g ◦ u)|pE |z|pν(dz) ≤ Cp|A

κ
2
r A

−δ
r (g ◦ u)|pLr ≤ Cp|g|pL∞ .

Since the function g is continuous one can easily check that the continuity condition in
Assumption 3 is satisfied. Observe that

G̃(t, u)(z) = G(t, u, z), t ∈ [0, T ], u ∈ X, z ∈ Z,

where G is defined in Eq. 4.7.
Since κ > d

r
we have E ⊂ X. Moreover, it is straightforward to check that the nonlinear

map F defined by Eq. 4.6 satisfies Assumption 4 on X.
Finally, let Y = Lr(O) and AY = Ar . Since 1 − q

qmax
> 1

2 and 1
2 >

d
r

, we can find

κ1 ∈ ( dr , 1
2 ) such that

D(A
κ1
2
r ) ⊂ X ⊂ Y.

Thus all the assumptions (with our choice of spaces and maps) of Theorem 3.2 are sat-
isfied and therefore the proof of the existence of a solution with the requested properties
follows.

5 Application II: Reaction-diffusion Equations of an Arbitrary Order
with Space-Time Lévy Noise

The aim of this section is to show how Theorem 3.4 can be applied to Stochastic reaction-
diffusion equations driven by the space-time Poissonian white noise. This type of noise,
which is a generalization of the space-time white noise, has been treated quite often in the
literature, see for instance [65, Definition 7.24] (see also [7]).

We begin by introducing the assumptions on the drift of our problem and the driving
noise. In the second subsection we will present the detail about the coefficient of the noise.
Finally, after a careful statement of the assumptions on our problem we will formulate and
prove the existence of a martingale solution to stochastic reaction-diffusion equations driven
by a space-time Poissonian noise.

5.1 The Noise and the Deterministic Nonlinear Part of the Problem

Let d ≥ 1, p ∈ (1, 2], and O be a bounded open domain in R
d with boundary ∂O of C∞

class. We consider a complete filtered probability space (�̄, F̄ , F̄, P̄) where the filtration
F̄ = (F̄t )t≥0 satisfies the usual conditions.

The assumptions on the noise in the equation that we are interested in are given below.
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Assumption 7 Let � : �̄ → MI(O × [0,∞)) be the space-time Poissonian white noise
on (O × R,B(O)× B(R),Leb⊗Leb)4 with intensity measure ν ⊗ Leb. We assume that:

supp ν ⊂ (−1, 1) and there exists p ∈ (1, 2] : Cp(ν) :=
∫

R

|z|pν(dz) <∞. (5.1)

Remark 5.1 By Theorem A.6 we can find a homogeneous Poisson random measure η with
intensity measure ν̂ ⊗ Leb such that

η(ω̄)(U × C ×D) = �(ω̄)(U × C ×D), U ∈ B(O), C ∈ B(R), D ∈ B([0,∞)),
ν̂(C) =

∫

R

∫

O
1C(ζ, ξ)dζ ν(dξ), C ∈ B(O)× B(R). (5.2)

We fix p as above for the remainder of this section. We also put ν̂ = Leb⊗ν, where Leb
is the Lebesgue measure on O.

Let also k be a positive integer. Borrowing the presentation of [10, Section 6.3] we
introduce a differential operator A of order 2k as follows.

(a) The differential operator A defined by

Au(x) = −
∑

|α|≤2k

aα(x)D
αu(x), x ∈ O, (5.3)

is properly elliptic (see [73, Section 4.9.1]). The coefficients aα are C∞ functions on
the closure Ō of O.

(b) A system B = {Bj }kj=1 of differential operators on ∂O is given,

Bj =
∑

|α|≤mj
bj,αD

α, (5.4)

with the coefficients bj,α being C∞ functions on ∂O. The orders mj of the operators
Bj are ordered in the following way:

0 ≤ m1 < m1 < . . . < mk.

We assume that mk < 2k and
∑

|α|=mj
bj,α(ξ)nξ �= 0, x ∈ O, j = 1, 2, . . . , k, (5.5)

where nξ is the unit outer normal vector to ∂O at ξ ∈ ∂O.
(c) For any x ∈ Ō and ξ ∈ R

n\{0} let a(x, ξ) =∑|α|=2k aα(x)ξ
α . We assume that

(−1)k
a(x, ξ)

|a(x, ξ)| �= −1, x ∈ Ō, ξ ∈ R
n\{0}. (5.6)

(d) If bx,ξ = ∑
|α|=2k aα(x)ξ

α then for all x ∈ ∂O, ξ ∈ Tx(∂O), t ∈ (−∞, 0] the
polynomials

{τ → bj (x, ξ + τnx)}, j = 1, · · · , k

4Leb is the Lebesgue measure on O and R and we refer to Appendix A for the definition and facts about
space-time Poissonian white noise.
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are linearly independent modulo polynomial {τ → ∏k
j=1(τ − τ+(t)}. Here Tx(O) is

the set of all tangent vectors to ∂O at x ∈ ∂O and τ+j (t) are the roots with positive
imaginary part of the polynomial defined by

C � τ → a(x, ξ + τnx)− t.
The differential operator A induces a linear unbounded mapAr on the Banach spaceLr(O),
r > 1, defined by

{
D(Ar) = {u ∈ H 2k,r : Bj u

∣
∣
∂O = 0 for mj < 2k − 1

r
},

Aru = Au, u ∈ D(Ar). (5.7)

Assume θ ≥ 0, r ∈ [p,∞). Let Ar be the linear operator in the Banach space Lr(O)
defined in Eq. 5.7. The space D(A

θ
2k
r ) will be used in what follows quite often and hence

it is convenient to write it down in terms of Sobolev spaces and boundary conditions, as in
equality (5.7). We have, for θ ∈ [0, 2k],

D(A
θ
2k
r ) = Hθ,rB := {u ∈ Hθ,r : Bj u

∣
∣
∂O = 0 for mj < θ − 1

r
}, (5.8)

Throughout we put E = H
θ,r
B . It is well-known, see for instance Triebel’s monograph

[73, Section 4.9.1], Seeley’s paper [71] or Lunardi’s book [53, Section 3.2] (also [10, Section
6.3]), that Ar satisfies parts 1(iii)-1(v) of Assumption 1 on the space E.

Now we introduce a nonlinear map which will play the role of the drift for our stochastic
equation.

Assumption 8 Assume that a function f : [0, T ] ×O × R → R is separately continuous
and bounded. Moreover, we assume that f (t, x, ·) is continuous uniformly w.r.t. (t, x).

We denote by F the Nemytskii map associated to f , i.e., defined by

F(t, u)(x) := f (t, x, u(x)), u ∈ Lr(O), x ∈ O, t ∈ [0, T ], (5.9)

and assume that F : [0, T ] × Lr(O)→ Lr(O).
The restrictions of F to [0, T ] ×Hθ,rB will also be denoted by F .

5.2 Coefficient of the Noise

We begin this subsection with the precise statement of the assumptions on the coefficient of
the noise.

Assumption 9 Let g : [0, T ] × O × R → R be a bounded function that is separately
continuous with respect to the first and the second variables, and g(t, x, ·) is continuous
uniformly w.r.t. (t, x).

We define a nonlinear mapG0 : [0, T ] ×Lr(O)→ Lr(O) to be the Nemytskii operator
associated to g; that is,

G0(t, u)(x) := g(t, x, u(x)), u ∈ Lr(O), x ∈ O.

Because of Assumption 9, in view of the Lebesgue Dominated Convergence Theorem
(DCT) for every t ≥ 0 G0(t, ·) is a continuous map from Lr(O) into itself and for each
u ∈ Lr(O), the function G0(·, u) : [0, T ] → Lr(O) is strongly measurable.
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Let Bsr,∞(O), be the Besov space as defined in Appendix B. By Proposition B.1 along
with Corollary B.4 we can define a bounded linear map

� : Lp(O)→ Lp(O × R; ν̂;B−(d− d
r
)

r,∞ (O)), (5.10)

by setting, for v ∈ Lp(O),
[�v](x, y) = (v(x)δx)y, (x, y) ∈ O × R. (5.11)

Indeed, � is linear and by Corollary B.4 and Eq. 5.1 we have the following chain of
equalities/inequalities

∫

O×R

|[�v](x, y)|p
B
−(d− dr )
r,∞ (O)

dx ν(dy) =
∫

O×R

|(v(x)δx)y|p
B
−(d− dr )
r,∞ (O)

ν̂(dx, dy)

=
∫

O
|vδx |p

B
−(d− dr )
r,∞ (O)

dx ×
∫

R

|y|pν(dy) ≤ CCp(ν)|v|pLp(O).

Finally, by the choice of θ , r , and p above, the embeddings

H
θ,r
B ⊂ Lr(O) ⊂ Lp(O),

are continuous, so we can define a nonlinear map G by

G := � ◦G0 : [0, T ] × C0(O)→ Lp(O × R, ν̂;B−(d− d
r
)

r,∞ (O)). (5.12)

In what follows we will also denote by G the restriction of the previously defined map
G to the sets [0, T ] × Hθ,rB with r ∈ (p,∞) and θ ≥ 0. It follows from the corresponding
properties of the map G0 that for every t ≥ 0, G(t, ·) is continuous and that for each
u ∈ Hθ,rB the function G(·, u) is strongly measurable.

Claim 5.1 Assume that p ∈ (1, 2], d ∈ N, r ≥ p, k ∈ N and θ ≥ 0 satisfy

θ + d − d

r
<

2k

p
. (5.13)

Then there exists δ < 1
p
such that the map A−δ

r G defined on [0, T ] × E is Lp(Z, ν,E)-

valued, bounded and continuous on E := Hθ,rB and measurable on [0, T ].

Proof Let us fix k, r , d, θ and p as in the assumptions. Thus, we can choose κ > d − d
r

such that δ := θ+κ
2k < 1

p
. Let us also notice that E ⊂ Hθ,r (O). Therefore, since A−δ

r maps

H−κ,r (O) into Hθ,r (O) and, by [73, Theorem 4.6.1-(a,b)], the Banach space B
−(d− d

r
)

r,∞ (O)
is continuously embedded in H−κ,r (O), we infer that the map A−δG is Lp(O × R, ν̂;E)-
valued continuous. Therefore, by the continuity and boundedness of the function g, the
functionA−δG from [0, T ]×E intoLp(O×R, ν̂;E) is separately continuous and bounded.
Since δ < 1

p
we deduce that G satisfies Assumption 3 with ρ = 1

p
− δ.

Remark 5.2 If d < 2k
p

, then we can find θ > d
r

such that condition (5.13) is satisfied and
the space E is continuously embedded in C0(O).
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5.3 The Formulation of the Result

Let η̃ be the compensated Poisson random measure associated to the time-homogeneous
Poisson random measure given by Remark 5.1. With the functional setting we described
above, the problem that we are interested in is

du(t)+ Aru(t) dt =
∫

O×R
G(u(t))[ξ, ζ ] η̃(dξ × dζ × dt)

+ F(t, u(t)) dt, t ∈ (0, T ],

u(0) = u0.

(5.14)

Remark 5.3 A very important example of problem (5.14) is the following SPDE

∂

∂t
u(t, ξ)+ Au(t) dt = f (u(t, ξ)) + g(u(t, ξ))[L̇(ξ, t)] ξ ∈ O, t ∈ (0, T ],

u(0, ξ) = u0(ξ), ξ ∈ O, (5.15)

u(t, ξ) = 0, for ξ ∈ ∂O, t ∈ (0, T ],
where A is a second order differential operator, both f and g are continuous and
bounded real functions defined on R and, roughly speaking, L̇ denotes the Radon-Nikodym
derivative of the space-time Lévy white noise5 L, i.e.,

L̇(ξ, t) := ∂L(ξ, t)

∂t ∂ξ
.

We are finally ready to define the concept of solution to problem (5.14).

Definition 5.4 Let p ∈ (1, 2] and ν a Lévy measure on R satisfying condition (5.1). Let
Ar be the linear operator in the Banach space Lr(O) defined by Eq. 5.7. Put E = Hθ,rB , for
some θ ≥ 0 and r ≥ p.

An E-valued martingale solution to Eq. 5.14 with càdlàg paths in Lr(O) is a system

(�,F ,P,F, η, u) , (5.16)

where

(i) (�,F ,F,P) is a complete filtered probability space equipped with a filtration F =
{Ft }t≥0 satisfying the usual conditions,

(ii) η is a space-time Poissonian white noise6 on O × R with jump size intensity ν̂ =
Leb⊗ν.

(iii) u is a E-valued F–progressively measurable stochastic process such that

E

∫ T

0
|u(s)|pE ds <∞. (5.17)

(iv) u is a Lr(O)-valued càdlàg process.

5We refer again to Appendix A for the definition of space-time Lévy noise.
6We refer to Appendix A for the definitions and facts about space-time Lévy and Poissonian noise
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(v) for every t ∈ [0, T ], u satisfies the following equation P–a.s.

u(t) = e−tAr u0 +
∫ t

0
e−(t−r)Ar F (r, u(r)) dr (5.18)

+
∫ t

0

∫

O×R

e−(t−r)Ar G(u(r))[ξ, ζ ] η̃(dξ × dζ × dr).

Remark 5.5 The last condition in Definition 5.4 should be understood that both integrals in
equality (5.18) make sense as E-valued random variables and (5.18) holds as an equality of
E-valued random variables.

The following result will be shown by applying Theorem 3.4.

Theorem 5.6 Let p ∈ (1, 2], ν be a Lévy measure on R satisfying condition (5.1), and A
be a differential operator having the properties (a)-(d) in Section 5.1. For θ ≥ 0 and r ≥ p
we put E = H

θ,r
B , where Ar is the linear operator in the Banach space Lr(O) defined

in Eq. 5.7. Let F and G be the two maps defined in Eqs. 5.9 and 5.12, respectively, and
satisfying Assumptions 8 and 9, see pages 29 and 29. In addition, let us assume that the
numbers p, r, θ, d and k satisfy (5.13). Then, for every u0 ∈ Hθ,rB there exists aHθ,rB -valued
martingale solution u to Eq. 5.14 with càdlàg trajectories in Lr(O).

The above theorem can be reformulated in terms of space-time Lévy noise, but since
such a result would not be significantly different from the last one, we omit it and leave as
an exercise to an interested reader.

Proof of Theorem 5.6 Let us fix the numbers d, k, p, and r , the space E and the operator
Ar as in the statement of the theorem. Also, let F (resp. G) be defined by equality (5.9)
(resp. (5.12)).

Since r ≥ p, the separable Banach spaces E and B are UMD and martingale type p.
As we mentioned above Ar has the BIP property on E, is a positive operator with compact
resolvent and −Ar generates a contraction typeC0-semigroup onE. Owing to Claim 5.1 we

can find ρ ∈ [0, 1
p
) such that the mapA

ρ− 1
p

r G defined on [0, T ]×E is Lp(Z, ν,E)-valued,
bounded and continuous w.r.t. E and measurable with respect to time. Thus all assumptions
but Assumption 5 of Theorem 3.4 are satisfied. However, by Assumption 8 the Nemytskii
map F defined for t ∈ [0, T ] and u ∈ E by

F(t, u)(x) := f (t, x, u(x)), x ∈ O,

satisfies Assumption 5. Hence, since Theorem 3.4 is applicable, we infer that problem
(5.14) has a E-valued martingale solution u. Since Ar is a infinitesimal generator of a
contraction C0-semigroup on Lr(O), by [77], the paths of the process u are càdlàg in
Lr(O).

Remark 5.7 Let O be a bounded open domain in R
d , with d ≥ 1. Let n be a fixed natural

number. For each i = 1, · · · , n let νi be a Lévy measure on R satisfying (5.1). For each i =
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1, · · · , n, let {Li(t); t ≥ 0} be a Lévy noise with Lévy measure νi . For a fixed T ∈ (0,∞)
we consider the following system of SPDEs

⎧
⎪⎪⎨

⎪⎪⎩

dui(t)+ Aiui(t) dt =∑n
k=1 gi�(t, x, u1(t, x), . . . , un(t, x))dL�(t)

+fi(t, x, u1(t, x), . . . , un(t, x))dt, t ∈ (0, T ], x ∈ O,
ui(0) = ui,0, x ∈ O,
Bj,iui(t, x) = 0, t ∈ [0, T ], x ∈ ∂O,

(5.19)
where Ai , i = 1, · · · , n, are differential operators of order 2k satisfying conditions (a)-(d),
see pages 27 and 28. Furthermore, we assume that

f = [fi]ni=1 : [0, T ] ×O × R
n → R

n, g = [gi,�]ni,�=1 : [0, T ] ×O × R
n → R

n×n,
are separately continuous and bounded. In addition, we assume that g(t, x, ·) is continuous
uniformly w.r.t. (t, x). Problem (5.19) was studied by Cerrai in [20] when each L� is a
Wiener process.

We will apply the previous theorem on the Banach space E = H
θ,r
B (O,Rn) to check

that for any u0 = (ui,0)
n
i=1 ∈ H 1,r

0 (O,Rn) ∩ Hθ,rB (O,Rn) there exists a H 1,r
0 (O,Rn) ∩

H
θ,r
B (O,Rn)-valued martingale solution to Eq. 5.19 with càdlàg paths in Lr(O,Rn). For

this purpose we consider the diagonal matrix

A =

⎛

⎜
⎜
⎜
⎝

A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...

0 0 . . . An

⎞

⎟
⎟
⎟
⎠
,

and denote by G0 : [0, T ] × Lr(O,Rn) → Lr(O,Rn) (resp. F ) the Nemytskii operator
associated to maps g and respectively f . We also set Z = R

n and define the Lévy measure
ν̂ on O × Z by ν̂ = Leb⊗(ν1 ⊗ · · · ⊗ νn). As above we can define a bounded linear map
� : E→ Lp(O × Z;B−(d−d/r)

r,∞ (O,Rn)) by formula (5.11), i.e.,

[�v](x, y) = (v(x)δx)y, (x, y) ∈ O × R
n,

and putG = �◦G0. The restriction of the maps F andG to sets [0, T ]×E are still denoted
by F and G, respectively. We denote by η the Poisson random measure with intensity mea-
sure Leb(dt)⊗ ν̂(dx, dz) on [0, T ] ×O × Z. Then problem (5.19) can be rewritten in the
following form

{
du +Audt = F(t, u)dt + ∫O×Z G(t, u)[x, z]η̃(dx × dz× dt),
u(0) = u0.

(5.20)

The existence result we claimed earlier is now a straightforward consequence of Theorem 5.6.

6 Application III: Stochastic Evolution Equations with Fractional
Generator and Polynomial Nonlinearities

In this section we will deal with a problem that is similar to the problem from the previ-
ous section, but with one important modification. From now on we will assume that the
nonlinear term F is of polynomial growth. We put k = 1 and assume that A and B are dif-
ferential operators satisfying conditions (a)-(d), see page 27. As in the previous section we
fix r > 1 and denote by Ar be the linear operator induced by A in the Banach space Lr(O).
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Let γ ∈ (0, 1] and Aγr be the fractional power of Ar . It is well known (see, for instance,
[72, Theorem 4.3.3]) that

D(A
γ
r ) = H 2kγ,r

B = {u ∈ H 2kγ,r : Bj u
∣
∣
∂O = 0 for mj < 2kγ − 1

r
},

and for any θ ∈ [0, 2kγ ]

D((A
γ
r )

θ
2kγ ) = Hθ,rB = {u ∈ Hθ,r : Bj u

∣
∣
∂O = 0 for mj < θ − 1

r
}. (6.1)

We also consider a space-time Poissonian white noise � on (O × R,B(O) × B(R)) with
Lévy measure ν⊗Leb satisfying (5.1) with a fixed number p ∈ (1, 2]. As in Remark 5.1 to
� we can associate a time-homogeneous Poisson random measure η with intensity measure
ν̃ = Leb⊗ν.

Next, let g : [0, T ] × R×O → R be a bounded, separately continuous w.r.t. to the first
and second variables, continuous in the third variable uniformly with respect to the other
two. Next, as in previous section we consider the map

G : [0, T ] × Lr(O)→ Lp(O × R, ν̂;B−(d− d
r
)

r,∞ (O)),
defined by

[G(t, u)](x, y) = [(g(t, u(x), x)δx]y, u ∈ Lr(O), (x, y) ∈ O × R. (6.2)

We also consider a separately continuous function f : [0, T ] ×O × R → R satisfying
condition (4.5), for some q ≥ 1. We denote by F the Nemytskii operator defined by

F(t, u)(x) := f (t, x, u(x)), u ∈ C0(O), x ∈ O, t ∈ [0, T ]. (6.3)

We consider the following approximation of the function f by a sequence (fn)n∈N of
functions defined, for any t ∈ [0, T ], x ∈ O and n ∈ N, by

fn(t, x, u) :=
⎧
⎨

⎩

f (t, x, u), if u ∈ [−n, n]
f (t, x, n), if u ≥ n,
f (t, x,−n), if u ≤ −n.

By setting Fn(t, u)(ξ) = fn(t, ξ, u(ξ)) for (t, u, ξ) ∈ [0, T ] × C0(O) × O we obtain a
sequence (Fn)n∈N of bounded and separately continuous maps defined on [0, T ] × C0(O)
intoC0(O) satisfying (3.2) uniformly in n, and pointwise converging to F inC0(O). Hence,
the nonlinear map F defined by Eq. 6.3 satisfies Assumption 4 with X = C0(O).

Remark 6.1 An example of a real valued function f satisfying the above conditions is

f : [0,∞)×O × R � (t, ξ, u) �→ −|u|q sgn(u). (6.4)

With the various mappings we have introduced above we consider the following SPDEs

du(t)+ Aγr u(t) dt =
∫

O×R
G(t, u(t))[ξ, ζ ]η̃(dξ × dζ × dt)

+F(t, u(t)) dt, t ∈ (0, T ],
u(0) = u0.

(6.5)

Theorem 6.2 Let ν be a Lévy measure on R satisfying the conditions (5.1) with a fixed
p ∈ (1, 2]. Let us also assume that A is a differential operator satisfying the properties (a)-
(d) from page 27. For γ ∈ (0, 1], let Aγr be the fractional power of the linear operator Ar
defined in Eq. 5.3. Finally, let F andG be the maps defined in Eqs. 6.3 and 6.2, respectively.
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In addition to the assumptions on G above we also assume that pd < 2kγ and that F
satisfies Assumption 4.5 with some q ∈ (1, p). If r > max{p, pd

p−q }, then for any u0 ∈
C0(O) there exists a C0(O)-valued martingale solution to Eq. 6.5 with càdlàg trajectories
in Lr(O).

Before we embark on the proof of this result let us make the following remark.

Remark 6.3 If the intensity measure ν of the space-time white noise is finite, then as in the
proof of Theorem IV.9.1 in [45] the solution can be written as a concatenation of solutions
to the deterministic reaction-diffusion equations on random intervals with the initial data
being a measure-valued random variable.

To be more precise, let λ := Leb(O) × ν(R), (τi)i∈N be a family of independent,
exponentially distributed random variables with parameter λ and

N(t) =
∞∑

n=1

1[Tn,∞)(t), t ≥ 0,

where Tn =∑n
i=1 τi , n ∈ N. Let also (Yi)i∈N be a family of independent ν/ν(R) distributed

random variables and {xi : i ∈ N} be a sequence of independent and uniformly distributed
random variables in O. Then, the space-time white noise η can be written as follows: for
any A ∈ B(O), B ∈ B(R) and I ∈ B([0,∞))

η(A× B × I ) =
{

0 if N(t) = 0,
∑N(t)
i=1 δxi ,Yi ,Ti (A× B × I ) if N(t) > 0.

Using this representation the above SPDEs can be described by a deterministic PDE
with initial condition being a measure in the time intervals [Tn, Tn+1), i.e., u solves the
deterministic PDE

⎧
⎪⎪⎨

⎪⎪⎩

∂
∂t
u(t, ξ) + Au(t) dt = f (u(t, ξ)) ξ ∈ O, t ∈ (Tn, Tn+1),

u(T +
n , ξ) = u(T −

n )+ Ynδxn, ξ ∈ O,
u(t, ξ) = 0, for ξ ∈ ∂O, t ∈ (Tn, Tn+1).

(6.6)

It follows that our conditions have to be stronger than the conditions in [8], which is indeed
the case. In fact, for γ = 1 we assume that d < 2

q
which is stronger than d ≤ 2

q−1 imposed
by Brezis and Friedman in [8].

Proof of Theorem 6.2 We just give a sketch of the proof because it is very similar to the
proofs of Theorem 4.1 and Theorem 5.6. Let us fix the numbers d, γ , p, q, and r as in the
statement of the theorem. We denote by Aγr the fractional power of the linear operator Ar
induced by −A on the Banach space B = Lr(O). Also, let F be defined by equality (6.3).

By Remark 5.2 we can find θ > d
r

such that θ + d − d
r
<

2kγ
p

and the Banach space

E = H
θ,r
B is continuously embedded in X := C0(O). Thus, owing to the assumption on

g (resp. f ) we can argue as in the proof of Claim 5.1 (resp. Claim 6.3) to prove that the
mapG (resp. F ) satisfies Assumption 3 (resp. Assumption 4) with ρ ∈ (0, 1

p
− d

2kγ ). Since
r ≥ p, E and B are separable, UMD and type p Banach spaces. Finally, let Y = Lr(O) and
AY = Aγr . Since 1 − q

qmax
> 1 − q

p
and r > pd

p−q , we can find κ1 ∈ ( dr , 1 − q
p
) such that

Hκ1,r ⊂ X ⊂ Y.
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Since −Aγr is an infinitesimal generator of a contraction type C0-semigroup on Y = B =
Lr(O), all the assumptions of Theorem 3.2 are satisfied by problem (5.14). Hence, we easily
conclude the proof of Theorem 6.2 from the applicability of Theorem 3.2.

7 Some Preliminary Results about Stochastic Convolution

In this section we will state several results concerning the stochastic convolution process.

7.1 The Stochastic Convolution

Let us begin with listing the assumptions we will be using throughout the whole section. We
assume that E and A are respectively a Banach space and a linear operator satisfying parts
1(i)-1(v) of Assumption 1. A real number p ∈ (1, 2] satisfies part 1(i) of Assumption 1 and
ρ ∈ (0, 1

p
) satisfies Assumption 3.

We also assume that the following are given: a measurable space (Z,Z), a nonnega-
tive measure ν ∈ M+(Z) on (Z,Z), a filtered probability space P = (�,F ,F,P) such
that the right-continuous filtration F = (Ft )t≥0 satisfies the usual conditions, and a time-
homogeneous Poisson random measure η with Lévy measure ν. For any progressively
measurable process ξ : [0,∞)×�→ Lp(Z, ν;E) such that

E

∫ T

0

∫

Z

|ξ(s, z)|pν(dz)ds <∞, T > 0,

one can define the so called stochastic convolution process by the following formula

S(ξ)(t) :=
∫ t

0

∫

Z

e−(t−s)Aξ(s, z)η̃(dz, ds), t ≥ 0. (7.1)

We will frequently use the real interpolation spaces (E,D(Am))θ,q = DmA(θ, q), for
θ ∈ (0, 1), q ∈ [1,∞) and m ∈ N, defined by

DA(θ, q) := {x ∈ E : |x|DA(θ,q) <∞},

|x|qDA(θ,q) = |x|qE + ∫ 1
0 |t1−θAe−tAx|q dtt , x ∈ E.

Let us fixM > 0 and T > 0. Throughout this section we denote by BM(E) the set of all
F-progressively measurable processes ξ satisfying

∫

Z

|Aρ− 1
p ξ(s, z)|pEν(dz) ≤ Mp, for Leb⊗P-a.e. (s, ω) ∈ [0, T ] ×�. (7.2)

Let us recall the following two important results. A proof of the first one can be found in
[13, Theorem 2.1].

Theorem 7.1 For every θ ∈ (0, 1 − 1
p
) there exists a constant C = Ĉθ (E) such that for

anyDA(θ, p)-valued progressively measurable process ξ the following inequality holds for
every T > 0,

E

∫ T

0
|S(ξ)(t)|p

DA(θ+ 1
p
,p)
dt ≤ CE

∫ T

0

∫

Z

|ξ(t, z)|pDA(θ,p) ν(dz) dt. (7.3)

Before proceeding to the statement and the proof of the second result, let us state the
following important remark.
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Remark Since, by part 1(v) of Assumption 1, A satisfies the BIP property, it follows from
[72, Theorem 1.3.3] and [72, Theorem 1.15.3] that, for δ, θ ∈ (0, 1) with δ < θ , the
following embeddings are continuous

DA(θ, q) ⊂ D(Aδ). (7.4)

Lemma 7.2 If ρ′ ∈ (0, ρ), then there exists a constant C1 > 0 such that

E‖Aρ′S(ξ)‖pLp(0,T :E) ≤ C1T
2−pδMp, ξ ∈ BM(E).

Proof of Lemma 7.2 Let us fix ρ′ ∈ (0, ρ) and put δ = ρ′ + 1
p
− ρ ∈ (0, 1

p
). Let us also

choose ξ ∈ BM(E) and put u = S(ξ). Since, by [9], a type p UMD Banach space is
a martingale type p Banach space, by Eq. 7.2 and Theorem 2.4 we infer that the stochas-

tic convolution process
∫ t

0

∫

Z
e−(t−s)AAρ−

1
p ξ(s, z)η̃(dz, ds) is well-defined. Moreover, by

Theorem 7.1 and Eq. 7.4 it takes values in Lp(0, T ;D(Aδ)) almost surely. Since

u(t) = A 1
p
−ρ
∫ t

0

∫

Z

e−(t−s)A
[
A
ρ− 1

p ξ(s, z)
]
η̃(dz, ds), t ∈ [0, T ],

and δ = ρ′+ 1
p
−ρ we infer that u belongs toLp(0, T ;D(Aρ′)) almost surely. Furthermore,

E|Aρ′u(t)|pE = E

∣
∣
∣
∣

∫ t

0

∫

Z

Aδe−(t−s)AAρ−
1
p ξ(s, z)η̃(dz, ds)

∣
∣
∣
∣

p

E

≤ E

∫ t

0

∫

Z

‖Aδe−(t−s)A‖pL(E,E)|Aρ−
1
p ξ(s, z)|pEν(dz)ds

≤ CMp

∫ t

0

1

(t − s)pδ ds = CM
p t

1−pδ

1 − pδ .
Since pδ ∈ (0, 1), it follows from Eq. 7.5 and the Fubini theorem that

E‖Aρ′u‖pLp(0,T :E) ≤ CMp T 2−pδ

(1 − pδ)(2 − pδ) . (7.5)

Thus the proof of Lemma 7.2 is complete.

Lemma 7.3 Let the assumptions of Lemma (7.2) hold. Let ρ′ ∈ (0, ρ) and put B =
D(Aρ

′−1). If ξ ∈ BM(E), then
(i) there exists a constant C2 = C2(T ) > 0 such that

E sup
0≤t≤T

|Aρ′−1S(ξ)(t)|p ≤ C2M
p,

(ii) and the process u = S(ξ) admits a B-valued càdlàg modification (which will be still
denoted by S(ξ)).

(iii) If in addition the operator −A generates a contraction type semigroup on the space

D(A
ρ− 1

p ), then the parts (i)-(ii) are true for B = D(Aρ− 1
p ).

Proof Let us fix ξ ∈ BM(E) and set u = S(ξ), and ψ = Aρ− 1
p
−1
ξ . By Eq. 7.2, we have

∫

Z

|Aψ(s, z)|pν(dz) < Mp, a.a. s ∈ [0, T ].



Z. Brzeźniak et al.

Hence, it is known, see [77, Lemma 3.3], that the process v defined by

v(t) :=
∫ t

0

∫

Z

e−(t−s)Aψ(s, z)η̃(dz, ds), t ∈ [0, T ],

is the unique strong solution to the problem

dv(t)+ Av(t)dt =
∫

Z

ψ(t, z)η̃(dz, dt),

with v(0) = 0, and hence satisfies

v(t)+
∫ t

0
Av(s)ds =

∫ t

0

∫

Z

ψ(s, z)η̃(dz, ds), t ∈ [0, T ]. (7.6)

Let δ := 1
p
+ ρ′ − ρ < 1 and β := 1 − 1

p
+ ρ − ρ′ > 0. By applying Aδ to both sides of

the identity (7.6) and by noticing that A−1u = A 1
p
−ρ
v, we infer that for t ∈ [0, T ]

Aρ
′−1u(t) =

∫ t

0
Aρ

′
u(s)ds + A−β

∫ t

0

∫

Z

A
ρ− 1

p ξ(s, z)η̃(dz, ds). (7.7)

Using the inequality (2.14) in Theorem 2.4 we obtain

E sup
0≤t≤T

∣
∣
∣
∣A

−β
∫ t

0

∫

Z

A
ρ− 1

p ξ(s, z)η̃(dz, ds)

∣
∣
∣
∣

p

≤ C‖A−β‖L(E)E
∫ T

0

∫

Z

|Aρ− 1
p ξ(s, z)|pν(dz)ds ≤ CTMp.

Next applying Hölder’s inequality twice and invoking inequality (7.5) we get

E sup
0≤t≤T

∣
∣
∣
∣

∫ t

0
Aρ

′
u(s)ds

∣
∣
∣
∣

p

≤ T p−1
E

∫ T

0
|Aρ′u(t)|p dt ≤ C1T

pMp.

This completes the proof of (i) with C2(T ) = CC21T + C1T
p.

Since, by [76, Theorem 4.1], the function

φ : C([0, T ];E)× D([0, T ];E) � (x, y) �→ x + y ∈ D([0, T ];E),
is continuous, in view of the identity (7.7) and Theorem 2.4 we easily deduce that the pro-
cess u has a D(Aρ−1)-valued càdlàg modification. This completes the proof of part (ii) of
our lemma.

Since, by [9], any UMD Banach space of type p is also an martingale type p Banach
space, and ξ satisfies (7.2), part (iii) is easily deduced by applying [77, Corollary 5.1].

The next lemma is about estimates of S(ξ), ξ ∈ BM(E) in the Besov-Slobodetskii
spacesWα,p(0, T ;E), see its definition on page 5.

Lemma 7.4 Let the assumptions of parts (i)-(ii) of Lemma 7.3 hold. Assume that α ∈ (0, ρ).
Then there exists a number C3 > 0 such that

E‖S(ξ)‖p
Wα,p(0,T ;E) ≤ C3M

p, ξ ∈ BM(E).

Proof Let us fix ξ ∈ BM(E) and put u = S(ξ). Let us fix α ∈ (0, ρ) and let us choose an
auxiliary ρ′ ∈ (α, ρ). In view of Lemma 7.2 and the definition of the (2.3) it is sufficient
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to estimate the mathematical expectation of the seminorm (2.3) of u. For this aim, without
loss of generality, we can take s < t ∈ [0, T ]. As in the Gaussian case we have

u(t)− u(s) = S̃1(t, s)+ S̃2(t, s),

where

S̃1(t, s) =
∫ t

s

∫

Z

e−(t−r)Aξ(r; z) η̃(dz; dr), S̃2(t, s) =
(
e−(t−s)A − I

)
u(s).

In view of the definition (2.3) it is sufficient to prove that there exist two positive numbers
C31, C32 such that

S1 := E

∫ T

0

∫ t

0

|S̃1(t, s)|p
|t − s|αp+1

dsdt ≤ C31M
p,

S2 := E

∫ T

0

∫ t

0

|S̃2(t, s)|p
|t − s|1+αp dsdt ≤ C32M

p.

Let us begin with estimating S1. By using the Fubini Theorem, [13, Corollary C.2], the

estimate ‖A 1
p
−ρ
e−(t−r)A‖pL(E) ≤ C(t − r)−p( 1

p
−ρ) and the definition (7.2) of the class

BM(E), we infer that

S1 ≤ C

∫ T

0

∫ t

0

dsdt

|t − s|1+αp ×

E

∫ t

s

∫

Z

‖A 1
p
−ρ
e−(t−r)A‖pL(E)|Aρ−

1
p ξ(r, z)|pν(dz)dr

≤ CMp

∫ T

0

∫ t

0

dsdt

|t − s|1+αp
∫ t−s

0
rpρ−1dr

≤ CMp

∫ T

0

∫ t

0

dsdt

|t − s|1+(α−ρ)p ≤ CMpT 1+p(ρ−α).

In order to study the term S2 let us recall, see [63, Theorem II.6.13], that there exists a
C > 0 such that ∣

∣
∣A

−γ (e−hA − I
)∣
∣
∣
L(E)

≤ C hγ , h > 0. (7.8)

Therefore, by applying the Young inequality for convolutions we infer that

S2 ≤ CE

∫ T

0

∫ t

0

‖A−ρ′(e−(t−s)A − I )‖pL(E)|Aρ
′
u(s)|p

|t − s|1+pα dsdt

≤ CE

∫ T

0
|Aρ′u(s)|p

(∫ T−s

0

‖A−ρ′(e−τA − I )‖pL(E)
|τ |1+pα dτ

)

ds

≤ CE‖Aρ′u‖p
Lp(0,T ;E)

∫ T

0
τ−1+p(ρ′−α)dτ

≤ CE‖Aρ′u‖p
Lp(0,T ;E)T

p(ρ′−α).

Invoking Lemma 7.2 and the estimate for S1 concludes the proof of the lemma.

Remark 7.5 Since α ∈ (0, 1
p
)we cannot infer from the above Lemma that the process S(ξ),

ξ ∈ BM(E), has an E-valued càdlàg modification. It is known, see for instance [48], that
if E is a Hilbert space, the driving Lévy process L lives in E and {e−tA : t ≥ 0} is con-
traction type C0-semigroup on E, then the stochastic convolution process

∫ ·
0 e

−A(·−s)dL(s)
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has an E-valued càdlàg modification. If E is a Banach space, then it is sufficient to assume
that either E is a p-smooth Banach space or the semigroup {e−tA; t ≥ 0} on E is ana-
lytic, see [77]. However, we should note that in our framework we do not have such a nice
situation. Indeed, roughly speaking, our semigroup is analytic and contractive on a martin-
gale type p, p ∈ (1, 2], Banach space E and our noise lives in a larger space than E (say
D(A−α), α > 0), and in general even if −A is the infinitesimal generator of an analytic
semigroup of contraction type it is not known whether the stochastic convolution S(ξ),
ξ ∈ Mp(0, T , Lp(Z, ν;E)), has a càdlàg modification in E or in a smaller space, say
D(Aγ ), γ > 0, than E. This is even an open question for the case when E is a Hilbert
space, see for instance [66].

The next three lemmata are about tightness of the family of the laws of {S(ξ) : ξ ∈ BM(E)}

Lemma 7.6 Let the assumptions of parts (i)-(ii) of Lemma 7.3 hold. Then, the family of the
laws of {S(ξ) : ξ ∈ BM(E)} is tight on Lp(0, T ;E).

Proof As in Lemma 7.3 we choose an auxiliary ρ′ ∈ (0, ρ) and put B = D(Aρ′−1). Let us
also put Y = D(Aρ

′
). Since, by Assumption 1, A has compact resolvent, it follows from

the combination of [35, Proposition 5.8], [73, Theorem 1.15.3, pp 103] and [73, Theorem
1.16.4-2, pp 117] that the embeddings Y ↪→ E and E ↪→ B are compact. Thanks to
Lemma 7.2 and Lemma 7.4 {S(ξ) : ξ ∈ BM(E)} is uniformly bounded on Mp(0, T ;Y ) ∩
Lp(�;Wα,p(0, T ;E)). Hence, since the embedding

Wα,p(0, T ;E) ∩ Lp(0, T : D(Aρ′)) ↪→ Lp(0, T ;E)
is compact, see [40, Step 1 of Proof of Theorem 2.1], it follows from the Chebyshev
inequality and [40, Theorem 2.1] that the laws of {S(ξ) : ξ ∈ BM(E)} are tight on
Lp(0, T ;E).

Lemma 7.7 Let the assumptions of parts (i)-(ii) of Lemma 7.3 hold. Then the family of the
laws of {S(ξ) : ξ ∈ BM(E)} is tight on D([0, T ];D(Aρ′−1)) for any ρ′ ∈ (0, ρ).

For the proof of this lemma we need the following general result.

Lemma 7.8 Assume that p ∈ (1, 2], T > 0. Assume that E and Y are two martingale type
p Banach spaces such that the embedding E ↪→ Y is compact. For every ξ ∈ BM(E) let a
process v =  (ξ) be defined by

v(t) =
∫ t

0

∫

Z

ξ(s, z)η̃(dz, ds), t ∈ [0, T ].
Then the family of the laws of {v =  (ξ) : ξ ∈ BM(E)} on D([0, T ];Y ) is tight.

Proof We need to check items (a) and (b) of Corollary D.2.
By the maximal inequality (2.16) in Corollary 2.6 (see also [13, Corollary C2]) there

exists C > 0 such that for any ξ ∈ BM(E) we have

E sup
s∈[0,T ]

|v(s)|p ≤ CMp.
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Let ε > 0 and Kε = {y ∈ X : |y| ≤ (Cε−1)
1
p M}. It follows easily from the Chebyshev

inequality that

P(v(t) /∈ Kε, t ∈ [0, T ]) ≤ [(Cε−1)
1
p M]−pE sup

t∈[0,T ]
|v(t)|p ≤ ε.

Corollary D.2-(a) follows from this inequality and the compactness of the embedding E ⊂
Y .

Next, let us fix 0 ≤ σ ≤ τ ≤ T . Then by [13, Corollary C.2] and the Jensen inequality

E sup
t∈[σ,τ ]

|v(t)− v(σ )|Y = E sup
t∈[σ,τ ]

∣
∣
∣
∣

∫ t

σ

∫

Z

ξ(s, z)η̃(dz, ds)

∣
∣
∣
∣
Y

≤ CE

(∫ τ

σ

∫

Z

|ξ(s, z)|pY ν(dz)ds
) 1
p

≤ C

(

E

∫ τ

σ

∫

Z

|ξ(s, z)|pY ν(dz)ds
) 1
p ≤ CM(τ − σ) 1

p .

Thus we can apply Corollary D.2-(b) from which the sought result follows.

Proof of Lemma 7.7 Let us fix ξ ∈ BM(E) and put u = S(ξ). Let us fix auxiliary numbers
ρ′ ∈ (0, ρ) and γ ∈ (ρ′, ρ). Let us put β = ρ − ρ′ + 1 − 1

p
> 0 and let us rewrite identity

(7.7) as follows

Aρ
′−1u(t) = Aρ

′−γ
∫ t

0
Aγ u(s)ds + A−β

∫ t

0

∫

Z

A
ρ− 1

p ξ(s, z)η̃(dz, ds)

= v1(t)+ v2(t), t ∈ [0, T ].
It follows from Lemma 7.8 that the family of laws of {v2(ξ) : ξ ∈ BM(E)} is tight on
D([0, T ];E).

On the other hand, since γ < ρ, by Lemma 7.2 there exists C > 0 such that

E

∫ t

0
|Aγ u(s)|pds ≤ CMp.

Since ρ′ − γ < 0, the map Aρ
′−γ : E → E is compact. Therefore, since v1(t) =

Aρ
′−γ ∫ t

0A
γ u(s) ds we infer that the family of laws of {v1(ξ) : ξ ∈ BM(E)} are tight on

C([0, T ];E). Hence we easily conclude the proof of (i) since, by [76, Theorem 4.1], the
function

φ : C([0, T ];E)× D([0, T ];E) � (x, y) �→ x + y ∈ D([0, T ];E),
is continuous.

We also need the following auxiliary result.

Lemma 7.9 Assume that all the assumptions in Lemma 7.3 are satisfied. Then, for every
q ∈ (p, 1

1
p
−ρ ) = (p,

p
1−pρ ) and every r ∈ (1, p) there exists C > 0 such that

E|S(ξ)|rLq(0,T ;E) ≤ CMr, ξ ∈ BM(E). (7.9)

Moreover, the family of the laws of {S(ξ) : ξ ∈ BM(E)} on Lq(0, T ;E) is tight.
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Proof of Lemma 7.9 Let us fix q ∈ (p, 1
1
p
−ρ ). Since q( 1

p
− ρ) < 1 and q > p we can find

ρ′ ∈ (0, ρ) such that q( 1
p
− ρ) = 1 − p(ρ − ρ′). Let us next put

θ :=
1
p
− ρ

1
p
− ρ + ρ′ =

1 − pρ
1 − pρ + pρ′ =

p

q
∈ (0, 1),

and let us define, as in proof of Lemma 7.6, Y = D(Aρ′). We also put B = D(Aρ− 1
p ). Then

by the reiteration property of the complex interpolation we have,

E = [B, Y ]θ ,
and therefore we get, see [6],

|y| ≤ |y|1−θB |y|θY , y ∈ Y.
Next, let us take an arbitrary r ∈ (1, p) and put s = q

r
, 1
s
+ 1
s∗ = 1. Then srθ = p and,

since r < p, rs∗(1 − θ) < p. Let us choose an auxiliary δ > 1 such that δrs∗(1 − θ) = p.
Let us fix ξ ∈ BM(E) and put u = S(ξ). Then, by the Hölder and Jensen inequalities,

E|u|rLq(0,T ;E) ≤ E

[
|u|rθ
Lqθ (0,T ;Y )|u|r(1−θ)L∞(0,T ;B)

]
= E

[
|u|rθLp(0,T ;Y )|u|r(1−θ)L∞(0,T ;B)

]

≤ E

[
|u|srθLp(0,T ;Y )

] 1
s
E

[
|u|δrs∗(1−θ)
L∞(0,T ;B)

] 1
δs∗

= E

[
|u|p
Lp(0,T ;Y )

] r
q
E

[
|u|p
L∞(0,T ;B)

] 1
δ
− r
δq ≤ C4M

r,

where Lemma 7.2 and Lemma 7.3-(iii) were used to obtain the last inequality. The proof of
the first part is complete.

To prove the second part we observe that by the same argument as above, given q and r ,
we can find ε > 0 and C > 0 such that

E|S(ξ)|rLq(0,T ;D(Aε)) ≤ CMr, ξ ∈ BM(E). (7.10)

Moreover, by Lemma 7.4, for any fixed α ∈ (0, ρ), we can find C3 > 0 such that

E‖S(ξ)‖p
Wα,p(0,T ;E) ≤ C3M

p, ξ ∈ BM(E).
Since the embedding D(Aε) ↪→ E is compact, the embedding

Lq(0, T ;D(Aε)) ∩Wα,p(0, T ;E) ↪→ Lq(0, T ;E)
is compact. Hence the second part of the Lemma follows.

Next we will formulate an analogous result in the case when only the assumptions of
parts (i) and (ii) of Lemma 7.3 are satisfied. The proof will be similar to the last lemma with

the difference that instead of taking B = D(Aρ− 1
p ) we need to take B = D(Aρ′−1).

Lemma 7.10 Let the assumptions of parts (i) and (ii) of Lemma 7.3 be satisfied with ρ′ ∈
(0, ρ). Then, for every q ∈ (p, p

1−ρ′ ) and every r ∈ (1, p), there exists C > 0 such that

E|S(ξ)|rLq(0,T ;E) ≤ CMr, ξ ∈ BM(E). (7.11)

Moreover, the family of the laws of {S(ξ) : ξ ∈ BM(E)} on Lq(0, T ;E) is tight.
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Proof of Lemma 10 Let q ∈ (p,
p

1−ρ′ ), ρ
′ ∈ (0, ρ) and define θ = p

q
. As in proof of

Lemma 7.9 we let Y = D(Aρ′) and B = D(Aρ′−1). Then by the reiteration property of the
complex interpolation we have the continuous embedding,

[B, Y ]θ = D(Aθ+ρ′−1) ⊂ E.

Owing to Lemma 7.2 and parts (i) and (ii) of Lemma 7.3 we can argue exactly as in the
proof of Lemma 7.9 and show that for any r ∈ (1, p) we have

E|S(ξ)|r
Lq(0,T ;D(Aθ+ρ′−1))

≤ CMr, ξ ∈ BM(E), (7.12)

which implies inequality (7.11). Thanks to Eq. 7.12 we can again use the same argument as
in proof of Lemma 7.9 to deduce that the family of the laws of {S(ξ) : ξ ∈ BM(E)} on
Lq(0, T ;E) is tight.

8 Proof of Theorem 3.4

We begin the proof of Theorem 3.4 by introducing a sequence of approximating processes.
Let us fix for the whole section a number T > 0. Consider a sequence (xn)n∈N ⊂ E such

that xn → u0 strongly in D(Aρ−
1
p ) as n → ∞. Define a function φn : [0,∞) → [0,∞)

by φn(s) = k
2n , if k ∈ N and k

2n ≤ s < k+1
2n , i.e., φn(s) = 2−n[2ns], s ≥ 0, where [t] is the

integer part of t ∈ R. Let us define a sequence (un)n∈N of adapted E–valued processes by

un(t) = e−tAxn +
∫ t

0
e−(t−s)AF (s, ûn(s)) ds

+
∫ t

0

∫

Z

e−(t−s)AG(s, ûn(s); z) η̃(dz; ds), t ∈ [0, T ], (8.1)

where ûn is defined by

ûn(s) :=
{
xn, if s ∈ [0, 2−n),
−
∫ φn(s)
φn(s)−2−n un(r) dr, if s ≥ 2−n, (8.2)

and where we have used the following shorthand notation

−
∫

A

f (t)dt := 1

Leb(A)

∫

A

f (t) dt, A ∈ B([0, T ]).

(Here Leb denotes the Lebesgue measure.) The E-valued process û is piecewise constant
adapted and hence progressively measurable. Between the grid points, Eq. 8.1 is linear,
therefore, un is well defined for all n ∈ N.

Next we will prove certain uniform estimates for the sequence (un)n∈N. Let us recall
that F is a bounded nonlinear map defined on [0, T ] × E and taking values in D(Aρ−1).
Furthermore, it is separately continuous.
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Proposition 8.1 For any α ∈ (0, ρ) and ρ′ ∈ (0, ρ), there exists a constant C such that the
following inequalities hold

sup
n∈N

E‖Aρ′un‖pLp(0,T ;E) ≤ C, (8.3)

sup
n∈N

E‖Aρ′ ûn‖pLp(0,T ;E) ≤ C, (8.4)

sup
n∈N

E‖un‖pWα,p(0,T ;E) ≤ C. (8.5)

Proof Without loss of generality we take T = 1. For each n ∈ N we divide the interval
[0,1] into small intervals of length 2−n each by setting: Ik = [ k2n , k+1

2n ), k = 0, ..., 2n − 1.

We also put J0 = I0 and Jk =
k⋃

�=1
I�, k = 1, ..., 2n − 1. Define the sequences of processes

{ukn : k = 0, ..., 2n − 1} and {ûkn : k = 0, ..., 2n − 1} inductively by
⎧
⎨

⎩

u0
n(t) = e−tAxn +

∫ t
0 e

−(t−s)AF (s, xn)ds
+∫ t0

∫

Z
e−(t−s)AG(s, xn)η̃(dz, ds), t ∈ I0,

û0
n(t) = xn, t ∈ I0;
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ukn(t) = e−tAxn +
∫ t

0 e
−(t−s)AF (s, ûkn(s))ds

+∫ t0
∫

Z
e−(t−s)AG(s, ûkn(s))η̃(dz, ds),

=: gn(t)+ ykn(t)+ zkn(t), if t ∈ Jk,

ûkn(t) =
{
ûk−1
n (t) if t ∈ Jk−1,

−
∫

Ik−1
uk−1
n (s)ds if t ∈ Ik,

k = 1, · · · , 2n − 1.

Note that, by definition, ukn is equal to the restriction of un to Jk and un = u2n−1
n . Hence

to prove our proposition it is sufficient to check that the estimates (8.3)–(8.5) are true and
uniform w.r.t k on Jk for ukn and ûkn with k = 0, ..., 2n − 1.

On the interval J0 we have

u0
n(t) = e−tAxn +

∫ t
0 e

−(t−s)AF (s, xn)ds
+∫ t0

∫

Z
e−(t−s)AG(s, xn)η̃(dz, ds)

= gn(t)+ y0
n(t)+ z0

n(t).

(8.6)

First, it follows from [28, Theorems 2 and 7] that there exists a constant C > 0 such that
for any n ∈ N

E

[

‖Aρgn‖pLp(J0;E) + ‖Aρy0
n‖pLp(J0;E)

]

≤ C|xn|p + CE‖Aρ−1F‖p
Lp(J0;E) ≤ C.

Secondly, we derive from [28, Theorems 7 and 19] that for any α ∈ (0, ρ) there exists a
constant C > 0 such that for any n ∈ N

E

[

‖gn‖pWα,p(J0;E) + ‖y0
n‖pWα,p(J0;E)

]

≤ C|xn|p + CE‖Aρ−1F‖p
Lp(J0;E) ≤ C.

Hence combining these two remarks with Lemma 7.2, Lemma 7.4 and Proposition E.1 we
infer that (8.3)–(8.4) are true on J0 for u0

n and û0
n. Using the same approach we can prove
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by induction that for each α and ρ as above there exists a constant C > 0 such that for any
n ∈ N and k ∈ {0, ..., 2n − 1} we have

E

[

‖Aρgn‖pLp(Jk;E) + ‖Aρykn‖pLp(Jk;E)
]

≤ C|xn|p + CE‖Aρ−1F(., ûkn)‖pLp(Jk;E)
≤ C,

and

E

[

‖gn‖pWα,p(Jk;E) + ‖ykn‖pWα,p(Jk;E)
]

≤ C|xn|p + CE‖Aρ−1F(., ûkn)‖pLp(Jk;E)
≤ C.

With the same argument as above we check that (8.3)–(8.5) are correct and uniform w.r.t k
on each Jk with k = 0, ..., 2n − 1. With this fact and the identity un = u2n−1

n , we conclude
the proof of our proposition.

We will also need the following result.

Proposition 8.2 Suppose that (xn)n∈N ⊂ E is a sequence such that

|Aρ− 1
p [xn − u0]| → 0 as n→∞.

Then, the sequence
(
gn
)

n∈N defined by Eq. 8.6 is convergent (and hence the set {gn : n ∈ N}
is pre-compact) in the Banach space C([0, T ];D(Aρ− 1

p )) ∩ Lp(0, T ;E).

Proof of Proposition 8.2 The convergence in C([0, T ];D(Aρ− 1
p )) is obvious. From [28,

Theorem 2] we infer that for any θ ∈ [ 1
p
− ρ, 1

p
] there exists some C > 0 such that

sup
n∈N

‖Aθ [gn − e−tAu0]‖pLp(0,T ;E) ≤ C|Aρ−
1
p [xn − u0]|p, (8.7)

from which we derive the convergence in Lp(0, T ;E).
After these preliminary claims we are now ready for the proof of Theorem 3.4 which will

be divided into several steps. But before we go further let us define a sequence of Poisson
random measures {ηn}n∈N by putting ηn = η for all n ∈ N.

Step (I) The family of the laws of ((un, ηn))n∈N is tight on
[
Lp(0, T ;E) ∩

D([0, T ];D(Aρ′−1))
]×MI(Z × [0, T ]), for any ρ′ ∈ (0, ρ).

Proof To simplify notation we set B0 = D(Aρ
′−1) for any ρ′ ∈ (0, ρ). Define three

functions fn, gn and vn by

fn(t) = F(t, ûn(t)), t ∈ [0, T ], (8.8)

gn(t; z) = G(s, ûn(t); z), t ∈ [0, T ], z ∈ Z, (8.9)

and

vn(t) =
∫ t

0

∫

Z

e−(t−s)AG(s, ûn(s); z) η̃(dz; ds). (8.10)

We argue exactly as in [10]. We recall that the space Mp(0, T ;E), the operators � and A
are defined on page 9 and 7, respectively. Since, by estimates (8.4) and Assumption 5, the
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family (Aρ−1fn)n∈N is bounded in Mp(0, T ;E) and A�−1 is bounded on Lp(0, T ;E) it
follows from [10, Theorem 2.6] and Lemma 2.2 that �−1fn = �−ρ(A�−1)1−ρAρ−1fn is
tight on Lp(0, T ;E) ∩ C([0, T ];E). This fact, the compact embedding E ⊂ B0 and the
continuity of the embedding

C([0, T ];B0) ⊂ D(0, T ;B0)

imply that�−1fn is tight on Lp(0, T ;E)∩D([0, T ];B0). Next by estimates (8.4), Lemma
7.6 and Lemma 7.7, we infer that the laws of the family (vn)n∈N are tight on Lp(0, T ;E)∩
D([0, T ];B0). Finally, from Proposition 8.2 it follows that the family of functions {e−·Axn :
n ∈ N} is precompact in Lp(0, T ;E) ∩ D([0, T ];B0). Since

un = vn +�−1fn + e−·Axn, n ∈ N,

we easily conclude that the laws of the family (un)n∈N are tight on Lp(0, T ;E) ∩
D([0, T ];B0). Since MI(Z × [0, T ]) is a separable metric space, by [62, Theorem 3.2] the
family of the laws of (ηn)n∈N are tight onMI(Z × [0, T ]). Consequently, the family of the
laws of ((un, ηn))n∈N is tight on ZT , where

ZT = [Lp(0, T ;E) ∩ D([0, T ];B0)
]×MI(Z × [0, T ]). (8.11)

Remark Let us observe that the space ZT defined above in Eq. 8.11 differs from the space
XT defined earlier in Eq. 3.22. From Step (I) and Prokhorov Theorem (see, for instance, [24,
Theorem 2.3]) we deduce that there exist a subsequence of ((un, ηn))n∈N, still denoted by
((un, ηn))n∈N, and a Borel probability measureμ∗ on ZT such that L(un, ηn)→ μ∗ weakly.
By Theorem C.1 there exist a probability space (�̄, F̄ , P̄) and a sequence

(
ūn, η̄n

)

n∈N, of
ZT -valued random variables such that

the laws of
(
ūn, η̄n

)
and

(
un, ηn

)
on ZT are equal, (8.12)

and there exists a ZT -valued random variable (u∗, η∗) on (�̄, F̄ , P̄) with

L((u∗, η∗)) = μ∗,
such that P̄-a.s.

(ūn, η̄n)→ (u∗, η∗) in ZT , (8.13)

and η̄n = η∗ for all n ∈ N. The sequence (ūn)n∈N has similar properties as the original
sequence (un)n∈N. Those we will use are stated in part (i) of the next step.

Step (II) The following holds

(i) supn∈N ‖ūn‖Lp(�̄×[0,T ];E) <∞ and
(ii) for any r ∈ (1, p) we have

lim
n→∞ Ē ‖ūn − u∗‖rLp(0,T ;E) = 0.

Proof Let us begin with an observation that in view of Eq. 8.12, for any n ∈ N, the laws of
un and ūn on Lp(0, T ;E) are identical. Hence,

‖un‖Lp(�×[0,T ];E) = ‖ūn‖Lp(�̄×[0,T ];E),
and part (i) easily follows from estimates (8.3).
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Let us fix r ∈ (1, p). Since u∗ is ZT -valued, it follows from part (i) that the
sequence ‖ūn − u∗‖rLp(0,T ;E) is P̄-uniformly integrable. Since by Eqs. 8.13 and 8.11,

‖ūn − u∗‖rLp(0,T ;E) → 0 on �̄, by applying the Vitali Convergence Theorem we deduce
part (ii).

Before we continue we should note that the random variables

ūn, u∗ : �̄→ Lp(0, T ;E),
induce twoE-valued stochastic processes still denoted with the same symbols, see for exam-
ple [18, Proposition B.4] for a proof for the spaceL∞loc(R+;L2

loc(R
d)). Now let F̄ = (F̄t )t≥0

be the filtration defined by

F̄t = σ (σ (η̄n(s), {um(s),m ∈ N}, u∗(s); 0 ≤ s ≤ t) ∪N ) , t ∈ [0, T ], (8.14)

where N denotes the set of null sets of F̄ . Since η̄n = η∗, it is easy to show that the filtration
obtained by replacing η̄n with η∗ in Eq. 8.14 is equal to F̄.

The next two steps imply that the following two E-valued integrals over the filtered
probability space (�̄, F̄ , F̄, P̄)

∫ t

0

∫

Z

e−(t−s)A G(s, ūn(s), z)) ˜̄ηn(dz, ds), t ≥ 0,

and ∫ t

0

∫

Z

e−(t−s)A G(s, u∗(s), z)) η̃∗(dz, ds), t ≥ 0,

do exist.

Step (III) The following holds

(i) for every n ∈ N, η̄n is a time-homogeneous Poisson random measure on B(Z) ×
B([0, T ]) over (�̄, F̄ , F̄, P̄) with intensity measure ν ⊗ Leb.

(ii) η∗ is a time-homogeneous Poisson random measure on B(Z) × B([0, T ]) over
(�̄, F̄ , F̄, P̄) with intensity measure ν ⊗ Leb;

Proof Before embarking on the proof, let us first recall that in view of Theorem C.1 we
infer that η̄n(ω̄) = η∗(ω̄) for all ω̄ ∈ �̄ and n ∈ N.

For a random measure μ on S × [0, T ] and for any U ∈ S let us define an N-valued
process (Nμ(t, U))t≥0 by Nμ(t, U) := μ(U × (0, t]), t ≥ 0. In addition, we denote by
(Nμ(t))t≥0 the measure-valued process defined by

Nμ(t) = {S � U �→ Nμ(t, U) ∈ N}, t ∈ [0, T ].

Proof of Step (III)-(i) Let U1, . . . , Uk ∈ Z , be k disjoint sets and t ≥ 0. Since ηn is a time-
homogeneous Poisson random measure and the random variablesNηn(t, Ul), l ∈ {1, . . . , k},
are independent, we have

Ee
i
(∑k

l=1 θlNηn (t,Ul)
)

=
k∏

l=1

Eei θlNηn (t,Ul). (8.15)
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Since η̄n and ηn have equal laws, for any U ∈ Z and t ≥ 0, the characteristic functions of
the random variablesNηn(t, U) andNη̄n(t, U) are equal. Therefore, it follows from Eq. 8.15
that

Ēe
i
(∑k

l=1 θlNηn (t,Ul)
)

=
k∏

l=1

Ēei θlNη̄n (t,Ul),

from which we easily deduce that η̄n satisfies Definition 2.3 (a)-(c). In order to finish the
proof of part (i) of Step (III) we only need to show that η̄n satisfies Definition 2.3 (d)
with the filtration defined in Eq. 8.14. For this purpose let us fix m ∈ N, t0 ∈ [0, T ] and
r ≥ s ≥ t0. It follows from the definition of F̄ that η̄n is F̄-adapted and it remains to prove
that X̄m = Nη̄n(r)−Nη̄n(s) is independent of F̄t0 . By Definition 2.3 (b) the random variable
X̄m = Nη̄n(r) − Nη̄n(s) is independent of Nη̄n(t0), so we only need to show that X̄m is
independent of ūm(σ ) and u∗(σ ) for any σ ≤ t0. In what follows we fix σ ∈ [0, t0]. Since
L(ūm, η̄m) = L(um, ηm), it follows that

L(ūm|[0,σ ], X̄m) = L(um|[0,σ ], Xm), (8.16)

where Xm = Nηm(r) − Nηm(s). Recall that ηm = η∗ and um is the unique solution to
the linear stochastic evolution Eq. 8.1, hence it is adapted to the σ -algebra generated by
ηm. Consequently, um|[0,σ ] is independent of Xm and we infer from this last remark and
(8.16) that ūm|[0,σ ] is independent of X̄m. The remaining part of the proof, which consists
in showing that X̄m is independent of u∗|[0,σ ], is addressed in the next lemma.

Lemma 8.3 Assume that (�,F ,P) is a probability space and Y is a Banach space and
that (yn)n∈N is a sequence of Y -valued random variables over (�,F ,P) such that yn → y∗
weakly, i.e., for all φ ∈ Y ∗, Eei〈φ,yn〉 → Eei〈φ,y∗〉. If z is a another Y -valued random
variable over (�,F ,P) such that yn and z are independent for all n ≥ 1, then y∗ and z are
also independent.

Proof of Lemma 8.3 The random variables y∗ and z are independent iff

Eei(θ1z+θ2y∗) = Eei θ1z Eeiθ2y∗ , θ1, θ2 ∈ Y ∗.
The weak convergence and the independence of z and yn for all n ∈ N justify the following
chain of equalities.

Eei(θ1z+θ2y∗) = lim
n→∞Eei(θ1z+θ2yn) = lim

n→∞Eeiθ1z Eeθ2yn = Eeiθ1z Eeθ2y∗ .

Since ūm|[0,σ ] is independent from X̄m, Lemma 8.3 implies that u∗|[0,σ ] is independent
of X̄m.

Proof of Step (III)-(ii) We have to show that η∗ is a time-homogeneous Poisson random
measure with intensity ν ⊗ Leb. But this will follow from Step (III)-(i), since η∗(ω) =
η̄m(ω) for all ω ∈ � and m ∈ N.

Step (IV) The following holds

(i) for every n ∈ N, the process ūn is a F̄-progressively measurable;
(ii) the E-valued process u∗ is F̄ -progressively measurable.
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Proof One may suspect that there is a simpler proof by by adaptiveness and left-continuity.
However, here the problem is that un ∈ D([0, T ]; Y ) with E ⊂ Y densely and continu-
ously. Because G is only defined on [0, T ] × E, we want u as an E-valued process to be
progressively measurable.

As we noted earlier, one can argue as in [18, Proposition B.4] and prove that the random
variables ūn, u∗ : �̄→ Lp(0, T ;E) induce twoE-valued stochastic processes still denoted
with the same symbols. Here, we have to show that for each n ∈ N, ūn and u∗ are F̄-
progressively measurable. By definition of F̄, for fixed n ∈ N the process ūn is adapted to
F̄ by the definition of F̄. Let us fix r ∈ (1, p). By Step (II) the process ūn is bounded in
Lr(�̄T ;E), hence, there exists a sequence of simple functions (ūmn )m∈N such that ūmn → ūn
as m → ∞ in Lr(�̄T ;E). In particularly, by using the shifted Haar projections used in
[15, Appendix B] we can choose (ūmn )m∈N to be progressively measurable. It follows that ūn
is progressively measurable as a Lr(�̄T ;E)-limit of a sequence of progressively processes.
Finally, since ūn → u∗ as n → ∞ also in Lr(�̄T ;E), it follows that u∗ is progressively
measurable.

Let μ be a time-homogeneous Poisson random measure over (�̄, F̄ , F̄, P̄) with intensity

measure ν ⊗ Leb, v be an E-valued progressively measurable process, u0 ∈ D(Aρ−
1
p ) and

K be a nonlinear map defined by

K(x, v, μ)(t) := e−tAu0 +
∫ t

0
e−(t−s)A F (s, v(s)) ds

+
∫ t

0

∫

Z

e−(t−s)A G(s, v(s); z))μ̃(dz, ds), t ∈ [0, T ]. (8.17)

Here, as usual, μ̃ denotes the compensated Poisson random measure of μ.

Step (V) For all t ∈ [0, T ] and n ∈ N we have P̄-almost surely

ūn(t)−K(xn, ˆ̄un, η̄n)(t) = 0,

where ˆ̄un is defined by

ˆ̄un :=
{
xn, if s ∈ [0, 2−n),
2n
∫ φn(s)
φn(s)−2−n ūn(r) dr, if s ≥ 2−n. (8.18)

Proof First, let ρ′ ∈ (0, ρ) and

X1
T = Lp(0, T ;E) ∩ L∞(R+;D(Aρ′−1))

and

X2
T = MI(Z × [0, T ]).

Again for simplicity we set B0 = D(Aρ′−1). It is proved in [14] that the map G : X1
T → X1

T

defined by

G(u)(s) :=
{
xn, if s ∈ [0, 2−n),
2n
∫ φn(s)
φn(s)−2−n u(r) dr, if s ≥ 2−n
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is well defined, linear and bounded. Therefore, for any n ∈ N, the two triplets of random
variables (un, ηn, ûn) and (ūn, η̄n, ˆ̄un), where ûn = G(un) and ˆ̄un = G(ūn), have equal
laws on X1

T × X2
T . Second, let us define processes z̃n and z̆n by

z̃n(t) := e−tAxn +
∫ t

0
e−(t−s)A F (s,un(s)) ds

+
∫ t

0

∫

Z

e−(t−s)A G(s,un(s, z))η̃(dz, ds), t ∈ [0, T ], (8.19)

z̆n(t) := e−tAxn +
∫ t

0
e−(t−s)A F (s,ûn(s)) ds

+
∫ t

0

∫

Z

e−(t−s)A G(s,ûn(s, z))η̃(dz, ds), t ∈ [0, T ]. (8.20)

Let us also define processes ˜̄zn and ˘̄zn by replacing (un, η) and (ûn, η) by (ūn, η̄n) and
( ˆ̄un, η̄n) in formula (8.19) and (8.20), respectively. Thanks to the continuity of the linear
map G and Assumption 5, it follows from [15, Theorem 1] that the quintuples of random
variables (un, ηn, ûn, z̃n, z̆n) and (ūn, η̄n, ˆ̄un, ˜̄zn, ˘̄zn) have the same law on ZT ×X1

T ×X1
T ×

X1
T . Consequently  (un, z̆n) and  (ūn, ˘̄zn) have equal laws on R, where the continuous

functional  : X1
T × X1

T → R is defined by

 (v,w) =
∫ T

0
|v(t)− w(t)|B0 dt, for v ∈ XT and w ∈ XT .

Therefore, for any function ϕ ∈ Cb(R,R+) we have

En[ϕ( (ūn, z̆n))] = Ē[ϕ( (ūn, ˘̄zn))]. (8.21)

Now let ε > 0 be arbitrary and let φε ∈ Cb(R,R+) be defined by

φε(y) =
{ y
ε
, if y ∈ [0, ε),

1[ε,∞)(y), otherwise.

It is easy to check that

P̄

(
 (ūn, ˘̄zn) ≥ ε

)
≤ ∫

�̄
1[ε,∞)( (ūn, ˘̄zn))dP̄

+ ∫
�̄

1[0,ε)( (ūn, ˘̄zn)) (ūn, ˘̄zn)ε
dP̄

= Ēφε( (ūn, ˘̄zn)).
The last inequality altogether with Eq. 8.21 implies that

P̄

(
 (ūn, ˘̄zn) ≥ ε

)
≤ Enφε( (un, z̆n)). (8.22)

Since for any t and P-almost surely un(t) − z̆n(t) = 0 we obtain that P̄ almost surely
 (un, z̆n) = 0 , which along with Eq. 8.22 yield that for any ε > 0

P̄( (ūn, ˘̄zn) ≥ ε) = 0.

Since ε > 0 is arbitrary, we infer from the last equation that P̄-a.s.,

 (ūn, ˘̄zn) = 0.

This implies that for P̄ almost all t ∈ [0, T ] and almost surely ūn(t) = ˘̄zn(t). Since two
càdlàg functions which are equal almost all t ∈ [0, T ] must be equal for all t ∈ [0, T ], we
derive that almost surely

ūn = K(xn, ˆ̄un, ˜̄ηn),
for all t ∈ [0, T ] .
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Step (VI) We have
∥
∥
∥K(xn, ˆ̄un, η̄n)−K(u0, u∗, η∗)

∥
∥
∥
Lp(�̄×[0,T ];E) → 0, as n→∞.

Proof First, notice that since η̄n = η∗ for any n ∈ N, the convergence in Step (VI) is
equivalent to

Ē

∥
∥
∥K(xn, ˆ̄un, η∗)−K(u0, u∗, η∗)

∥
∥
∥
p

Lp(0,T ;E) → 0 as n→∞.
Observe that for any any n

Ē

∥
∥
∥K(xn, ˆ̄un, η∗)−K(u0, u∗, η∗)

∥
∥
∥
p

Lp(0,T ;E) ≤ C
{
Ē

∫ T

0

∣
∣
∣e
−tA [xn − u0]

∣
∣
∣
p

dt

+ Ē

∫ T

0

∣
∣
∣
∣

∫ t

0
e−(t−s)A

[
F(s, ˆ̄un(s))− F(s, u∗(s))

]
ds

∣
∣
∣
∣

p

dt

+ Ē

∫ T

0

∣
∣
∣

∫ t

0

∫

Z

e−(t−s)AG(s, ˆ̄un(s); z)η̃∗(dz, ds)

−
∫ t

0

∫

Z

e−(t−s)AG(s, u∗(s); z)η̃∗(dz, ds)
∣
∣
∣
p

dt
}

=: C ( Sn0 + Sn1 + Sn2
)
.

Since Aρ−
1
p xn → A

ρ− 1
p u0 in E, the Lebesgue DCT implies

Sn0 ≤ C1

∫ T

0
‖A−(ρ− 1

p
)
e−tA‖L(E,E)|(Aρ−

1
p u0 − Aρ−

1
p xn)|p dt −→ 0,

as n→∞.
Since ūn = K(xn, ˆ̄un, η̃∗), arguing as in the proof Proposition 8.1 we can show that

ūn ∈ Wα,p(0, T , E) P̄-a.s., for any α ∈ (0, 1
p
). Hence by inequality (E.1) it follows that

P̄-a.s.

‖ ˆ̄un − u∗‖pLp(0,T ;E) ≤ C‖ūn − u∗‖pLp(0,T ;E) + C2−npα‖ūn‖pWα,p(0,T ;E).

Hence, in view of Eq. 8.13 and the continuous embedding E ⊂ X we infer that

lim
n→∞

ˆ̄un = u∗ in Lp(0, T ;X), P̄ a.s. . (8.23)

Next, by the Young inequality we infer that
∫ T

0
|
∫ t

0
e−(t−s)A

[
F(s, ˆ̄un(s))− F(s, u∗(s))

]
ds|pdt

≤ C

∫ T

0
|Aρ−1F(s, ˆ̄un(s))− Aρ−1F(s, u∗(s))|p ds,

for some C > 0. By Assumption 5 and since ūn, u∗ ∈ Lp(0, T ;E) P̄-a.s., there exists a
constant C > 0 such that for any n ∈ N

∫ T

0
|Aρ−1F(s, ˆ̄un(s))|p ds ≤ C,
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and
∫ T

0
|Aρ−1F(s, u∗(s))|p ds ≤ C.

The continuity of F (see Assumption 5), the convergence (8.23) and the Lebesgue DCT
imply

Sn1 → 0 as n→ ∞.
In a similar way we will show that Sn2 → 0 as n→ ∞. In particular, from Fubini Theorem
and Theorem 7.1 as well as (8.13) we infer that

Sn2 ≤ Ē

∫ T

0

∫ t

0

∫

Z

|e−(t−s)A[G(s, ˆ̄un(s); z)−G(s, u∗(s); z)
]|pν(dz) ds dt

≤ CĒ

∫ T

0

∫

Z

|Aρ− 1
p G(s, ˆ̄un(s); z)− Aρ−

1
p G(s, u∗(s); z)|p ν(dz) ds,

where C =
(∫ T

0 |A 1
p
−ρ
e−sA|p ds

)
. By Assumption 3 there exists a constant C > 0 such

that

supn

∫

Z

|Aρ− 1
p G(s, ˆ̄un(s); z)|p ν(dz) ≤ C, (8.24)

hence by the continuity of G, the convergence (8.23) and the Lebesgue DCT

Sn2 → 0 as n→ ∞.

To establish Theorem 3.4 we need to check the following claim.

Step (VII) We have that P̄-a.s. for all t ∈ [0, T ] u∗(t) = K(u0, u∗, η∗)(t).

Proof Let us fix r ∈ (1, p). From Steps (II) to (VI) we infer that ūn → u∗ in Lr(�̄T ;E),
ūn = K(xn, ˆ̄un, η̄n) in Lr(�̄T ;E),

and
K(xn, ˆ̄un, η̄n)−K(u0, u∗, η∗)→ 0 in Lr(�̄T ;E).

By the uniqueness of the limit, we infer that u∗ = K(u0, u∗, η∗) in Lr(�̄T ;E), which
implies that P̄-a.s. u∗(t) = K(u0, u∗, η∗)(t) a.e. t ∈ [0, T ]. By equality (8.13) we infer
that P̄ − a.s., u∗ ∈ D([0, T ];B0). Hence by combination of Lemmata 7.2 and 7.3, and
[28, Theorem 2.8] we deduce that P̄− a.s., K(u0, u∗, η∗)(·) ∈ D([0, T ];B0). Hence P̄-a.s.
u∗(t) = K(u0, u∗, η∗)(t) for all t ∈ [0, T ].

It follows now from Step(III)(ii), Step(IV)(ii) and Step(VII) that the system
(�̄, F̄ , F̄, P̄, η∗, u∗) is an E-valued martingale solution, satisfying (3.12), to problem (3.1).
The process u∗ has càdlàg paths in B0 := D(Aρ′−1) for any ρ′ ∈ (0, ρ). Since, by assump-
tion, the maps F and G are bounded, the operator −A is the infinitesimal generator of a

contraction type semigroup in D(Aρ−
1
p ), we easily infer from Lemma 7.3-(iii) along with

Eq. 3.12 that the paths of u∗ are càdlàg inD(Aρ−
1
p ). This completes the proof of Theorem 3.4.
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9 Proof of Theorem 3.2

In this section we replace the boundedness assumption on F by the dissipativity of the drift
−A+ F . The spaces E, X are as in Assumption 1, and we recall that E ⊂ X ⊂ D(Aρ−1).
Before we proceed let us state the following important consequence of Assumption 4.

Lemma 9.1 (See Da Prato [23]) Assume thatX is a Banach space,−A a generator of aC0-
semigroup of bounded linear operators on X and a mapping F : [0, T ] ×X→ X satisfies
Assumption 4. Assume that for τ ∈ [0,∞] two continuous functions z, v : [0, τ ) → X

satisfy

z(t) =
∫ t

0
e−(t−s)AF (s, z(s)+ v(s)) ds, t < τ.

Then

|z(t)|X ≤
∫ t

0
e−k(t−s)a(|v(s)|X) ds, 0 ≤ t < τ. (9.1)

Before giving the proof of Theorem 3.2 let us notice that Assumption 4 implies that

|F(t, y)|X ≤ a(|y|X), t ≥ 0, y ∈ X. (9.2)

Proof of Theorem 3.2 Without loss of generality we assume that k = 0. Let (Fn)n∈N be a
sequence of functions from [0,∞)×X to X given by Assumption 4(iii). In particular, there
exists a sequence (RnF )n∈N of positive numbers, such that |Fn(s, y)|X ≤ RnF for all (s, x) ∈
[0, T ] × X, n ∈ N, and |Fn(s, x)− F(s, x)|X → 0 as n→ ∞ for all (s, x) ∈ [0, T ] × X.

Finally, by the continuity of the embeddings X ↪→ D(A
ρ− 1

p ) ⊂ D(Aρ−1) the family of
functions (Fn)n∈N, F and G satisfy all the assumptions of Theorem 3.4. Hence, we infer
from the applicability of Theorem 3.4 that there exists an E-valued martingale solution to
the following problem

{
dun(t) = [−Aun(t)+ Fn(s, un(t))] dt +

∫

Z
G(s, un(t); z) η̃n(dz, dt),

un(0) = u0.
(9.3)

Let us denote this martingale solution by

(�n,Fn,Pn,Fn, ηn,n ) .
We denote by En the mathematical expectation on (�n,Fn,Pn).

In view of Theorem 3.4, for each n ∈ N, un has càdlàg paths in D(Aρ−
1
p ). Moreover,

un(t) = e−tAu0 + zn(t)+ vn(t), t ∈ [0, T ],
where

vn(t) =
∫ t

0

∫

Z

e−(t−s)AG(s, un(s); z) η̃n(dz; ds), (9.4)

zn(t) =
∫ t

0
e−(t−s)AFn(s, un(s))) ds. (9.5)

Notice, that zn(t) = un(t)− vn(t)− e−tAu0, t ∈ [0, T ]. Similarly to the proof of Theorem
3.4 the proof of Theorem 3.2 will be divided into several steps. The first two steps are the
following.
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Step (I) Let qmax be defined by Eq. 3.7. Then for any q̃ ∈ (q, qmax) and r ∈ (1, p), we have
sup
n∈N

En ‖vn‖rLq̃ (0,T ;E) <∞. (9.6)

Proof Step (I) follows from Lemma 7.9 and Lemma 10.

Step (II) For any q̃ ∈ (q, qmax) and r ∈ (1, p) defined in Step(I), we have
sup
n∈N

En sup
0≤t≤T

|zn(t)|
r
q̃

X <∞. (9.7)

Moreover, the laws of the family (zn)n∈N are tight on C([0, T ];X).

Proof By Lemma 9.1 we infer that for any T ≥ 0

sup
0≤t≤T

|zn(t)|X ≤
∫ T

0
e−k(t−s)a

(
|vn(s)|X + |e−sAx|X

)
ds

≤ C
∫ T

0

(
1 + |vn(s)|qX + |e−sAx|qX

)
ds. (9.8)

Since the embedding E ⊂ X is continuous, it follows from Step (I) that there exists q̃ > q
such that for any r ∈ (1, p)

sup
n

En|vn|rLq̃ (0,T ;X) <∞. (9.9)

Therefore,

sup
n

En sup
0≤t≤T

|zn(t)|
r
q̃

X <∞.

Hence, we proved the first part of Step (II). Note that the last inequality implies that

supn En|zn|
r
q̃

Lq̃ (0,T ;X) <∞.

Before we proceed further, we recall that there exist θ < 1 − q
qmax

and an UMD, type p

and separable Banach space Y such thatD(AθY ) ⊂ X ⊂ Y . To prove the second part we use
the identity zn = �−1

Y Fn(s, un(s)), where �−1
Y = B + AY with AY being defined as in

Eq. 2.6 by replacing A with AY , and Remark 2.1 along with Lemma 2.2. But first we need
to show that for some p̃ ∈ (1, qmax

q
), the sequence

(|Fn(·, un(·))|Lp̃(0,T ;Y )
)

n∈N is bounded

in probability. Let us fix p̃ ∈ (1, qmax
q
). By Lemma 9.1 and the continuity of the embedding

E ⊂ X we infer that

|Fn(s, un(s))|p̃X ≤ C(1 + |e−sAu0|p̃X + |vn(s)|p̃qX + |zn(s)|p̃qX ).
From this inequality we easily deduce that

|Fn(·, un(·))|p̃Lp̃(0,T ;X) ≤ C(1 + |vn|p̃qLq̃ (0,T ;X) + |zn|p̃qL∞(0,T ;X)). (9.10)

Taking q̃ = p̃q ∈ (q, qmax) and raising to the power r

q̃2 both sides of Eq. 9.10 implies that

|Fn(·, un(·))|
rp̃

q̃2

Lp̃(0,T ;X) ≤ C(1 + |vn|
r
q̃

Lq̃ (0,T ;X) + |zn|
r
q̃

L∞(0,T ;X)).
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Since Y ⊂ X is continuous we obtain that

|Fn(·, un(·))|
rp̃

q̃2

Lp̃(0,T ;Y ) ≤ C(1 ++|vn|
r
q̃

Lq̃ (0,T ;X) + |zn|
r
q̃

L∞(0,T ;X)). (9.11)

By Chebyshev inequality we derive that for any m ∈ N

Pn

(

|Fn(s, un(s))|Lp̃(0,T ;Y ) ≥ m
)

≤ 1

m
r
qq̃

(

C + En|vn(s)|
r
q̃

Lq̃ (0,T ;X)

+En|zn(s)|
r
q̃

Lq̃ (0,T ;X)

)

.

Since En|vn(s)|
r
q̃

Lq̃ (0,T ;X) and En|zn(s)|
r
q̃

Lq̃ (0,T ;X) are uniformly bounded w.r.t n, we derive

that supn∈N|Fn(·, un(·))|Lp̃(0,T ;Y ) is bounded in probability for any p̃ ∈ (1, qmax
q
).

Next we choose p̃ ∈ (1, qmax
q
) such that θ ∈ (0, 1− 1

p̃
). Since θ < 1− 1

p̃
andD(AθY ) ⊂ X,

we can infer from Lemma 2.2 that the family of the laws of (zn = �−1F(·, un(·)))n∈N is
tight on C([0, T ];D(AθY )) and hence on C([0, T ];X).

Remark 9.2 Let q be a number in the interval [p,∞). It follows from Step (I) and Step (II)
that for any q̃ ∈ (q, qmax) and r ∈ (1, p)

sup
n≥1

En‖un‖
r
q̃

Lq̃ (0,T ;X) ≤ C.

For q < p the above inequality holds with q̃ = p.

Remark 9.3 In [10], the first named author and Ga̧tarek constructed an approximation of F
as follows. Let (Fn)n∈N be defined by

Fn(s, x) =
{
F(s, x) if |x|X ≤ n,
F (s, n

|x|X x) otherwise.

By Eq. 9.2 |Fn(s, y)| ≤ a(n), for all s ≥ 0, y ∈ E. They solved the Problem (9.3) driven
by Wiener noise on the random interval [0, τn ∧ T ] where the sequence of stopping times
{τn : n ≥ 1} is defined by

τn = inf{t ∈ [0, T ] : |un(t)|X ≥ n}.
By proving that supt∈[0,T ]|un(t)|X is uniformly bounded, which implies that τn ↑ T almost
surely as n → ∞, and then using (9.2) and Lemma 2.2 they could show that the laws of
zn is tight on C([0, T ];X). In our framework we know a priori that un is only càdlàg in
D(Aρ

′−1) for ρ′ ∈ (0, ρ), hence τn will not be a well defined stopping time and we will not
be able to show that supt∈[0,T ]|un(t)|X is uniformly bounded.

In order to use Theorem C.1 we also need the following.

Step (III) For ρ′ ∈ (0, ρ) let B0 = D(Aρ
′−1). The family of laws of (vn)n∈N is tight on

Lq̃(0, T , E) ∩ D([0, T ];B0) and that of (ηn)n∈N is tight onMI(Z × [0, T ]).

Proof By Lemma 7.6 and Lemma 7.7 the laws of the family (vn)n∈N are tight on
Lq̃(0, T , E) ∩ D([0, T ],B0). Since Enηn(A, I) = Eη(A, I) for all A ∈ B(Z) and
I ∈ B([0, T ]), the laws of ηn and ηm on MI(Z × [0, T ]) are identical for any n,m ∈ N.
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Hence, we can deduce from [62, Theorem 3.2] that the laws of the family (ηn)n∈N are tight
onMI(Z × [0, T ]).

Let B0 as in Step (III). From Steps (I), (II), (III) and Prokhorov’s theorem it follows that
there exists a subsequence of ((zn, vn, ηn))n∈N, also denoted by ((zn, vn, ηn))n∈N and a
Borel probability measure μ∗ on XT , where the space has been defined earlier in Eq. 3.22,
such that the sequence of laws of (zn, vn, ηn)n∈N converges to μ∗. Moreover, by Theorem
C.1, there exists a probability space (�̂, F̂ , P̂) and XT -valued random variables (z∗, v∗, η∗),
(ẑn, v̂n, η̂n), n ∈ N, such that P̂-a.s.,

(ẑn, v̂n, η̂n)→ (z∗, v∗, η∗) in XT (9.12)

and, for all n ∈ N, η̂n = η∗ and

L((ẑn, v̂n, η̂n)) = L((zn, vn, ηn)) on XT .

We define a filtration F̂ = (F̂t )t∈[0,T ] on (�̂, F̂) as the one generated by η∗, z∗, v∗ and the
families {zn : n ∈ N} and {vn : n ∈ N}, that is, for t ∈ [0, T ],

F̂t = σ (σ (zn(s), {vn(s), n ∈ N}, z∗(s), v∗(s), η∗(s); 0 ≤ s ≤ t) ∪N ) , (9.13)

where N denotes the set of null sets of F̂ .
The next two steps imply that the following two Itô integrals over the filtered probability

space (�̂, F̂ , F̂, P̂)
∫ t

0

∫

Z

e−(t−s)A G(s, v̂n(s)+ ẑn(s), z)) ˜̂ηn(dz, ds), t ∈ [0, T ],
and ∫ t

0

∫

Z

e−(t−s)A G(s, v∗(s)+ z∗(s), z)) η̃∗(dz, ds), t ∈ [0, T ],
are well defined.

Step (IV) The following hold

(i) for all n ∈ N, η̂n is a time-homogeneous Poisson randommeasure onB(Z)×B([0, T ])
over (�̂, F̂ , F̂, P̂) with intensity measure ν ⊗ Leb.

(ii) η∗ is a time-homogeneous Poisson random measure on B(Z) × B(0, T ) over
(�̂, F̂ , F̂, P̂) with intensity measure ν ⊗ Leb;

Step (V) The following holds

(i) for all n ∈ N, the processes v̂n and ẑn are F̂-progressively measurable;
(ii) the processes z∗ and v∗ are F̂-progressively measurable.

The proofs of Step (IV) and (V) are the same as the proofs of Step (IV) and (V) of
Theorem 3.4. Also, as earlier in the proof of Theorem 3.4, in order to complete the proof of
Theorem 3.2 we have to prove the following claim.

Step (VI) Let u∗ = e−·Au0 + z∗ + v∗ and K be the mapping defined by

K(u0, u, η)(t) = e−tAu0 +
∫ t

0
e−(t−s)AF (s, u(s)) ds

+
∫ t

0

∫

Z

e−(t−s)AG(s, u(s); z) η̃(dz; ds),
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for t ∈ [0, T ], u ∈ D([0, T ], B) and η ∈ MI(Z × [0, T ]). Then P̂-a.s.,

u∗(t) = K(u0, u∗, η∗)(t), ∀t ∈ [0, T ]. (9.14)

Proof Since the process un = e−·Au0 + zn + vn is a martingale solution of problem (9.3)
and

L((ẑn, v̂n, η̂n)) = L((zn, vn, ηn)),
for all n ∈ N, we can argue as in Step (V) of the previous section and prove that P̂-a.s.

ûn(t) = Kn(u0, ûn, η̂n)(t), (9.15)

for all t ∈ [0, T ]. Here Kn is obtained by replacing F with Fn in the definition of K. Since
the laws of zn and ẑn are equal on C([0, T ];X), by Eqs. 9.8 and 9.7 we infer that

sup
n≥1

En‖ẑn‖
r
q̃

C([0,T ];X) <∞. (9.16)

Since vn and v̂n have equal laws on Lq̃(0, T ;E), from Eq. 9.6 we deduce that

sup
n≥1

En‖v̂n‖rLq̃ (0,T ;E) <∞. (9.17)

Invoking (9.12) we infer that, P̂-a.s., as n→∞,

‖ẑn − z∗‖
r

2q̃
C([0,T ];X) → 0 and ‖ẑn‖

r
2q̃
C([0,T ];X) → ‖z∗‖

r
2q̃
C([0,T ];X).

Thanks to Eq. 9.16 the sequence ‖ẑn‖
r

2q̃
C([0,T ];X) is P̂-uniformly integrable. Thus, the

applicability of the Vitali Convergence Theorem implies that

lim
n→∞En‖ẑn‖

r
2q̃
C([0,T ];X) = En‖z∗‖

r
2q̃
C([0,T ];X).

Thanks to Eq. 9.16 and this last convergence we can prove, by a similar argument used as
above, that

lim
n→∞En‖ẑn − z∗‖

r
2q̃
C([0,T ];X) = 0. (9.18)

With a similar argument we can also show that

lim
n→∞En‖v̂n − v∗‖

r
2q̃

Lq̃ (0,T ;B0)
= 0, (9.19)

and

En‖v̂n − v∗‖
r

2q̃

Lq̃ (0,T ;E) → 0. (9.20)

We derive from Eqs. 9.18, 9.19 and 9.20 that

lim
n→∞En‖ûn − u∗‖

r
2q̃

Lq̃ (0,T ;B0)
= 0,

and

lim
n→∞En‖ûn − u∗‖

r
2q̃

Lq̃ (0,T ;X) = 0,
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which is correct because the embedding E ⊂ X is continuous. In the other hand, by
Proposition 2.5 we have

En‖Kn(x, ûn, η̂n)−K(x, u∗, η∗)‖r̃
Lp

∗
(0,T ;B0)= En‖Kn(x, ûn, η∗)−K(x, u∗, η∗)‖r̃Lp∗ (0,T ;B0)

≤ CEn
∥
∥
∥
∥

∫ t
0 e

−(t−s)A (Fn(s, ûn(s))− F(s, u∗(s))
)
ds

∥
∥
∥
∥

r̃

Lp
∗
(0,T ;X)

+C
∥
∥
∥
∥

∫ t
0

∫

Z e
−(t−s)A (G(s, ûn(s))−G(s, u∗(s))

)
η̃∗(dz, ds)

∥
∥
∥
∥

r̃

Mp(0,T ;E)
≤ In1 + In2 ,

where r̃ = r
2q̃q and p∗ = min( q̃

q
, p). Arguing as in Step (VI) of the previous section we

can show that In2 → 0 as n → 0. To deal with In1 we first use Assumption 4(iii) given on
page 16 and (9.12) to derive that Pn-a.s.

‖Fn(·, ûn)− F(·, u∗)‖r̃Lp∗ (0,T ;X) → 0,

as n→∞. Since, by Eqs. 9.10, 9.16 and 9.17,

sup
n≥1

En‖Fn(·, ûn)‖2r̃
Lp

∗
(0,T ;X) <∞,

we can apply the Lebesgue DCT and deduce that In1 → 0 as n→∞. Therefore, as n→∞
En‖ûn − u∗‖r̃Lp∗ (0,T ;B0)

→ 0,

En‖Kn(x, ûn, η̂n)−K(x, u∗, η∗)‖r̃Lp∗ (0,T ;B0)
→ 0,

as n→∞. These two facts along with Eq. 9.15 implies that P̂-a.s. and for a.e. t ∈ [0, T ]
u∗(t) = K(x, u∗, η∗)(t).

Since u∗ and K(x, u∗, η∗) are B0-valued càdlàg functions, the last equation holds for all
t ∈ [0, T ].

It follows now from Step(IV)(ii), Step(V)(ii) and Step(VI) that the system
(�̂, F̂ , F̂, P̂, η∗, u∗) is an X-valued martingale solution to problem (3.1) with càdlàg paths
in B0 := D(Aρ

′−1) for any ρ′ ∈ (0, ρ). Since −A is the infinitesimal generator of a con-

traction type C0-semigroup on D(Aρ−
1
p ) and u∗ ∈ Lq̃(0, T ;X) almost surely, then we

easily infer from Lemma 7.3-(iii) that the paths of u∗ are càdlàg in D(Aρ−
1
p ). Similar cal-

culations as done in Steps (I) and (II), see also Remark 9.2, yield that for any q̃ ∈ (q, qmax)

and r ∈ (1, p)
E‖u∗‖

r
q̃

Lq̃ (0,T ;X) <∞.
This completes the proof of Theorem 3.2.

Acknowledgments Open access funding provided by Montanuniversität Leoben. The research by
E. Hausenblas and P. A. Razafimandimby has been funded by the FWF-Austrian Science Fund through the
project P21622. The research on this paper was initiated during the visit of Hausenblas to the University
of York in October 2008. She would like to thank the Mathematics Department at York for hospitality. A
major part of this paper was written when Razafimandimby was an FWF Lise Meitner fellow (with project
number M1487) at the Montanuniversität Leoben. He is very grateful to the FWF and the Montanuniversität
Leoben for their support. Razafimandimby’s current research is partially National supported by the National
Research Foundation South Africa (Grant number 109355). The authors would like to thank Jerzy Zabczyk



Stochastic Reaction-diffusion Equations Driven by Jump Processes

for discussion related to the dual predictable projection of a Poisson random measure and to Szymon Peszat
for discussion related to an example from his paper [64].

We also would like thank the anonymous referees for their insightful comments and help to clarify issues
from previous version of the paper; in particular for their help in clarifying the construction of stochastic
integral with respect to Poisson random measure (PRM) and progressively measurable integrands.

Last but not least, the authors would like to thank Carl Chalk, Pani Fernando, Ela Motyl, Markus Riedle,
Akash Panda and Nimit Rana for a careful reading of the manuscript. Earlier versions of this paper can be
found on arXiv:1010.5933.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A: Stochastic Appendices

A.1 Space-time Poissonian White Noise

Analogously to the space-time Gaussian white noise one can construct a space-time Lévy
white noise or space-time Poissonian white noise. But before doing this, let us recall the
definition of a Gaussian white noise, see for e.g. Dalang [22].

Definition A.1 Let (�,F ,P) be a complete probability space and let (S,S, σ ) a measure
space. A Gaussian white noise on (S,S, σ ) is an F

/
M(S) measurable map

W : �→ M(S)

satisfying

(i) for every U ∈ S such that σ(U) < ∞, W(U) := iU ◦ W is a Gaussian random
variable with mean 0 and variance σ(U);

(ii) if U1, U2 ∈ S are disjoint, then the random variables W(U1) and W(U2) are
independent andW(U1 ∪ U2) = W(U1)+W(U2).

The space-time Gaussian white noise can be defined as follows. Let O ⊂ R
d be a

domain. Put S = O × [0,∞), S = B(O)⊗ B([0,∞)) and let σ be the Lebesgue measure
on S. The space-time Gaussian white noise is an M(O)-valued process {Wst (r) : r ≥ 0}
defined by

Wst (r) = {B(O) � U �→ W(U × [0, r)) ∈ R}, r ≥ 0,
whereW : �→ M(S) is a Gaussian white noise on (S,S, σ ). Let (�,F ,F,P) be a filtered
probability space. We say that the Gaussian white noise W on (S,S, σ ) is a space-time
Gaussian white noise over (�,F ,F,P) if the process {Wst (r) : r ≥ 0} is F–adapted.

One can show that theM(O)-valued process {Wst (r) : r ≥ 0} generates, in a unique way,
anL2(O)-cylindrical Wiener process (Ŵr )r≥0, see [12, Definition 4.1]. In particular, for any
U ∈ B(O) such that Leb(U) <∞, and any r ≥ 0, Ŵt (1U) = W(U × [0, r)) = Wst (r, U).

Analogously, we can define a Lévy white noise and a space-time Lévy white noise.

Definition A.2 Let (�,F ,P) be a complete probability space, (S,S, σ ) be a measurable
space, γ ∈ R and let ν be a Lévy measure on R. Then a Lévy white noise on (S,S, σ )
with intensity jump size measure ν is an F

/
M(S)-measurable mapping

L : �→ M(S)

satisfying

http://arXiv.org/abs/1010.5933
http://creativecommons.org/licenses/by/4.0/
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(i) for all U ∈ S such that σ(U) <∞, L(U) := iU ◦ L is an infinitely divisible random
variables satisfying, for all θ ∈ R ,

EeiθL(U)

= exp

(

σ(U)

[

iγ θ +
∫

R

(
1 − eiθx − iθx1[−1,1](x)

)
ν(dx)

])

;
(ii) if U1, U2 ∈ S are disjoint, then the random variables L(U1) and L(U2) are

independent and L(U1 ∪ U2) = L(U1)+ L(U2).

Definition A.3 Let (�,F ,P) be a complete probability space. Suppose that O ⊂ R
d is a

domain and let S = O × [0,∞), S = B(O)× B([0,∞)) and σ the Lebesgue measure on
S. Let ν be a Lévy measure on R. If L : �→ M(S) is a Lévy white noise on (S,S, σ ) with
intensity jump size measure ν, then theM(O)-valued process {Lst (r) : r ≥ 0} defined by

Lst (r) = {B(O) � U �→ L(U × [0, r)) ∈ R}, r ≥ 0,

is called a space-time Lévy noise on O with jump size Lévy measure ν. We say that
L is a space time Lévy white noise over a filtered probability space (�,F ,F,P) iff the
corresponding measure-valued process {Lst (r) : r ≥ 0}, is F–adapted.

Remark A.4 If L is a space-time Lévy white noise on (S,S,Leb), then the correspond-
ing M(O)-valued process {Lst (t) : t ≥ 0} is a weakly cylindrical process on L2(O), see
Definition 3.2 [2].

As in the case of space-time Gaussian white noise we also introduce the following definition.

Definition A.5 Let us assume that (�,F ,P) is a complete probability space and ν be a
Lévy measure on R.

(a) A Poissonian white noise with intensity jump size measure ν on a measurable
space (S,S, σ ) is a F

/
M(MI (S × R)) measurable mapping

η : �→ MI(S × R) (A.1)

satisfying

(i) for all U ∈ S⊗B(R)with (σ⊗ν)(U) <∞, η(U) := iU ◦η is a Poisson random
variable with parameter (Leb⊗ν)(U);

(ii) if the sets U1 ∈ S ⊗ B(R) and U2 ∈ S ⊗ B(R) are disjoint, then the random
variables η(U1) and η(U2) are independent and η (U1 ∪ U2) = η(U1) + η(U2),
almost surely.

(b) Let O ⊂ R
d be a domain. Then, the map η defined in Eq. A.1 is called a space-time

Poissonian white noise onO with intensity jump size measure ν iff η is a Poissonian
white noise on (S,S,Leb)with intensity jump size measure ν, where S = O×[0,∞),
S = B(O)⊗ B([0,∞)).

The corresponding measure-valued process {�t : t ≥ 0} defined by

�t : B(O)× B(R) � (U,C) �→ η(U × [0, t)× C) ∈ N0, (A.2)

is called an (homogeneous) space-time Poissonian white noise process.
(c) A space-time Poissonian white noise η on O is called a (homogeneous) space-

time Poissonian white noise over a filtered probability space (�,F ,F,P) iff the
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measure-valued process {�t : t ≥ 0} defined above is F–adapted. (Compare this
definition with [65, Definition 7.2].)

Theorem A.6 Let (�,F ,P) be a complete probability space, ν a Lévy measure on R,
O ⊂ R

d is a bounded set. Let also

η : �→ MI(S × R)

be a space-time Poissonian white noise on O with intensity jump size measure ν, where
S = O × [0,∞), S = B(O)⊗ B([0,∞)) and Leb the Lebesgue measure on S. Let M be
the random measure defined by

M : �→ MI(O × R× [0,∞))
with

M(ω)(U × C ×D) = η(ω)(U × C ×D), U ∈ B(O), C ∈ B(R),D ∈ B([0,∞)).
Then, M is a time-homogeneous Poisson random measure on O × R with the intensity
measure m⊗ Leb satisfying

m : B(O × R) � C �→
∫

R

∫

O
1C(ξ, ζ ) ν(dζ ) dξ.

Proof The proof is very similar to the proof of [65, Proposition 7.21], so we omit it.

Remark A.7 The compensator γ of a homogeneous space-time Poissonian white noise with
jump size intensity ν is a measure on O × R× [0,∞) defined by

B(O)× B(R)× B([0,∞)) � (U,C, I) �→ γ (U × C × I ) = Leb(U) ν(C) Leb(I ).

Appendix B: Besov Spaces and Their Properties

We follow the approach to the Besov spaces in Runst and Sickel [69, p. 8, Def. 2]. We are
interested in the continuity of the mapping G described in Section 5. To be precise, we will
prove the following result.

Proposition B.1 Let p, p∗ ∈ (1,∞) be two numbers satisfying 1
p
+ 1

p∗ = 1. Then for

every f ∈ S(Rd) and a ∈ R
d the tempered distribution f δa belongs to the Besov space

B
− d
p∗

p,∞ (Rd) and
∫

Rd

|f δa |p
B
− d
p∗

p,∞ (Rd )

da = (2π)− d
2 2−

d
p∗ |f |p

Lp(Rd )
. (B.1)

In particular, there exists a unique bounded linear map

 : Lp(Rd)→ Lp(Rd , B
− d
p∗

p,∞ (Rd))

such that [ (f )](a) = f δa , f ∈ S(Rd), a ∈ R
d .
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In what follows, for any f ∈ Lp(Rd) we denote by f δa the value of �(f ) at a. Observe
that 〈f δa, φ〉 = f (a)φ(a), φ ∈ S(Rd) so that f δa = f (a)δa . Hence, in order to prove
(B.1) it is sufficient to prove it for f = 1, i.e.,

|δa |p
B
− d
p∗

p,∞ (Rd )

= (2π)− d
2 2−

d
p∗ . (B.2)

Let us recall the definition of the Besov spaces as given in [69, Definition 2, pp. 7-8].
First we choose a function ψ ∈ S(Rd) such that 0 ≤ ψ(x) ≤ 1, x ∈ R

d and

ψ(x) =
{

1, if |x| ≤ 1,
0 if |x| ≥ 3

2 .

Then put
⎧
⎨

⎩

φ0(x) = ψ(x), x ∈ R
d ,

φ1(x) = ψ(x2 )− ψ(x), x ∈ R
d ,

φj (x) = φ1(2−j+1x), x ∈ R
d , j = 2, 3, . . . .

We will use the definition of the Fourier transform F = F+1 and its inverse F−1 as in
[69, p. 6]. In particular, with 〈·, ·〉 being the scalar product in R

d , we put

(F±1f )(ξ) := (2π)−d/2
∫

Rd

e∓i〈x,ξ〉f (x) dx, f ∈ S(Rd), ξ ∈ R
d .

With the choice of φ = {φj }∞j=0 as above and F and F−1 being the Fourier and the

inverse Fourier transformations (acting on the space S ′(Rd) of Schwartz distributions) we
have the following definition.

Definition B.2 Let s ∈ R, 0 < p ≤ ∞ and f ∈ S ′(Rd). If 0 < q <∞ we put

|f |Bsp,q =
⎛

⎝
∞∑

j=0

2sjq
∣
∣
∣F−1 [φjFf

]∣∣
∣
q

Lp

⎞

⎠

1
q

= ‖
(

2sj
∣
∣
∣F−1 [φjFf

]∣∣
∣
Lp

)

j∈N‖lq .

If q = ∞ we put

|f |Bsp,∞ = sup
j∈N

2sj
∣
∣
∣F−1 [φjFf

]∣∣
∣
Lp

= ‖
(

2sj
∣
∣
∣F−1 [φjFf

]∣∣
∣
Lp

)

j∈N‖l∞ .

We denote by Bsp,q(R
d) the space of all f ∈ S ′(Rd) for which |f |Bsp,q is finite.

Lemma B.3 If ϕ ∈ S(Rd), λ > 0 and g(x) := ϕ(λx), x ∈ R
d , then

|F−1g|Lp(Rd ) = λd(
1
p−1 )|F−1ϕ|Lp(Rd ).

Proof The proof follows from simple calculations so it is omitted.

Proof of Proposition B.1 As remarked earlier it is enough to show equality (B.2). Since
F−1(ϕu) = (2π)−d/2(F−1ϕ) ∗ (F−1u), ϕ ∈ S , u ∈ S ′ we infer that for j ∈ N

∗,

|F−1[φjF(δa)|Lp(Rd ) = (2π)−d/2|(F−1φj ) ∗ δa |Lp(Rd )
= (2π)−d/2|F−1φj |Lp(Rd )
= (2π)−d/22d(

1
p−1 )2−jd(

1
p−1 )|F−1φ1|Lp(Rd ).
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Hence, δa belongs to the Besov space B
d( 1
p−1 )

p,∞ (Rd) as requested and the equality (B.2)
follows immediately.

Corollary B.4 Assume that O is a bounded and open subset of Rd with boundary ∂O of
class C∞. Let r, q ∈ (1,∞) with q ≥ r then there exists a unique bounded linear map

 : Lq(O)→ Lq(O, B− d
r

r,∞(O)) (B.3)

such that [ (f )](a) = f δa , f ∈ Lq(O), a ∈ O. In particular, there exists a constant C
such that for any f ∈ Lq(O)

∫

O
|f δa |q

B
−d(1− 1

r )
r,∞ (O)

da ≤ C |f |qLq(O) . (B.4)

Proof It is enough to prove (B.3) for any f ∈ C∞
0 (O) as that set is dense in Lq(O). As

before, we first need to show the following version of Eq. B.2

sup
a∈O

|δa |
B
− d
r∗

r,∞ (O)
< C(r, d), (B.5)

for a constant C(r, d) > 0 depending only on r and d. For that aim let us fix a ∈ O and
let us recall that according to Definition 4.2.1 from [73], |δa |

B
− d
r∗

r,∞ (O)
is equal to infimum of

|u|
B
− d
r∗

r,∞ (Rd )

over all u ∈ B− d
r∗

r,∞ (Rd) such that u|O = δa . Thus |δa |
B
− d
r∗

r,∞ (O)
≤ |δa |

B
− d
r∗

r,∞ (Rd )

and the result follows by applying (B.2).
Second, let  be the linear map defined on Lq(O) by  f = f δa for f ∈ Lq(O) and

a ∈ O. Since, by the assumption q ≥ r , Lq(O) ⊂ Lr(O) it follows from the first part of
the proof that

∫

O
| f (a)|q

B
− d
r∗

r,∞ (O)
da ≤

∫

O
|f (a)|q |δa |

B
− d
r∗

r,∞ (O)
da

≤ sup
a∈O

|δa |
B
− d
r∗

r,∞ (O)

∫

O
|f (a)|qda

≤ C(r, d)q |f |qLq(O).
The last inequality completes the proof of Corollary B.4.

Appendix C: A generalisation of the Skorohod Representation Theorem

Within the proofs of Theorems 3.2 and 3.4 we are dealing with the limits of pairs of ran-
dom variables. For us it was important that certain properties of the pairs are preserved by
the Skorohod Representation Theorem. Therefore, we had to use the theorem which is a
modified version of the celebrated Skorohod Representation Theorem.

Theorem C.1 Let (�,F ,P) be a probability space and U1, U2 be two separable metric
spaces. Let χn : � → U1 × U2, n ∈ N, be a family of random variables, such that the
sequence (Law(χn))n∈N is weakly convergent on U1 × U2.
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For i = 1, 2 let πi : U1 × U2 be the projection onto Ui , i.e.,

U1 × U2 � χ = (χ1, χ2) �→ πi(χ) = χi ∈ Ui.
Finally let us assume that there exists a random variable ρ : �→ U1 such that Law(π1 ◦
χn) = Law(ρ), ∀n ∈ N.

Then, there exists a probability space (�̄, F̄ , P̄), a family of U1 × U2–valued random
variables (χ̄n)n∈N, on (�̄, F̄ , P̄) and a random variable χ∗ : �̄→ U1 × U2 such that

(i) Law(χ̄n) = Law(χn), ∀n ∈ N;
(ii) χ̄n → χ∗ in U1 × U2 P̄–a.s.;

(iii) π1 ◦ χ̄n(ω̄) = π1 ◦ χ∗(ω̄) for all ω̄ ∈ �̄.

Proof of Theorem C.1. The proof is a modification of the proof of [24, Chapter 2, Theorem
2.4]. For simplicity, let us put PMUn := Law(χn), PMU1

n := Law(π1 ◦ χn), n ∈ N, and
PMU∞ := limn→∞ L(χn). We will generate families of partitions of U1 and U2. To start
with let (xi)i∈N and (yi)i∈N be dense subsets in U1 and U2, respectively, and let (ri)i∈N be a
sequence of natural numbers converging to zero. Some additional condition on the sequence
will be given below.

Now let O1
1 := B(x1, r1),7 O1

k := B(xk, r1) \
(
∪k−1
i=1O

1
i

)
for k ≥ 2. Similarly, C1

1 :=
B(y1, r1), C1

k := B(yk, r1) \
(
∪k−1
i=1C

1
i

)
for k ≥ 2. Inductively, we put

Oki1,··· ,1 := Ok−1
i1,··· ,ik−1

∩ B(xik , rk),
Oki1,··· ,ik := Ok−1

i1,··· ,ik−1
∩ B(xik , rk) \

(
∪ik−1
j=1O

k
i1,··· ,ik−1,j

)
, k ≥ 2,

and similarly, where we will replace ”O” by ”C”

Cki1,··· ,1 := Ck−1
i1,··· ,ik−1

∩ B(yik , rk),
Cki1,··· ,ik := Ck−1

i1,··· ,ik−1
∩ B(yik , rk) \

(
∪ik−1
j=1 C

k
i1,··· ,ik−1,j

)
, k ≥ 2.

For simplicity, we enumerate for any k ∈ N these families and call them (Oki )i∈N, and
(Ckj )j∈N.

Let �̄ := [0, 1)× [0, 1) and Leb be the Lebesgue measure on [0, 1)× [0, 1). In the first
step, we will construct a family of partition consisting of rectangles in �̄.

Definition C.2 Suppose that μ is a Borel probability measure on U = U1 × U2 and μ1 is
the marginal of μ on U1, i.e., μ1(O) := μ(O × U2), O ∈ B(U1). Assume that (Oi)i∈N
and (Ci)i∈N are partitions of U1 and U2, respectively. Define the following partition of the
square [0, 1)× [0, 1). For i, j ∈ N we put

Iij :=
[

μ1

( i−1⋃

α=1

Oα

)
, μ1

( i⋃

α=1

Oα

)
)

×
⎡

⎣
1

μ1(Oi)
μ
(
Oi ×

j−1⋃

α=1

Cα

)
,

1

μ1(Oi)
μ
(
Oi ×

j⋃

α=1

Cα

)
⎞

⎠ . (C.1)

7For r > 0 and x let B(x, r) := {y, |y| ≤ r}.



Stochastic Reaction-diffusion Equations Driven by Jump Processes

Remark C.3 Obviously, if μ1(Oi) = 0 for some i ∈ N, then Iij = ∅ for all j ∈ N.

Next for fixed l ∈ N and n ∈ N, we will define a partition
(
I
l,n
ij

)

i,j∈N of �̄ =
[0, 1)×[0, 1) corresponding to the partitions (Oli )i∈N and (Cli )i∈N of the spaces U1 and U2,
respectively.

We denote by μ(O|C) the conditional probability of O under the condition C. Then, we
have for n ∈ N

I
1,n
1,1 :=

[
0,PMU1

n (O
1
1 )
)
×
[
0,PMUn(U1 × C1

1 | O1
1 × U2)

)
,

I
1,n
2,1 :=

[
PMU1

n (O
1
1 ),PMU1

n (O
1
1 )+ PMU1

n (O
1
2 )
)

×
[
0,PMUn(U1 × C1

1 | O1
2 × U2)

)

. . . . . .

I
1,n
k,1 :=

[
k−1∑

m=1

PMU1
n (O

1
k ),

k∑

m=1

PMU1
n (O

1
k )

)

× [0, an.k) , k ≥ 2,

and

I
1,n
1,2 :=

[
0,PMU1

n (O
1
1 )
)
× [an,1, bn

)
,

I
1,n
2,2 :=

[
PMU1

n (O
1
1 ),PMU1

n (O
1
1 )+ PMU1

n (O
1
2 )
)
× [an,1, bn

)
,

where an,k = PMUn(U1 × C1
1 | O1

k × U2) and

bn = PMUn(U1 × C1
1 | O1

1 × U2)+ PMUn(U1 × C1
2 | O1

1 × U2).

More generally, for k ∈ N

I
1,n
k,2 :=

[
k−1∑

m=1

PMU1
n (O

1
k ),

k∑

m=1

PMU1
n (O

1
k )

)

× [an, bn) ,

and, for k, r ∈ N

I
1,n
k,r :=

[
k−1∑

m=1

PMU1
n (O

1
m),

k∑

m=1

PMU1
n (O

1
m)

)

×
[
r−1∑

m=1

PMUn(U1 × C1
m | O1

k × U2),

r∑

m=1

PMUn(U1 × C1
r | O1

k × U2)

)

.

Finally, for k, l, r ≥ 2

(C.2)

I
l,n
k,r :=

[
k−1∑

m=1

PMU1
n (O

l
m),

k∑

m=1

PMU1
n (O

l
m)

)

×
[
r−1∑

m=1

PMUn(U1 × Clm | Olk × U2),

r∑

m=1

PMUn(U1 × Clm | Olk × U2)

)

.

Let us observe that for fixed l ∈ N, the rectangles {I lk,r : k, r ∈ N} are pairwise disjoint

and the family {I lk,r : k, r ∈ N} is a covering of �̄. Therefore, we conclude that for any
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n ∈ N ∪ {∞} we have PMUn(U1 × U2) = 1 and
∑
m∈N PMUn(U1 × Clm | Olk) = 1.

Consequently, it follows that for fixed l, n ∈ N the family of sets {Ik,r : k, r ∈ N} is a
covering of [0, 1)× [0, 1) and consists of disjoint sets.

The next step is to construct the random variables χ̄n : �̄ → U1 × U2, such that
Law(χ̄n) = Law(χn). We assume that rm is chosen in such a way, that the measure of the
boundaries of the covering (Oj )j∈N and (Cj )j∈N are zero. In each non-empty sets int(Omj )
and int(Cmj ) we choose points xmj and ymj , respectively, from the dense subsets (xi)i∈N and
(yi)i∈N and define the following random variables. First, we put for m ∈ N

Z1
n,m(ω̄) = xmk if ω̄ ∈ Im,nk,r ,

Z2
n,m(ω̄) = ymr if ω̄ ∈ Im,nk,r , n ∈ N ∪ {∞},

and then, for n ∈ N ∪ {∞}
χ̄1
n(ω̄) = lim

m→∞Z
1
n,m(ω̄),

χ̄2
n(ω̄) = lim

m→∞Z
2
n,m(ω̄).

Due to the construction of the partition, the limits above exist. To be precise, for any n ∈
N ∪ {∞} and ω̄ ∈ �̄, we have

|Zin,m(ω̄)− Zin,k(ω̄)| ≤ rm, k ≥ m, i = 1, 2, (C.3)

and therefore (Zn,m(ω̄))m≥1 is a Cauchy-sequence for all ω̄ ∈ �̄ = [0, 1) × [0, 1). Hence,
Zin(ω̄), i, n, is well defined. Furthermore, χn is measurable, sinceZin,m are simple functions,
hence measurable. Therefore, Zin(ω̄), i, n, is a random variable.

Finally, we have to proof that the random variables χ̄ and χ̄n := (χ̄n
1, χ̄n

2) have the
following properties:

(i) Law(χ̄n) = Law(χn), ∀n ∈ N,
(ii) χn → χ a.s. in U1 × U2,

(iii) π1 ◦ χn(ω) = π1 ◦ χ∗(ω).

Proof of (i) The following identity holds

Leb(I l,nk,r ) = Leb
(
χ̄n ∈ Olk × Clk

)

= PMU1
n (O

l
k)× PMUn(U1 × Clr | Olk × U2)

= PMUn(Olk × U2)× PMUn(U1 × Clr | Olk × U2)

= PMUn(u1 ∈ Olk and u2 ∈ Clr )
= PMU1((u

1, u2) ∈ Olk × Clr ).
Using the fact that the set of rectangles of [0, 1)×[0, 1) form a π -system in B([0, 1)×[0, 1))
and that Leb and PMU1 are identical on the set of rectangles, we derive from [47, Lemma
1.17, Chapter 1], Leb and PMU are equal on B([0, 1)× [0, 1)).

Proof of (ii) We will first prove that there exists a random variable χ = (χ1, χ2) such that
χ̄n

1 → χ1 and χ̄n2 → χ2 Leb-a.s. for n→ ∞. For this purpose it is enough to show that
the sequences (χ̄n1)n∈N and (χ̄n2)n∈N are Leb–a.s. Cauchy sequences. From the triangle
inequality we infer that for all n,m, j ∈ N, i = 1, 2

∣
∣
∣χ̄n

i − χ̄ im
∣
∣
∣ ≤

∣
∣
∣χ̄
i
n − Zin,j

∣
∣
∣+
∣
∣
∣Z
i
n,j − Zim,j

∣
∣
∣+
∣
∣
∣Z
i
m,j − χ̄ im

∣
∣
∣ .
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Let us first observe that by Eq. C.3, for any n ∈ N, the sequences (Z1
n,j )j∈N and

(Z2
n,j )j∈N converge uniformly on �̄ to χ̄n1 and χ̄n2, respectively. Hence, it suffices to show

that for all ε > 0 there exists a number n0 such that (see [34, Lemma 9.2.4])

Leb
({
ω ∈ [0, 1)× [0, 1) | Zn,l(ω) �= Zm,l(�), n,m ≥ n0

}) ≤ ε.
Since {μn, n ∈ N} converges weakly, for any δ > 0 there exists a number n0 ∈ N such that8

ρ(μn, μm) ≤ ε for all n,m ≥ n0. Hence, for any δ > 0 we can find a number n0 ∈ N such
that

(C.4)
∣
∣
∣a
i,l,n
k,r − ai,l,mk,r

∣
∣
∣ ,

∣
∣
∣b
i,l,n
k,r − bi,l,mk,r

∣
∣
∣ ≤ δ, k, r, l ∈ N, i = 1, 2, n,m ≥ n0,

where
I
l,n
k,r = [a1,l,n

k,r , b
1,l,n
k,r )× [a2,l,n

k,r , b
2,l,n
k,r ),

and
I
l,m
k,r = [a1,l,m

k,r , b
1,l,m
k,r )× [a2,l,m

k,r , b
2,l,m
k,r ).

In fact, by the construction of I l,nk,r and I lk,r , we have

a
1,l,n
k,r = μ1

n

(
∪k−1
j=1O

l
j

)
, n,m ∈ N, r, k ∈ N,

a
1,l,m
k,r = μ1

m

(
∪k−1
j=1O

l
j

)
, n,m ∈ N, r, k ∈ N.

Let us now fix δ > 0 and let us choose n0 such that ρ(μn, μm) ≤ δ, n,m ≥ n0. Then,

μ1
n

(
∪k−1
j=1O

l
j

)
≤ μ1

n

((
∪k−1
j=1O

l
j

)δ
)

≤ μ1
m

(
∪k−1
j=1O

l
j

)
+ δ, r, k, l ∈ N.

On the other hand, by symmetricity of the Prokhorov metric,

μ1
m

(
∪k−1
j=1O

l
j

)
≤ μ1

m

((
∪k−1
j=1O

l
j

)δ
)

≤ μ1
n

(
∪k−1
j=1O

l
j

)
+ δ, r, k ∈ N.

Hence, we infer that
∣
∣
∣a

1,l,n
k,r − a1,l,m

k,r

∣
∣
∣ ≤ δ, r, k, l ∈ N, n,m ≥ n0. (C.5)

The second inequality in Eq. C.4 can be proved in a similar way.
Since the sequence (μn)n∈N is tight on U1 × U2, we can find a compact set K1 × K2

such that
sup
n
(μn ((U1 × U2) \ (K1 ×K2))) ≤ ε

2
.

Let us fix l ∈ N. Since the set K1 ×K2 is compact, from the covering (Olk ×Clr )k∈N,r∈N of
U1×U2 there exists a finite covering (Olk×Clr )k=1,··· ,K,j=1,··· ,R ofK1×K2. Next, observe
that the estimate (C.4) is uniformly for all n,m ≥ n0. Therefore we can use estimate (C.4)
with δ = ε/2(KR) and infer that

K,R∑

k,r=1

Leb
(
I
l,n
k,r # I l,mk,r , n,m ≥ n0

)
≤ ε

2
.

8ρ denotes the Prokhorov metric on measurable space (U,U), i.e., ρ(F,G) := inf{ε > 0 : F(Oε) ≤
G(O)+ ε,O ∈ U}.
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Moreover, since

Leb
({
ω ∈ [0, 1)× [0, 1) : Zn,l(ω) �= Zm,l(ω), n,m ≥ n0

}) ≤
≤
∑

k,r=1

Leb
(
I
l,n
k,r # I l,mk,r , n,m ≥ n0

)
+ Leb ((U1 × U2) \ (K1 ×K2)) ,

it follows that

Leb
({
ω ∈ [0, 1)× [0, 1) : Zn,l(ω) �= Zm,l(ω), n,m ≥ n0

}) ≤ ε

2
+ ε

2
.

Summarizing, we proved that for any ε > 0 there exists a number n0 ∈ N such that{
ω ∈ [0, 1)× [0, 1) | Zn,l(ω) �= Zm,l(�), n,m ≥ n0

} ≤ ε. From [34, Lemma 9.2.4] we
infer (ii).

Proof of (iii) Let us denote

J
l,n
k :=

[
k−1∑

m=1

PMU1
n (O

l
k),

k∑

m=1

PMU1
n (O

l
k)

)

, k = 1, · · · , N1
l . (C.6)

Since the laws of π1 ◦ χn and π1 ◦ χn, n,m ∈ N are equal, J l,nk = J
l,m
k , n,m ∈ N. Let us

denote these (equal) sets J lk . Since for each J lk we can find a set Olk satisfying (C.6) for all
n ∈ N, we infer that for any m ∈ N,

Z1
n,m(ω̄) = Z1

1,m(ω̄), ω̄ ∈ �, n ∈ N.

Let n ∈ N be fixed. Considering the limit of the sequence (Z1
n,m(ω̄))m∈N as m → ∞ and

keeping in mind that (Z1
n,m(ω̄))m∈N is a Cauchy sequence implies the assertion (iii).

Appendix D: A Tightness Criteria in D([0, T ]; Y)

Let Y be a separable and complete metric space and T > 0. The space D([0, T ];Y ) denotes
the space of all right continuous functions x : [0, T ] → Y with left limits. The space of
continuous function is usually equipped with the uniform topology. But, since D([0, T ];Y )
is complete but not separable in the uniform topology, we equip it with the J1-Skorohod
topology, i.e., the finest among all Skorohod topologies, with which D([0, T ];Y ) is both
separable and complete. For more information about Skorohod space and its topology we
refer to Billingsley’s book [5] or Ethier and Kurtz [36]. In this appendix we only state the
following tightness criterion which is necessary for our work.

Theorem D.1 9 A subset C of the space P (D([0, T ];Y )) of all Borel probability measures
on D([0, T ];Y ) is tight, iff
a.) for any ε > 0 there exists a compact set K ⊂ Y such that for every F ∈ C

F ({x ∈ D([0, T ];Y ) : x(t) ∈ K ∀ t ∈ [0, T ]}) ≥ 1 − ε;

9Compare with [5, Chapter III, Theorem 13.5, p. 142].
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b.) there exist two real numbers γ > 0, c > 0 and a nondecreasing continuous function
g : [0, T ] → R+ such that for all t1 ≤ t ≤ t2, n ≥ 0 and λ > 0

F ({x ∈ D([0, T ]; Y ) : |x(t)− x(t1)| ≥ λ, |x(t)− x(t2)| ≥ λ})
≤ c

λ2γ [g(t2)− g(t1)] , ∀F ∈ C.

Corollary D.2 Let {xn : n ∈ N} be a sequence of Y -valued càdlàg processes, each of
the process defined on a probability space (�n,Fn,Pn). Then the sequence of the laws of
{xn : n ∈ N} is tight on D([0, T ];Y ) if
(a) for any ε > 0 there exists a compact set Kε ⊂ Y such that

Pn (xn(t) ∈ Kε, t ∈ [0, T ]) ≥ 1 − ε, ∀n ∈ N;
(b) there exist two constants c > 0 and γ > 0 and a real number r > 0 such that for all

θ > 0, t ∈ [0, T − θ ], and n ≥ 0

En sup
t≤s≤t+θ

|xn(t)− xn(s)|r ≤ c θγ .

Proof Corollary D.2-(a) and the Chebyshev inequality imply Theorem D.1-(a). Now fix
t1 ≤ t ≤ t2. Then

Pn (|xn(t)− xn(t1)| ≥ λ, |xn(t)− xn(t2)| ≥ λ)
≤ Pn

(

sup
t1≤s≤t2

|xn(s)− xn(t1)| ≥ λ
)

.

Estimating the RHS by the Chebyshev inequality and using Corollary D.2-(b) leads to
Theorem D.1-(b). This completes the proof of the corollary.

Appendix E: An Inequality

Let Y be a Banach space with norm |·|, T > 0 and f : (0, T ] → Y is a Bochner integrable
function such that

∫ T

0
|f (s)|p ds <∞.

For fixed n let Ik = ( k2n ,
k+1
2n ] and f̂n : (0, T ] → Y be the function defined by f̂n(s) = 0

for s ∈ I0 and f̂n(s) = 2n
∫

Ik
f (t) dt for s ∈ Ik+1, k = 0, 1, 2, · · · . We have the following

facts.

Proposition E.1 (i) If f belongs to Lp(0, T ;Y ), then f̂n ∈ Lp(0, T ;Y ) for each n.
(ii) Let α ∈ (0, 1

p
). Then, there exists C > 0 such that for all f ∈ Wα,p(0, T ;Y ) and n
∥
∥
∥f (s)− f̂n(s)

∥
∥
∥
Lp(0,T ;Y ) ≤ C2−nα ‖f ‖Wp,α(0,T ;Y ) . (E.1)
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Proof Without loss of generality we take T = 1 and set tnj = j
2n . We have

∫ 1

0
|f̂n(s)|pds =

2n−1∑

j=1

∫ tn
j+1

tnj

|f̂n(s)|pds

=
2n−1∑

j=1

1

2n
|f̂n(tnj )|p.

From this last equation and the definition of f̂ we derive

∫ 1

0
|f̂n(s)|pds ≤

2n−1∑

j=1

1

2n

∣
∣
∣
∣2
n

∫ tnj

tn
j−1

f (s)ds

∣
∣
∣
∣

p

≤
2n−1∑

j=1

∫ tnj

tn
j−1

|f (s)|pds.

Therefore
∫ 1

0
|f̂n(s)|pds ≤

∫ 1− 1
2n

0
|f (s)|pds,

which ends the proof of (i).
Next we will prove item (ii). Let s ∈ [0, 1], α ∈ (0, 1

p
) and f ∈ Wα,p(0, T ;Y ). Since the

intervals Ik , k = 0, 1, ..., 2n−1, form a partition of [0, 1] then either s ∈ I0 or s ∈ (2−n, 1].
In one hand if s ∈ (2−n, 1] then there exists k ≥ 1 such that s ∈ Ik . In this case we have by
Hölder’s inequality that

|f (s)− f̂n(s)| ≤ 2n
∣
∣
∣
∣

∫

Ik−1

(f (s)− f (r))
|s − r| 1

p
+α × |s − r| 1

p
+α
dr

∣
∣
∣
∣

≤ 2n
[∫

Ik−1

|s − r| p
p−1 (1+α)−1

dr

] p−1
p
[∫

Ik−1

|f (s)− f (r)|p
|s − r|1+pα dr

] 1
p

≤ 2−npα
[∫

Ik−1

|f (s)− f (r)|p
|s − r|1+pα dr

] 1
p

.

Therefore

∫ 1

2−n
|f (s)− f̂n(s)|pds ≤ 2−npα

∫ 1

2−n

[2n−1∑

k=1

∫

Ik−1

|f (s)− f (r)|p
|s − r|1+pα dr

]

ds

≤ 2−npα
∫ 1

0

∫ 1

0

|f (s)− f (r)|p
|s − r|1+pα dr ds ≤ 2−npα‖f ‖p

Wα,p(0,T ;Y ). (E.2)

On the other hand, by making use of the Hölder Inequality we obtain

∫ 2−n

0
|f (s)− f̂n(s)|p ds =

∫ 2−n

0
|f (s)|p ds

≤ 2−npα
[∫ 2−n

0
|f (s)|qds

] p
q

,
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where q = p
1−pα . Since Wα,p(I0) ⊂ Lr(I0) for any r ∈ [1, p

1−pα ] we infer from the last
inequality that there exists C > 0 such that

∫ 2−n

0
|f (s)− f̂n(s)|pds ≤ C2−npα‖f ‖p

Wα,p(0,T ;Y ). (E.3)

Now inequality (E.1) follows from inequalities (E.2) and (E.3). This completes the proof of
our proposition.
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13. Brzeźniak, Z., Hausenblas, E.: Maximal regularity of stochastic convolution with Lévy noise. Probab.
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23. Da Prato, G.: Applications croissantes et équations d’évolution dans les espaces de Banach. Academic
Press, London (1976)

24. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, Volume 44 of Encyclopedia of
Mathematics and Its Applications. Cambridge University Press, Cambridge (1992)
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equations driven by Lévy noise on separable Banach spaces. Stochastics 78, 189–212 (2006)
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