Supplementary File 2

For the calculation of Average Nucleotide Identity (ANI) values, the program, JSpecies (Richter and RossellóMóra, 2009), was employed. Pair-wise comparisons between genomes were made by artificially sectioning each query genome into fragments consisting of 1020 nucleotides and then comparing these sections to the reference genome (Goris et al., 2007, Richter and Rosselló-Móra, 2009) using BLAST. Fragments with more than 30\% identity, as calculated across the entire segment, that aligned over more than 70% of the length of the fragments were considered homologous and used for further analysis (Goris et al., 2007). The percentage identity values obtained for the fragments were then averaged across all the fragments to obtain the ANI values between the two genomes (Goris et al., 2007). For the Pantoea dataset four isolates of Pan. ananatis, including the type strain, was compared to the genome of the type strain of Pan. allii. The ANI values for the Paraburkholderia isolates were obtained from published data (Steenkamp et al., 2015). For the Escherichia dataset two representatives for each of the Clades III, IV and V were compared to the type strain of E. coli.

References

GORIS, J., KONSTANTINIDIS, K. T., KLAPPENBACH, J. A., COENYE, T., VANDAMME, P. \& TIEDJE,
J. M. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. International Journal of Systematic and Evolutionary Microbiology, 57, 81-91.
RICHTER, M. \& ROSSELLÓ-MÓRA, R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences, 106, 19126-19131.
STEENKAMP, E. T., VAN ZYL, E., BEUKES, C. W., AVONTUUR, J. R., CHAN, W. Y., PALMER, M., MTHOMBENI, L. S., PHALANE, F. L., SEREME, T. K. \& VENTER, S. N. 2015. Burkholderia kirstenboschensis sp. nov. nodulates papilionoid legumes indigenous to South Africa. Systematic and Applied Microbiology, 38, 545-554.

Genomes used

Isolate	Accession
Pantoea ananatis LMG 2665 T	JMJJ00000000
Pantoea ananatis LMG5342	HE617160.1 HE617161.1
Pantoea ananatis AJ13355	AP012032.2 AP012033.1
Pantoea ananatis B1-9	CAEI00000000
Pantoea allii LMG 24248 T	MLFE00000000
Paraburkholderia kirstenboschensis KB 15 T	JRZC00000000
Paraburkholderia kirstenboschensis Rau2d2	JRTU00000000
Paraburkholderia caledonica NBRC 102488	BAYE00000000
Escherichia coli DSM 30083 T	AGSE000000000
Escherichia Clade III TW09231	AEJW000000000
Escherichia Clade III TW09276	AEJV00000000
Escherichia Clade IV TW14182	AEJZ00000000
Escherichia Clade IV H605	Broad Institute
Escherichia Clade V E1118	Broad Institute
Escherichia Clade V TW09308	AEME00000000

Average Nucleotide Identity (ANI) values calculated with JSpecies between four Pan. ananatis

	Pan. ananatis AJ13355	Pan. ananatis LMG 5342	Pan. ananatis B1-9	Pan. ananatis LMG 2665	Pan. allii LMG 24248
Pan. ananatis AJ13355	---	99	99.19	99.23	87.75
Pan. ananatis LMG 5342	99.07	---	99.12	99.04	87.74
Pan. ananatis B1-9	99.22	99.1	---	99.21	87.79
Pan. ananatis LMG 2665	99.22	98.97	99.18	---	87.69
Pan. allii LMG 24248	88.12	88.1	88.11	88.21	---

isolates and the type strain of Pan. allii

Average Nucleotide Identity (ANI) values calculated with JSpecies between two Par.
kirstenboschensis isolates and Par. caledonica

	Par. kirstenboschensis KB15	Par. kirstenboschensis Rau2D2	Par. caledonica NBRC102488
Par. kirstenboschensis KB15	---	96.37	92.11
Par. kirstenboschensis Rau2D2	97.18	---	91.98
Par. caledonica NBRC102488	92.65	91.76	---

Average Nucleotide Identity (ANI) values calculated with JSpecies between the E. coli type strain and representatives of each of the Escherichia clades

	E. coli DSM30038	Clade III TW09231	Clade III TW09276	Clade IV H605	Clade IV TW14182	Clade V E1118	Clade V TW09308
E. coli DSM30038	---	91.71	91.77	92.13	91.95	90.68	90.87
Clade III TW09231	91.82	---	98.39	96.4	96.3	92.08	92.15
Clade III TW09276	91.92	98.31	---	96.45	96.31	92	92.01
Clade IV H605	92.27	96.3	96.37	---	98.96	91.96	91.95
Clade IV TW14182	92.24	96.29	96.32	99.06	---	91.95	91.97
Clade V E1118	90.83	92.06	92.04	92.04	91.89	---	99.37
Clade V TW09308	90.89	92.09	92.02	91.95	91.88	99.3	---

