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ABSTRACT 

When there are large temperature differences between the 

wall and the fluid, the friction factors and heat transfer 

coefficients of forced laminar convection with variable fluid 

properties are different from the theoretical results deduced 

with constant property assumptions. However, most existing 

equations for variable properties are obtained by regression 

analysis of experimental data with a specific kind of fluid, and 

cannot reflect the property-temperature sensitivities at different 

fluid temperatures and for different kinds of liquid. In this 

paper, the governing equations of forced laminar convection of 

ethanol and water are numerically solved using CFD method 

and the results are used to verify the deduced equations. 

Compared with dynamic viscosity, the variations of density, 

thermal conductivity and specific heat capacity in the cross 

section can be neglected. A new explicit equation of friction 

factor and a new explicit equation of heat transfer coefficient 

for forced liquid laminar convection with variable properties 

heated in straight tubes are obtained. The deduced equations 

show good predictions of friction factors and Nusselt numbers 

for different kinds of liquid. Based on the equations, a 

dimensionless parameter is derived to predict the heat flux 

effects and viscosity-temperature sensitivities on friction 

factors and heat transfer coefficients. 

 

INTRODUCTION 
Conventional friction factor and heat transfer coefficient 

equations of laminar flow in straight tubes are deduced on the 

basis of constant property assumptions. However, when the 

temperature difference, ,w bT T T   is large, the properties 

show large variations in the cross section. Equations deduced 

from constant property assumption will deviate largely from the 

experimental data [1]. As for fluid flow with heating conditions, 

due to the decrease of dynamic viscosity with the increase of 

temperature near the wall region, the wall shear stress is 

decreased and the heat transfer coefficient is increased. 

Two methods were used to take account of variable property 

effects on pressure drops and heat transfer coefficients of 

forced laminar flow in straight tubes. One method is to still use 

the constant property equations but the properties should be 

calculated at the effective reference temperature. Deissler [2] 

numerically investigated fully developed gas and liquid-metal 

laminar flow with variable properties and proposed a linear 

function to calculate the reference temperature, which was a 

function of wT and bT .  

The other method which is widely used, is to correct the 

constant property assumption equations by using a property 

ratio correction factor. Sieder and Tate [3] measured the wall 

temperatures of oil laminar flow heated in straight tubes and 

proposed an equation to calculate the heat transfer coefficient 

with the property ratio correction factor of  
0.14

b w  . Herwig 

[4] analysed the property variation effects on pressure drops 

and heat transfer coefficients of laminar flow in straight tubes 

heated with low heat fluxes and deduced equations to calculate 

the friction factors and heat transfer coefficients.  

To the authors’ knowledge, there are few explicit equations 

to calculate friction factors and heat transfer coefficients of 

laminar convection with variable properties. The correction 

factors of the equations are not consistent. Furthermore, most 

existing equations are obtained by regression analysis of 

experimental data and cannot accurately reflect the property-

temperature sensitivities at different fluid temperatures and 

sensitivities of different kinds of fluids. In this paper, the 

dynamic viscosity is approximated using first order Taylor 

series and explicit equations are obtained to calculate friction 

factors and heat transfer coefficients of forced liquid laminar 

convection heated in straight tubes.  

  

 

NOMENCLATURE 
Notation   
f [-] friction factor 

Nu [-] Nusselt number  

w
q  [kW m-2] heat flux at the wall  

0r  [m] tube radius  

Re [-] Reynolds number  
  [-] dimensionless parameter 

S T  [-]    0
2

wS T b bb
r q T     ,  

T [K] temperature 

T  [K] temperature difference, = w bT T T  ,  

U [m s-1] velocity magnitude in the axial direction  

Greek letters   
  [-] deviation 

  [W m-1 K-1] molecular thermal conductivity  
  [kg s-1 m-1] dynamic viscosity  
  [kg m-3] density  
  [Pa] shear stress  
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Subscript   
b [-] bulk  

c [-] constant property 

CFD [-] numerical results 
l [-] local  

m [-] area average 
v [-] variable property 

w [-] wall  

  

CFD ANALYSIS 
Heat transfer of forced laminar flow of water and ethanol 

with variable properties is simulated by Fluent software. The 

numerical results are used to investigate the liquid property 

variations in the radial direction and are used to verify the 

derived equations. 

The governing equations of continuity, momentum and 

energy are solved by Fluent software with the finite volume 

method. The fluid properties are calculated by NIST package 

provided by Fluent. The coupling between velocity and 

pressure is resolved by SIMPLE algorithm. The convection 

terms are discretized by QUICK methods.  

A schematic of the physical model and grids are shown in 

Fig. 1. No slip conditions and constant heat flux are imposed at 

the tube walls. The outlet boundary condition is pressure outlet 

(5MPa). The inlet boundary condition is mass flow inlet and the 

mass flux for every case is set to be 75kg/m2-s. Uniform 

velocities and temperatures are set at the inlet. Laminar 

convection with constant properties at inlet temperature is also 

simulated to determine the entry length. The entry length is 

determined when the heat transfer coefficient variation in the 

axial direction  h z  is lower than 1%. The detailed boundary 

conditions are shown in Table 1. The radius is 2 mm.  

 

Figure 1 Schematic of the physical model and grids 

Table 1 Boundary conditions 

Cases Liquid 

Tube 

length 

(mm) 

Inlet 

temperature 

(K) 

Heat flux 

(kW/m2) 

1 water 1200 275 40 

2 ethanol 2000 255 12 

3 ethanol 2000 255 8 

 

The grid independence is checked with meshes of different 

distributions. Case 1 is simulated with meshes of 50  600 

(radial axial), 100 1200 and 200 2400 and the numerical 

results of friction factors and heat transfer coefficients are 

compared. The differences of numerical results with meshes of 

100 1400 and 200 5000 are lower than 0.1%, which means 

the results with the mesh of 100 1400 is independent of grid.  

The numerical models are validated by the friction factor and 

the Nusselt number for laminar flow with constant properties. 

In the fully developed flow regime, the friction factor 

deviations from the theoretical value of 64 Reb and the Nusselt 

number deviations from the theoretical value of 4.364 are both 

less than 1%. 

EQUATION DEDUCTION 
The property distributions in the radial direction of case 1 are 

shown in Fig. 2. The cross section is selected in the fully 

developed flow regime with 389.01bT K and 338.84 .wT K  

In Fig. 2, the physical properties are normalized by Eq. (1). 

 
l b

    (1) 

where l means the local physical properties of densities, 

dynamic viscosities, thermal conductivities and specific heats 

and b means the properties at .bT  Fig. 2 shows that the 

dynamic viscosity variations are much more dramatic than the 

variations of density, thermal conductivity and specific heat. 

Then the analysis of all property variation effects on pressure 

drops and heat transfer performances for water can be 

simplified to be the analysis of dynamic viscosity variation 

effects. Actually, many researchers [2, 3, 5] have concluded 

that for liquid convection, the variations of density, thermal 

conductivity and specific heat can be assumed invariant 

compared with the larger variations of dynamic viscosities. 

 

 
Figure 2 Normalized physical property distributions in the 

radial direction 

According to researchers [2, 6], whether the properties are 

constant or variable, velocity distributions can be obtained by 

solving Eq. (2) and temperature distributions can be obtained 

by solving Eq. (3). 
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For constant property assumptions, the velocity distribution 

calculated by Eq. (4) and temperature distribution calculated by 

Eq. (5) can be obtained by solving Eq. (2) and (3). 

  2 2
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                         (5) 
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However, for variable property assumption, Eq. (2) and (3) 

are too complicated to get theoretical solutions. Kays et al. [5] 

proposed to use the constant property temperature distribution 

to calculate the dynamic viscosity distribution. Then Eq. (2) 

and Eq. (3) are solved to get new velocity and temperature 

distributions. The new approximated temperature distribution 

will be used for further iterations. However, this method can 

only get the numerical results for specific conditions due to the 

complex viscosity-temperature function. In this paper, the 

function between the reciprocal of the dynamic viscosity and 

temperature is approximated using first order Taylor series and 

the reciprocal of dynamic viscosity distribution in the cross 

section is obtained using the constant property temperature 

distribution. With the first order approximation, explicit 

equations for the friction factors and the Nusselt number are 

obtained. 

 

Liquid physical properties depend on pressures and 

temperatures. However, Hervig [4] has found that the physical 

properties depend much on temperatures than on pressures and 

the pressure effects on dynamic viscosity variations in the 

radial direction can be neglected. Setting the bulk temperature 

to be the reference state, the function between the reciprocal of 

dynamic viscosity and temperature can be approximated using 

the first order Taylor series.  

   
11 1

b

b b

d
T T

dT  

 
    

 
                                  (6) 

With Eq. (6), the constant property temperature distribution 

shown in Eq. (5) is used to calculate the reciprocal of dynamic 

viscosity distribution. The reciprocal of dynamic viscosity 

distributions are given by Eq. (7). 
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         

           (7) 

Combine Eq. (2) and Eq. (7), the velocity distribution can be 

deduced as, 
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        (8) 

With Eq. (9), the relationship between the averaged velocity 

magnitude and the wall shear stress can be expressed as Eq. 

(10).  
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Combine Eq. (3) and Eq. (8), the temperature distribution 

can be obtained as Eq. (11). 

 

2 4

0 0

0 0

2

0
2 4 6

0 0

0 0
8

0

3 1 1

16 4 16

85 1

2304 32

1 7 1

384 72

1

768

w w
w

b b m

w w

b m b

q r r r r
T T

U r r

r

r

q r r d r r

U dT r r

r

r



 



 

    
       

     
  

   
  

        
         

       
  
  

  

               (11) 

Combine Eq. (11) and Eq. (12), the bulk temperature can be 

expressed by Eq. (13), 
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 (13) 

According to Eq. (10), the Darcy friction factor for variable 

properties can be deduced as: 
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According to Eq. (13), the Nusselt number can be deduced as, 
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RESULTS AND DISCUSSION 
Temperature effects on liquid viscosity variations have been 

widely investigated [7-10]. In this paper, forced laminar 

convections of water and ethanol are investigated to verify the 

deduced equations. In reference [11], Eq. (16) is used to 

calculate dynamic viscosities of ethanol and water. Then, 

 1
b

d dT can be calculated by Eq. (17). 

  21
1000

A B T CT DT
e



   
                        (16) 

 21 1
2 bb

bb

d
B T C DT

dT  

 
   

 
                       (17) 

where A, B, C and D are constants and are shown in Table 2. 

Table 2 Constants for Eq. (16) 

Liquids A B C D 

water -24.71 4209 0.04527 -3.376E-5 

ethanol -6.21 1614 0.00618 -1.132E-5 

 

Velocity distributions in the cross section calculated by the 

deduced equation (Eq. (8)) and distributions calculated by the 

constant property assumption equation (Eq. (4)) are compared 
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with the numerical results. Velocity distributions of case 1 

(water, 50.18T K  and 338.84
b

T K ) are shown in Fig. 3, 

distributions of case 2 (ethanol, 62.31 ,T K   350.31
b

T K ) are 

shown in Fig. 4. Figures 3 and 4 show that, when T is higher 

than 50 K, the velocities calculated by the constant property 

assumption equations are much lower than the numerical 

results, while the deduced equations agree well with the 

numerical results.  

 

 
Figure 3 Velocity and temperature distribution in the cross 

section of case 1 (water) 

 
Figure 4 Velocity and temperature distribution in the cross 

section of case 2 (ethanol) 

 

Temperature distributions in the cross section calculated by 

the present deduced equation (Eq. (11)) and distributions 

calculated by the constant property assumption equation (Eq. 

(5)) are compared with the numerical results. Temperature 

distributions of case 1 are shown in Fig. 3, distributions of case 

2 are shown in Fig. 4. Figures 3 and 4 show that the 

temperatures calculated by the constant property assumption 

equations are much lower than the numerical results. Near the 

axial region, the temperatures calculated by the deduced 

equation are lower than the numerical results. However, the 

deduced equation shows better predictions than the constant 

property equation. Comparing with the velocity deviations of 

Eq. (4) from numerical results, the temperature deviations of Eq. 

(5) are much lower. Because the dynamic viscosity effects on 

velocity distributions are direct while the effects on temperature 

distributions are indirect [12]. The variable dynamic viscosities 

first distort the velocity distribution, then the temperature 

distributions are influenced by the distorted velocity 

distributions. 

Friction factors calculated by the deduced equation (Eq. (14)) 

and friction factor calculated by the constant property 

assumption (Eq. (18)) are compared with numerical results. 

Friction factor versus bulk temperature variations of case 1 

(water) are shown in Fig. 5 and variations of case 2 (ethanol) 

are shown in Fig. 6. Figures 5 and 6 show that friction factors 

predicted by the constant property assumption equation are 

much higher than the numerical results, while the deduced 

equations show good prediction. In Fig. 5, the maximum 

deviation of Eq. (18) is 44.05% while the maximum deviation 

of Eq. (14) is 4.17%. In Fig. 6, the maximum deviation of Eq. 

(18) is 67.68% while the maximum deviation of Eq. (14) is 

1.14%. Figures 5 and 6 show that the deviations of the constant 

property assumption equation from the numerical results 

decrease with the increase of bulk temperature, which is caused 

by the decreasing of  1d dT with the increasing of bulk 

temperatures. 
 64 Rec bf                                   (18) 

 

 
Figure 5 Friction factor versus bulk temperature variations of 

case 1 (water) 

 

 
Figure 6 Friction factor versus bulk temperature variations of 

case 2 (ethanol) 

 

Nusselt numbers calculated by the deduced equation (Eq.(15)) 

and Nusselt numbers calculated by the constant property 

assumption equation (Eq. (20)) are compared with numerical 

results. The deviations of Eq. (20) from the numerical 

results, c , and deviations of Eq. (15), v , are defined by Eq. 

(19), 
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CFD c CFD v

c v

CFD CFD

Nu Nu Nu Nu

Nu Nu
 

 
                       (19) 

where CFDNu is the numerical result. The deviations of case 1 

(water) are shown in Table 3 and deviations of case 2 (ethanol) 

are shown in Table 4. Tables 3 and 4 show that Nusselt 

numbers predicted by the constant property assumption 

equations are lower than numerical results while the deduced 

equations show good predictions. For case 1 (water), the 

maximum deviation of Eq. (20) is 12.17% while the maximum 

deviation of Eq. (15) is 1.95%. For case 2 (ethanol), the 

maximum deviation of Eq. (20) is 16.69% while the maximum 

deviation of Eq. (15) is 1.09%. Tables 3 and 4 show that the 

deviations of constant property assumption equation decrease 

with the increase of bulk temperatures, which is caused by the 

decrease of  1d dT with the increase of bulk temperatures. 

The Nusselt number deviations of the constant property 

assumption equation are much lower than the friction factor 

deviations. Because the dynamic viscosity effects on velocity 

distributions are direct while the effects on temperature 

distributions are indirect [12].  

 
48

11
cN u                               (20) 

Table 3 Nusselt number versus bulk temperature variations of 

case 1 (water) 

bT  T  CFDNu  c  v  

326.07 49.60 4.97 12.17% 1.38% 

351.58 50.45 4.72 7.61% 1.09% 

364.30 50.62 4.66 6.36% 1.43% 

389.61 50.99 4.58 4.65% 1.68% 

414.68 51.64 4.52 3.37% 1.95% 

 

Table 4 Nusselt number versus bulk temperature variations of 

case 2 (ethanol) 

bT  T  CFDNu  c  v  

302.88  56.52  5.09  16.69% 1.09% 

315.45  58.50  5.00  14.64% 0.19% 

327.53  59.99  4.96  13.59% 0.71% 

350.31  62.31  4.92  12.73% 0.86% 

371.42  64.28  4.91  12.46% 0.71% 

 

Figures 5 and 6 show that the deviations of the constant 

property assumption equations from the numerical results 

decrease with the increase of bulk temperature, this is caused 

by the decrease of viscosity temperature sensitivity with the 

increase of temperature. With the decrease of the viscosity 

temperature sensitivities, the distortions of the velocity profile 

decrease. Kumar and Mahulikar [13] defined a dimensionless 

parameter of S T  to evaluate the viscosity temperature 

sensitivity.  

Comparing Eq. (18) with Eq. (14), the friction factor 

deviations between friction factors calculated by the constant 

property assumption equation and factors calculated by the 

deduced equation can be expressed by Eq. (21). Comparing Eq.  

(20) with Eq. (15), the Nusselt number deviations can be 

expressed by Eq. (22).  

 0
1

4

c v w b

f

v b b b

f f q r d

f dT


 



  
   

 
                     (21) 

 
 

2

2

3 11 73 168

1+

v c

Nu

v

Nu Nu

Nu

 




 
                       (22) 

Eq. (21) shows that the friction factor deviations decrease 

with the decrease of  . Calculate Nud d  with Eq. (22), we 

can find that when  is larger than -0.45, Nu  increase with the 

increase of  . The physical value of  is always larger than -

0.45, so Nu  always increase with the increase of  . 

Due to the decreasing of  1d dT with the increasing 

temperature,   decreases with the increasing of bulk 

temperature. Then the friction factor deviations and the Nusselt 

number deviations decrease with the increase of bulk 

temperature, as shown in Figures 5 and 6 and Tables 3 and 4. 

When the properties are assumed to be constant,  will be 

zero, the deduced equations will regressed to be the constant 

property assumption equations.  

  increases with the increasing of heat flux. Laminar 

convection of ethanol with heat flux of 8kW/m2 (case 3) is 

simulated and the results are used to evaluate the heat flux 

effects. The friction factor variations of case 2 and case 3 are 

shown in Fig. 7. Fig. 7 shows that the friction factor deviations 

of the constant property assumption equations increase with the 

increase of heat flux. 

 

 
Figure 7 Friction factor versus bulk temperature of case 2 

(12kW/m2) and case 3 (8kW/m2) 

 

Divide Eq. (22) by Eq. (21), the ratio, f Nu
  can be deduced as, 
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when  is larger than -0.45, the minimum value of f Nu
  is 

larger than 3.43. That is why the friction factor deviations of 

the constant property assumptions are larger than Nusselt 

number deviations. 

 

CONCLUSION  

The existing equations for friction factors and heat transfer 

coefficients of forced laminar convection with variable fluid 

13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

378



    

properties are obtained by regression analysis of experimental 

data with a specific kind of fluid. Furthermore, they cannot 

reflect the property-temperature sensitivities at different fluid 

temperatures and sensitivities of different kinds of fluids. The 

correction factors of these equations are also not consistent. In 

this paper, the function between the reciprocal of dynamic 

viscosity and temperature is approximated using first order 

Taylor series. Equations for friction factors and heat transfer 

coefficients of forced liquid laminar flow without entry effects 

are obtained based on the approximation. Heat transfer of 

laminar flow of water and ethanol in straight tubes with 

constant heat flux are simulated to validate the deduced 

equations. The main conclusions are: 

(1) The dynamic viscosity variations in the cross section are 

much larger than the variations of thermal conductivity, 

density and specific heat. Based on a modified reciprocal 

of dynamic viscosity distribution in the cross section, new 

explicit friction factor and heat transfer coefficient 

equations of forced liquid laminar convection are obtained.  

(2) The deduced equations show better predictions of friction 

factors and Nusselt numbers for different kinds of fluids 

and at different bulk temperatures. 

(3) A dimensionless parameter of   is defined to evaluate 

the dynamic viscosity variation effects on pressure drops 

and heat transfer coefficients. The physical property 

variation effects increase with the decrease of  , which 

means the variation effects increase with the decreasing of 

bulk temperature and with the increasing of heat flux. 
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