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ABSTRACT 

Numerous studies reveal that the heat transfer capability of 
thermal systems has been significantly enhanced with the use of 
nanofluids. On the other hand, the hazardous nature of the 
nanoparticles is evident. Recent studies clearly indicate that the 
nanoparticles affect the human health as well as the 
environment. Therefore environmentally safe bio-nanofluids 
are currently under investigation. In this study, a novel heat 
transfer fluid with bio-nanomaterial is prepared and its natural 
convection heat transfer characteristics are studied. The bio-
nanomaterial considered in this study is powdered mango bark.  
A two-step process is employed to prepare stable nanofluids. 
The effect of particles concentration, the temperature difference 
between the hot and cold side, and Rayleigh number on the 
natural convection heat transfer process is studied. The 
experimental results show that the natural convection process is 
deteriorated with the addition of mango nanoparticles in de-
ionized water. 

 
INTRODUCTION 

     Nanofluids have been under research in many areas such as 
heat transfer, energy, biomedical, pollution control etc., since 
the nanofluids have considerable advantages over the 
traditional fluids. After the introduction of nanofluids, research 
in the direction of heat transfer enhancement is revitalized as 
the fluid possesses significant enhancement in thermo physical 
properties over traditional fluids. It is well-known that the 
nanofluid is a high performance fluids and a mixture of 
traditional fluids with nano-sized solid particles [1]. The 
exceptional thermo-physical properties such as thermal 
conductivity, viscosity, surface tension and density are the 
biggest advantage of using nanofluids. A wide range of 
research has been done in the past few decades concerning the 
preparation, stability and measurement of thermo-physical 
properties [2, 3], which showed encouraging factors in the 
nanofluids which is useful for thermal systems. Also known 
that the nanofluids play a major role in enhancing the 
fundamental heat transfer process such as conduction and 
convection (both natural and forced) since the heat transfer is 
related to the thermo-physical properties. Among the heat 

transfer processes, natural convection is the important heat 
process since it plays a key role in many industrial applications. 

NOMENCLATURE 

 
Cp [J/kg K] Specific heat 
D [m] Diameter 
g [m/s2] Gravitational acceleration due to gravity 
h [W/m2 K] Heat transfer coefficient 
k
 

[W/m K] Thermal conductivity 
K [m2] Permeability 
l [m] Characteristics length 
m [kg/s] Mass flow rate 
Nu [-] Nusselt number  
Ra [-] Raleigh number  
T [K] Temperature 
 
Special characters 
µ [kg/m s] Viscosity 
β [-] Thermal Expansion coefficient  
ρ [kg/m3] Density 
 
Subscripts 
bf  Base fluid  
c  Cold  
f  Fluid   
h  Hot  
i  Inlet  
nf  Nanofluids   
o  Outlet  

      To study the natural convection process experimentally, 
Putra et al. [4] studied the heat transfer characteristics of 
nanofluids using water-based Al2O3 and Cu nanofluids in a 
cylindrical enclosure. A horizontal cylinder with one end is 
heated and another end is cooled was used to examine the heat 
transfer characteristics. They found that the heat transfer is 
decreased systematically and it depends on the particle density, 
concentration and aspect ratio. Nnanna [5] conducted an 
experimental study with water-based Al2O3 nanofluids in a 
differentially heated square cavity in order to estimate the range 
of volume fraction that improves the heat transport and to study 
the effect of volume fraction on the Nusselt number. Their 
results show that the nanoparticle volume fraction 0.2 ≤ � ≤ 2% 
augments the heat transfer and � ≥ 2% reduces the heat 
transfer. Wen and Ding [6, 7] performed a natural convection 
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heat transfer study in a cavity made up of two cylindrical shape 
aluminum disc using aqueous Titanium Oxide nanofluids. The 
transient Raleigh number and the concentration of nanofluids 
were varied in the range 1 x 104 ≤ Ra ≤ 3.5 x 104 and 0.3 ≤ � ≤ 
0.8 respectively.  They found that the heat transfer coefficient 
was decreased systematically with increase in volume 
concentration in both transient and steady state. Ho et al. [8] 
conducted a natural convection experiment with different size 
of cavities using alumina nanofluids. The Raleigh number and 
volume fraction of the experiment are varied in the range of 
6.21 x 105 ≤ Ra ≤ 2.56 x 108 and 0.1 ≤ � ≤ 4 respectively. It 
was shown that the heat transfer is deteriorated systematically 
for the nanofluids concentration above 2 Vol% in the entire 
range of Ra number. However, the nanoparticle concentration 
of 0.1 Vol% nanofluid enhanced the heat transfer about 18% at 
high Ra number in the larger size cavity.  
     Mahrood et al. [9] developed a cylindrical cavity with a 
provision to adjust the aspect ratio of the cavity and tested with 
water-based Al2O3 and TiO2 nanofluids stabilized with 
carboxymethyl cellulose. The Raleigh number and volume 
fraction of nanoparticle are varied in the range of 4 x 106 ≤ Ra 
≤ 3 x 107 and 0.1 ≤ � ≤ 1.5 respectively. Their results show that 
the heat transfer was enhanced significantly with low 
concentration of nanofluids. However, nanoparticle 
concentration � ≥ 1vol% showed an inferior heat transfer 
ability compared to the base fluid. Also an existence of 
optimum concentration for maximum heat transfer for the 
Al2O3 and TiO2 nanofluids was found and it lies in between 0.2 
and 0.1 vol% respectively. Heris et al. [10] developed a cubic 
cavity to study the effect of inclination angle and nanoparticles 
on the natural convection heat transfer of turbine oil. In this 
study, three kinds of nanoparticles namely Al2O3, TiO2, and 
CuO were tested with the weight fractions of 0.2, 0.5 and 0.8% 
at an inclination angle of 0o, 45o and 90o. The Ra number was 
varied in the range of 3 x 107 ≤ Ra ≤ 3 x 108.  Their results 
showed that the turbine oil performs better than the nanofluids 
at all inclination angles. Hu et al. [11] investigated the natural 
convection heat transfer of a water based TiO2

 nanofluids in a 
square enclosure. The Raleigh number in this study is varied in 
the range of 4 x 107 ≤ Ra ≤ 2.4 x 108 and the volume 
concentration is varied from 0 ≤ � ≤ 7.4%. Their results show 
that the heat transfer with nanofluids is no better than water and 
worse when the Ra is too low. In another study, Hu et al. [12] 
analysed the natural convection heat transfer process in a 
square cavity using Al2O3 nanofluids. The volume 
concentration of nanoparticle and Ra number are varied in the 
range of 0.25 ≤ � ≤ 0.77 and 3x 107 ≤ Ra ≤ 6.3 x 107 

respectively. Their results indicates that the heat transfer is 
enhanced at lower concentration (� = 1	���		2		
%) of 
nanofluids and decreased at higher concentration (�	 =
3		
%) compared to pure water.  
      Moradi et al. [13] studied the effect of geometrical variation 
on the natural convection heat transfer process using Al2O3 and 
TiO2 Newtonian nanofluids in a cylindrical enclosure. It was 
noticed that the natural convection is enhanced with the use of 
Al2O3 nanofluids at an optimum volume concentration of 0.2% 
of Al2O3. However, there was no heat transfer enhancement 
found when TiO2 nanofluids is used. In another study, Moradi 

et al. [14] analyzed the effect of inclination angle (0 ≤ θ ≤ 90), 
Ra number (1x10-8 ≤ Ra ≤ 4 x 10-8) and volume concentration 
(0.1 ≤ � ≤ 1.5%) on the natural convection heat transfer and 
obtained a similar trend of results reported in previous study 
[13]. Li et al. [15] measured the thermophysical properties of 
Ethylene glycol and water mixture with ZnO nanoparticles 
along with the study of natural convection heat transfer process 
in a square cavity. The mass concentration of nanofluids and 
the range of Ra numbers studied is 5.25% and 5x10-7 ≤ Ra ≤ 11 
x 10-8. Their experimental result reveals that the heat transfer 
enhances with increase in heat input. Also they found that the 
increase in the quantity of ethylene glycol leads to adverse heat 
transfer. Recently, Ghodsinezhad et al. [16] performed an 
experimental investigation to study the natural convection heat 
transfer process in a square cavity filled with Al2O3/water 
nanofluids. The volume concentration of nanofluid was varied 
in the range of 0 ≤ � ≤ 0.6% and the Raleigh number was 
varied in the range of 3.49 x108 ≤ Ra ≤ 1.08 x109. The 
maximum heat transfer enhancement of 15% was obtained at a 
volume concentration of 0.1% of Al2O3. Very recently, Cadena-
de la Pe~na et al. [17] investigated the natural convection heat 
transfer in a vertical annuli filled with AIN and TiO2

 / mineral 
oil suspension. The Prandtl number in the study was varied 
between 70 ≤ Pr ≤ 300 and the Ra number was greater than 107. 
Three different weight concentrations of 0.01, 0.1 and 0.5% 
nanoparticles was under investigation. Their results suggests 
that the heat transfer was deteriorated in most of the conditions 
while few cases showed an enhancement. Also TiO2 nanofluids 
performed better than AIN nanofluid. 
      Apart from the above experimental studies, considerable 
amount of numerical studies related to natural convection heat 
transfer is also reported in literatures [18-44], which includes 
numerical analysis of natural convection in rectangular cavities 
with various kinds of nanofluids [18-28], natural convection in 
different shape of cavities [29-37] and natural convection under 
MHD effects with magnetic sensitive nanofluids [38-44] etc. 
Though the numerical studies have few advantages over 
experimental studies, the numerical studies are clearly indicates 
that experimental studies are the only solution to capture the 
complete effects in natural convection since  all the numerical 
models use assumptions and boundary conditions to simplify 
the analysis. Also it is found that there is not enough 
experimental results to validate those numerical results 
reported. 
     From the experimental studies [4-17] it is known that there 
are different kinds of nanoparticles used in the studies and 
namely those are Al2O3, TiO2, AIN, ZnO2 and CuO. Though 
many positive effects were found with the use of nanofluids in 
heat transfer applications, it is believed that the proliferation of 
nanoparticles to the environment is not safe for humans and 
environment. Recent studies reveal that the nanoparticles affect 
the human pulmonary cells [45], human health [46-48], 
pregnant Mice [49], aquatic organisms [50], animals [51], 
bacterial growth [52] and environment [53]. Therefore 
environmentally safe bio-nanofluids are currently under 
investigation. In this direction, limited studies are reported. 
Bio-nanoparticles which are originated from the wood, char, 
seeds and leaves could be environmentally friendly since 
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naturally humans are exposed to these nanoparticles.  Therefore 
in this study, a new kind of nanofluid consists of bio-
nanoparticle is prepared and the natural convection heat 
transfer process is studied. The effect of nanofluid 
concentration, the temperature difference between the hot and 
cold surface and bio-nanofluid on the natural convection heat 
transfer process is also studied. 

PREPARATION, CHARACTERIZATION AND THERMO-

PHYSICAL PROPERTIES OF NANOFLUIDS 

    In this study, nanofluid is prepared using a two-step 
method. In the first step, the nanoparticle is prepared from the 
mango bark and leaves by ball milling. Before ball milling, the 
raw material is dried in the sunlight. The average size of the 
nanoparticle is found to be 100 nm. In the second step, the 
prepared nanoparticles are suspended in the De-ionized water 
(DI water) by using an ultrasonic process. The required volume 
of nanoparticles is taken and mixed with a necessary amount of 
water. Then the mixture is subjected to an ultrasonic cavitation 
(Qsonica-Q700) process for 1 hour to prepare a uniform and 
stable fluid. After the preparation of nanofluid, the stability of 
the nanofluid is accessed using UV-Visible spectroscopy 
(Jenway-7315) and verified with viscosity measurements at a 
constant temperature. The thermal conductivity and viscosity of 
the nanofluids are also measured and presented in a previous 
study [55]. Other properties such as density and thermal 
expansion coefficient are calculated using theoretical models as 
follows. 
     The mixing theory is used to calculate the density as 
reported in Ho et al [8] as 
��� = ����� � (1 � �������,    (1) 
      The density of the mango wood particle �� is 1589 kg/m3 

and the density of water is taken from the ASRAE hand book 
[56].   
     The properties of nanofluids such as specific heat and 
thermal expansion coefficient are accessed from the equation 
(2) and (3) as  
�����,�� � �������,� � 
1 � ���������,��,  (2) 

����	�� � ������� � 
1 � ��������	��,   (3) 

      The coefficient of thermal expansion of water is 2.14 x 10-4.  
The thermal expansion coefficient of mango bark is not 
available in the literature, therefore, the coefficient of thermal 
expansion of wood is considered. In general, the coefficient of 
thermal expansion of wood is varied between 3.1 to 4.5 × 10-6 
K–1 in all directions [57] and therefore, an average value is used 
in the present study. 

EXPERIMENTAL SET-UP AND PROCEDURE 

      The schematic of the experimental set-up for the natural 
convection heat transfer study is shown in Figure 1. The 
experimental system consists of a cavity, data logger unit, hot 
and cold bath and data recording system. The cavity is made up 
of epoxy material with a dimension of 120 (W) x 96 (H) 
x103(L) mm. Two heat exchangers made up of copper material 
are kept vertically side by side at a distance of 120 mm and 
other sides of the cavity are covered with epoxy material. Each 

heat exchanger is connected with hot and cold bath 
respectively. The cavity is positioned at zero inclination angle. 
Thermocouples are fixed along the width of the cavity to 
measure the temperature distribution inside the cavity. Also, 
three thermocouples were fixed on the each hot and cold wall to 
measure the surface temperature of the cavity. In order to avoid 
heat loss to ambient the entire cavity is insulated with 
polyurethane foam and then kept inside the insulation filled 
box. Thermocouples were connected to the data logger and 
temperature signals were monitored and recorded with the use 
of a computer.  
      The cavity is filled with 1200 ml of prepared nanofluid. The 
temperature difference between the hot and cold side are varied 
from 15 to 50 oC and this is achieved by maintaining the hot 
side temperature as constant (55 oC) and varying the cold side 
temperature (5, 10, 15, 20 and 25 oC). The temperature 
evolutions of the hot and cold walls as well as fluid are 
recorded. The steady state of the system is assumed when the 
temperature signals are constant for about 40 mins. After 50 
mins of differential heating, the natural convection system 
reaches steady state afterward the data’s are recorded for about 
40 min. 
      The recorded temperature data’s at a different position of 
the cavity is used to estimate the heat transfer, heat transfer 
coefficient, Nusselt and Raleigh number. The Newton’s law of 
cooling is used to calculate the heat transferred by the heat 
exchangers to and from the cavity which is denoted in equation 
(4) and (5) respectively. 
��� � ��� 	��	
��,� � � ,!�,     (4)  
� � � � � 	��	
��,! � � ,��,     (5) 
 

 
Figure 1 Experimental set-up 

The heat transfer coefficient at the hot and cold wall is 
calculated using equation (6) and (7) respectively.  

"� �	
#$�


%$&%'�
,       (6) 

" � 	
#(�

	
%'&%(�
,       (7) 

where, Th and Tc are the average temperature of the hot and 
cold surface.  
The Nusselt number is calculated as,  
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)* � 	
�	+

,
,       (8) 

The average heat transfer coefficient of hot and cold side (" �


"� � " �/2) is used to calculate the Nusselt number in 
equation (8). The Raleigh number of the cavity is calculated 
using equation (9) as  

.�/ �
0	12'	32'

4 	56,2'
%$&%(�	/
7

,'	8'
,    (9) 

Finally, the uncertainty present in the heat transfer rate, heat 
flux, heat transfer coefficient and Nu are estimated. The 
uncertainty present in the estimation of heat transfer coefficient 
of Nu is found to be between 2 to 5 %.  

RESULTS AND DISCUSSION 

The nanofluid is tested in the cavity with the variable 
temperature boundary condition as discussed earlier, and the 
heat transfer capacity of the cavity, Nusselt number at the hot 
and cold wall as well as the Raleigh number variations are 
investigated. Figure 2 shows the heat transfer capacity of the 
cavity in which the heat transfer is within ±10% of the heat 
supplied except few points at low heat input. It is found that the 
maximum heat transfer by the cavity is about 93 W with the use 
of water. Also, it reveals that the heat transfer capability of the 
cavity is increased as the heat input increases. 

 
Figure 2 Heat transfer capability of cavity 

Nusselt number variation with a temperature difference of 
cavity at the hot side is shown in Figure 3. It shows that the 
water is outperformed nanofluids in terms of heat transfer. 
Also, shows that the Nu of water is more or less uniform with 
temperature variation while the nanofluids show a slight 
decrease in Nu when the temperature difference increases. 
Though the performance with nanofluids deteriorated, there is 
an optimum concentration for maximum heat transfer with 
nanofluids. In this study, nanofluid with 0.2% volume 
concentration showed a better performance compared to other 
concentration of nanofluids. 

Figure 4 shows the Nu number variation on the cold side 
with respect to the variation in temperature difference at the 
cavity. The Nusselt number at the cold side also behaves as 
same as in the hot side. However, the Nu in the hot side is 
decreasing trend whereas on the cold side increasing with the 
temperature difference. As similar to the hot side, the cold side 

also shows the maximum Nu for the 0.2% volume 
concentration of nanofluids. In both hot side and cold side, 
0.5% volume concentration showed a low Nu. 

 
Figure 3 Nusselt number variations with concentration of nanofluids in 

hot side of the cavity 

 
Figure 4 Nusselt number variations with concentration of nanofluids in 

cold side of the cavity 

 
Figure 5 Nusselt number variations of nanofluids with at various 

temperatures 
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Figure 6 Variation of Nu at various Ra number 

The average Nu of the cavity is calculated from the 
average heat transfer coefficient. The average Nu of the cavity 
is presented in Figure 5, which shows the same trend of Nu of 
the hot and cold side. Figure 6 shows the variation of Nu with 
the variation Ra number and it reveals that the Ra for Water is 
higher than the nanofluids. Also as the concentration increases 
the Ra decreases that suggests the water has highest buoyancy 
effect than the same effect in nanofluids. 

CONCLUSION  

      An environmentally safe nanofluid is prepared and its 
natural convection heat transfer ability is studied. The optimum 
concentration of nanoparticle for the maximum heat transfer is 
identified as 0.2% for the present mango powder. Though the 
heat transfer is deteriorated with the use of mango nanopowder 
in the cavity, this study will be the first step to further studies in 
this direction. 
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