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ABSTRACT 

This research investigates characteristics of entropy 

generation on stagnation point flow of Nimonic 80a 

nanoparticles over a convectively-heated stretching sheet in 

porous medium. The Buongiorno model is used for the 

Nimonic 80a metal nanoparticles of brick shape and includes 

both tBrownian motion and thermophoresis effect with thermal 

radiation. Similarity transformation variables are used to 

simplify the governing flow problem. Numerical solutions for 

temperature distribution, velocity of fluid, concentration of 

nanoparticles and entropy profile are established and examined. 

Moreover, the results obtained from the present methodology 

are validated when compared with research articles in the 

existing literature. Excellent agreement is obtained.  

Expressions for skin friction coefficient and Nusselt number are 

also taken into consideration and presented via tables. 

 

INTRODUCTION 
In recent years, nanotechnology has attracted the attention 

of distinctive from various authors because of its vast 

applications in modern technology Furthermore enhancement 

of heat transfer in mechanical and thermal systems was . 

observed. Different Newtonian and non-Newtonian base liquids 

such as oil, ethylene, glycols and water have minimum thermal 

conductivity. Such fluids have poor heat transfer. For this 

purpose an ingenious technique has been introduced to improve 

heat transfer of thermal systems by suspending a homogeneous 

mixture of ultrafine nanometre-sized particles in the base fluid 

which enhances conventional heat transfer. These fluids are 

known as nanofluids. The thermal conductivity of nanoparticles 

relies mainly on the particle size, shape, volume fraction, 

temperature and base fluid. Nanoparticles are metal oxide or 

metals that comprise of unique chemical and physical features. 

Due to these novel features, nanofluids are very helpful and 

applicable in active heat transfer. Solar collectors have received 

significant importance in chemical processing, thermal heating, 

and power generation. When a certain amount of nanoparticles 

is suspended in Sa base fluid server of solar collectors, the 

efficiency of the solar collector is enhanced. Nanofluids are 

also helpful in enhancing the thermal conductivity of nuclear 

reactor system, electronic devices, hybrid power engines, 

chillers, domestic refrigerators, cooling and lubrication of 

machine parts etc. 

Ellahi et al. [1] investigated the influence of MHD and slip on 

nanofluid (non-Newtonian) flow towards a coaxial porous 

cylinder. Rosmila et al. [2] examined free convection flow of 
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an MHD nanofluid through a porous stretching sheet using the 

Lie symmetry group transformation technique. They observed 

that the impact of thermal stratification and nanoparticle 

volume fraction is relevant in conventional heat transfer. 

Sheikholeslami et al. [3] explored analytically laminar flow of a 

nanofluid through a semi-porous channel in the presence of 

MHD by least squares and Galerkin methods. They observed 

that the magnetic field impact with nanoparticle volume 

fraction and velocity boundary layer thickness has minimal 

effect on velocity distribution. Javaherdeh and Ashorynejad [4] 

explored the impact of magnetic field on force convection 

fluids through a porous partially filled channel using the Lattice 

Boltzmann method. They determined that an increment in 

nanoparticle volume fraction enhances the average Nusselt 

number while it also increases slowly with an increment in the 

magnetic field. Noor et al. [5] studied flow of a nanofluid with 

heat transfer past a moving porous surface with coflowing 

fluid.  They combined the two nanofluid models namely, 

Buongiorno [6] and Tiwari and Das [7] and obtained multiple 

solutions when free stream and the plate move in opposite 

directions. Recently, Bakar et al. [8] discussed thermal 

properties of a nanofluid past a stretching surface using the 

Buongiorno model.  

 

 Many systems dealing with heat transfer with the 

mechanism of irreversibility illustrate entropy generation and 

correspond to mass transfer, viscous dissipation, heat transfer 

and magnetic field. Various researchers/scientists applied the 

second law of thermodynamics [9-11]. To optimize such 

irreversibility for instance, Mahmud and Fraser [12] considered 

MHD free convection flow with entropy generation through a 

porous cavity. They determined that an increment in magnetic 

field leads to an increase in entropy generation. Further 

investigation of entropy generation under the influence of 

MHD and slip flow on a rotating disk in a porous medium 

having variable properties was presented by Rashidi et al. [13]. 

Komurgoz et al. [14] explored entropy generation with 

magnetic field towards an inclined porous planar channel. It 

was observed that maximum entropy generation can be 

obtained in the absence of magnetic field and porosity. A 

numerical study was conducted by Qing et al. [15] on entropy 

generation. They discussed Casson fluid flow over a 

stretching/shrinking porous sheet.  

        The prime interest of the current communication is to 

examine entropy generation on stagnation point flow through a 

connectively heated stretching sheet in a water based nanofluid. 

Such flows are very important in many engineering processes 

for example melt-spinning, wire drawing, paper production, 

aerodynamics suspension of plastic sheets and the production 

and rubber sheets. The present flow problem is simplified with 

appropriate use of a similarity transformation and solved by the 

shooting method. Impact of all physical parameters of interest 

is discussed numerically.  

To the best of our knowledge not many researchers have 

combined both models in their research as highlighted in our 

literature review. Furthermore in our model we consider 

entropy generation with convective boundary condition which 

has not been considered previously in the combined models. 

MATHEMATICAL FORMULATION 
Consider stagnation point flow of a nanofluid with 

incompressible and irrotational features over a stretching 

porous surface (plate) at 0y = . We choose a Cartesian 

coordinate i.e. the plate is considered along the horizontal 

direction x − axis and the y − axis is considered normal to the 

plate (see Fig. 1). It is assumed that at the lower surface, the 

sheet is heated convectively with temperature fT  with heat 

transfer coefficient fh . We combine two mathematical models 

suggested by Buongiorno [6] and Tiwari and Das [7]. 
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Figure 1 Physical diagram of the problem. 

 

Then the physical equations that govern the flow are written as:  
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where u  and v  are velocity components in the x −  and y −  

directions respectively, nfµ is the viscosity of the nanofluid, 

nfρ
 
is the density of nanofluid, 1K  is the permeability of the 

porous medium, T  is the temperature, T∞  is the free stream 

temperature, C  is the concentration of nanoparticles, C∞  is 

the ambient concentration of nanoparticles, BD  and TD  are 

the coefficients of Brownian and thermophoresis diffusion 

respectively, nfk  is the thermal conductivity of nanofluid, 

( )p nfcρ  is the specific heat capacitance of nanofluid  defined 

as: 
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   (6) 

m  is the shape factor which is taken to be 3.7 (Nanoparticles 

type: bricks). 

Now, we introduce the similarity transformation: 
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Here η  is the similarity variable, fv  is the kinematic viscosity 

of the base fluid, ψ  is the stream function. 

 In view of relation (7), equations (2)-(6) are transformed 

into the following ordinary differential equations 
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The prime denotes differentiation with respect to η , 

Pr /f p fc kµ=  is the Prandtl number, /B a c=  is the ratio 

b/w free stream to stretching velocities,

( ) /B w fNb D C C vτ ∞= −
 
is the Brownian motion parameter, 

( ) /T f fNt D T T T vτ ∞ ∞= −
 
is the thermophoresis parameter, 

* 34 /r nfN T k kσ ∞=  is the thermal radiation parameter, 

1/fK v cK=  is the porosity parameter and /f BSc v D=
 
is 

the Schmidt number. 

 The important physical quantities of interest are the 

local skin friction coefficient, the local Nusselt number and the 

local Sherwood Number and are defined as 

2
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where wτ  is the shear stress in the x − direction, wq  is the 

heat flux and wm  is the mass flux given by 
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Using equation (9), we obtain 
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where Re ( ) /x w fxu x v=
 
is the Reynolds number. 

3. Entropy Generation Analysis  

 The entropy equation of a viscous fluid is written as 
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Volumetric entropy generation has three factors, (i) Heat 

Transfer Irreversibility (HTI),  (ii) Fluid Friction Irreversibility 

(FFI) and (iii) Diffusive Irreversibility. It is characterized as  
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'''

2 2
'''
0

2
2 2

Re 4'' Re 1 '
3

Re
' Re ' Re ' '

gen nf nfr
G r

f f

nfr

f

S kBN f N
kS

B Kf h h

µ
θ

µ

µ ς ςλ λ θ
µ

   = = + +    Ω   
     + + +      Ω Ω Ω    

    (17) 

where /T T∞Ω = ∆  is the dimensionless temperature 

difference, 2 /f w fBr u k Tµ= ∆ is the Brinkman number, 

2Re /L fcl v=
 

is the Reynolds number based on the 

characteristic length, /C Cς ∞= ∆  is the dimensionless 

concentration difference and / fRDC kλ ∞=
 
is the diffusive 

constant parameter. 

 

RESULTS AND DISCUSSION 
This section explores theoretical and numerical results for all 

parameters included in the governing equations (8-11). The 

shooting method in Matlab is used to discuss novelties of the 

porous medium, nanoparticle volume fraction, radiation 

parameter, Brownian motion parameter, thermophoresis 

parameter, Brinkman and Reynolds numbers, respectively. 

Particularly, impact of these parameters on velocity, 

temperature distribution, concentration of nanoparticle and 

entropy profile is investigated. Table 1 represents thermo-

physical properties of the base fluid and Nimonic 80a 
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nanoparticles. Furthermore, comparison is also made with 

previously published work [16-19] by taking 0,  0K φ= =  

and  0,  dN Nt Nb γ= = = →∞  see Tables 2 and 3. 

In Table 4 values of the skin friction, the Nusselt number and 

the Sherwood number versus φ  for different values of B  when 

0.5,  0.5,  0.5,  0.5,  1  dK Nb Nt N Sc= = = = = are presented. 

 Comparison with existing literature is made for multiple values 

of the stretching parameter and Prandtl number. Our results 

match closely, which assures us of the validity of the current 

methodology. According to recent studies [20-21], the Prandtl 

number for our present study is chosen as 6.2  (water) and 

nanoparticle volume fraction is chosen from 0 to 0.2 

( )0 0.2φ≤ ≤ , whereas ( ) 0φ =  corresponds to a regular 

fluid. 

 

Table 1. Thermo-physical features of base fluid and 

nanoparticles. 

 

Physical properties Nimonic 80a Water 

( )/k W mK  112 0.613 
( )/pc J kgK  448 4,179 

( )3/kg mρ  8190 997.1 
 

 

Table 2: Comparison of ''(0)f  when 0,  0K φ= =  for several 

values of B .  

 

B  
Mahapatra and 

Gupta [16] 

Ishak et 

al. [17] 

Khan et al. 

[18] 
Present 

0.01 - -0.9980 -0.998028 -0.9980 
0.1 -0.9694 -0.9694 -0.969387 -0.9694 
0.2 -0.9181 -0.9181 -0.918107 -0.9181 
0.5 -0.6673 -0.6673 -0.667262 -0.6673 
2.0 2.0175 2.0175 2.017487 2.0175 
3.0 4.7293 4.7294 4.729260 4.7293 

 

 

 

Table 3: Comparison of '(0)θ−  when  0,dN Nt Nb= = =  

γ → ∞  for several values of Pr  and B .  

 

Pr  α  
Mahapatra and 

Gupta [16] 
Hayat et 

al  [19] 

Khan et 

al. [18] 
Present 

1 
0.1 0.603 0.602156 0.602157 0.6022 
0.2 0.625 0.624467 0.624471 0.6245 
0.5 0.692 0.692460 0.692451 0.6925 

1.5 
0.1 0.777 0.776802 0.776807 0.7768 
0.2 0.797 0.797122 0.797129 0.7971 
0.5 0.863 0.864771 0.864806 0.8648 

 

 

Table 4: Values of the skin friction, the Nusselt number and 

the Sherwood number versus φ  for different values of B  when 

0.5,  0.5,  0.5,  0.5,  1  dK Nb Nt N Sc= = = = = are fixed. 

 

B  φ  1/ 2Ref xC  
 

 

1/ 2Rex xNu −

 
1/ 2Rex xSh −

 

0.5 
0 -0.7540 

 

0.3419 

 

0.5918 

 0.1 -1.0982 

 

0.5396 

 

0.5836 

 0.2 -1.5086 

 

0.7691 

 

0.5868 

 
0.8 

0 -0.3307 

 

0.3456 

 

0.6751 

 0.1 -0.4839 

 

0.5520 

 

0.6683 

 0.2 -0.6653 

 

0.7935 

 

0.6703 

 
1.2 

0 0.3658 

 

0.3513 

 

0.7699 

 0.1 0.5375 

 

0.5666 

 

0.7644 

 0.2 0.7395 

 

0.8199 

 

0.7653 

 
1.5 

0 0.9750 

 

0.3556 

 

0.8329 

 0.1 1.4359 

 

0.5762 

 

0.8283 

 0.2 1.9764 

 

0.8363 

 

0.8288 

 
 

CONCLUSION  
In this manuscript, optimization of entropy generation with 

thermal radiation on stagnation point flow over a convectively-

heated stretching sheet in a porous medium has been 

investigated. Nimonic 80a nanoparticles of bricks shape in a 

water based nanofluid were suspended using Buongiorno 

model. Similarity transformations have been applied to model 

the governing flow problem. The numerical results of the 
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governing flow problem are obtained by using a shooting 

method. The important outcomes for the current analysis are:  

• A higher value of the porosity parameter enhances the 

velocity profile and nanoparticle volume fraction enhances 

the velocity of the fluid when 1B >  and reduces it when 

1B < . The temperature distribution and concentration of 

nanoparticles enhance for both cases 1B >  and 1B < . 

• Temperature distribution and concentration of 

nanoparticles increase as the thermophoresis parameter 

increases. 

• Increasing values of the Brownian motion parameter lead 

to increase temperature of the fluid and decrease the 

concentration of nanoparticles. 

• Effect of the radiation parameter markedly boosts the 

temperature profile as well as the concentration of 

nanoparticles.  

• The thermal and concentration boundary layers thicknesses 

enhance due to the convective parameter. 

• Entropy profile is increased due to greater impact of 

Reynolds number and Brinkman number.  

• The values of the skin friction, Nusselt number and 

Sherwood number are larger when 1B >  compared to

1B < .  
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