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Abstract  

The focus of predictive modeling or predictive analytics is to use statistical techniques to 

predict outcomes and/or the results of an intervention or observation for patients that are 

conditional on the a specific set of measurements taken on the patients prior to the outcomes 

occurring. Statistical methods to estimate these models include using such techniques as 

Bayesian methods, data mining methods, such as machine learning, and classical statistical 

models of regression such as logistic (for binary outcomes), linear (for continuous outcomes) 

and survival (Cox proportional hazards) for time-to-event outcomes.    

 

A Bayesian approach incorporates a prior estimate that outcome of interest is true, which is 

made prior to data collection and then this prior probability is updated to reflect the 

information provided by the data. In principle data mining uses specific algorithms to identify 

patterns in datasets and allows a researcher to make predictions about outcomes.   

 

Regression models describe the relations between two or more variables where the primary 

difference among methods concerns the form of the outcome variable, whether it is measured 

as a binary variable (i.e., success/failure), continuous measure (i.e., pain score at 6 months 

post-op) or time to event (i.e., time to surgical revision). The outcome variable is the variable 

of interest and the predictor variable/s are being used to predict outcomes. The predictor 

variable is also referred to as the independent variable and is assumed to be something the 

researcher can modify in order to see its impact on the outcome (i.e., using one of several 

possible surgical approaches).  
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Survival analysis investigates the time until an event occurs. This can be an event such as 

failure of a medical device or death. It allows the inclusion of censored data, meaning that not 

all patients need to have the event (i.e. die) prior to the studies completion.   

 

Key Terms: 

Statistical analysis; predictive modeling; regression analysis; survival analysis 

 

 

Introduction:  

Statistical methods are important tools to determine whether results from a research study are 

“significant” and can be applied to the general population. Statistical models can be used to 

describe data, explain the significance of data or predict outcomes and establish, or at least 

suggest, causality. The statistical methods used are an important part of any research study 

and are essential for the correct design of a research project. 
1
 However many authors have 

only rudimentary understanding of statistical concepts especially when more complex 

analysis are required. 
1
 

 

With descriptive statistics data is summarized in a more compact manner. The focus is to 

describe measured outcome variables and/or demographic characteristics of the study 

population quantitatively. 
2,3

 In general, measures of central tendency describe the data 

“average” (mean, median, mode) and measures of dispersion the spread around the “average” 

(range, inter-quartile range, variance, standard deviation).  The primary difference between 

the types of measures of central tendency and their corresponding measures of dispersion 

have to do with whether the data are symmetrically distributed or not.  The purpose of 
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descriptive analysis or modelling is not to establish causal relationships between variables or 

predict outcome but rather to allow a researcher to have a general sense of what the data is 

showing, on a variable by variable basis.  

 

An explanatory model describes the effect of an intervention on outcome. 
4
 In this model one 

or more variables can be controlled by the researcher to a certain extent. 
4
 For example, a 

study design investigating the effect of anterior cruciate ligament reconstruction (ACLR) on 

the incidence of meniscus injuries compared to a control group which received conservative 

treatment investigates the effect of surgery on a specific condition.  This would be an 

example of a comparative study. Let us assume that meniscal injuries are significantly lower 

in the ACLR group. The intervention therefore (ACLR) explains the lower incidence of 

meniscal injuries in the intervention group. A causal relationship between surgery and 

meniscus injury could be suggested if this study were designed properly, meaning if the 

patients were randomized to receive either treatment being examined and if the patients 

included in the study represented a random sample of all possible patients who could receive 

a meniscus injury. Or in other words the intervention has had an effect on the measured 

outcome variable. Explanatory statistics can be used for both experimental studies or 

observational data. 
4
 In general, it is more challenging to make causal inference in 

observational studies since patients are not randomized to receive a treatment and thus it is 

difficult to determine whether a difference between treatments is due to the treatment itself or 

the difference in patients who non-randomly received one treatment or another.  
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In predictive modelling observations are used to predict outcome and/or the results of an 

intervention or observation. 
5
 This model investigates associations between one or more 

(dependent) variables of interest and the independent “predictor” variables.  

 

In a basic scientific experiment the independent variables can be controlled to investigate 

their effect on the dependent variable. For example, in a cadaver model the effect of varying 

the femoral and tibial tunnel position with  or without antero-lateral ligament reconstruction 

(independent variables) on rotational knee stability (dependent variable) is investigated. By 

changing the two independent variables (predictors) the outcome will change. In clinical 

studies these predictors may not be controlled.   A study investigating the effect of ACLR on 

functional outcome (dependent variable) with a validated scoring system (Lysholm, IKDC or 

similar) intends to assess the influence of gender, BMI, age, mechanism of injury, time to 

surgery, chondral and meniscal injuries, previous ACLR and other associated injuries 

(independent variables) on outcome would be an example of a clinical study.   Here it is not 

possible to easily vary or change the independent variables.  When applying a predictive 

model to this study, predictions about the “future” are possible. The results of the analysis 

can help the researcher understand  which of the independent variables influence (or predict) 

the  outcome.   

    

Predictive Modeling 

Prediction research aims to predict outcomes based on a set of independent variables and can 

provide information about the risk of developing a certain disease or predict the course of a 

disease based on the analysis of these predictor variables. 
6,7 
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Predictive modeling uses statistical techniques to predict outcomes and several statistical 

models can be used. 
5,7

 Prediction research is any model that produces predictions 
5
 and 

includes such approaches as Bayesian techniques, data mining techniques such as machine 

learning and classical statistical models of regression,  logistic,  linear, and Cox proportional 

hazards models, depending on the number and character of outcome variable/s. 
8 

 

Bayesian Statistics 

To describe all the differences between a classical frequentist approach to statistical inference 

and a Bayesian approach to statistical inference goes beyond the scope of this paper.  

Therefore we now give a brief overview of the differences in the approaches, recognizing that 

we are over-simplifying many of the details.   

 

The main difference between classical hypothesis testing and Bayesian statistics is that in 

classical (frequentist) methods a Null hypothesis is constructed about a specific parameter 

(i.e., the mean value of a distribution) and then data is collected to estimate this parameter 

(i.e., data is collected and an estimate of population mean is made by calculating a sample 

mean from the data).   The frequentist approach will then examine the data collected and the 

hypothesis made and determine whether 1) the data appears to contradict the Null hypothesis, 

leading to rejecting the Null hypothesis or 2) the data seem consistent with the Null 

hypothesis leading to not rejecting the Null hypothesis.  In this framework of statistical 

modeling, the assumption is that what is observed during a particular experiment is only one 

plausible set of outcomes from a possibly much larger set of all possible outcomes.  The 

frequentist tries to determine the likelihood that this one set of outcomes observed is 

consistent with a hypothesis that was previously stated (the Null Hypothesis), recognizing 
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that when making inference one can always make an error (i.e., rejecting a Null hypothesis 

when it was true (Type 1 error) or failing to reject a Null hypothesis when it is false (Type 2 

error).   Prior to the data being collected, a researcher using this approach should specify the 

criteria for rejecting or not rejecting the Null hypothesis.  In general, researchers often use a 

0.05 (5%) threshold to determine whether to reject the Null hypothesis or not – meaning that 

if the data suggest that there is less than a 5% chance that the Null hypothesis is true given 

the data observed (i.e., p-value <0.05), one should reject the Null hypothesis.  There are 

several drawbacks from using this method, in particular two of them are: 1) if the p-value is 

0.049 there is still a 4.9% chance that the Null Hypothesis is true and a Type 1 error could be 

made and 2) statistical significance does not  always directly link to clinical significance – 

meaning a p-value of less than <0.05 does not imply that the actual difference between 

groups is at all meaningful in real clinical practice.  

  

In Bayesian statistics the researcher begins with a prior distribution that describes their 

current hypotheses concerning the question to be studied.  If for instance previous studies had 

already taken place looking at this question, then the previous results of those studies could 

be used to generate a prior distribution or estimate for plausible outcome of the new study.  

This generation of a prior distribution to be used in the research occurs  prior to collection of 

the data in. 
9
 These prior probabilities allow researchers to make estimates about the 

efficiency of a particular treatment and allows the researcher to incorporate all information of 

both the treatment arm and control group prior to data collection. If there is only anecdotal 

evidence about a particular treatment effect, these uncertainties can also be incorporated into 

the analysis. 
9
 In principle analysis entails four steps. In step one prior evidence is collected 

from the existing literature. In step two data is collected. In contrast to classical hypothesis 
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testing an a-priori sample size calculation is not necessarily needed, although there are 

methods for determining an appropriate sample size to be collected. In step 3 the collected 

data is used to revise the pre-estimates (“priors”) using Bayes‟ theorem and in a final step the 

posterior or post study estimates are used to interpret the collected data. 
9
 In contrast to 

classical hypothesis testing there is no arbitrary cut-off of probabilities to call something 

statistically significant (i.e., no focus on whether a p-value is less than 0.05). Bayesian 

analysis rather describes probabilities that a certain treatment has an effect on outcome. For 

example: “there is a 95% probability that arthroscopic assisted ACL reconstruction with 

hamstring grafts results in a stable knee”.   

 

Here is another example to make it easier to understand the Bayesian approach. Let‟s say that 

there we have a simple blood test to determine whether a patient will develop rheumatoid 

arthritis (RA) in his lifetime. Let‟s also say that the know prevalence is 1/1000; this is the 

prior distribution or probability. The known false positive rate of this test is 10 percent. When 

we apply this test in a study including 1000 patents we will therefore find that 101 patients 

test positive. In classical statistics our results would therefore indicate that the chance of RA 

in our population group is 10.1 percent with a clinician raising fear in these 101 patients. 

With Bayesian statistics the prior distribution would be included and now we would conclude 

that only 1/101 will be positive allowing making better sense of the collected data. 

 

Data mining – machine learning 

Simply speaking machine learning uses algorithms to identify specific patterns in datasets to 

make predictions about outcomes. The variables (predictors) of interest and outcomes are 

identified; the software then applies these variables to make predictions about outcome.  This 
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approach often makes no assumptions about the underlying distributions of the data being 

examined, whereas both classical and Bayesian models do make assumptions about the data 

(i.e., they usually assume that continuous data follow a normal distribution). The major 

advantage of this technique is that no specific hypothesis in contrast to conventional 

regression analysis is needed to predict that predictor „A‟ is associated with outcome variable 

„B‟. 
10 

One of the major disadvantages of this technique is that generally large datasets are 

needed to allow useful conclusions. This is because machine learning approaches often 

involve fitting relatively complex models from the data that would involve multiple 

interaction terms in a traditional modeling framework.  In general, these techniques have 

arisen out of the field of computer science and not statistical science, and therefore 

implement optimization algorithms found often in that field, without specific connections to 

modeling assumptions that are prevalent in statistical models.  One criticism in this method is 

that often the optimal algorithm may appear to be “over-fitting” the data meaning that include 

more parameters are included in these models than would be considered appropriate for the 

sample size used and this limitation can only be addressed with large sample sizes. Further 

and similar to regression analysis the principle of Occam‟s razor is followed with many 

algorithms assuming that predictor variables are independent of one another. 
10 

However with 

machine learning non-linear relationships and interdependent variables can be examined in a 

more unstructured approach which may lead to innovative predictive models that may have 

been difficult to identify using more conventional approaches.  
11  

A simple example of 

machine learning are algorithms that allow a system to find patterns and correlations within a 

set of large data, i.e. identifying groups of friends in social network data.   

 

 



10 

 

Classical hypothesis testing – Regression Models 

A more conventional approach to predictive modeling includes classic regression models. 
8
 It 

is important to understand that there are two fundamental differences in interpretation 

between the more conventional explanatory theory in regression and predictive modeling 

using regression. Fundamentally a difference between these two approaches is what is the 

underlying goal of the research being performed.  In explanatory models, the goal of the 

research is often to understand specifically the relationship a particular independent variable 

to a particular dependent (outcome) variable.  Thus, the goal is to understand, for example 

what the effect of BMI is on functional outcomes following ACLR.  The reason to do this 

type of research is to determine (or recommend) what kind of modification of BMI may lead 

to what level of improvement (or worsening) of functional outcomes following ACLR.  The 

specific relationship of BMI and functional outcomes is of interest.  In predictive modeling 

one is not specifically interested in the relationship of any individual predictor (independent) 

variable and the dependent (outcome) variable, rather one is interested in finding a group of 

predictor variables that best allow one to predict what the outcome will be in the future.  

Thus, explanatory models focus on a particular relationship between the predictor and 

outcome, where it is assumed that there is a cause-effect relationship where „Y‟ is caused by 

„X‟. It is retrospective testing of an already existing hypothesis.   
4
 Predictive models focus on 

understanding the predicted value of the outcome conditional on a set of predictor variables.   

 

In both types of models, when the outcome of interest is measured on a continuous scale, the 

statistic, R
2
 (R-square), can be used to measure the “goodness-of-fit” of a particular model.  

This statistics represents the proportion of the variability in the outcome measure that is 

explained by the predictor variable(s).  In explanatory models, the focus often is on whether 
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there exists a high R
2
 when one looks at the relationship between the independent variable of 

interest (i.e. BMI) and the outcome of interest (functional outcomes following ACLR).  If for 

instance we observed a direct and statistically significant relationship between these two 

variables with an R
2 

 of 0.32 (meaning that 32% of the variability in functional outcomes 

following ACLR is explained by a patient‟s BMI) we may not believe that there is a fully 

causal relationship between BMI and the outcome,  since there would be 68% of the 

variability not explained by BMI.  However, if the calculated R
2
 would have been 0.94 then 

the results would have a different meaning.   

 

In predictive modeling the relationship between „X‟ and „Y‟ is examined in a prospective 

fashion establishing the relationship between two variables. 
4 

Often the goal of predictive 

modeling is to determine the best set of variables to make an accurate prediction of an 

outcome of interest, where there is no goal of understanding any particular variables role in 

the model, but rather the overall impact of the variables included.  Therefore, the inclusion of 

many variables, even some not thought to be “statistically significant” is often thought to be 

appropriate in predictive modeling since the goal is to get the best predictive value of the 

outcome. Thus a high R
2
 is more critical in predictive modeling than examining the specific 

impact of any particular variable in the model.  The challenge faced in these models is that it 

can be shown mathematically that R
2
 must increase as more variables are included in the 

model, however the inclusion of variables with little relationship with the outcome can also 

lead to overfitting problems, similar to those mentioned above in machine learning 

algorithms. . In theory, the lack of association cannot be compensated with a larger sample 

size as these predictions should be independent of the sample size. In contrast the lack of a 
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strong relationship in explanatory models may be due to a type II error and an increase in the 

sample may change the associations significantly. 
1
 

 

For simplification we will only outline the more classical regression model with explanatory 

modeling. As practicing clinicians we are far more familiar with these techniques. In 

principle, regression analysis examines the relationship or correlation between variables.  

 

Simple Linear Regression 

Simple linear or univariable regression is a mathematical technique that describes the 

relationship between two variables. 
1,12

 The relationship between the outcome variable „y‟ 

and the predictor variable „x‟ can be plotted on a scatter diagram (Figure 1). 
12  

When looking 

at the scatterplot it is often possible to visualize a line which passes through the midst of all 

points. 
1
 The regression line can be calculated by using a simple mathematical formula: 

y = kx + c 

„k‟ is the coefficient that describes the slope or gradient of the linear relationship and „c‟ is a 

constant which describes where „x‟ crosses the „y‟ axis. 
12

 For inference or significance 

testing four assumptions about the relationship must be met: 
12

 

(1) A linear relationship between the two variables exists. If the points scatter randomly 

and do not center around a straight line, a relationship does not exist 

(2) The variation around the regression line must be constant. In other words the distance 

from the regression line for all points should be similar.  

(3) The data follows a normal distribution 

(4) The deviation from the regression line for each data point is independent of other data 

points. 
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Figure 1 : Scatter Plot 

 The scatter plot is also called the X-Y graph. Each observation has two coordinates. The X-coordinate 

is the predictor variable and defines the distance from the Y-axis. Vice versa the Y-coordinate is the 

outcome variable and defines the distance from the X-axis. The regression line can often be visualized 

and should pass through the midst; alternatively a statistical software program can be used to draw the 

regression line.  The regression line quantifies an inexact relationship meaning that the two variable are 

related to each other. The correlation coefficient measures the strength of the relationship between the 

two variables and falls between (-)1 and (+)1. A correlation coefficient of zero means that there is no 

relationship at all and the observations scatter all over the graph. If the correlation coefficient is 1 all 

observations are perfectly linear and located directly on the regression line. With correlation 

coefficients between 0 and 1 the regression line represents the best fit. „k‟ is the gradient and simply 

describes the steepness of the regression line. „c‟ describes where the regression line crosses the „y‟ 

axis which is not always at zero. 
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 Figure 2 : Best Fit: method of least squares 

 The method of least square measures the distance of all data points from the regression line and the 

smallest vertical distance from the regression line is established by calculating the sum of the squares 

of the vertical distances.  

 

If these four assumptions are met, the model is valid. To establish the best fit of these 

regression lines, a visual approach may help to “get an idea” where the line should be drawn 

but is more accurate to use a more scientific mathematical approach for best fit. Several 

estimation methods have been described but the most commonly used technique to find the 

best fit in linear regression is called the method of least squares. 
13

 The technique is based on 

the following two formulas and calculates the least square estimates for the constant „c‟ and 

the coefficient „k‟: 
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c‟  = My - kMx  

 

k‟ = Σ (Yi – My) (Xi – Mx) 

Σ (Xi – Mx)
2
 

 

My and Mx are the mean values of both variables and Yi and Xi are pairs of observations. 

What does this all mean? The least squares model establishes the smallest vertical distance 

between datapoints  (Figure 2) and the regression line reducing error and creating the best fit 

for the regression line for all datapoints in the scatterplot.   

 

A classical measure for linear relationships between two variables is Pearsons moment 

correlation. The correlation coefficient „r‟ ranges between -1 to +1. A positive relationship 

indicates an upward slope, whereas a negative relationship indicates a downward slope on the 

scatterplot. A value of 1 means that the relationship between the two variables is perfect (and 

linear) and the regression line moves through every datapoint. In contrast, if the relationship 

is zero, there is no linear relationship between the two variables. An example of a simple 

regression would be a study design that wants to establish whether posterior tibial slope is 

related to the amount of knee flexion. If the assumed relationship between the two variables 

is r = +0.95, the results would suggest that an increased posterior slope is associated with 

more knee flexion.  In contrast if the relationship is r = -0.95 an increased posterior slope is 

related to less knee flexion.  With Pearsons moment correlations the variables must be 

normally distributed and the relationship must be linear. The square of the correlation 

coefficient is R
2
, the measure of goodness of fit described above, which represents the 

proportion of the variability in the outcome variable in the simple linear regression model that 

is explained by the predictor variable.  In intuitive understanding of R
2 

 is the following, if 

one has a single continuous outcome variable measured that has a normal distribution the best 
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“guess” for any future measure of that outcome is the average (mean) value of the data 

already observed.  However, if a predictor variable can be used in a regression model to 

“predict” the outcome, R
2
 represents how much better the prediction is than just guessing the 

mean value.   

 

If the variables in a regression model are not normally distributed or the relationship is not 

linear, then linear regression or Pearson correlations may be inappropriate to use.  A non-

parametric approach to examining correlation is to use as the  Spearman‟s rank correlation, 

which essentially estimates the correlation between the ranks of the data (rather than actual 

observed values in the data set)  However, since the actual values of the data are transformed 

into their ranks, the Spearman correlation coefficient provides an assessment of association 

rather than a linear association. 
1 

 

For simple linear regression it is advisable to produce graphs to inspect data visually to 

ensure that the assumptions are met and outliers are checked. 
12

  For significance testing a 

parametric test such as a t-test can be used to determine whether the slope of the regression 

line is equal to 0 or not.  

 

Multiple Linear Regression 

In orthopedic surgery as in most other fields of medicine, it is unlikely that one variable 

determines outcome of a particular disease or intervention. When there is more than one 

predictor, different tests must be employed. Multiple linear regression or multivariable linear 

regression is a mathematical technique that allows to investigate the relationship between 

multiple independent predictor variables and a single dependent outcome variable. 
12

 It is an 
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extension of the simple linear regression and the same four assumptions must be met. The 

predictor variables can range from two to a large number depending on who many patients 

are included in the research study. . Similar to simple linear regression the regression line can 

be calculated by using a simple mathematical formula: 

 

y = k1x1 + k2x2 + knxn  + c 

 

To establish the best fit for multiple linear regression the method of least squares can also be 

used. If there are  many predictor variables or covariates it is absolutely critical to have a 

large sample size. As a general rule there should be at least 10 times as many observations or 

patients per predictor variable. 
1
 For example if we would like to determine whether age, 

gender, BMI, sporting code and weekly exercise hours (5 predictor variables) influence the 

functional outcome of ACL reconstruction, a minimum of 50 patients are needed to make 

useful predictions. However it must be remembered that sample size has a distinct effect on 

what R
2
 can be detected with statistical significance. Subsequently an increase in 

observations (patients) may change the associations significantly; a fact that needs to be 

considered when designing these type of studies and also when interpreting  the results. 

Another important consideration is collinearity between predictor variables. It is not 

uncommon that predictor variables are related (correlated) to each other. In the above 

example it maybe that the higher BMI is highly correlated to the weekly exercise hours. This 

phenomenon is called collinearity and means that one predictor also predicts another 

predictor. Collinearity can have a significant effect on the outcome of the analysis and 

complicates the interpretation of the results.  An obvious warning sign would be a substantial 

increase or decrease of R
2
 when either removing or adding a predictor variable.  In addition, 
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when counterintuitive regression coefficients appear in the same model (i.e., a predictor 

variable that alone should have a positive correlation with the outcome, but in a multiple 

linear regression model it has a negative slope in the model) this is often a signal that 

collinearity may exist in the model. Possible solutions are to remove highly correlated 

predictors or possibly perform a stepwise regression procedure, which allows variables to 

enter one at a time into the model, and therefore highly correlated variables will likely not 

enter into the same model.  Another approach is use  the partial least squares regression 

method. In principle partial least squares regression reduces predictors to the uncorrelated 

variables and then performs least squares regression on the remaining predictors. 
14

 

 

Logistic Regression 

If the outcomes (dependent variables)  are ordinal or categorical, simple  linear and multiple 

regression should not be applied. For example if the dependent variable is a „yes‟ or „no‟, a 

logistic regression model is more suitable. Logistic regression describes the relationships 

between one or multiple numerical independent variables and one dependent categorical 

(yes/no) variable.  There are several assumptions in such models.  These include: 

 

1) The outcome is measured on a binary (2-level) or ordinal scale.  

2)  The units (patients) included in the model are independent of each other 

3) The independent variables and the outcomes are linearly related on the log odds scale.   

 

This last assumption, of the linearity on the log odds scale is more technical to explain than is 

needed in this paper, however, in most cases with continuous predictors that have a somewhat 

symmetric distribution (i.e., approximately normal) the linearity assumption will be met. This  
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method uses logistic transformations to establish the probability of outcomes in a binary 

fashion. The outcome is then expressed as the odds ratio as a “yes” or “no” response. For 

example if the risk of ACL injury in males soccer player is „1‟ (control) and the odds ratio for 

females performing the same sports is „5‟, the results would indicate that females have a five 

times higher risk of ACL injury when playing soccer. If one would assess specific risk factors 

in the female cohort like coronal and  sagittal  knee flexion angles during a landing task, 

phases of menstrual cycle, quadriceps strength, radiological alignment of the lower extremity, 

logistic regression can estimate the odds, confidence intervals and significance (p-value) of 

each variable.  

 

As with any analysis the findings and conclusions drawn from the analysis depend on 

whether an appropriate model has been used and whether the assumptions of the model have 

been satisfied. A critical step is to assess how well the model describes the observed data. 
15

 

One of the traditional approaches to assess goodness of fit in logistic regression is to use 

Pearson‟s chi-squared test to examine the sum of the squared differences between the 

expected and observed number of cases divided by the standard error. One of the major 

problems with this test is its dependence on sample size. A smaller sample size may lead to 

the wrong conclusion of non-significance and increasing the sample size often leads to 

significance.  
16

 In addition, often a C-statistic is calculated from a logistic regression model 

and this measures the predictive accuracy of the logistic regression model.  A C-statistics of 

1.0 would suggest that the model used perfectly predicts the outcome of interest, whereas a 

C-statistic of 0 would suggest that the model could not predict the outcome of interest.  
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Survival Analysis 

Survival analysis investigates the time until an event occurs. 
17

 This outcome can be 

described as failure or survival time (i.e., time to re-operation) or death.   Failure or survial 

time is also called event time and data examined is always positively valued. A typical 

example in orthopedic surgery is the survival of total joint arthroplasty in joint registries 

around the world. 
18,19

 For patients who survive their arthroplasty and require revision surgery 

for septic or aseptic loosening, the event time  is known exactly and the observation is 

complete. If patients cannot be followed up until failure occurs (i.e. death, lost to follow-up 

or withdraws), survival or event time is not fully observed. These incomplete observations 

are defined as censored data. 
17

  Censored data also occurs if a study ends and some of the 

included patients did not have an event during the study period. This type of censoring is 

called right censoring and occur when a participant does not have an event during the study 

period or drops out before the study ends. 
20,21

 Left censoring occurs when the event has 

already occurred before the study period. 
22

 This is very rarely encountered in orthopedic 

studies. For example a cross-linked polyethyelene insert is tested in the laboratory with cyclic 

loading and checked every 2 hours for failure. The first checkpoint occurs at two hours but 

the insert fails at 20 minutes already, long before the first check occurs. If the insert fails 

between two checkpoints, i.e. at 4.5 hours this is defined as interval-censored and means that 

there is uncertainty as to when the insert fails as the status is only checked every two hours. 

For this particular example the insert then fails between two and four hours.  

 

In contrast to standard regression models, survival analysis allows inclusion of both censored 

and uncensored data. In some ways survival analysis is the combination of the linear and 

logistic regression in one technique.  This is because it accounts for the outcome using a 
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continuous and binary form – specifically the “time” until the event occurs is a continuous 

measure and whether the event occurs (yes/no) is a binary measure.  The challenging part of 

this model is that when an event is censored, the time variable is a lower estimate of the time 

to event and this must be accounted for in the model.  The most commonly used approach for 

analyzing survival data in orthopedic surgery is the Kaplan Meier approach which is a non-

parametric statistical approach. 
23

 The Kaplan Meier test uses lifetime data to estimate the 

probability of survival. Basic assumptions are used in this analysis: censored patients have 

the same prognosis as those who continue to be followed-up or are uncensored and survival 

probabilities are the same for all patients irrespective whether they were included early or 

late.  

 

The Kaplan-Meier survival approach allows one to construct a curve that is a graphical tool 

demonstrating the results of  the analysis (Figure 3). 
23

 The horizontal axis measures time and 

the vertical axis measures the proportion of patients free of the event.  Thus, using the graph 

one can estimate the time it takes for a certain proportion of events to occur.  
24

 When 

interpreting the survival curves it is important to identify the units of measurement  along the 

X-axis. Small steps with shorter intervals in general means larger patient cohorts whereas 

large steps have limited patient numbers. 
24

 This can typically be seen at the right aspect of 

the graph if either a large group had their event or data was censored during earlier study 

intervals. Large steps should be interpreted with caution and are not very accurate. Poor study 

design or ineffective treatment may result in large numbers of censored events and may also 

result in large steps and again requires caution with analysis.   It should be noted that in these 

analyses, the only data that contributes to the actual statistical modeling is when events occur, 
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thus censored data does not directly contribute to the estimates of the statistics needed to 

estimate the survival curves.  

 

Figure 3 : Kaplan-Meier Survival Curve represents survival times 

The x-axis denotes time and the y-axis denotes the percentage of a particular subject or object of interest has 

survived. Drops only occur at event times and the curve does not go to zero if there is no event at the last 

checkpoint or when the study has finished. The circle or dotpoints along the curve represent censored data. The 

curve allows to plot the 50% median survival time and check survival at specific time points. In medical 

research especially in cancer research one and five year survival rates are used to establish the effect of 

treatment on survival.  

 

The Kaplan-Meier approach is a useful approach to examine survival curves and compare 

these curves among groups. If the main interest is to investigate the influence of risk factors 

on survival a Cox Proportional Hazards Regression (often referred to as Cox Regression)  

allows analysis for the relationship between time to event outcomes and one or more 

predictors to be made. 
23,24

 For example Cox regression could investigate the influence of 



23 

 

age, gender and radiological malalignment of a total joint arthroplasty on survival of the 

implant. Cox regression uses a non-parametric approach to fit the model. 
23

 The basic 

assumption that must be met is that the hazard or risk must be proportional. For example if 

women have twice the risk of ACL injury compared to men at age 20, they also must have 

twice the risk at age 30. In addition, the risk of an event occurring over time must be 

comparable similar between groups, so if women had twice the probability of an event 

occurring after 12 months of follow-up post-surgery when compared to men, then women 

should also have twice the probability of an event occurring after 24 months of follow-up 

post-surgery when compared to men.  Generally speaking Cox regression allows one to 

estimate the risk for a particular individual to have an event considering all potential variables 

that can result in the event. The hazard function is a way to express the probability of an 

event occurring for a pre-determined time interval. 
25 

The hazard function can be expressed 

as: 

 

 Number of individuals with an event occurring during the time interval 

h (t) =  Number of individuals without an event during the time interval  

 

The hazard ratio is an expression of the chance of an event occurring during a specific time 

interval. 
23,25

 For example if 1000 patients are surveyed during the month of September and 

October for ACL injury and 50 patients sustain an injury in both September and October  the 

hazard ratio for September is 0.05 (50/1000) and 0.053 (50/950) for October. The hazard 

ratio can also be used to assess risk in more than one group. For example survival rates for 

ACL reconstruction over a specific time interval or two different surgical techniques could be 

evaluated.  
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Table 1: Terms and Definitions 

 

 

Dependent Variable The dependent variable is also called the outcome variable. 

The variable responds to the independent variable/s and 

changes if the independent variable/s are manipulated. 

Independent Variable The independent variable is also called the experimental or 

predictor variable. It can be manipulated and represents 

input and directly effects the dependent variable.  

Parametric Data Follows a normal Gauss distribution and displays 

homogeneous variance 

Non Parametric Data The distribution follows any pattern and variance 

Variance Is a measure of how the data is spread. t is defined as the 

average of the squared differences from the mean 

Standard Deviation Is also a measure of how the data is spread. It is defined as 

the square root of the variance 

 Z Score Is a measure of how many standard deviations below or 

above a raw score is The raw score is the original score from 

one test/individual 

Sample Size Calculation If a sample size calculation is done before data collection it 

is called a-priori and is used to establish that the sample is 

sufficiently powered. Post hoc power or the observed power 

of the sample is performed once the data has been collected 

and is based on the effect size estimate 

Type I error Type I errors occur when the null hypothesis is rejected 

when the null hypothesis is true. It is also referred to as 

“false positive”. Alpha levels (p-values) are the probabilities 

of a type I error occurring. For example a p=0.05 means that 

there is a 5% chance that a true null hypothesis will be 

rejected 

Type II error Type II errors occur when the null hypothesis is false but 

accepted. This is also referred to as “false negative” This 

error most often occurs when there is no difference in 

outcome because the sample is too small. 

Type III error Type III error occur when the right answer to the wrong 

question is provided. For example it is correctly concluded 

that the two groups are different but sampling results in a 

variable to be lower in one group. With more samples the 

variable then increases and results in no differences between 

the two groups 

Occam‟s razor Is derived from the philosophical principle by William of 

Occam stating that entities should not be multiplied without 

necessity. In data mining it means that when there are two 

models with the same error, the simpler should be preferred 

because it has possibly a lower generalization error. 

Correlation coefficient r  R measures the strength and direction of a linear relationship 

between two variables. A value of +1 is perfect positive 

relationship and a value of -1 is a perfect negative 

relationship. Values can range between +1 and -1 

Coefficient of determination R-squared R squared is a measure of how close the data is to the 

regression line and explains the variability of data around the 

mean. 100% indicates that the model explains all the 

variability and 0%  means that the model does not explain 

the variability. In other words it is the percentage of 

variability that is explained by the model. 
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Table 2: Which Statistical Tests To Use For Classical Predictive Modelling  

 

 Parametric Data 

(Normal Gauss 

Distribution) 

Non-Parametric 

Data (Non-Gauss 

Distribution 

Two Possible 

Outcomes 

(Binominal) 

Survival Analysis 

Descriptive Mean, Standard 

Deviation 

Median, 

Interquartile Range, 

Range 

Proportions Kaplan-Meier 

Estimate and 

Survival Curve 

Relationship 

between two 

variables 

Pearson Moment 

Correlations 

Spearman Rank 

Correlation 

Contingency Tables 

and Coefficients 

 

Predict outcome 

from one measured 

variable 

Simple Linear 

Regression 

Non-Parametric 

Regression 

Logistic Regression Cox Proportional 

Hazards Regression 

Predict outcome 

from multiple 

measured variables 

Multiple Linear 

Regression 

 Multiple Logistic 

Regression 

Cox Proportional 

Hazards Regression 

 

Discussion 

Thus we have presented a brief overview of several possible statistical techniques that can be 

used in predictive modeling research.  In table 1 we have summarized the most commonly 

used terms and definitions with regards to these statistical tests and table 2 summarizes the 

statistical tests typically used for classical predicitive modeling. Each method has potential 

strengths and limitations and researchers should be aware of these prior to initiating such a 

project.   Among the methods described above, the ones that are most often used in current 

research are those that focus on either binary outcomes (i.e., 2-year revision rates) or time-to-

event outcomes (i.e., median time to joint failure after surgery).  When examining these types 

of outcomes, Bayesian methods can be used in conjunction with classical regression 

techniques (logistic regression or Cox regression).  In addition, machine learning approaches 

can also be used to examine these type of outcome models.  Finally, the classical (frequentist) 

approaches of logistic and Cox regression models can be used without a Bayesian framework.   

 

Regardless of which method is used, one should focus on the primary goal in such analyses, 

which is to best predict the likelihood of the event of interest (i.e., the occurrence of a 
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revision surgery within 2 years or joint failure after surgery).  Therefore, it is imperative that 

all pertinent predictor variables are measured during the study.  These include patient level 

characteristics such as age, gender, race, bmi, smoking status, as well as other risk factors and 

co-morbid conditions which could influence the outcome such as diabetes, hypertension, 

number of previous surgeries, etc.   

 

Ultimately, one goal of developing predictive models is to be able provide to clinicians 

decision support systems that can eventually provide real-time pertinent information 

concerning their patients and recommendations on treatment decisions that should be made in 

order to optimize long-term results on procedures to be performed.  

 

Conclusion/Summary 

Predictive modeling is a technique that can use  several different statistical techniques to 

predict future outcomes. There are two principle approaches. When the relationship is 

examined in a prospective fashion the relationship between two or more variables are 

established to predict future outcomes. With classical hypothesis testing regression models 

are applied to retrospectively test an already existing hypothesis. Simple and multiple or 

multivariable regression models are used for continuous data and logistic regression for 

categorical data.  

 

For all regression analysis it is worthwhile creating scatterplots and visually inspect for 

goodness to fit and outliers. Goodness to fit tests should be used to create the best fit for the 

regression line representing all datapoints in the plot and reducing error. 
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Survival analysis uses censored and non-censored data and is a useful statistic to analyze 

survival. If the main interest is how risk factors influence survival the Cox Proportional 

Hazards Regression can be used to investigate the effect of predictor variables on survival. 

 

As quality metrics are becoming part of the evaluation of performance for surgeons and will 

likely be linked to reimbursement rates, it will be more important to have accurate predictive 

models available to assist with evaluating performance and also guide decisions to be made in 

the clinical setting.  To do this accurately, one needs to use valid statistical methods and 

understanding these methods will provide a higher probability of success in these endeavors.  
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