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ABSTRACT 
A ghost cell immersed boundary method is employed to 

compute the conjugate heat transfer over a circular cylinder in 
crossflow.  The cylinder is internally heated by a circular 
surface of constant temperature.  The conjugate heat transfer 
boundary treatment proposed at fluid-solid interface is shown 
to yield second order accurate solution.  To demonstrate the 
capability of the current method, the location of the internal 
heating surface is varied to examine its effect on the heat 
transfer.      

INTRODUCTION 
Conjugate heat transfer is common in engineering problems 

involving internally heated solid components and external fluid 
flows.  The conventional body-fitted grid method of solving 
conjugate heat transfer problems is to generate separate grids 
respectively for fluid domain and solid domain, to solve fluid 
flow equations and solid equations independently using 
different numerical methods, and to couple the two solutions 
together through boundary condition treatment at the fluid-solid 
interface.  Recently immersed boundary method [1-5] has 
provided a way to solve both fluid and solid equations on one 
single Cartesian grid, greatly reducing the complexity involved 
when solving conjugate heat transfer problems.  However, there 
are various types of immersed boundary method, each with its 
own merit or drawback.  Hence, an immersed boundary method 
needs to be examined independently to identify its suitability to 
conjugate heat transfer problems. 

On the fluid-solid interface, the no-slip boundary condition 
for velocity and the continuity of temperature distribution 
across the interface are Dirichlet type boundary condition.  The 
conservation of heat conduction across the interface is 
Neumann type boundary condition.  Thus, both kinds of 
boundary condition on the interface need to be treated 
accurately simultaneously when solving conjugate heat transfer 
problems.  In this paper, a ghost cell immersed boundary 
method [6, 7, 8] capable of 2nd order accuracy for both Dirichlet 
and Neumann boundary condition is employed to solve 
conjugate heat transfer problems.  A model conjugate heat 
transfer problem is used to verify the accuracy of the proposed 
boundary treatment.  To demonstrate the capability of the 
developed method, an internally heated circular cylinder in a 
crossflow is computed.  The location of the internal heating 

surface is varied to examine its effects on the heat transfer over 
the cylinder.   
GOVERNING EQUATIONS 

The integral incompressible Navier-Stokes equations are 
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where  is velocity,  is pressure, fθ   is fluid temperature with 
subscript f, Re is the free stream Reynolds number, Pr is the 
free stream Prandtl number, is the vector form Grashof 
number for gravitational forces,  indicates Control Surface, 

indicates Control Volume.  For the solid domain, the 
governing equations for heat conduction is 
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where sθ  is the solid temperature with subscript s, sα  is the 

solid thermal diffusivity, fα  is the fluid thermal diffusivity.  In 
steady state, Eq. (2) is a Laplace equation.  All variables in Eq. 
(1) and (2) are properly non-dimensionalized by respective 
reference values.  In particular, temperature is normalized as 
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θ  , where 𝑇∞ is the free stream temperature, 𝑇𝑟𝑟𝑟  is a 

given reference temperature, here it is the temperature of the 
heating surface.  

On the fluid-solid interface, the no-slip boundary condition 
for velocity is applied.  For temperature, the boundary 
conditions at the interface are 
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where fk is the fluid thermal conductivity, and n is the distance 
along interface normal .  The first equation of Eq. (3) enforces 
the continuity of temperature distribution and the second 
equation indicates the conservation of conduction heat across 
the interface. 
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FINITE VOLUME METHOD 
One single Cartesian grid is generated to cover both fluid 

and solid domains.  The same cell-centered finite volume 
discretization method [6,7,8] is applied to both fluid and solid 
equations.  For flow computations, Eq. (1) is solved by an 
implicit pressure correction method.  Keeping the pressure 
fixed at the current time and using implicit time integration, the 
fully discretized finite volume equation is  
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where the superscript “*” represents the intermediate state, “n” 
indicates the current time level; V∆  is the volume of the 
considered cell; t∆  is the time increment; [ ]TvuQ θ=  is the 
vector of conserved variables per unit volume; convR , PR  and 

visR  are the vector of surface integral of convective, pressure 
and viscous fluxes respectively over the control surface CS 
divided by V∆ ; H is vector of the source terms per unit volume; 

dirF  is a direct forcing per unit volume added to forcing points 
in order to model the presence of immersed bodies.  The 
constants are 1c =1.5, 2c =2 and 3c =0.5 for the second-order 
backward differencing scheme, and 1c =1, 2c =1 and 3c =0 for 
the first-order Euler implicit scheme.  The intermediate velocity 
∗v  generally does not satisfy the divergence-free condition.  

The velocity and the pressure are corrected as 
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By requiring 1nv +  be divergence-free, we obtain the Poisson 
equation: 
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which is to be solved for the pressure correction nφ .  For 
steady-state computations, the time integration is continued by 
taking *1n θθ =+  after Eq. (4) to Eq. (6).     

As for the solid temperature computations on the solid 
domain, the same discretization and time marching method as 
those for fluid temperature are used.  During each time 
marching step, Eq. (1) and Eq. (2) are solved in sequence and 
multigrid sub-iterations are used to drive the time accurate fluid 
and solid equations to their convergence independently. 

A GHOST CELL IMMERSED BOUNDARY METHOD 
The ghost cell system is defined for fluid domain and solid 

domain separately and independently.  For flow computations, 
the ghost cells (in solid domain), their projection points (on 
interface) and their image points (in fluid domain) are depicted 
in Fig. 1.  Here the empty squares are the fluid cell centers 
whose values are to be solved, the triangles are the ghost cell 
centers whose values are to be assigned in order to implicitly 
enforce appropriate boundary conditions at their projection 
points respectively, and the filled squares are the solid cells 
which play no role in flow computations.  The ghost cells for 
flow computation are the first layer of cells on the solid side 

adjacent to the fluid-body interface with at least one 
neighboring fluid cell.  Along their projection lines onto the 
interface, the image points are a distance δ into the fluid 
domain, as shown in Fig. 1.  Here x2∆=δ  is taken in 2D to 
ensure that the image points are surrounded by fluid cell centers 
not involving any ghost centers. 

For solid computations, a similar set of ghost cells (in fluid 
domain), their projection points (on interface) and their image 
points (in solid domain) will be defined separately and 
independently.  In this case the ghost cells are the first layer of 
cells on the fluid side adjacent to the interface with at least one 
neighboring solid cell.  The image points are located a distance 
δ from the interface into the solid domain.  

The values at ghost cell centers are obtained by 
extrapolation from the solution domain.  Their values are 
designed to implicitly enforce the required boundary conditions 
at their projection points on the interface.  A general 
representation of the boundary condition at a projection point 
can be expressed by  
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where wn  indicates the outward surface normal pointing into 

the solution domain (fluid domain in this example), proj
w

)
n
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is the normal variable gradient at the projection point, projQ  is 
the variable value at the projection point, q is the boundary 
value given at the projection point; the coefficients s and t 
determine the type of the boundary condition.  It is clear that 
the constant set (s=0, t=1) indicates Dirichlet condition, (s=1, 
t=0) indicates Neumann condition, and (s=1, t=1) indicates 
Robin condition.  The ghost-cell direct forcing approach is 
simply an appropriate solution reconstruction procedure to set 
the ghost cell values such that Eq. (7) is satisfied implicitly on 
the immersed boundary.   

The variable value imageQ  can be obtained easily by a 
bilinear interpolation utilizing the variable values of the four 
fluid centers enclosing the image point.  A bi-linear 

approximation for image
w

)
n
Q(

∂
∂  can also be done easily with 

known direction vector wn̂ .  A 2-point second-order 
polynomial reconstruction along wn  can be obtained by solving  
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for the coefficient 2a , 1a  and 0a .  For a target point on the 
surface normal passing through the projection point, its variable 
value etargtQ  can be interpolated or extrapolated by  

0n1
2

n2etargt araraQ ++=   (9) 
where nr  is the outward normal distance between the target 
point and the projection point.  The ghost value ghostQ  can be 
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extrapolated by taking projghostn rrr  −−=  in Eq. (9), where 

ghostr  and projr  are the position vector of the ghost center and 
the projection point, respectively.  Note that here nr  is negative 
and ghostQ  is obtained by an extrapolation.  It has been shown 
[6, 7, 8] that Eq. (8) and Eq. (9) yield 2nd-order accurate 
solution in L2 sense for both Dirichlet and Neumann boundary 
conditions. 

FLUID-SOLID CONJUGATE HEAT TRANSFER 
In theory, the two boundary conditions in Eq. (3) need be 

satisfied simultaneously.  In practice, since the flow domain 
and the solid domain are solved in sequence during one time 
step, the two equations in Eq. (3) are also enforced in sequence.  
When fs kk > ,  it is chosen to enforce for solid computation  
that  
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via the Neumann boundary condition treatment for the solid 

temperature.  Note that the condition 
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, which gives a better stability when enforcing 

Neumann boundary condition in the solid computation.   
The other boundary condition is enforced in fluid 

computation, that is,  
 sf θθ =  (11) 

The interface temperature is estimated using the solid 
temperature sθ  at the interface, and then it is assigned to fθ  at 
the interface via the Dirichlet boundary condition treatment for 
the fluid temperature.   

In the case when 1
k
k

f

s < , the Neumann boundary 

condition on the interface should be enforced in the flow 
computation, leaving the Dirichlet boundary condition to the 
solid computation.   

VALIDATEION  
The heat transfer problem of among three coaxial circular 

cylinders is depicted in Fig. 2, which is a copy from Ref. [1].  
The inner cylinder has a radius 45.0Ri = , the middle cylinder 
has 9.0Rm = , and the outer cylinder has 8.1Ro = .  The inner 
cylinder surface is fixed at a surface temperature 1i =θ .  The 
annular space between iR  and mR is filled with a solid, while 
the annular space between mR  and oR  is filled with a fluid.  
The outer cylinder surface at oR  is rotating at a circumferential 

speed 1U0 = .  It drives a rotational flow in the annular space 
between mR  and oR .  The surface temperature at oR  is fixed 
at 0o =θ .  There is conjugate heat transfer across the middle 
cylinder surface.  The analytical solution of this model problem 
can be found in Ref. [1].  

Note that the steady state temperature distribution is solely 
determined by the heat conduction process.  The rotational 
speed 0U  has no effect on the steady state temperature 
distribution.  Hence this problem is computed here on Cartesian 
grid of various sizes with 0U =0.  The computational domain is 
a square of length 4 covering the three cylinder surfaces.  
Figure 3 shows the temperature distribution along the 
horizontal line passing through cylinder center on a 64×64 grid 
for fs k10k = , and Fig. 4 is for fs k1.0k = .  The symbols are 
computed results, which are in excellent agreement with the 
exact solutions.  Using data computed along the horizontal grid 
line passing through cylinder center, Fig. 5 shows the 
convergence test using 64×64, 128×128 and 256×256 grids.  
The estimated order of accuracy is 1.94 in L2 norms for 

fs k1.0k =  and 1.71 for fs k10k = .  This validates that the 
current ghost cell method is second order accurate when 
applied to conjugate heat transfer problems.  Although not 
shown here, but if only a first-order estimation of temperature 
gradient at the projection points on the interface, then only first 
order accuracy is observed.   

INTERNALLY HEATED CIRCULAR CYLINDER  
The conjugate heat transfer characteristics of a cylinder 

with one or multiple layers of solid materials between the 
internal heating element and the external crossflow have 
important implications to crossflow heat exchangers [9].  In this 
paper, a computational model of internally heated cylinder is 
made of a cylinder of unit diameter with an internal circular 
surface of diameter 0.2 at fixed temperature θ=1.  Heat is 
transported from the internal heating surface to the cylinder 
surface by pure conduction, and eventually is transported away 
from the cylinder surface by convection and conduction.  The 
conductivity ratio is taken to be 9k/k fs = .  The Raynolds 
number based on cylinder diameter, the free stream velocity 
and the fluid dynamic viscosity is Re=40.  The Prandtl number 
is set to 0.71.  The Grashof number is zero.  We are interested 
in steady state temperature distributions, where the solid 
equation is a Laplace equation. 

The Cartesian grid has a total of 51720 cells covering a 
computational domain of size 60×60.  The grid is locally 
refined such that there are about 68.3 cells along the cylinder 
diameter and about 13.6 cells along the internal surface 
diameter.  The free stream condition is set to the inflow 
boundary and the two side boundaries.  The free stream 
temperature is 0=θ .  The downstream boundary follows the 
upwind differenced equation of 0)x/Q(U)t/Q( n =∂∂+∂∂ , 
where nU  is the computed normal outflow velocity at the 
boundary.  Since only the steady state solution is of interest, the 
implicit Euler method is used in time integration for fluid and 
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solid.  The diffusivity ratio 
f

s

α
α  can be arbitrarily chosen to 

accelerate the convergence.  
Figure 5 to Fig. 10 show the temperature contours inside 

and outside the cylinder with the heating surface center (xc, yc) 
located in different positions.  With zero Grashof number, the 
temperature equation in Eq. (1) is decoupled from the 
momentum equations.  Thus the velocity field computed for all 
cases show here are identical to the computer machine 
accuracy.  The identical streamline patterns in Fig. 5 to Fig. 10 
reflect this fact.  Note that the temperature field is symmetric 
with respect to x axis in Fig. 5 to Fig. 7, and asymmetric in Fig. 
8 to Fig. 10 due to the position of the heating surface.  The 
discontinuous slope in temperature contours across the cylinder 
surface due to the jump in conductivity can be clearly seen in 
these figures.    

To compute the heat transfer BodyH  over the body 
surface, the following surface integrals are used: 

S
RePr

1H
surface

fBody


∆⋅∇= ∑ θ  (12) 

where the summation is performed on all boundary segments of 
the body surface.  The temperature gradients are obtained by 
the bi-linear approximation described previously using the 
surrounding cell vertex values.  Table 1 lists the computed heat 
transfer times the constant RePr with varying heating surface 
locations.  Note that heat transfer increases when heating 
surface moves toward the upstream stagnation (6th row to 2nd 
row).  This is reasonable, because the heat convection starts 
from the upstream stagnation, and more heat will be convected 
downstream when the heat source is closer to the upstream 
stagnation.  

CONCLUSIONS  
This paper demonstrates the application of a ghost cell 

immersed boundary method in solving conjugate heat transfer 
problems.  The same finite volume discretization method is 
used on one single Cartesian grid to solve the governing 
equations for both fluid and solid phases.  This approach is 
advantageous when compared with the traditional approach that 
uses different discretization methods and different body-fitted 
grids for different phases.  It is shown that the present treatment 
across the solid-fluid interface yields second-order accurate 
solution in L2 norm.  The examples of a circular cylinder in a 
low speed crossflow with an internal heating surface located in 
various locations demonstrate the capability of the present 
method to treat complex geometry. 
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Table 1 Heat transfer over cylinder surface with internal 

heating surface at various positions, Re=40, Ks/Kf=9 
 

Center (xc, yc) PrReH Body  
(-0.25, 0) 8.0301 
(-0.177, 0.177)  7.9942 
(0, 0.25) 7.8012 
(0.177, 0.177)  7.5220 
(0.25, 0) 7.3903 
(0, 0) 7.9424 

 

 
Figure 1 Depict of fluid flow domain and its ghost cell system. 

 

 
Figure 2 Depict of heat transfer problem for the solid and the 

rotational flow in annular spaces. (Copy from Ref. [1]) 

 
Figure 3 Temperature distribution along central horizontal grid 
line, center at x=2, Ks/Kf=10, symbols: computed, line: exact. 

 
Figure 3 Temperature distribution along central horizontal grid 
line, center at x=2,  Ks/Kf=0.1, symbols: computed, line: exact. 

 
Figure 4 Order analysis using temperature along central 
horizontal grid line, Squares: Ks/Kf=0.1, triangles: Ks/Kf=10. 
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Figure 5 Temperature contours and streamlines, heating 
surface at (-0.25, 0), Ks/Kf=9, Re=40 

 
Figure 6 Temperature contours and streamlines, heating 
surface at (0, 0), Ks/Kf=9, Re=40. 

 
Figure 7 Temperature contours and streamlines, heating 
surface at (0.25, 0), Ks/Kf=9, Re=40 

 
Figure 8 Temperature contours and streamlines, heating 
surface at (-0.177, 0.177), Ks/Kf=9, Re=40 

 
Figure 9 Temperature contours and streamlines, heating 
surface at (0, 0.25), Ks/Kf=9, Re=40 

 
Figure 10 Temperature contours and streamlines, heating 
surface at (0.177, 0.177), Ks/Kf=9, Re=40 
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