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ABSTRACT 

In this paper we propose a mathematical model with 

tensorial analysis for a single cavitating microshell bubble 

immersed in a newtonian liquid, excited by an ultrasound field. 

We obtain a system of nonlinear differential equations 

Rayleigh-Plesset kind for a thin shell working as a Mooney 

Rivlin hyperelastic solid. Numerical solutions of the full 

equation are obtained, for periodic and nonperiodic oscillations, 

for different values of the elastic parameters. We also present a 

frequency analysis for the nonlinear behaviour of the system by 

obtaining an analytical solution with the method of Multiple 

Scale Analysis. All of these is carried out taking into account 

the values of the parameters used in the Contrast Agents 

phenomena. 

 

INTRODUCTION 
Contrast agents used on ultrasound diagnosis, drug delivery 

and perforation are hollow microspheres. These can be 

modelled as microbubbles immersed in an infinite liquid with a 

gas inside, insonified by an oscillating high frequency pressure 

field. In recent years works are dedicated to the modelling and 

prediction of its behaviour [1-5].  Perhaps the attempts of 

measurements of their mechanical properties [6], it’s difficult to 

identify the real nature of the substance that forms the agent 

[7]. Therefore we propose to consider it as a hyperelastic thin 

shell solid following the approximation [5], this mean,s if the 

shell thickness is small compared to the radius of the the bubble 

the whole deformation can be represented by the outside radius 

deformations. 

In the present work we   propose a mathematical model for 

the shell as a hyperelastic Mooney-Rivlin solid using the 

Rayleigh-Plesset equation. Also we give numerical solution for 

the time versus radius with the phase space, together with an 

analytical solution for the damping parameters using multiple 

scale perturbation analysis. 

NOMENCLATURE 
 
a [-] Non dimensional outside radius 

a* [-] Real part in perturbation analysis 
A [-] Constant for the solution proposed 

pl [N/m] Liquid pressure 

pA [N/m] Driving pressure  
pg0 [N/m] Initial gas pressure inside the bubble 

PA [-] Non dimensional driving pressure 

R [m] Bubble radius 

r [m] Radial coordinate 

Re [-] Reynolds Number 
St [-] Strouhal Number 

t [s] time 

tc [s] Characteristic time 

Tn [-] Time scales 

u [-] Perturbation variable 

u´ [m] deformation 
w1 w2 [N/m2] Mooney-Rivlin Elastic first and second constants 

x [-] relative amplitude in perturbation analysis 
 

Special characters 
α [-] Non dimensional Mooney-Rivlin first constant 

 [-] Non dimensional Mooney-Rivlin second constant 

 [-] Non dimensional Mooney-Rivlin first and second 

perturbation scaled constants 

 [-] Detuning parameter  

rr [N/m2] Radial stress component 

 [N/m2] Angular stress component 

 [-] Ratio between the difference of  inside and outside initial 

radiuses and the initial radius of the bubble 

 [-] Densities ratio 

s [kg/m3] Solid density 

 [kg/m3] Liquid density 

 [-] Adiabatic index 

 [-] Time Scaling parameter  

 [-] Dimensionless natural frequency 

l [Pas] Liquid viscosity 

 [-] Detune time for the solution 

 

Subscripts 

10  Inside initial 
20  Outside initial 

go  Initial equilibrium  

 

MATHEMATICAL MODEL 
In the first place, for the solid shell deformations we have 

the Cauchy´s stress equation for a spherical nonstationary 

symmetrical solid 

 

  2
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2 `rrrr
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

 
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 
          (1)  

For the spherical deformation u´ can be written 

  `u r R                                           (2)  
The difference of the radial coordinate minus the shell radius, 

and writing the stress for the spherical Mooney-Rivlin stress 

model 
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 (3)  

With (2), substituting (3) on (1) and integrating from the inside 

radius 
1R to the outside radius 2R   as in [8] we get a 

differential equation for the difference between the outside and 

inside stresses of the shell 
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        (4) 

 

The Rayleigh-Plesset equation for a single bubble immersed in 

a liquid, in this case it is assumed valid from the surface of the 

bubble 2R  to infinite along the radial direction 

 
22

2 2
22

3

2
l l

d R dR
p R p

dt dt
 

  
    

   

  (5)  

Equations (4) and (5), must be coupled, in (4) we have the shell 

motions, in (5) we have the liquid motions surrounding the 

shell. The coupling comes from a balance of stresses of both 

substances. On the outer surface we have the balance of 

stresses, one the radial stress of the solid and on the other side 

the pressure and the viscous stress in the liquid such as 

   2
2 2

2

4l rr

dR
p R r R

R dt


       (6) 

 On the inside we have the bubble filled with gas that 

obeys the adiabatic ideal gas law for compression. For this case   

the solid stress at the inner surface balances with the pressure of 

the gas. 

 
3

1
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rr g
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r


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    (7) 

On substituting (7) and (6) in (4) and adding it to (5) we get an 

equation for the shell on the outside surrounded by a liquid and 

on the inside filled with an adiabatic ideal gas. Eq. (8) is a 

general modified Rayleigh-Plesset equation including the 

Mooney-Rivlin hyperelastic model. 

 In the first two terms in the left we find the ratio of 

densities  for all values different from zero both shell and 

liquid move simultaneously, being these the inertial effects. 

The third term is the Newtonian viscous effect. On the right 

hand we find the pressure inside the bubble, the pressure in the 

bulk liquid and the stresses generated from the hyperelastic 

deformation, from the inside and outside surfaces of the bubble. 
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      (8) 

  

This equation can be simplified with the thin layer 

approximation [5] with the aid of 

 

1
3 3

3

20
1 2 3

2

3
1

1

R
R R

R





  
   

    

  (9) 

 

Where  
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R R

R



      (10) 

When 0  the thin shell approximation is reached and for

0  ; we recover the original R-P equation.  

 

 In order to obtain the control parameters we introduce 

the following nondimensional variables  
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Eq. (8) can be rewritten as 
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       (11) 

This last equation is written for the outside radius only, 

but the influence of the inner radius is present through the 

parameter . In order to validate the thin layer approximation; 

this equation should be linearized around this parameter to give 
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      (12) 

 

Equation (12) shows that for the second term in the left side, 

terms associated with  are lost, cancelled algebraically, some 

information regarding the inside radius is somehow obscured. 

Linearizing again with respect to eliminating terms of 

O(
2
) and making the product  tend to zero the final equation 

is 
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   (13) 

The relevance of (13) is that the elastic parameters are 

scaled by   the thin shell parameter, giving a balance of terms 

for the whole equation. 

To close the model the initial conditions are 
(0) 1

(0) 0

a
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     (14) 

 

PERTURBATION ANALYSIS 
There are many works that had used a perturbation analysis 

for the R-P equation, to get equations for small amplitude 

driving pressure and small oscillations around the equilibrium 

radius [2,9-10 ].  The objective of the present analysis is to get 

the natural frequency for the primary resonances and a steady 

state solution for the frequency dependent amplitude response 

for the shell. In this case the multiple physical events that a 

nonlinear oscillation can exhibit for different times, suggests 

that a multiple scale analysis is suitable for this. Formally 

speaking, “only methods that yield a nonuniform expansion can 

be used for nonlinear oscillations”  [11].    

Expanding the equilibrium radius in terms of a relative 

amplitude x  

1a x        (15) 

Where  is a small parameter, taking (15) to (13) and 

expanding in powers of x up to the third order (cubic terms) 
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       (16) 

The MS method [11] requires that the equation should be 

balanced so that the damping terms, the forcing and the 

dissipative terms must be in the same scale order, so the 

variables should take the following scales 
2

3 ; ; 1
Re

Ap f x u

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 For starting the MS method, the following expansions in 

time and derivatives should take the form 
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       (17) 

Substituting (16) in (15) and equating powers of chi 
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       (21) 

Where the time scale can be defined as the natural frequency 

with a small detune 
2

0St      

 

 Proposing a complex solution derived from the 

homogeneous equation (17) 

 

  0 0

0 1 2, . .
i T

u A T T e c c


     (22) 

Where c.c is the complex conjugate 

 Substituting (22) in (20), the equation can show the 

secular term which is 

 

0 0

12 0
i T

D Ae


       (23) 

In general A is function of the two time scales but (23) shows 

that 

  2A f T        

For the next order the solution is proposed as 

 

0 022

1 1 2 . .
i T

u c A e c AA c c


      (24) 

and the constants can be evaluated as 

 

 

 
2

* *

1 2

0

2
* *

2 2

0

1 9 9 2 1
132 64

3 2 2

2 9 9 2 5
132 64

2 2

c

c

 
 



 
 



   
    

 

  
    

 

 

 

       (25) 

 Applying to the second order equation the same criteria 

for obtaining the secular terms and proposing a solution for A  

 

   22

2

i Ta T
A e


      (26) 

The secular terms equalled to zero gives one equation that can 

be separated into its real and imaginary parts 

       

     

0

2

* *

1 2

3

* *

3 2 3 1 3 2 264 168 2

1 3 17
3 1 1 3 1 1 3 1

8 4 23

464 224 1

1
cos 0

2

a
T

c c

a

f




   

  

 








        
 
    
             
     

 

       (27) 

0 0

2

2 1
sin 0

Re 2

a
a f

T
  


   


  (28) 

2T     

     

To get the steady state response  the partial derivatives of the 

equations are set to zero and combining (28) and (27) yields 

 

 

       

     

2
* *

1 2
2

3

2
* *

0

2

2

3 2 3 1 3 2 264 168 2
1

3 174 8 3 3 1 1 3 1 1 3 1 464 224 1
4 2

4

Re

c c
f

a a

a

   


     

         
   
                           



 

 

        (30) 

 

NUMERICAL SOLUTION 
Equation (13) is solved with a Runge Kutta 4

th
 order 

method in INTEL Fortran. The representative values for the 

problem of contrast agents can be found in [5-7], for 117 <PA 

<430MPa, 10<w1<120MPa, 5<w2<80MPa, R20=4m, =1.4, 
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l=1000kg/m
3
, =3MHz, =0.05 and pgo=100kPa. These 

values are for water and air in liquid and gas sides and the 

hyperelastic constants for the solid shell. 

 In fig. 1 dimensionless radius versus dimensionless time, 

for three different pairs of hyperelastic constants, starts with an    

 
 

Figure 1 Radius versus time for different values of 

hyperelastic constants 

 

 
Figure 2 Phase space for *

 =100 and 


irregular oscillations making a transitory regime until regular 

oscillations are reached. This is confirmed in Fig. 2 a limit 

cycle appears in an ellipsoid form and suggests that this will 

continue until a steady mode is reached. The other cases are 

very similar. In fig. the influence of Reynolds Number for 

Reynolds 4 it shows a little transient at the beginning, 

stabilizing with very regular oscillations, these are smaller in 

amplitude compared with the 40 and 400 case, that in both 

cases the amplitude is almost the same and the oscillation is 

regular but with many harmonics. The small Reynolds is a 

damping and stabilizing parameter. 

 
Figure 3 Radius versus time for different values of 

Reynolds number, *
 =10 and  

 
Figs. 4, 5 and 6 show the numerical solution for eq. 30 these 

are the frequency response curves. Fig. 4 shows the influence 

of the hyperelastic parameters. This chart seems to contradict 

Fig. 1, the biggest the hyperelastic parameters the smallest the 

spike, this seems to happen because the fast response of the 

material to the forcing, just in this small restricted domain of 

small amplitude oscillations the material responds very fast. 

 
Figure 4 Frequency response curves fixating the forcing 

amplitude and the Reynolds number 

 

Fig.5 shows the influence of the Reynolds number with 

fixated hyperelastic parameters and the same forcing amplitude, 

in this case the Reynolds damps the spike. For Fig. 6 it is clear 

the influence of the forcing parameter f, the smallest is the 

smallest the spike. 
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Figure 5 Frequency response curves fixating the forcing 

amplitude and the hyperelastic constants 

 
Figure 6 Frequency response curves fixating the Reynolds 

Number amplitude and the hyperelastic constants 

TRENDS AND RESULTS  
In the curves presented here the collapse was not found for 

the amplitudes exemplified, for higher amplitudes a sudden 

collapse might be found strongly dependent on the Reynolds 

number and not in the hyperelastic constants, in a previous 

work this is what happened.  

For the multiple scale analysis the natural frequency and 

frequency response curves are clearly dependant on the 

hyperelastic parameters. In the process it was found that the 

damping influence only appeared at the third power of the 

expanded variable u taking the problem to the second order.  

CONCLUSION  
The numerical results of figs. 1-3 indicate that there is not 

going to be a sudden collapse on the contrary the oscillations 

will stabilize as the limit cycle shows, although fig. 3 shows a 

harmonic transient, this tends to stability. The amplitude of the 

oscillations are of the same order comparing with low Reynolds 

number and low values of the hyperelastic parameters, however 

with a stronger material the amplitude is significantly reduced 

and even with an increment of one order of magnitude in the 

parameters the amplitude seem to keep the same value. For sure 

it is needed to explore more examples in order to find the 

collapse. 

The frequency response curves show that this model can be 

stable and oscillatory stable, and the tendency will be towards 

no resonance. The hyperelastic parameters show more damping 

and more deviation from the middle point compared with the 

Reynolds damping. 
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