THE INFLUENCE OF REAL GAS EFFECTS ON THERMALLY INDUCED LOSSES IN RECIPROCATING PISTON-CYLINDER SYSTEMS

Taleb A.I.1,*, Barfuss C.1, Sapin P.1, White A.J.2, Willich C.2, Fabris D.1,3 and Markides C.N.1

1Clean Energy Processes (CEP) Laboratory, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
2Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
3Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA 95053, USA

*Author for correspondence
E-mail: a.taleb@imperial.ac.uk

ABSTRACT
The efficiency of expanders is of prime importance for various clean energy technologies. Once mechanical losses (e.g. through valves) are minimized, losses due to unsteady heat exchange between the working fluid and the solid walls of the containing device can become the dominant loss mechanism. In this device, gas spring devices are investigated numerically in order to focus explicitly on the thermodynamic losses that arise due to this unsteady heat transfer. The specific aim of this study is to investigate the behaviour of real gases in gas springs and compare this to that of ideal gases in order to attain a better understanding of the impact of real gas effects on the thermally losses in reciprocating piston expanders and compressors. A CFD-model of a gas spring is developed in OpenFOAM. Three different gas models are compared: an ideal gas model with constant thermodynamic and transport properties; an ideal gas model with temperature-dependent properties; and a real gas model using the Peng-Robinson equation of state with temperature and pressure-dependent properties. Results indicate that, for simple, mono- and diatomic gases like helium or nitrogen, there is a negligible difference in the pressure and temperature oscillations over a cycle between the ideal and real gas models. However, when looking at a heavier (organic) molecule such as propane, the ideal gas model tends to overestimate the temperature and pressure compared to the real gas model, especially if no temperature dependency of thermodynamic properties is taken into account. Additionally, the ideal gas model (both alternatives) underestimates the thermally induced loss compared to the real gas model for heavier gases. Real gas effects must be taken into account in order to predict accurately the thermally induced loss when using heavy molecules in such devices.

INTRODUCTION
Reciprocating machines have potential applications for the efficient conversion of low-grade heat (e.g. solar, geothermal, waste heat). Piston expanders, for instance, are a viable alternative to turbomachines in organic Rankine cycles (ORCs). They provide higher efficiencies at low power outputs and at off-design rotational speeds which may occur due to the intermittent nature of low-grade heat sources. Examples of reciprocating machines for low-grade heat conversion include thermofluidic oscillators [1; 2] and liquid piston Fluidyne engines [3; 4] which rely on liquid pistons to transfer energy from the oscillating pressure and volume of an enclosed working fluid.

In reciprocating machines, irreversible losses occur due to mechanical friction with moving parts, flow losses in valves, and irreversibilities due to heat transfer across a finite temperature difference. Once mechanical losses are minimized, thermally in-
duced losses can begin to dominate and must be taken into account. Performance losses arising due to unsteady heat transfer occur even if the overall process is globally adiabatic (in the mean), since heat exchange between the gas and the cylinder wall across a finite temperature difference is an inherently irreversible process. Heat is transferred from the gas to the wall during compression when the gas temperature is higher than the wall temperature. During expansion, heat is returned back to the gas as its temperature falls below that of the wall. Even if the net fluctuating heat transfer is zero, a finite exergetic penalty is paid. Therefore, it is of primary importance, to quantify and characterize the heat exchange fluctuations between the fluid and the solid.

To understand the basic irreversibility due to the periodic heat transfer without considering inlet and exit flows, a gas spring—in which a fixed mass undergoes sequential compression expansion within a closed space—is numerically simulated using computational fluid dynamics. Gas springs do not include the complex effects of valve timing and gas exchange of reciprocating-piston devices while they retain the fluctuating heat exchange phenomena between the cylinder walls and gas. Previous work in this area began with Pfriem [5] who described analytically a phase difference between the heat flux and the temperature difference between the wall and the bulk gas. Lee [6] described the oscillating heat flux by developing a model for a complex Nusselt number at low Péclet numbers (or low frequencies). Experiments were conducted by Kornhauser and Smith [7; 8; 9] from which they calculated the thermal loss for a wide range of Péclet numbers and different compression ratios. Additionally, they proposed empirical Nu-Re correlations which accounted for the aforementioned phase difference with imaginary components. The correlation was only developed for low compression ratios and helium as a working fluid. Lekić and Kok [10] simulated Kornhauser and Smith’s experiments with CFD simulations and examined local effects of temperature and pressure in the compression space.

Low-grade heat conversion technologies commonly use more complex organic working fluids. This is especially valid for ORCs and thermofluidic oscillators which rely on refrigerants and hydrocarbons (common examples are pentane, HFC-245fa or HFC-134a) [11; 12]. In previous studies, Lee [6] considered ideal gases while Kornhauser and Smith [7; 8; 9] experimented with light or noble gases such as hydrogen, helium and argon for which the ideal gas law is an accurate approximation. However, in temperature and pressure ranges relevant in this study (200–600 K, 0.5–10 bar) and for organic fluids real gas effects need to be considered. In this study the irreversibility due to heat transfer is quantified accounting for several real gas effects, different equations of state and variable heat capacities.

METHODOLOGY

Problem setup

The geometry of the piston-cylinder arrangement of the gas spring is defined by the following parameters:

- bore diameter: \(D = 105 \) mm
- stroke length: \(L_s = 2 \times r_s = 78 \) mm
- connecting rod length: \(L_c = 148.5 \) mm
- dead volume height: \(L_{dv} = 14 \) mm

The geometry was chosen to match an experimental setup which will be used to validate computational work in the future. The Péclet number, \(Pe \), is used as a dimensionless measure for the rotational speed of the gas spring oscillation:

\[
Pe = \frac{\omega D_h^2}{4 \alpha_0}
\]

where \(\omega \) is the rotational velocity, \(\alpha_0 = k/\rho c_p \) is the time-averaged thermal diffusivity and \(D_h = 4V_{md}/A_{md} \) is the hydraulic diameter at mid-stroke.

To quantify the thermal loss of one complete oscillation cycle, Kornhauser and Smith [8] define a loss parameter \(\psi_K \) as the ratio of the lost net work to the adiabatic compression work for an ideal gas with the same cyclic mean pressure:

\[
\psi_K = \frac{\int P_d V}{P_0 V_0 \left(\frac{P_f}{P_0} \right)^{2 \frac{\gamma - 1}{\gamma}}},
\]

where \(P_0 \) and \(V_0 \) are the cyclic mean pressure and volume respectively, \(P_a \) is the pressure amplitude and \(\gamma \) is the ratio of specific heats.

Geometry and mesh

The CFD model was developed in the open source code OpenFOAM (v. 2.1.1). As the system and geometry is axisymmetric (Fig. 1), the gas spring is modelled in two spatial dimensions and temporally over 10 cycles. The geometry consists of a wedge with a width of 0.02 radians and there is only one layer of cells in circumferential direction. The changing volume of the compression space is modelled with a dynamic mesh. The moving lower boundary represents the piston. Every node in the mesh compresses vertically relative to the stationary cylinder head (top boundary) and the moving piston head (bottom boundary). Nodes closer to the piston move to a greater extent than

![Figure 1: Modeled wedge geometry and definition of the aspect ratio, left-hand diagram shows the wedge in a perspective view, right-hand diagram shows a top view of the geometry (not to scale).](image-url)
nodes closer to the cylinder head. Thus, the mesh is distorted during compression/expansion as in Fig. 2. The mesh is modelled to have a cell aspect ratio of 1 at mid-stroke so that the distortion at bottom dead center (BDC) and top dead center (TDC) is approximately equal in terms of the ratio of a cell’s larger dimension to smaller dimension (if grading is not considered). The size of the cells decreases gradually towards the boundaries to increase the mesh resolution inside the boundary layers near the walls. At midstroke, the smallest cell radial dimension is one fourth of the largest cell radial dimension. The same is valid in axial direction. The mesh resolution used depends on the rotational speed where the total number of cells increases for higher speeds. A convergence study was carried out to investigate the independence of the results from the mesh resolution and the Courant number. For speeds around 100 RPM, for example, the mesh is sufficiently resolved at 90 × 90 [13].

Figure 2: Mesh movement during an expansion stroke of a 30 × 30 mesh. A grading factor increases resolution near the walls.

The time step is controlled by a user-specified maximum Courant number \(C_{\text{omax}}\). For a given cell, the maximum Courant number is defined as:

\[
C_{\text{omax}} = \frac{|u| \Delta t}{\Delta x}, \tag{3}
\]

where \(|u|\) is the magnitude of the velocity through a cell, \(\Delta x\) is the cell size in the direction of the velocity and \(\Delta t\) is the time step. The time step is chosen such that \(C_{\text{omax}}\) is never exceeded. Due to the dynamic mesh, the time step not only adapts to the flow velocity but also to the change in cell size. For speeds around 100 RPM, the maximum Courant number chosen is \(C_{\text{omax}} = 0.1\).

The compressible solver uses a modified version of cold-EngineFOAM, provided by OpenFOAM for piston engines without combustion. It is based on the PIMPLE algorithm which is a combination of the SIMPLE (semi-implicit method for pressure linked equations) and PISO (pressure-implicit split operator).

Turbulence model

The simulations have shown that during the upstroke and the downstroke the velocity profile is primarily axial and uniform in radial direction. There is only a significant gradient in axial direction, which is expected from the piston movement. Turbulence is generated in regions of high perpendicular velocity gradients to the main flow direction. This requires a sufficiently high convective force to overcome the damping effect of the viscosity. This can occur in the boundary layer during the stroke or in a roll up vortex which is produced at the contact point of the piston and cylinder wall. Considering the maximum piston velocity of \(u_{\text{max}} = 4.084\, \text{m/s}\) at the highest considered speed of 1000 RPM, the Reynolds number is \(Re = 27170\) in the boundary layer. Because of the absence of perpendicular gradients, the uniform core flow is considered to be laminar and has no effect on turbulence generation in the boundary layer. Thus the boundary can be compared to an impulsive boundary layer on a rotary disk. Chin and Litt [14] state for experiments on transition of a boundary layer on smooth rotary disks a critical Reynolds number of 170000. Since the operating conditions modelled are at a Reynolds number which is one order of magnitude lower, the boundary layer is not considered turbulent or transitional. It should be noted that the unsteady simulation does capture the large scale vortex roll-up motion. Lekić and Kok [10] simulated both laminar and turbulent cases and found that turbulence has a negligible impact on the governing physical phenomena in their simulations.

Real gas effects

In this study, both real and ideal gas equations of state are compared. For real gases, the ideal gas equation of state is replaced by the Peng-Robinson equation of state [15]:

\[
P = \frac{RT}{V_m - b} - \frac{a\alpha}{V_m (V_m + b) + b (V_m - b)}, \tag{4}
\]

where \(V_m\) is the molar volume; and \(a\), \(b\) and \(\alpha\) are the attraction parameter, van der Waals covolume and scaling factor respectively, defined in the following:

\[
a = 0.45724 \frac{R^2 T^2}{P_c}, \quad b = 0.07780 \frac{RT}{P_c}. \tag{5}
\]

\(R\) is the universal gas constant, \(T_c\) and \(P_c\) are the critical temperature and pressure.

\[
\alpha = \left(1 + \kappa \left(1 - T_{r}^{1/2}\right)\right)^2, \tag{6}
\]

where \(T_{r}\) is the reduced temperature, \(\kappa = 0.37464 + 1.54226\omega_{a} - 0.26992\omega_{a}^2\) and \(\omega_{a}\) is the acentric factor. Additionally, the temperature dependent mass-specific heat capacity \(c_p^0(T)\), enthalpy \(h^0(T)\) and entropy \(s^0(T)\) for ideal gases are calculated with temperature dependent polynomials often referred to as JANAF or NASA heat capacity polynomials [16]. For brevity, only the heat capacity is shown here:

\[
c_p^0(T) = R_m \left(a_1 T^{-2} + a_2 T^{-1} + a_3 + a_4 T + a_5 T^2 + a_6 T^3 + a_7 T^4\right), \tag{7}
\]

where
where \(R_m = R/M \) is the specific gas constant. With

\[
\left(\frac{\partial c_p}{\partial v} \right)_T = -T \left(\frac{\partial^2 v}{\partial T^2} \right)_P,
\]

(8)
a correction for the pressure dependency of \(c_p \) can be calculated [17]:

\[
c_p(T, P) = c_p^0(T) - T \int_0^P \left(\frac{\partial^2 v}{\partial T^2} \right)_P \, dP,
\]

(9)

where \(v \) is the specific volume.

Initial and boundary conditions

Initial conditions of the pressure and temperature are set at BDC (crank angle \(\phi = -180 \)°). For all cases, the initial pressure and temperature are set at 1 bar and 330 K. The wall temperatures are uniform and constant at 350 K. Adair et al. [18] observed in their experiments that the cylinder wall temperatures in reciprocating compressors oscillate by less than 1 K. The same temperature was selected for all wall boundaries (cylinder head, piston head and cylinder wall). The CFD simulations of Lekić and Kok [10] made the same assumption of constant and uniform wall temperature.

RESULTS

Influence of real gas effects on temperature and pressure

Three gases were considered in this study: helium, nitrogen and propane. Nitrogen as well as helium are expected to behave as ideal gases. Propane, however, is expected to deviate from the ideal gas behaviour due to the increased complexity of the molecule. To compare the three gases, a similar Peclét number of \(Pe \approx 300 \) was adopted which arose for 500 RPM with
Figure 7: Compressibility Z during one cycle for nitrogen and propane.

helium, 70 RPM with nitrogen and 20 RPM with propane. Figures 3–5 show T-V curves for the three substances when modelled as ideal gases with constant (solid blue) and temperature dependent thermodynamic/transport properties (dashed red) and as real gases with pressure and temperature dependent properties (dotted green). As expected, nitrogen and helium behave similarly regardless of the model, although, when assuming constant thermophysical properties the temperatures are slightly overestimated compared to the real gas model. Propane, on the other hand, shows deviations. In Fig. 5, one can see that the constant property ideal gas model (solid blue) overestimates temperatures at TDC by about 3% (high pressure) compared to the real gas model, but at BDC (low pressure) the agreement in temperature is good. The ideal gas model with temperature dependent properties (dashed red) shows good agreement in temperatures at TDC but at low temperatures it shows slight deviation. Figure 6, shows a P-V plot for propane. One can see here that in this case both ideal gas models deviate from the real gas model. Because both ideal gas models do not have a correction for the pressure dependency of the gas properties, they both overestimate the pressure by as much as 14% at TDC (high pressures) compared to the real gas model. The discrepancy between ideal and real gases can be understood with the compressibility factor $Z = P v / RT$ plotted in Fig. 7. For ideal gases, $Z = 1$. A value different from unity provides a measure for the magnitude of the real gas effects. These tend to increase when one is close to the critical point or saturation, so for the cases considered, at low temperatures and high pressures. Figure 7 shows that Z is almost always equal to 1 at all crank angles for nitrogen. When propane is used, Z moves away from 1 at TDC. The largest differences between the ideal and real gas models are observed at this position.

Thermally induced losses

Figures 8 and 9 show the loss parameter ψ_K for helium and propane for varying Péclét numbers. The general trend which has been reported in previous work [6; 7; 8; 10; 19] is also observed here: at low and high Péclét numbers the loss is low and it reaches a maximum at an intermediate value which is around $Pe \approx 10$. At low Péclét numbers, the oscillation frequency is small such that any work done by the gas will be exchanged in the form of heat with the solid walls. The gas temperature remains constant and equal to the wall temperature. The system undergoes isothermal compression. On the other hand, at high Péclét numbers the oscillation frequency is high. The variation between compression and expansion occurs too quickly for significant heat transfer to occur. The system experiences adiabatic compression and expansion. Therefore, at intermediate Péclét numbers, the work will result from the interplay between both the internal energy of the gas and the heat transfer to the solid leading to a net loss of work during the cycle.
At low Pe, all three models calculate similar loss values for helium shown in Fig. 8. When moving to $Pe > 10$, one can observe that only the constant property model underestimates the loss compared to the other two alternatives. As for propane (Fig. 9), both ideal gas models underestimate the thermal loss compared to the real gas models. This is for the whole Pe number range. Interestingly, both of the ideal gas models calculate very similar loss values. Real gas effects increase the thermally induced losses significantly, which is not captured with the ideal gas models.

CONCLUSION

A two dimensional CFD model of a gas spring wedge has been developed to simulate the compression/expansion processes and thermally induced losses in gas springs. The model also takes real gas effects into account by calculating pressure and temperature dependent thermodynamic and transport properties and by using the Peng-Robinson equation of state. Due to the low velocity of the flow and piston, the Reynolds number is well below the critical Reynolds number for turbulence in the boundary layer, and a laminar model is used. The wall temperatures at the boundaries of the model are uniform and constant.

Three different gas models were compared: (1) an ideal gas model with constant thermodynamic and transport properties, (2) an ideal gas model with temperature dependent properties and (3) a real gas model using the Peng-Robinson equation of state with pressure and temperature dependent properties. When comparing helium and nitrogen at $Pe \approx 300$, all three models show similar variation in pressure and temperature over the cycle. For, propane the ideal gas models deviate from real gas models especially at high pressures occurring at TDC. When comparing to the results of the real gas model, the ideal gas models overestimate the pressures and to a lesser extent the temperatures in these conditions. The compressibility factor Z is almost always 1, but for propane at TDC Z falls down to 0.9. This explains the discrepancies between the ideal and real gas models of propane. Thermally induced losses were compared for the gases at different Péclet numbers. Differences between the models were observed even for helium: the constant property ideal gas model calculates a smaller loss than the other alternatives. For propane, both ideal gas models underestimate the thermal loss compared to the real gas models. This occurs for the whole Péclet number range indicating that real gas effects can increase the thermally induced losses in gas springs.

REFERENCES