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Università degli Studi di Brescia, via Branze 38, 25123 Brescia

E-mail: adriano.lezzi@unibs.it

ABSTRACT
Concrete sandwich panels are widely used building elements.

They are made by two reinforced concrete wythes separated by
a layer of lightweight material: the central layer is inhomoge-
neous due to the presence of concrete ribs which tie the exter-
nal wythes and act as thermal bridges. International Standards
allow to evaluate the average thermal transmittance of concrete
sandwich panels as a linear combination of the transmittance of
the solid concrete ribs and of the lightened parts - calculated as
if the temperature field were 1D - and linear and point thermal
transmittances associated with thermal bridges. In a recent work
we have addressed the problem of finding an accurate correla-
tion for prediction of linear thermal transmittance values. The
goal was reached upon use of a fast and accurate Spectral Ele-
ment Method. In this work we complete our study investigating
the point thermal bridges and determining the associated point
thermal transmittance. Point thermal transmittances in sandwich
panels are associated with the concrete rib intersections, like in
the four panel corners, and require 3D numerical simulations for
their evaluation: the computational effort required to approxi-
mate the point transmittance is much larger than that needed to
estimate the linear one. For this reason we present and discuss
a solution strategy based on the use of low-order polynomials
(p = 4) on three grids of increasing refinement, starting from a
very coarse one: results have been improved through an iterated
application of Richardson extrapolation. This procedure assures
a good trade-off between accuracy, as required by Standards, and
computational cost. A dataset of 1080 point transmittance values
is obtained varying systematically six geometrical and thermo-
physical parameters. A simple power law correlation in terms of
a single variable depending on linear transmittance of the inter-
secting ribs is introduced and its accuracy assessed.

INTRODUCTION
Precast concrete sandwich wall panels allow fast and econom-

ical constructions of buildings such as factories, warehouses, and
malls. Since they are usually produced far from the construc-
tion site, weight becomes a crucial point with regard to handling,

transportation, and installation issues. The easiest way to meet
both the requirements of structure robustness and weight con-
tainment, is to have a frame of concrete and fill the empty zones
with lightweight materials like expanded polystyrene. In what
follows this kind of panel will be referred to as LSP, precast con-
crete Lightened Sandwich wall Panel. It is worth underlying that
LSPs are not designed to be thermal efficient because the use of
insulating slabs is aimed to reduce weight, reduction of the aver-
age thermal transmittance is just a by-product effect.

In a LSP two prestressed concrete wythes are separated by a
heterogeneous layer made by lightweight slabs and concrete ribs:
so there are panel regions made of solid concrete which act as
thermal bridges. In principle, computation of the thermal trans-
mittance U of LSPs is not a critical issue: ISO 6946, ISO 14683,
and ISO 10211 [1, 2, 3] describe accurate methods to do that.
These methods require the knowledge of linear and point thermal
transmittance associated with thermal bridges in LSPs. Their val-
ues can be computed upon numerical simulations performed as
described in ISO 10211. However, most panel manufacturers are
SMEs (Small-Medium Enterprises) and their technical staff does
not have either the know-how, nor the time to numerically com-
pute values necessary to determine the transmittance U of their
product range: they consider much more convenient the usage of
transmittance catalogues or correlations, easily implemented in a
spreadsheet or in an in-house code.

In a previous paper [4] we addressed the problem of finding
an accurate correlation for prediction of linear thermal transmit-
tance values of LSPs. In the present work we complete our study
investigating the point thermal bridges in LSPs and determining
the associated point thermal transmittance.

Point thermal bridges in LSPs coincide with concrete rib in-
tersections, like in the four panel corners. ISO 14683 states that,
in general, the effect of point thermal bridges ”insofar they result
from the intersection of linear thermal bridges”, can be neglected
[2, Clause 4.2]. In past years, we had to evaluate in a few real
cases point thermal bridge contribution in LSPs and found that
it accounted for up to 2%, approximately. Besides, the associ-
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Figure 1. Plan and section view of a LSP: a, solid concrete sec-
tion; b, lightened section. Thick lines and open circles indicate
linear and point thermal bridges, respectively. Domains 1, 2 and
3 are examples of 3D models used in numerical simulations.

ated point transmittances were negative: neglecting them implied
overestimating panel transmittance U . In this work we check the
correctness and the generality of the latter conclusion, on the ba-
sis of a systematic study of point transmittance as a function of
concrete and lightweight material conductivities and panel geo-
metrical parameters.

Evaluation of point thermal transmittance requires 3D numer-
ical simulations, besides the knowledge of linear transmittance
associated with the intersecting concrete ribs. As in [4] we
use a conformal quadrilateral Spectral Element Method (SEM):
the computational effort required to approximate point transmit-
tances is much larger than that needed to estimate linear ones.
That forces us to use coarse meshes and to approximate the tem-
perature field in each mesh element with low-order polynomi-
als, but with the major drawback of loss of accuracy. Here we
present and discuss a solution strategy that allows to by-pass this
problem. The numerical problem is solved on three grids of in-
creasing refinement upon use of low-order polynomials (p = 4):
results are extrapolated by Richardson method [5, 6]. This pro-
cedure assures a good trade-off between accuracy, as required by
International Standards, and computational cost.

A dataset of point transmittance values is obtained varying
systematically material conductivities and thickness of external
and central layers, for the most frequent pairs of rib widths in
current panel production. We propose a simple power law cor-
relation in terms of a new variable depending on linear transmit-
tances and concrete wythes thickness. This correlation allows
to estimate point transmittances within a relative error of ±10%
which is intermediate between the typical accuracy of numeri-
cal calculation of linear thermal transmittance (±5%) and that of
linear thermal bridge catalogues (±20%)[2, Clause 5.1].

To our knowledge, in literature there are only a few other stud-
ies on point thermal bridges in precast concrete panels and none
of them is concerned with evaluation of point transmittance asso-
ciated with rib intersections. Studies [7, 8, 9] do consider point
transmittances, but they are concerned with the effect of metal
connectors used to tie the concrete wythes in insulated sandwich
wall panels.

AVERAGE THERMAL TRANSMITTANCE OF A LIGHT-
ENED SANDWICH PANEL

The average thermal transmittance U of a wall panel is defined
as U = q/A∆T where q is the heat flow rate through the panel,
∆T is the temperature difference between the internal and the
external environments separated by the panel, and A is the panel
area. The four panel edges are considered adiabatic.

Although q could be calculated upon numerical solution of the
conduction equation for the entire panel, International Standards
[2, 3] suggest a more efficient method based on analytical and
numerical solutions for a limited number of parts of the panel.
Following this approach U is written as,

U =
q

A∆T
=

1
A

(
∑

i
AiUi +∑

j
l jψ j +∑

k
nkχk

)
(1)

In Eq. (1) Ai and Ui are area and thermal transmittance of the i-th
section of the panel; l j and ψ j are lenght and linear transmittance
of the j-th linear thermal bridge; nk and χk are number and point
transmittance of the k-th point thermal bridge. Following ISO
6946 [1, Clause 6.2.2], here section denotes a panel part made of
thermally homogeneous layers. As clearly shown in Figure 1, a
LSP is made of two sections: the solid concrete part, correspond-
ing to ribs (section a); and the three-layer lightened part, made of
the concrete wythes and the lightened layer that separates them
(section b).

The thermal transmittance of the two sections, Ua and Ub, is
easily calculated in terms of surface resistances, Rse and Rsi, and
of thermal resistances of the homogeneous layers. Therefore,
the first sum in Eq. (1), ∑i AiUi represents the transmission heat
coefficient through the panel as if the sections were thermally
insulated one from the other, and the temperature field were 1D
within each section.

The other two sums, ∑ j l jψ j and ∑k nkχk, represent the cor-
rections associated with linear and point thermal bridges, that is
with the regions where the temperature field is 2D and 3D.

In LSPs, the temperature field is closely approximated by a 2D
field near the interfaces between concrete ribs and lightweight
slabs (thick lines in Figure 1), whereas it is fully 3D in a neigh-
borhood of the intersections of ribs (open circles in Figure 1).

The linear thermal transmittances ψ j must be evaluated upon
solving the conduction equation on 2D domains as described in
[4]. Evaluation of the point thermal transmittances χk – which is
the goal of this study – requires solution of the conduction equa-
tion on proper 3D domains which represent panel parts centered
around rib intersections. These 3D geometrical models must be
identified in accordance with ISO 10211.

POINT TRANSMITTANCE CALCULATION
Problem description

In Figure 2 it is sketched the 3D model used to determine point
thermal transmittance values: it represents the part of a panel
near the intersection of two ribs. The L-shaped region formed
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Figure 2. The computational domain Ω, the intersecting ribs
form two linear and one point thermal bridges. The linear ther-
mal transmittances are considered as associated with the blue
(ψx) and green (ψz) interfaces.

by the intersecting ribs, represents the solid concrete section a,
whereas the three-layered region is the lightened section b.

The 3D geometrical model coincides with the parallelepiped
Ω of sides Lx = Lax +Lbx and Lz = Laz +Lbz, and height (panel
thickness) d = d1 + d2 + d3. d1 and d3 denote the thickness of
the external and internal wythe, respectively, whereas d2 is the
ligthweight material thickness.

On the domain boundaries the following conditions must be
satisfied. On the external and internal surfaces ∂Ωe (y = 0) and
∂Ωi (y = d) Robin condition is imposed. The heat transfer from
surface ∂Ωe to the external environment at temperature Te is char-
acterized by a heat transfer coefficient he and a surface resistance
Rse = 1/he. Internal environment temperature Ti, heat transfer
coefficient hi, and surface resistance Rsi = 1/hi characterize heat
transfer to the internal surface ∂Ωi.

Planes x = 0, x = Lx, z = 0, and z = Lz are cut-off planes
as defined in ISO 10211 [3, Clause 5.2], which coincide with
adiabatic surfaces: the union of all adiabatic lateral surfaces will
be denoted ∂Ωa.

Boundaries x = Lx and z = Lz belong to either an adiabatic lat-
eral surface of the panel (as in domains 1 and 2 in Figure 1) or a
symmetry plane of an internal rib (as in domains 2 and 3 in Fig-
ure 1): therefore Lax and Laz are either the width of a bounding
rib or the half-width of an internal rib.

Boundaries x = 0 and z = 0 are placed so far from the inter-
section that the temperature field on them is 2D for all practical
purposes. According to ISO 10211 the distances Lbx and Lbz be-
tween the cut-off planes and the point thermal bridge must be
larger or equal to max(1m,3d), where d is the total thickness of
the panel.

Denoting q the heat flux through the 3D domain Ω, Eq. (1)
simplifies as follows,

q
∆T

= AaUa +AbUb +Lbzψx +Lbxψz +χ, (2)

where Aa +Ab is equal to the area of surfaces ∂Ωe and ∂Ωi. ψx
and ψz are the linear transmittances associated with the interfaces

between concrete and lightweight material that are highlighted in
blue and green, respectively, in Figure 2.

Upon numerical evaluation of q and ψx and ψz (see [4]) the
point transmittance χ associated with the rib intersection mod-
elled in Figure 2, can be computed as

χ =
q

∆T
− (AaUa +AbUb +Lbzψx +Lbxψz) (3)

Input data
The point transmittance χ as defined by Eq. (3) depends on

several parameters: geometrical, Lax, Laz, Lbx, Lbz, d1, d2, d3;
and thermophysical, λco, λlw, Rse, Rsi.

In this study Rse, Rsi, Lbx, and Lbz are fixed, and χ is computed
for varying values of the other variables. The surface resistances
are set equal to the conventional values prescribed by ISO 6946
[1, Clause 5.2]: Rse = 0.04 m2K/W and Rsi = 0.13 m2K/W.

As observed in [4] linear transmittance ψ associated with
a concrete rib tends asymptotically to a constant value as the
lightweight slab length increases (Lbx and Lbz in Figure 2). As
a matter of fact the growth is rapid: for length larger than 0.25
m the value of ψ is hardly distinguishable from the asymptotic
value. Since in real panels the lightweight slab length and width
are rarely smaller than 0.5 m, the asymptotic value only is needed
for all practical purposes. A similar behaviour is expected to
characterize the dependence of χ on Lbx and Lbz: therefore, fol-
lowing ISO 10211, in all computations we set Lbx = Lbz = 1 m.

In [4] linear transmittance ψ were computed for about 38,000
different combinations of (Lax,d1,d2,d3,λco,λlw). Due to the
larger computational cost of 3D simulations, here χ has been cal-
culated for a subset of that dataset. In particular, only three val-
ues for both concrete and lightweight material conductivity have
been considered: λco = 1.6, 2.0, and 2.4 W/m K; λlw = 0.02,
0.04, and 0.06 W/m K.

The dependence of point transmittances on solid concrete sec-
tion widths Lax and Laz is similar to the one on Lbx and Lbz: it
attains its asympotic value for widths larger than 0.2 m, approx-
imately. Here we study the three most frequent values of rib
width or half-width: 0.05, 0.10, and 0.20 m. In addition, we
compute also the asymptotic cases which can be approximated
setting widths equal to 1 m.

W.r.t. Figure 2, for symmetry reasons the value of χ is invari-
ant when Lax and Laz commute, thus only combinations Lax≤ Laz
need to be considered.

In current production of LSPs the concrete wythes have usu-
ally the same thickness, therefore analysis has been restricted to
the symmetric case d1 = d3. Three values of wythe thickness
have been considered: 0.04, 0.06, and 0.08 m. They are the most
frequent for panels of total thickness less than or equal to 0.24
m. Thickness of the lightened layer, d2, has been varied among:
0.04, 0.06, 0.08, 0.12, and 0.16 m. However, the following con-
straint on panel total thickness has been imposed: d ≤ 0.24 m:
only 12 combinations of values of d1 and d2 satisfy this condi-
tion.
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1080 numerical estimates of χ have been obtained upon vary-
ing (Lax,Laz,d1,d2,λco,λlw) as specified above.

NUMERICAL SOLUTION
The conduction problem described in the previous section is

solved through Spectral Element Methods (SEM). SEM are high
accurate methods designed to discretize partial differential equa-
tions. Their best performance (in terms of computational effi-
ciency) is achieved when the differential problem is set on carte-
sian geometries, exactly as in the problem we are dealing with,
since SEM exploit the tensorial structure of the basis functions.
The accuracy of SEM is restricted by the regularity of the data:
the thermal conductivity and the prescribed boundary conditions.
A brief description of SEM as applied to transmittance computa-
tion in LSPs can be find in [4, Sec. 4], whereas for an in-depth
description of SEM and of their use to approximate partial differ-
ential equations, we refer, e.g., to [10, 11]. Here we present only
features and terms necessary to understand the solution strategy
adopted.

To approximate the temperature field T inside the panel the
computational domain Ω is partitioned in Ne non-overlapping
parallelepiped Qk (also named elements) of size h (tipically h
denotes the diagonal), such that two adjacent elements share a
vertex, an edge or a complete face. Such a partition will be de-
noted by Qh =

⋃Ne
k=1 Qk. We accept that the elements Qk can have

different size hk, in such a case we set h = max
k

hk.

Given a partition Qh of Ω we look for an approximation Th
of T that is globally continuous on Ω and locally (that is in each
element Qk) is a polynomial of degree p with respect to each vari-
able. If the surfaces of discontinuity of the thermal conductivity
do not cut any element Qk, it can be proved that the discrete solu-
tion Th converges to T when the mesh size h tends to zero and/or
the polynomial degree p grows to infinity.

Once the discrete temperature Th is available, the heat flux
through surfaces ∂Ωi and ∂Ωe can be computed by the following
formulas:

qi,h =
∫

∂Ωi

λco
∂Th(x)

∂n
d∂Ω =

∫
∂Ωi

hi(Ti−Th)d∂Ω,

qe,h =−
∫

∂Ωe

λco
∂Th(x)

∂n
d∂Ω =

∫
∂Ωe

he(Th−Te)d∂Ω.
(4)

qi,h and qe,h are the discrete approximation of the heat flux
through Ω, q, that is required to calculate the point transmittance
χ by Eq. (3). In particular, qi,h → q and qe,h → q when h→ 0
and/or p→ ∞. The SEM has been implemented in MATLAB.

Discretization strategies
In order to get a good trade-off between accuracy and compu-

tational time one has to choose properly the partition Qh and the
polynomial degree p.

For each set of data, and any fixed p, the discrete fluxes,
Eq. (4), have been computed for three different meshes: Qh
(named coarse), Qh/2 (medium), and Qh/4 (fine). Therefore, the

corresponding point transmittances χh,p, χh/2,p, and χh/4,p have
been evaluated by using Eq. (3), in which q is replaced by its
discrete counterpart qh = (|qi,h|+ |qe,h|)/2.

Finally, χh,p, χh/2,p, and χh/4,p are used to better estimate the
point transmittance χ through the Richardson extrapolation tech-
nique (see, e.g. [6, Sec. 9.6]), that in our case (with data from
three different meshes and the parameter h that is halved at each
step) reads

χe,p =
8χh/4,p−6χh/2,p +χh,p

3
. (5)

In view of the convergence estimate of Richardson extrapola-
tion (see, e.g., [6, Eq. (9.35)]), there exists a positive constant
C, independent of h, but possibily depending on p such that
|χe,p−χ| ≤C(p)(h/4)3. The Richardson extrapolation turns out
to be very efficient to our purpose. As a matter of fact, even if
the SEM appproximation error vanishes as h when h→ 0 in view
of the low regularity of the thermal conductivity, Richardson ex-
trapolation allows to gain third order accuracy w.r.t. h by using a
set of three meshes of moderate sizes h, h/2, and h/4, instead of
a unique mesh with a very small mesh-size, that would require
very large computational effort.

In our simulations we have chosen to use polynomial degree
p = 4. This choice is motivated by several numerical tests, car-
ried out to measure both the computational effort required to
solve the linear system associated with the SEM discretization
of the conduction problem, and the accuracy of the computed
point transmittance.

As test case to study discretization error and computational
effort, we have chosen the case: Lax = Laz = 0.05 m, d1 = d3 =
0.06 m, d2 = 0.12 m, λc = 2.0 W/mK, λlw = 0.04 W/mK,
and on the associated geometry we have designed the following
partitions.

The coarse mesh Qh is obtained by defining 6×4×6(= 144)
elements with side sizes hx = [0.6, 0.2, 0.1, 0.05, 0.05, | 0.05],
hy = [0.06, | 0.06, 0.06, | 0.06], and hz = hx. Vertical pipes
highlight where the thermal conductivity is discontinuous. The
ratio between the maximum and the minimum size hk is about
10, with maxk hk ' 0.85 and mink hk ' 0.09. The medium mesh
Qh/2 is obtained by halving (along each direction) any element of
Qh, therefore we have 12× 8× 12(= 1152) elements; while the
fine mesh Qh/4 is obtained by halving (along each direction) any
element of Qh/2, here we have 24×16×24(= 9216) elements.

The CPU-times (in seconds) needed to compute the tempera-
ture field on an Intel i5-3470 4core, 64bit, 3.6GHz and 8GB of
RAM, are reported in Table 1, left, for p = 2, . . . ,6 and the three
partitions Qh, Qh/2 and Qh/4. Least square approximation of the
measured values provides CPU-time' 10−7 p5.6N1.7

e s. We con-
clude that a large computational effort is required when either
moderate or large p is used.

To measure the accuracy of our numerical results, we compute
the Richardson extrapolation of the point transmittance χe,p, for
any p = 2,4,6, as well as the relative error w.r.t. χe,6 (our best
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p coarse medium fine

2 2.19×10−1 3.06×100 6.70×101

4 2.05×100 4.00×101 1.44×103

6 1.27×101 2.27×102 9.81×103

χe,p ep CPU-time

−1.2792×10−2 1.0401×10−2 7.03×101

−1.2661×10−2 3.8467×10−5 1.48×103

−1.2660×10−2 −− 1.01×104

Table 1. At left, CPU-time in seconds needed to compute the temperature by SEM discretization. At right, the Richardson extrapolation
of the point transmittances for different values of p, the errors w.r.t. the best computed value χe,6, and the CPU-times (in s)

estimate), i.e.,

ep =
|χe,p−χe,6|
|χe,6|

. (6)

The computed point transmittances χe,p, the errors (6) and the
CPU-times needed to estimate χe,p (i.e. the total CPU-time
needed to compute the discrete temperature on all three meshes)
are shown in Table 1, right. We conclude that the best compro-
mise, obtained by minimizing both the CPU-time and the error
is achieved for p = 4.

RESULTS AND DISCUSSION
1080 numerical estimates of χ have been obtained varying six

parameters:

χ = χ(Lax,Laz,d1,d2,λco,λlw). (7)

The interval spanned by χ over the set of input data ranges
between −4.38× 10−2 and −0.48× 10−2 W/K: all values are
negative. There is no evidence that the dependence of χ on some
of the variables could be neglected because it is much weaker
than others.

At the beginning of this study we planned to develop an arti-
ficial neural network (ANN) for prediction of χ, as we did for ψ

in [4]. However, in [4] to train an ANN able to model correctly
the dependence on La we had to obtain values of ψ for more than
ten La between 0.05 and 1 m. In this study we could not afford
the computational cost of tens of (Lax,Laz) pairs. Nor it seemed
useful to develop an ANN for each pair (Lax,Laz) investigated.
A different approach was followed.

According to ISO 14683 the point thermal bridge stud-
ied here can be considered as the intersection of two linear
bridges associated with transmittances ψx(Lax,d1,d2,λco,λlw)
and ψz(Laz,d1,d2,λco,λlw)

1. We asked ourselves whether the
dependence of χ on the six variables could be captured to some
extent by ψx and ψz, that is whether χ depend implicitly on
(Lax,Laz,d1,d2,λco,λlw) through ψx and ψz:

χ = g(ψx,ψz). (8)

1Variable d3 is not listed since we are considering only the case d3 = d1.

For simmetry reason in Eq. (8) ψx and ψz must commute, that is
g has to depend on commutative functions of ψx and ψz, such as
ψxψz, ψx +ψz, etc.

As a matter of fact, if computed values of χ are plotted versus
ψxψz data tend to fall within a smooth narrow region of increas-
ing width for increasing ψxψz. Data dispersion depends on the
original variables, but dependence on d1 seems stronger. After a
few trials we came up with the following new variable

ξ = ψxψz
√

2d1 (9)

for which dispersion is substantially reduced (see Figure 3). In
Eq. (9) the factor 2 multiplying d1 has been introduced because
we believe that for the more general case d3 6= d1, variable ξ

should be defined as ξ = ψxψz
√

d1 +d3.
Upon fitting data with a power law, the following correlation

for point transmittance has been obtained:

χc(ξ) =−0.4391ξ
0.7055 (10)

where all quantities are in SI units.
For all practical purposes Eq. (10) supplies a rather good es-

timate of χ when the linear transmittances associated with the
intersecting ribs are known. In Figure 4 the point transmittance
estimated by correlation (10), χc, is plotted versus the computed
value χ: 97% of estimates fall within ±10% band.

Eq. (10) on average neither overpredict nor underpredict sig-
nificantly χ, since the mean relative deviation, MRD, is equal to
0.09%. Dispersion of predicted values is limited since the stan-
dard deviation, SD, is equal to 4.5%. Here, SD is defined in terms
of relative deviation RD= (χc−χ)/χ:

SD =

√
1

N−1 ∑
i
(RDi−MRD)2.

As mentioned in the Introduction the relative contribution of
point thermal bridges to the average panel transmittance U (term
∑k nkχk in Eq. (1)) is up to 2%, approximately. Therefore the
error introduced upon use of correlation (10) is up to 0.2% of U .

CONCLUSIONS
This paper deals with the problem of determining point ther-

mal transmittance associated with rib intersections in LSPs. To-
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Figure 3. All computed values of χ vs. the variable ξ =
ψxψz

√
2d1. Solid line: least square approximation of data

through a power law
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|χ
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−10%

+10%

Figure 4. Comparison between correlation predictions, |χc|,
and computed data χ: 97% of estimates fall within ±10% band

gether with results presented in [4] it allows accurate calcula-
tion – within ±1% – of nominal average thermal transmittance
of LSPs according to current International Standards [1, 2, 3].

To reach this goal a dataset of point thermal transmittance as-
sociated with rib intersections of LSPs has been built through nu-
merical simulations. 1080 data have been obtained as a function
of six parameters: rib widths, thickness of the concrete wythes
and of the internal layer, concrete and lightweight material con-
ductivity. The parameters span a range of values typical of cur-
rent LSPs production. In general, ISO 14683 allows to omit point
thermal bridge contribution to LSPs transmittance. For the input

data investigated here it is shown that this contribution is always
negative: one stays on the safe side neglecting it when evaluating
thermal performance of LSPs. Besides, point transmittance val-
ues are rather small, their order of magnitude being 10−2 W/K.

Accurate calculation of such a small quantity through numer-
ical solution of heat conduction equation in a 3D domain has
been tricky and required a solution strategy based on Richardson
extrapolation. This procedure allowed to determine point trans-
mittance values with a relative error which is about 10−4.

Finally, an explicit correlation is proposed for prediction of
point transmittance. Although data show a significant depen-
dence of χ on each of the six variables mentioned above, we
manage to find a simple power law correlation which allows to
calculate χ as a function of a single variable, ξ = ψxψz

√
2d1.

The correlation has standard deviation equal to 4.5% and predicts
more than 97% of computed data within ±10%. It represents a
good practical tool, easily implemented in a spreadsheet or in an
in-house code for calculation of U .
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