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ABSTRACT

We present an analytical solution of the convection-

conduction problem, in laminar flow conditions in finite-length

flat microchannels including slip/no-slip flows, effects of rar-

efaction, streamwise conduction and viscous dissipation, for pre-

scribed wall heat flux boundary conditions.

The solution proposed is valid for low-intermediate Peclet

values Pe ≤ 1/α, α being the microchannel aspect ratio

height/length.

The analytical solution is compared with numerical solutions

obtained by means of finite-elements method (FEM Comsol 3.5

) in a wide range of Pe and α values and for different wall heat

flux profiles.

Optimal heating protocols in the presence and in the absence

of viscous dissipation are presented.

INTRODUCTION

Focusing on laminar forced convection of an incompressible

fluid in a duct, the estimation of transport coefficients requires

the solution of the classical Graetz-Nusselt problem. Originally

proposed for a sudden step change of the wall temperature at

some positions along the duct and no axial diffusion, the Graetz-

Nusselt problem is valid for both heat and mass transfer and it

has been solved in transient and steady state, for Dirichlet and

Neumann boundary conditions, non-Newtonian fluids, high vis-

cous dissipation, boundary condition of continuity between two

counterflow streams, axial diffusion, simultaneous heat and mass

transfer.

As the size of a channel is reduced, the no-slip boundary con-

dition needs to be modified so that velocity slip and temperature

jump may occur at the wall.

The extended Graetz problem in microtubes including effects

of rarefaction and viscous dissipation has been recently analyzed

by Cetin et al. [1; 2] and by Jeong and Jeong [3; 4] by using

eigenfunction expansion (including streamwise conduction) as

well as by Tunc and Bayazitoglu [5] using an integral transform

technique (neglecting streamwise conduction). The hydrody-

namically isothermal developed flow (T = T0 at z= 0) is assumed

NOMENCLATURE

Br [-] Brinkman number
cp [J/(KgK)] Specific heat
F [-] Tangential momentum accommodation coefficients
FT [-] Thermal accommodation coefficients

h [W/(m2 K)] Heat transfer coefficient
H [m] Half channel height
k [W/mK] Thermal conductivity
Kn [-] Knudsen number
L [m] Length of the channel heated section
L−,L+ [m] Length of upstream and downstream sections
Nu [-] Nusselt number
〈Nu〉 [-] Spatial average Nusselt number
Nu0 [-] Nusselt number for Pe/α → 0
Nu∞ [-] Nusselt number for Pe/α → ∞
Pe [-] Cross-sectional Peclet number
qw(ζ) [-] Dimensionless wall heat flux function
T , [K] Temperature
T0 [K] Inlet temperature at z =−L−

U [m/s] Average axial velocity
v(η) [-] Dimensionless axial velocity profile
y,z [m] Vertical and axial coordinates

Special characters
α [-] Channel aspect ratio
β−, β+ [-] Dimensionless upstream and downstream section lengths
θ [-] Dimensionless temperature
θb [-] Dimensionless bulk temperature
λ [m] Molecular mean free path
η,ζ [-] Dimensionless vertical and axial coordinates

ρ f [Kg/m3] Fluid density

to enter the microchannel of semi-infinite length z ≥ 0 with uni-

form wall temperature or uniform heat-flux boundary conditions.

However, this boundary condition at z = 0 may be extremely

restrictive, especially in the case of laminar velocity profile and

low Peclet values [6]. If axial conduction is important, then a

sizeable amount of heat is conducted upstream and goes beyond

the entrance cross-section z = 0 (where non-vanishing boundary

conditions apply) into the hydrodynamic development region z<
0. Therefore a temperature distribution is built up there which

affects the temperature values downstream.

In the present paper we present an analytical solution of the

extended Graetz problem in finite-length flat microchannels in-

cluding effects of rarefaction, streamwise conduction and vis-

cous dissipation. Let 2H be channel height (the distance be-
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tween the two flat plates) and W the channel depth. For a flat mi-

crochannel W >>H, such that the hydraulic diameter Dh → 4H.

The solution, taking into account the presence of the thermal de-

velopment region, is valid for low-intermediate Peclet values Pe

for prescribed heat-flux boundary conditions (no wall conjuga-

tion effects).

In the problem formulation, we consider three regions along

the microchannel : first a thermally insulated region (length L−),

followed by the heat transfer section with prescribed wall heat

flux (length L) and the third one, following the heated section,

that is again thermally insulated (length L+). In this way, since

we investigate low-intermediate Peclet values, we can focus on

the role of different wall heat flux functions avoiding that the

inlet and outlet conditions may influence the Nussel profile in

the heated section.

The analytical solution proposed is compared with numeri-

cal solutions obtained by means of finite-elements method (FEM

Comsol 3.5 ) in a wide range of Pe and α values and for differ-

ent wall heat flux profiles. The range of validity of the analytical

solution proposed is investigated in detail.

From the temperature field, the local Nusselt axial profile and

the average Nusselt number are obtained as a function of the

transport parameters i.e. the Peclet number Pe, the Knudsen

number Kn, the Brinkman number Br as well as geometrical pa-

rameters i.e. the aspect ratio 2H/L and the length of upstream

section L−/L.

Performances of different wall-heat flux functions are ana-

lyzed in terms of the averaged Nusselt number < Nu >. We

investigate the best heating protocol in the absence Br = 0 and in

the presence Br > 0 of viscous dissipation.

STATEMENT OF THE PROBLEM

We consider a Newtonian fluid with constant thermodynamic

properties entering at z = −L− a finite-length horizontal mi-

crochannel, height 2H, depth W and total axial length (L++L+
L−), i.e. −H ≤ y ≤ H, L− ≤ z ≤ L+L+. Let (2HW )(ρ f cpU)T0

be the inlet convective flux at z = L−.

The laminar velocity profile, depending exclusively on the

cross-section coordinate η = y/H ∈ [−1,1] and satisfying the

slip boundary condition Vz(y) = ∓[(2−F)/F]λ(∂Vz/∂y) at y =
±H attains the form

v(η) =
Vz(η)

U
=

3

2

(1−η2+ 4Kn)

1+ 6Kn
=

3

2
(1−η2)χ+(1−χ) (1)

where U is the average cross-section velocity, Kn = λ/2H is the

Knudsen number and χ = 1/(1+ 6Kn).
We assumed a first order model for rarefaction effects valid for

0.001 ≤ Kn ≤ 0.1 [7] with a tangential moment accommodation

coefficient F = 1 [5]. The velocity profile reduces to the classical

no-slip parabolic velocity profile for Kn = 0.

The microtube is thermally insulated for L− ≤ z < 0 and for

L< z≤ L+L+ . Let Qw(z) be a prescribed wall heat flux function

valid for 0 ≤ z ≤ L. See Figure 1 for a schematic representation

of the physical domain and boundary conditions.

Let Qav = (1/L)
∫ L

0 Qw(z)dz 6= 0.

z=L+L+

thermally insulated thermally insulated

z=Lz=0

inlet outlet

inlet flux Qw(z)

inlet flux Qw(z)

viscous dissipation

T(y,z)

z=−L−

z
y

2H

slip/no−slip laminar flow

To

Figure 1. schematic representation of the physical domain and

boundary conditions.

By introducing the dimensionless space variables η = y/H,

ζ = z/L and temperature θ = (T − T0)k/(QavH) the governing

steady-state energy equation including the axial conduction and

the viscous dissipation terms attains the form

−
Peα

4
v(η)

∂θ

∂ζ
+

∂2θ

∂η2
+

α2

4

∂2θ

∂ζ2
+18Brχ2η2 = 0 ,−β−≤ ζ≤ 1+β+

(2)

where the following dimensionless parameters appear

Pe=
U 2H

k/ρ f cp
,Br =

µU2

Qav2H
,α=

2H

L
,β− =

L−

L
,β+ =

L+

L
(3)

By further introducing the dimensionless axial convective flux

Jc =
Peα

4

∫ 1
−1 v(η)θ(η,ζ)dη and the dimensionless wall heat flux

qw(ζ) = Qw/Qav, the following boundary conditions apply

Jc|ζ=−β− = 0 ,
∂Jc

∂ζ

∣

∣

∣

∣

ζ=1+β+
= 12Brχ2 (4)

∂θ

∂η

∣

∣

∣

∣

η=0

= 0 ,
∂θ

∂η

∣

∣

∣

∣

η=1

= Fw(ζ) =







0 for −β− ≤ ζ < 0

qw(ζ) for 0 ≤ ζ ≤ 1

0 for 1 < ζ ≤ 1+β+
(5)

The outlet boundary condition at ζ= 1+β+ is an integral version

of the Danckwertz outlet boundary condition, usually adopted for

finite length channels, and implies zero conductive axial heat flux

at the outlet section. Its integral version (integral over the channel

cross section) allows us to take into account the heat generated

by viscous dissipation and is in agreement with the asymptotic

condition usually adopted for infinitely long channels.

ANALYTICAL SOLUTION

At low-intermediate values of the Peclet number, the temper-

ature profile exhibits a weak dependence on the vertical coordi-

nate η so that we can reasonably assume that the dimensionless

temperature can be written as

θ(η,ζ) = θb(η)+φ(η,ζ) , θb(η) =
1

2

∫ 1

−1
θv(η)dη (6)
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where θb(ζ) is the dimensionless bulk temperature and φ
is an auxiliary function, satisfying the integral constrain
1
2

∫ 1
−1 φ(η′,ζ)v(η′)dη′ = 0 and accounting for the temperature

dependence on the vertical coordinate i.e. ∂θ/∂η = ∂φ/∂η and

slowly varying with the axial coordinate ζ so that

∂φ

∂ζ
<<

dθb

dζ
,

∂2φ

∂ζ2
<<

d2θb

dζ2
(7)

By substituting Eq. (6) into the balance equation Eq. (2) and

boundary conditions and making use of the simplifying assump-

tion Eq. (7) one obtains

−
Peα

4
v(η)

dθb

dζ
+

∂2φ

∂η2
+

α2

4

d2θb

dζ2
+ 18Brχ2ρ2 = 0 (8)

θb|ζ=−β− = 0 ,
Peα

4

dθb

dζ

∣

∣

∣

∣

ζ=1+β+
= 6Brχ2 (9)

∂φ

∂ρ

∣

∣

∣

∣

ρ=0

= 0 ,
∂φ

∂ρ

∣

∣

∣

∣

ρ=1

= Fw(ζ) (10)

By substituting Eq. (6) into the balance equation Eq. (2), in-

tegrating Eq. (6) over the cross section and enforcing only the

(second order derivative) simplifying assumption
∂2φ

∂ζ2 << d2θb

dζ2

one arrives to the following equation for the dimensionless bulk

temperature θb(ζ)

−
Peα

4

dθb

dζ
+

α2

4

d2θb

dζ2
+ 6Brχ2 +Fw(ζ) = 0 (11)

θb(−β−) = 0 ,
Peα

4

dθb

dζ

∣

∣

∣

∣

ζ=1+β+
= 6Brχ2 (12)

that can be solved analytically, thus obtaining

θb(ζ) =
4

Pe2

[

g(ζ)− g(−β−)+
Pe

α

(

IFw(ζ)+ 6Brχ2 (z+β−)
)

]

g(ζ,Pe/α) =
Pe

α
ePeζ/α

∫ 1

ζ
e−Peζ′/αqw(ζ

′)dζ′ (13)

IFw(ζ) =
∫ ζ

0
qw(ζ

′)dζ′

By further substituting the expression for the bulk temperature

Eq.(13) into the balance equation Eq. (8) one obtains the follow-

ing PDE for φ(η,ζ)

∂2φ

∂η2
=
(

g(ζ)+ 6Brχ2
)

(v(η)−1)+
(

Fw(ζ)+ 6Brχ2
)

−18Brχ2η2

(14)

that can be solved analytically for φ(η,ζ) by enforcing the

boundary condition ∂φ/∂η|η=1 = Fw and the integral constrain
1
2

∫ 1
−1 φ(η′,ζ)v(η′)dη′ = 0 thus obtaining

φ(η,ζ) =
η2

4
[6Brχ2(2+χ)+ g(ζ,Pe/α)χ+2Fw(ζ)]+

−
η4

8
[6Brχ2(2+χ)+ g(ζ,Pe/α)χ]+C(ζ) (15)

C(ζ) = −6Brχ2

(

7

60
+

17

840
χ−

2

105
χ2

)

− (16)

− g(ζ,Pe/α)χ

(

7

120
−

2

105
χ

)

−Fw(ζ)

(

1

6
−

χ

15

)

The wall temperature θw(ζ), accounting for the wall

temperature-jump for rarefaction effect, is given by

θw(ζ)= θ(1,ζ)+2bKn
∂θ

∂η

∣

∣

∣

∣

η=1

= θb(ζ)+φ(1,ζ)+2bKnFw(ζ)

(17)

where b = 2−FT
FT

2γ
γ+1

1
Pr

, FT = 1 (thermal accommodation coeffi-

cient), γ = 1.4 and Pr = 0.7 are assumed as typical values for air

[1; 2; 3].

The local Nusselt number Nu(ζ) in the heating section (0 ≤ ζ ≤
1) attains the form

Nu(ζ) =
h2H

k
=

2qw

θw −θb

=
2qw(ζ)

φ(1,ζ)+ 2bKnqw(ζ)
= (18)

=
210qw(ζ)

7qw(ζ)(5+χ+ 30bKn)+ [6Brχ2(2+χ)+ g(ζ)χ](7+ 2χ)

and turns out to be a function only of the ratio Pe/α (and not

of Pe and α separately). Moreover, the local Nusselt number

is independent of the lengths of the upstream and downstream

thermally insulated sections.

The two limiting cases Nu0 for Pe/α → 0 (no axial convec-

tion) and Nu∞ for Pe/α → ∞ (infinitely long channel, Nusselt

based on the fully developed temperature profile θ∞) can be eas-

ily recovered by considering that

lim
Pe/α→0

g(ζ,Pe/α) = 0 , lim
Pe/α→∞

g(ζ,Pe/α) = qw(ζ) (19)

COMPARISON WITH NUMERICAL SOLUTION

In order to verify the correctness of the analytical solution pro-

posed and to identify the limits of validity in terms of Pe and α,

we numerically solved the transport problem Eqs. (2,4-5) with

Finite Elements Method (FEM, Comsol 3.5 a).

The convection-diffusion package in stationary conditions has

been used. Lagrangian quadratic elements are chosen. The linear

solver adopted is UMFPACK, with relative tolerance 10−12.
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The number of finite elements is 3× 105 with a non-uniform

mesh. Maximum element size in all the three subdomains (ζ <
0, 0 ≤ ζ ≤ 1 and ζ > 1) is 1 × 10−2. Smaller elements have

been located close to the boundaries. Specifically, a maximum

element size of 2×10−4 is chosen at the external boundary (0 ≤
ζ ≤ 1,η = 1) and at the internal cross sections (ζ = 0,1, 0 ≤ η ≤
1) i.e. at the internal boundaries between the insulated and the

heated regions.

Figures 2 A-B show the comparison between analytical and

numerical results for increasing values of Pe in terms of the di-

mensionless bulk temperature θb(ζ) and wall temperature θw(ζ)
for constant wall heat flux function qw = 1 for Br = 0.1, Kn = 0.

10
-3

10-1

101

103

105

-1 -0.5  0  0.5  1  1.5  2

θ b

ζ

Pe

A

10
-1

101

103

105

-1 -0.5  0  0.5  1  1.5  2

θ w

ζ

Pe

B

Figure 2. Comparison between numerical (blue dots) and an-

alytical results (red continuous lines) for the constant wall heat

flux qw(ζ) = 1, Br = 0.1, Kn = 0.0, α = 0.01, β− = β+ = 1. (A)

θb(ζ) vs ζ, Pe ∈ [10−2 : 105]. (B) θw(ζ) vs ζ, Pe ∈ [10−2 : 103]

It can be observed that the bulk temperature model predictions

are actually very accurate in the whole range of Peclet values

Pe ∈ [10−2,105] because, at low Pe values the simplifying as-

sumption ∂2φ/∂ζ2 << d2θb/dζ2 holds true and, at high Pe val-

ues, the axial conduction term becomes negligible with respect

to the axial convective contribution.

Model predictions for the wall temperature θw are accurate for

small-intermediate values of Pe, Pe ≤ 100.

The analytical solution for θw follows quite closely the numer-

ical solution in the entire range of Pe values analyzed, but small

errors (related to the simplifying assumption Eq. (7) that fails at

discontinuity points ζ = 0 and ζ = 1 for the uniform wall heat

flux are amplified when focusing on the spatial behaviour of Nu

close to ζ = 0,1 (see Figure 3).

 2.5

 3

 3.5

 4

 4.5

 0  0.2  0.4  0.6  0.8  1

N
u

ζ

Pe

ζ=0.015

ζ=0.99

Figure 3. Nu vs ζ. Comparison between numerical (blue dots)

and analytical results (red continuous lines) for the constant wall

heat flux qw(ζ) = 1, Br = 0.1, Kn= 0.0, α = 0.01, β− = β+ = 1.

Pe ∈ [10−2 : 101]

However, the low accuracy of the analytical solution close to

ζ= 0,1 for a discontinuous wall heat flux has a very small impact

of the average Nusselt number 〈Nu〉=
∫ 1

0 Nu(ζ′)dζ′.
Figures 4 A-B show the excellent agreement between the nu-

merical and the analytical results for 〈Nu〉 as a function of Pe for

the exponential wall heat flux function qw(ζ) = ne−nζ/(1− e−n)
(discontinuous at ζ = 0,1, decreasing along ζ for n > 0 and in-

creasing along the axial coordinate for n < 0) for which the in-

tegral functions g(ζ,Pe/α) and IFw(ζ) can be analytically eval-

uated. All data refers to Br = 0.1, Kn = 0 and an aspect ratio

α = 0.01 (long-thin channel and long preheating section) and

show an excellent agreement with numerical for Pe ≤ 100.

Limits of validity of the analytical solution

The analytical expression proposed is reliable also for larger

values of the aspect ratio (finite-length channel). Figures 5 A-B

show the comparison between numerical and analytical results

for α = 0.01,0.05,0.1, in the absence (Br = 0) and in the pres-

ence (Br > 0) of viscous dissipation. It can be observed that

different curves corresponding to different aspect ratios saturate

towards the same limiting value, corresponding to the average

Nusselt number 〈Nu∞〉 evaluated on the basis of the fully devel-

oped temperature profile θ∞. However, the larger is the value of

α, the smaller is the range of validity, in terms of Pe values, of

the fully developed profile and the influence of the thermal de-

veloping region must be necessarily accounted for (like in the

analytical solution proposed) in order to have an accurate esti-

mate of the average Nusselt number.

Actually, numerical (and analytical) results for Nu(ζ) as well

as for 〈Nu〉 collapse onto an invariant curve when plotted as func-

tion of Pe/α for low-intermediate Peclet values Pe < 100, see

Figure 5 A, and the asymptotic behaviour sets for Pe/α ≃ 102.

On the other hand, for high Peclet values, the axial contribu-

tion (streamwise conduction) becomes negligible and numerical

results for 〈Nu〉, for different aspect ratios, collapse onto a unique

12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

1104



 2

 2.5

 3

 3.5

 4

10
-4 10-2 100 102 104

<
N

u>

Pe

A

n=0
n=1
n=2
n=3
n=4

 2

 2.5

 3

 3.5

 4

10
-4 10-2 100 102 104

<
N

u>

Pe

B

n=0
n=-1
n=-3
n=-5

Figure 4. 〈Nu〉 vs Pe. Comparison between numerical (lines

with dots) and analytical results (continuous lines) for the expo-

nential wall heat flux function qw(ζ) = ne−nζ/(1− e−n). Br =
0.1, Kn = 0.0, α = 0.01, β− = β+ = 1. (A) n ≥ 0. (B) n ≤ 0

invariant curve for Peα/4 > 0.2 when plotted as a function of

Peα/4 (see Figure 5 B).

From these observations it follows that the analytical solution

proposed is actually reliable for 0 < Pe ≤ 0.8/α, while the solu-

tion 〈Nu∞〉 based on the fully developed temperature profile θ∞

is valid only in the range 102α ≤ Pe ≤ 0.8/α, thus reducing to

an empty set for α > 0.089. Data reported in Figures 5 A-B refer

to a case in which Kn = 0 but similar considerations can be done

in the presence of slip flow and rarefaction effect.

In the next section we analyze the influence of different pa-

rameters and of different wall heat flux functions on the average

Nusselt number 〈Nu〉, focusing exclusively on the range of va-

lidity of the analytical expression proposed.

INFLUENCE OF WALL HEAT FLUX FUNCTION AND

TRANSPORT PARAMETERS

From a preliminary analysis of data reported in Figures 4 A-B

we observe that, in presence of dissipation, i.e. Br > 0, and for

no-slip flow and no rarefaction effects, i.e. Kn = 0, the uniform

wall heat flux function represent the best heating protocol (larger

value of 〈Nu〉 for low-intermediate values of Pe) with respect to

both monotonically increasing or monotonically decreasing (ex-

 2

 3

 4

 5

 6

10
-2 100 102 104 106

<
N

u>

Pe/α

Br=0

Br=0.1

A

α=0.1
α=0.05
α=0.01

 2

 3

 4

 5
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10
-6 10-4 10-2 100 102

<
N

u>
Pe α/4

Br=0

Br=0.1

B

0.2

α=0.1
α=0.05
α=0.01

Figure 5. Comparison between numerical (lines with dots)

and analytical results (continuous black curves) for the con-

stant wall heat flux function qw(ζ) = 1 for different values of

α = 0.01,0.05,0.1. Br = 0,0.1, Kn = 0.0, β− = β+ = 1. (A)

〈Nu〉 vs Pe/α. (B) 〈Nu〉 vs Peα/4

ponential) wall heat flux functions.

For the axially increasing wall heat flux, the average Nusselt

number exhibits a minimum for Pe≃ 5α (see Figure 4 B) and the

minimum is more pronounced for increasing values of n, corre-

sponding to an increasing amount of energy furnished close to

the channel outlet ζ = 1. For Br > 0, no minimum is observed

for decreasing wall heat flux functions (see Figure 4 A).

Similar results are obtained, in the presence of viscous dissi-

pation Br > 0, for slip flows and rarefaction effects accounted

for, i.e. Kn > 0. Figure 6 shows the behaviour of 〈Nu〉 vs Pe/α
for Br = 0.1 and Kn = 0.1, in the Pe range of validity of the

analytical solution. Also in this case the uniform wall heat flux

function represent the best heating protocol and no minimum is

observed for exponentially decreasing wall heat flux functions.

A completely different scenario occurs in the presence of vis-

cous dissipation. Figures 7 shows the behaviour of 〈Nu〉 as a

function of Pe/α for Br = 0 and for Kn = 0,0.1. The arrow in-

dicates increasing values of n, in the range n ∈ [−5,5]. It can be

observed that, the larger is n, the larger is the value of 〈Nu〉 for

low-intermediate values of Pe. Therefore, in the absence of dis-

sipation, a decreasing wall heat flux function has to be preferred
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Figure 6. 〈Nu〉 vs Pe/α for the exponential wall heat flux func-

tion qw(ζ) = ne−nζ/(1−e−n). Br = 0.1, Kn= 0.1, β− = β+ = 1.

Arrow indicates increasing values of |n|, in the range 0≤ |n| ≤ 5.

to a constant heat flux function and the larger part of energy must

be provided at the entrance of the heating section.

 2.5

 3

 3.5

 4

 4.5

 5

10
-2 100 102

<
N

u>
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n

n
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Kn=0.1

Figure 7. 〈Nu〉 vs Pe/α for the exponential wall heat flux func-

tion qw(ζ) = ne−nζ/(1−e−n). Br = 0, Kn= 0,0.1, β− = β+ = 1.

Arrow indicates increasing values of n in the range −5 ≤ n ≤ 5.

CONCLUSION

In the present paper we propose an analytical solution for the

extended Graetz-Nusselt problem in finite-length flat microchan-

nels, including the effects of rarefaction, streamwise conduction

and viscous dissipation. The solution takes into account the pres-

ence of a thermally insulated upstream section. Different wall

heat functions are analyzed.

A classical approach to the problem (see Jeong and Jeong

[3; 4] and Tunc and Bayazitoglu [5]) is to solve the non-

homogeneous energy balance equation for the dimensionless

temperature θ(ρ,ζ) by setting θ = θ1(ρ,ζ) + θ∞(ρ), where θ∞

is the fully developed temperature profile and θ1 satisfies an ho-

mogeneous partial differential equation that can be solved by the

method of separation of variables or by integral transform.

In our case, we focus on finite length channels. Therefore we

propose a different ”decoupling” of the problem and find more

convenient to set the temperature profile θ as the linear combina-

tion of the bulk temperature θb(ζ) and of the auxiliary function

φ(ρ,ζ), accounting for the dependence of the temperature on the

radial coordinate ρ and slowly varying with the axial coordinate

ζ. This represents the peculiarity and the strength of our ap-

proach to the problem, valid for low-intermediate Peclet values.

The analytical solution is reliable for Pe < 1/α, α being the

channel aspect ratio.

The solution proposed is valid in the whole range of Brinkman

values considered in the microfluidic literature, i.e. Br ≤ 0.1 and

therefore valid also in the absence of dissipation effects. More-

over the solution is valid for slip (Kn > 0) as well as for non-slip

flows (Kn = 0) and therefore also for viscous fluids for which

dissipation effects may not be negligible. Actually, a value of

Brinkman less than 0.1− 0.2 is rather realistic for microfluidic

applications and compatible with Peclet numbers less that 100.

Performances of different wall-heat flux functions are ana-

lyzed in terms of the averaged Nusselt number < Nu >.

In the absence of viscous dissipation, the best heating proto-

col is a decreasing wall heat flux function, where the larger part

of energy is furnished at the entrance of the downstream-heated

section.

In the presence of dissipation, i.e. Br > 0, the best heating

protocol is a uniform wall heat flux and decreasing wall heat flux

functions have to be preferred to increasing wall heat flux func-

tions.
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