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Abstract

Two new explicit finite difference schemes for the solution of the one dimensional Korteweg-de-Vries
equation are proposed. This equation describes the character of a wave generated by an incompressible
fluid. We analyse the spectral properties of our schemes against two existing schemes proposed by
Zabusky and Kruskal (Phys. Rev. Lett.15(6):240–243,1965) and Wanget al. (Chinese Phys. Lett.
25(7):2335–2338, 2008). An optimization technique based on minimisation of the dispersion error is
implemented to compute the optimal value of the spatial stepsize at a given value of the temporal step
size and this is validated by some numerical experiments. The performance of the four methods are
compared in regard to dispersive and dissipative errors andtheir ability to conserve mass, momentum
and energy by using two numerical experiments which involvesolitons.
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1 Introduction

In this work, we consider the generalized one dimensional Korteweg-de-Vries (KdV) equation in the form

ut + γuux + βuxxx = 0, x ∈ R, t > 0, (1.1)

which describes the elongation of the wave generated by an incompressible fluid at positionx and timet.
Hereα andβ are positive constants. The second term in Eq. (1.1) shows non-linearity due to the occurrence
of the product of the dependent variable and its derivative while the last term gives the order of the partial
differential equation and is also responsible for dispersion. This equation which was first introduced by
Korteweg and de Vries in [1] depicts the character of shallow incompressible fluid waves with small but
finite amplitudes. Luduet al [2] generalized the non-linear one-dimensional equation of afluid layer for
any depth and length as an infinite order differential equation for steady waves, and in the limit of long
and shallow incompressible fluid (shallow channel), they reobtained the well known KdV equation together
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with its single soliton solution. It has been used to describe the occurrences of waves in bubble-liquid
mixtures (incompressible fluid mixture) [3, 4], anharmonic crystals [5, 6] and plasma physics [7, 8]. The
equation is also important in the analysis of the interaction between nonlinearity and dispersion, as seen
in the well-known Burgers equation which displays the properties of the interaction between nonlinearity
and dissipation [9]. The integrability of (1.1) guaranties an infinite invariants. These quantities are constant
along the solution of the given partial differential equation [10], and here we state the first three invariants
as follows:

F1(u) =

∫

R

u dx,

F2(u) =
1

2

∫

R

u2 dx, (1.2)

F3(u) =

∫

R

(

β

2
u2x −

γ

6
u3
)

dx.

which represent the mass, momentum and energy conservationrespectively.
A lot of effort has been devoted to the design of stable, efficient and reliable numerical schemes for the

KdV equation. The most well known explicit finite differencescheme for (1.1) was proposed by Zabusky
and Kruskal [11] where the time derivative is leap-frog like in nature. The scheme is second order in time
and conserves the first integral in (1.2) to a high degree of accuracy (see for example [10] ). A method
which involves the use of central difference for space derivatives together with a predictor corrector time
step was proposed by [12]. The method was analyzed based on stability criteria and numerical dispersion.
Numerical experiments for the single soliton and for the interaction of more than one soliton were presented
graphically.

Ascher and McLachlan [13] gave an account of the study of symplectic and multi-symplectic schemes
for the KdV equation in order to answer the question of whether added structure preservation such as con-
servative discretization schemes would provide high quality schemes for long time integration of nonlinear
conservative PDEs. KdV equation was used as a case study, they concluded that it is possible to design a
very stable, conservative difference schemes for the nonlinear, conservative KdV equation. In 2005, Re-
fik [14] used an exponential finite difference scheme, a method developed by Bhattacharya [15], to solve
the KdV equation. It was concluded that the method generatesnumerical results of KdV equation which
are accurate for small time steps. Recently, Wang et al. [10] proposed a scheme (W-W-H scheme) which
was obtained by substituting an average of forward and backward difference in time in place of central
difference in time in Z-K scheme. They carried out numericalsimulations of KdV equation with initial
conditionu(x, 0) = cos x and it was found that their scheme did not blow up at a longer time when com-
pared with Zabusky and Kruskal scheme and multi-symplecticsix-point scheme. They also showed that
their scheme has more relaxed stability than Zabusky and Kruskal scheme and multi-symplectic six-point
scheme. Attention of many researchers have been drawn towards studying this equation due to the impor-
tance as benchmark for proposed schemes, or to reproduce thequalitative behavior of the solutions of the
equation as above, but no attention has been paid to the optimization of the methods used in solving this
equation. In this work, we obtain expressions for the amplification factor and the region of stability for the
schemes considered. We also obtain relative phase error forthe schemes and then optimized the schemes to
compute the optimal value of the spatial step size at a given value of the temporal step size. Similar analysis
can also be carried out on higher order schemes.

This paper is organised as follows. Section2 introduces two existing numerical schemes and also
presents the regions of stability of the schemes. In Section3, the dissipative and dispersive properties of
the schemes are presented and analytical expressions for their relative phase error are obtained. In Section
4, we quantify errors from the numerical results into dissipation and dispersion errors by using a technique
devised by Takacs [16] and obtain some errors based on conservation laws for the equation. In Section5,
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two additional schemes are introduced, results obtained using the four schemes are presented graphically,
we also tabulate the errors for the methods used in solving the numerical experiments described. In Section
6, we find the optimal value for the spatial grid size for a fixed value of the time step for the four schemes.
Numerical experiments are presented throughout to validate these results. Section7 contains the conclusions
and possible future work.

2 Numerical schemes for KdV equation

In this section we describe two existing schemes, the first scheme was introduced in [11] and the second
scheme in [10]. We will investigate the stability of each of the presentedscheme forγ = 6, β = 1. From
now onwards, our study will be based on the partial differential equation

ut + 6uux + uxxx = 0, x ∈ R, t > 0. (2.1)

The equation is solved on a truncated domain with a uniform meshh > 0, and spatial node,xm = mh,
m = 0, 1, · · · , N . The time node is given bytn = nk wherek > 0 is the step size andn = 0, 1, · · · .
The exact value of the solution at(tn, xm) is denoted byu(tn, xm) while the discrete numerical solution is
denoted byunm.

2.1 Zabusky and Kruskal scheme (1965)

The scheme uses central difference approximations in both space and time and is given by

un+1
m − un−1

m

2k
+6

(

unm+1 + unm + unm−1

3

)(

unm+1 − unm−1

2h

)

+

(

unm+2 − 2unm+1 + 2unm−1 − unm−2

2h3

)

= 0,

(2.2)
which can be written explicitly as

un+1
m = un−1

m − 2λ
(

unm+1 + unm + unm−1

) (

unm+1 − unm−1

)

− λ

h2
(

unm+2 − 2unm+1 + 2unm−1 − unm−2

)

,

(2.3)
whereλ = k/h is the Courant-Friedrichs-Lewy (CFL) number. This scheme is consistent of order two
in both space and time. OnR, the stability region is obtained by method of freezing of coefficients [17]
and application of Von Neumann stability analysis i.e., we expressuux asumaxux and substitute the ansatz
unm = ξneImω, whereω = θh, to obtain the amplification factor

ξ2 + I

{

12λumax sinω +
λ

h2
(2 sin 2ω − 4 sinω)

}

ξ − 1 = 0, (2.4)

whereξ is the amplification factor,θ is the wave number,ω is the phase angle andI =
√
−1. Eq. (2.4) can

be written as
Aξ2 +Bξ + C = 0,

where

A = 1, B = I

{

12λumax sinω +
λ

h2
(2 sin 2ω − 4 sinω)

}

and C = −1.

For stability, we follow the analysis in [18, 19]. In particular, we let

f(ξ) = Aξ2 +Bξ + C,
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and supposeξ∗ = 1
ξ̄
, then

f(ξ∗) = Aξ̄−2 +Bξ̄−1 + C,

and
¯f(ξ∗) = Āξ−2 + B̄ξ−1 + C̄,

therefore withf∗(ξ) = ξ2 ¯f(ξ∗), we have

f∗(ξ) = Ā+ B̄ξ + C̄ξ2,

where

Ā = 1, B̄ = −I

{

12λumax sinω +
λ

h2
(2 sin 2ω − 4 sinω)

}

and C̄ = −1.

We define the Bezout resultant as

f̃ =
1

ξ
[f∗(0)f(ξ) − f(0)f∗(ξ)] = (AĀ− CC̄)ξ + (ĀB − B̄C), (2.5)

wheref∗(0) = Ā andf(0) = C. For f to be von Neumann, we must show thatf̃ ≡ 0 andf
′

(ξ) is Von
Neumann. On substituting the values ofA, Ā, B, B̄, C andC̄ into Eq. (2.5), we havef̃ ≡ 0. Then, forf to
be von Neumann, we are required to show thatf

′

(ξ) = 2Aξ + B is von Neumann. Hence, we require that
|ξ| ≤ 1 for this function, i.e.,

|ξ| =
∣

∣

∣

∣

−B

2A

∣

∣

∣

∣

≤ 1.

On substituting the values ofA andB, we have
∣

∣

∣

∣

−I

{

12λumax sinω +
λ

h2
(2 sin 2ω − 4 sinω)

}
∣

∣

∣

∣

≤ 2.

Since the second expression in the bracket for the above inequality dominates the first for small values of
h, we obtainω = 2π/3 from the second expression which gives the maximum value forthe inequality. On
substituting this into the inequality, we obtain the regionof stability as

λ ≤
∣

∣

∣

∣

∣

2

3
√
3(2umax − 1

h2 )

∣

∣

∣

∣

∣

, (2.6)

whereumax is the maximum value ofu.

2.2 Wang et al. scheme (2008)

The second scheme considered here and first derived in [10] was inspired by the Z-K scheme introduced
above, it is denoted by W-W-H scheme. Here the time derivative is replaced by an average of the forward
difference approximation at grid pointm − 1 and backward difference approximation at grid pointm + 1
while the space derivative is replaced by central difference approximation. The W-W-H scheme is given by

1

2

(

un+1
m−1 − unm−1

k
+

unm+1 − un−1
m+1

k

)

+ 6

(

unm+1 + unm + unm−1

3

)(

unm+1 − unm−1

2h

)

+

(

unm+2 − 2unm+1 + 2unm−1 − unm−2

2h3

)

= 0, (2.7)
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which, for implementation, can be written as

un+1
m−1 = unm−1 − unm+1 + un−1

m+1 − 2λ
(

unm+1 + unm + unm−1

)

(unm+1 − unm−1)

− λ

h2
(

unm+2 − 2unm+1 + 2unm−1 − unm−2

)

, (2.8)

which is a consistent scheme of order two in both space and time. As before, we initialize the simulations
using Eq. (5.1). Similarly, by method of freezing of coefficients and application of Von Neumann stability
analysis, the amplification factor is given below as

(cosω − I sinω)ξ2 + 2I sinω

(

1 + 6λumax + 2
λ

h2
(cosω − 1)

)

ξ − (cos ω + I sinω) = 0. (2.9)

This can be written as
Aξ2 +Bξ + C = 0,

where

A = cosω − I sinω, B = 2I sinω

(

1 + 6λumax + 2
λ

h2
(cosω − 1)

)

and C = −(cosω + I sinω).

Following the same analysis as in subsection (2.1), we obtain the region of stability given below as
∣

∣

∣

∣

1 + 3λ

{

2umax −
1

h2

}
∣

∣

∣

∣

≤ 2√
3
. (2.10)

3 Numerical Dispersion

The consistent reduction with time, of the amplitude of plane waves is called dissipation. Dissipative
schemes suppress high frequency waves that can cause numerical solutions to be more oscillatory than
required [17]. Dispersion is an occurrence of waves of different frequencies traveling at different speeds. It
causes numerical solutions to spread out as time advances. Our KdV equation is dispersive in nature as a
result of the third order derivative term. Relative phase error (RPE), is defined as the ratio of the numerical
phase velocity to the exact phase velocity. If the ratio is greater than unity, then the computed waves move
faster than the exact waves, thereby causing phase lead. Phase lag occurs when the computed waves move
slower than the exact waves.
Ascher and McLachlan [13] have obtained the dispersion relation of the partial differential equation,

ut = 2ζuux + ρux + νuxxx, (3.1)

by considering the linearized version of Eq. (3.1) in the form

ut = ρux + νuxxx. (3.2)

When discretized by the Z-K scheme, Eq. (3.2) gives

un+1
m = un−1

m + ρλ(unm+1 − unm−1) +
νλ

h2
(unm+2 − 2unm+1 + 2unm−1 + unm−2). (3.3)

They considered plane wave solutions of the form

unm = exp (I[ωm+Ω∗n]) = exp

(

I

[

ω

h
mh+

Ω∗

k
nk

])

, (3.4)
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whereΩ∗ is the numerical dispersion relation and

u(x, t) = exp

(

I

[

ω

h
x+

Ω

k
t

])

, (3.5)

whereΩ is the dispersion relation andω is the phase angle. Using Eq. (3.5) and (3.2), we obtain the exact
dispersion relation given by

Ω = kρ
ω

h
− kν

(ω

h

)3
,

which can be written as
Ω = kρθ − kνθ3,

sincew = θh. On the other hand, the numerical dispersion relation for Z-K scheme for Eq. (3.2) satisfies
the equation

eIΩ
∗

= e−IΩ∗

+ ρλ(eIω − e−Iω) +
νλ

h2
(e2Iω − 2eIω + 2e−Iω + e−2Iω),

which simplifies as

Ω∗ = sin−1

(

ρλ sin θh+
νλ

h2
(sin 2θh− 2 sin θh)

)

.

Following the same idea as Ascher and Mc Lachlan, we obtain the linearized version of Eq. (2.1) which is

ut + uxxx = 0, (3.6)

we then obtain expressions for the relative phase error of the two schemes when used to discretise Eq. (3.6).
When Zabusky and Kruskal (1965) scheme is used to approximate Eq. (3.6), we have

un+1
m = un−1

m − λ

h2
(

unm+2 − 2unm+1 + 2unm−1 − unm−2

)

. (3.7)

Let elementary solution of Eq. (3.6) be
u(x, t) = eIθxeαt,

see [20]. Thenut = αeαteIθx, ux = IθeIθxeαt, uxx = (Iθ)2eIθxeαt anduxxx = (Iθ)3eIθxeαt. Substitut-
ing these into Eq. (3.6) and simplifying, we get

α+ (Iθ)3 = 0,

which givesα = Iθ3. Hence,
u(x, t) = eIθxeIθ

3t = eIθxa(t),

wherea(t) = eIθ
3t.

The amplification factor is calculated as

ξexact =
a(tn+1)

a(tn)
=

eIkθ
3(n+1)

eIkθ
3(n)

,

and on simplifying, we have
ξexact = eIkθ

3

,

where|ξexact| = 1 since the PDE is not dissipative.ξnum is obtained from Von Neumann stability analysis.
The relative phase error is given by [21]

RPE =
arg(ξnum)

arg(ξexact)
,
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where
ξexact = cos (kθ3) + I sin (kθ3),

therefore,

arg(ξexact) = tan−1

(

sin (kθ3)

cos (kθ3)

)

= kθ3.

We let
ξnum = ξ1 + Iξ2,

whereξ1 andξ2 are the real and imaginary parts ofξnum, then

arg(ξnum) = tan−1

(

ξ2
ξ1

)

,

therefore

RPE=
1

kθ3
tan−1

(

ξ2
ξ1

)

.

Usingθ = ω/h we have

RPE=
h3

kω3
tan−1

(

ξ2
ξ1

)

.

To obtain the amplification factor for Z-K scheme, we substituteunm = ξneIθmh into Eq. (3.7) and simplify
to obtain

ξ =

√

1− λ2

h4
(sin 2θh− 2 sin θh)2 + I

{

λ

h2
(2 sin θh− sin 2θh)

}

. (3.8)

Hence,

RPE=
h2

λω3
tan−1







λ
h2 (2 sinω − sin 2ω)

√

1− λ2

h4 (sin 2ω − 2 sinω)2







.

When the Wanget al. (1998) Scheme is used to approximate Eq. (3.6), we have

un+1
m−1 = unm−1 − unm+1 + un−1

m+1 −
λ

h2
(

unm+2 − 2unm+1 + 2unm−1 − unm−2

)

. (3.9)

On substitutingunm = ξneIθmh into Eq. (3.9) and simplifying, we obtain

ξnum =

(−P sinω +Q cosω

2

)

+ I

(

P cosω +Q sinω

2

)

, (3.10)

where

P = −2 sinω

{

1 + 2
k

h3
(cosω − 1)

}

(3.11)

and

Q = 2

√

1− sin2 ω

{

1 + 2
k

h3
(cosω − 1)

}2

. (3.12)

The corresponding expression for the relative phase error of the W-W-H scheme is given by

RPE=
h2

λω3
tan−1

{

P cosω +Q sinω

Q cosω − P sinω

}

.

Plots of the relative phase error versus phase angle at different values ofh whenk = 0.001 andk = 0.0015
are shown in Figs.1 and2. For small values of phase angle, at a given value ofk, the relative phase error is
not much affected by changes in the values ofh for Z-K scheme. In the case of W-W-H scheme, changes in
the values ofh affect the relative phase error more.
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Figure 1: Plot of relative phase error versus phase angle forZ-K scheme. The same profiles can be used for
the new proposed schemes.
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Figure 2: Plot of relative phase error versus phase angle forW-W-H scheme.

4 Quantification of errors and conservation laws

Takacs [16] quantifies the errors from numerical results into dispersion and dissipation errors. Many inter-
esting applications using the technique of Takacs can be seen in [22, 23, 24, 25]. In this section, we use the
ideas from [16] to quantify errors from numerical results into dissipation and dispersion. We also look at
the conservation laws of Eq. (2.1) under periodic boundary conditions.

4.1 Dispersion and dissipation errors

We begin by defining the Total Mean Square Error (TMSE) [16], as

1

N

N
∑

m=1

(um − vm)2, (4.1)
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whereum andvm are the analytical and numerical solutions respectively, at a given grid pointm and time
t. We can write the TMSE as

1

N

N
∑

m=1

(um − vm)2 =
1

N

N
∑

m=1

(um)2 +
1

N

N
∑

m=1

(vm)2 − 2

N

N
∑

m=1

umvm. (4.2)

Let ū and v̄ be the mean values ofum andvm respectively. Using the definition of variance, we can also
write

1

N

N
∑

m=1

(um − ū)2 =
1

N

N
∑

m=1

(u2m − 2umū+ ū2), (4.3)

1

N

N
∑

m=1

(vm − v̄)2 =
1

N

N
∑

m=1

(v2m − 2vmv̄ + v̄2). (4.4)

The TMSE can therefore be written as

1

N

N
∑

m=1

(um − ū)2 +
1

N

N
∑

m=1

(vm − v̄)2 +
2

N

N
∑

m=1

umū+
2

N

N
∑

m=1

vmv̄

− 1

N

N
∑

m=1

ū2 − 1

N

N
∑

m=1

v̄2 − 2

N

N
∑

m=1

umvm. (4.5)

The expression in Eq.(4.5) can be written as

σ2(u) + σ2(v) + 2ū2 + 2v̄2 − ū2 − v̄2 − 2

N

N
∑

m=1

umvm, (4.6)

whereσ2(u) andσ2(v) represent the variance ofu andv respectively,̄u andv̄ denote the mean values ofu
andv respectively. Therefore the TMSE is given by

σ2(u) + σ2(v) + (ū2 − 2(ū)(v̄) + v̄2) +

(

2(ū)(v̄)− 2

N

N
∑

m=1

umvm

)

, (4.7)

which further simplifies to

σ2(u) + σ2(v) + (ū− v̄)2 − 2

(

1

N

N
∑

m=1

umvm − (ū)(v̄)

)

, (4.8)

therefore, we have

1

N

N
∑

m=1

(um − vm)2 = σ2(u) + σ2(v) + (ū− v̄)2 − 2 Cov(u, v). (4.9)

Since the correlation coefficient,ρ, is given by the fractionCov(u,v)
σ(u)σ(v) , the TMSE is therefore written as

1

N

N
∑

m=1

(um − vm)2 = σ2(u) + σ2(v) + (ū− v̄)2 − 2 ρ σ(u) σ(v), (4.10)
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which reduces to

1

N

N
∑

m=1

(um − vm)2 = (σ(u) − σ(v))2 + (ū− v̄)2 + 2 (1− ρ) σ(u) σ(v). (4.11)

On settingρ = 1, we obtain2 (1− ρ) σ(u) σ(v) = 0. Thus, we define2(1 − ρ)σ(u)σ(v) as the dispersion
error as correlation coefficient in Statistics, is analogous to phase lag or phase lead in Computational Fluid
Dynamics. Hence,(σ(u)−σ(v))2 +(ū− v̄)2 measures the dissipation error,N being the number of spatial
grid points.

4.2 Conservation Laws

The discrete forms of the three conservation laws in Eq. (1.2) are given as [10]

F h
1 (u) =

N
∑

m=1

umh, (4.12)

F h
2 (u) =

1

2

N
∑

m=1

(

um + um−1

2

)2

h, (4.13)

F h
3 (u) =

N
∑

m=1

{

1

2
|△+um|2 − 1

6
u3m

}

h, (4.14)

whereF1, F2 andF3 are the mass, momentum and energy respectively and∆+um = (um+1 − um−1)/2h.
We shall fixk to compute the errors in conservation laws for the three schemes using

errorF1 =F h
1 (u

n)− F h
1 (u

0), (4.15)

errorF2 =F h
2 (u

n)− F h
2 (u

0), (4.16)

errorF3 =F h
3 (u

n)− F h
3 (u

0), (4.17)

whereun is the numerical solution at thenth time level andu0 is the discrete initial time solution.

5 Numerical experiments

In this section, we present several numerical simulations for equation (2.1) subject to specified initial and
boundary conditions using the two existing schemes introduced in Section2, and then introduce our pro-
posed schemes. For implementation, we initialize the time steps using the following forward difference in
time scheme

u1m = u0m − λ(u0m+1 + u0m + u0m−1)
(

u0m+1 − u0m−1

)

− λ

2h2
(

u0m+2 − 2u0m+1 + 2u0m−1 − u0m−2

)

. (5.1)

We begin by considering the single soliton problem

Experiment 1










ut + 6uux + uxxx = 0, ∀ (x, t) ∈ (−L,L)× (0, T ),

u(x, 0) = v(x, 0) ,

u(x− L, t) = u(x+ L, t).

(5.2)

10



whereL = 20 andv(x, t) is the exact solution given by

v(x, t) =
2µ2

cosh2[µ(x− 4µ2t)]
.

See [26]

Experiment1 represents a wave packet with amplitude2µ2 and wave velocity4µ2. In all the simulations,
we chooseT = 3, T = 6 andµ = 1/

√
2.

From the stability analysis of the Z-K scheme, withk = 0.0010 andk = 0.0015, the respective regions
of stability satisfy the inequalities:h ≥ 0.1358 andh ≥ 0.1548. We tabulate the dissipation, dispersion and
TMSE in Table1 and observe that the dispersion error is much greater than the dissipation error. We also
observe that the dispersion error is least whenh = 0.1574 and greatest whenh = 0.1860 for k = 0.0015.

Table 1: Errors for the schemes atT = 3 whenk = 0.0015 for 1-soliton experiment.

Schemes h Dissipation error Dispersion error TMSE
Scheme (2.2)

Z-K 0.1574 1.0951 × 10−13 4.6514 × 10−6 4.6514 × 10−6

0.1680 2.3375 × 10−13 6.1566 × 10−6 6.1566 × 10−6

0.1780 8.2518 × 10−13 9.2490 × 10−6 9.2490 × 10−6

0.1860 7.2674 × 10−13 9.4603 × 10−6 9.4603 × 10−6

Scheme (2.7)
W-W-H 0.1289 6.7403 × 10−11 2.3402 × 10−5 2.3402 × 10−5

0.1350 9.8285 × 10−11 2.8137 × 10−5 2.8137 × 10−5

0.1550 3.4079 × 10−10 4.8620 × 10−5 4.8621 × 10−5

0.1650 4.7927 × 10−10 6.3868 × 10−5 6.3868 × 10−5

Scheme (5.3)
NS1 0.1574 6.5719 × 10−12 1.4464 × 10−5 1.4464 × 10−5

0.1680 1.1141 × 10−11 1.9062 × 10−5 1.9062 × 10−5

0.1780 3.8082 × 10−11 2.7082 × 10−5 2.7082 × 10−5

0.1860 2.6184 × 10−11 2.9164 × 10−5 2.9164 × 10−5

Scheme (5.4)
NS2 0.1574 1.9474 × 10−13 6.5337 × 10−6 6.5337 × 10−6

0.1680 4.4682 × 10−13 8.6368 × 10−6 8.6368 × 10−6

0.1780 1.8065 × 10−12 1.2761 × 10−5 1.2761 × 10−5

0.1860 1.2850 × 10−12 1.3250 × 10−5 1.3250 × 10−5

The respective regions of stability for the W-W-H scheme satisfy the inequalities:h ≥ 0.11074 and
h ≥ 0.12645 as obtained from the stability analysis fork = 0.0010 andk = 0.0015. The dissipation,
dispersion errors and TMSE are tabulated in Table1, and we observe that the dispersion error is much
greater than the dissipation error. In addition, fork = 0.0015 the dispersion error is least whenh = 0.1289
and greatest whenh = 0.1650.

From Table1 and2, we observe that the errors in W-W-H scheme are higher than those of Z-K scheme.
We propose modifications to Z-K scheme with the aim of obtaining better schemes. The first which uses
direct local approximation to discretizeuux term viaunmδxu

n
m. The resulting finite difference scheme is

un+1
m − un−1

m

2k
+ 6unm

(

unm+1 − unm−1

2h

)

+

(

unm+2 − 2unm+1 + 2unm−1 − unm−2

2h3

)

= 0, (5.3)
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Table 2: Errors for the schemes atT = 6 whenk = 0.0015 for 1-soliton experiment.

Schemes h Dissipation error Dispersion error TMSE
Scheme (2.2)

Z-K 0.1574 2.2442 × 10−12 1.6414 × 10−5 1.6414 × 10−5

0.1680 2.4368 × 10−12 2.2017 × 10−5 2.2017 × 10−5

0.1780 9.2437 × 10−12 3.5919 × 10−5 3.5919 × 10−5

0.1860 5.7363 × 10−12 3.4291 × 10−5 3.4291 × 10−5

Scheme (2.7)
W-W-H 0.1289 5.6542 × 10−11 6.9921 × 10−5 6.9921 × 10−5

0.1350 9.0535 × 10−11 8.3456 × 10−5 8.3456 × 10−5

0.1550 3.0882 × 10−10 1.3739 × 10−4 1.3739 × 10−4

0.1650 3.8986 × 10−10 1.9170 × 10−4 1.9170 × 10−4

Scheme (5.3)
NS1 0.1574 8.1498 × 10−12 5.6540 × 10−5 5.6540 × 10−5

0.1680 1.0879 × 10−11 7.4858 × 10−5 7.4858 × 10−5

0.1780 3.5624 × 10−11 1.0949 × 10−4 1.0949 × 10−4

0.1860 2.6794 × 10−11 1.1507 × 10−4 1.1507 × 10−4

Scheme (5.4)
NS2 0.1574 3.4778 × 10−12 2.4079 × 10−5 2.4079 × 10−5

0.1680 3.9517 × 10−12 3.2134 × 10−5 3.2134 × 10−5

0.1780 1.2636 × 10−11 5.0381 × 10−5 5.0381 × 10−5

0.1860 9.4637 × 10−12 4.9777 × 10−5 4.9777 × 10−5

and the second which uses central difference for both spatial and time derivative whose nonlinear approxi-
mation differs from that of Zabusky-Kruskal scheme. This isgiven below as

un+1
m − un−1

m

2k
+6

(

unm+1 + 2unm + unm−1

4

)(

unm+1 − unm−1

2h

)

+

(

unm+2 − 2unm+1 + 2unm−1 − unm−2

2h3

)

= 0.

(5.4)
The amplification factor of the linearized version of the schemes above is given by

ξ2 + I

{

12λumax sinω +
λ

h2
(2 sin 2ω − 4 sinω)

}

ξ − 1 = 0, (5.5)

which is similar to that of the Z-K scheme. Hence the stability region required for these schemes is

λ ≤
∣

∣

∣

∣

∣

2

3
√
3(2umax − 1

h2 )

∣

∣

∣

∣

∣

. (5.6)

Following the same arguments as in section3, we obtain the relative phase error as

RPE=
h2

λω3
tan−1







λ
h2 (2 sinω − sin 2ω)

√

1− λ2

h4 (sin 2ω − 2 sinω)2







.

Here we highlight the similarities between the linearized scheme for the two NS and Z-K schemes.
The two new schemes NS1 and NS2 are stable fork = 0.001 andk = 0.0015 in the regions described

by the inequalities:h ≥ 0.1358 andh ≥ 0.1548 respectively. The tabulated results in Table1 shows that
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the dispersion error is much greater than the dissipation error. We observe that the dispersion error is least
whenh = 0.1574 and greatest whenh = 0.1860 for k = 0.0015.
Figs. 3 and Figs.4 show the graphs of single soliton solution for the four schemes with a fixed value ofh
whenk = 0.0015 atT = 0, T = 3 andT = 0, T = 6 respectively, plotted on the same axes. It is seen that
asT increases, the wave progresses to the right and at other higher values ofT not shown, the waves hit the
boundary and appears at the other boundary for all the schemes considered.
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Figure 3: The graph ofu(x, t) versusx for single soliton problem for all the schemes withk = 0.0015. In
(a), (c) and (d),h = 0.1680 and in (b)h = 0.1350.

In Table3, we present the errors in the conservation laws. We observe that the errors for the three conserva-
tion laws are least ath = 0.1574 and greatest whenh = 0.1860 for Z-K and our proposed schemes but for
W-W-H scheme, the least error occurs ath = 0.1289 and greatest ath = 0.1650.
Figs. 5 shows the graphs of dispersion error versush and the graphs of the three conservation laws for
all the schemes plotted on the same axes for single soliton experiment. Figure5(a) shows the graph of
dispersion error versush for all the schemes, plotted on the same axes. It is found thatthe scheme (2.2) has
the least dispersion error followed by schemes (5.4), (5.3) and (2.7) respectively. Fig.5(b) shows the graph
of conservation of mass versush plotted on the same axes for all the schemes. It is observed that schemes
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Figure 4: The graph ofu(x, t) versusx for single soliton problem for all the schemes withk = 0.0015. In
(a), (c) and (d),h = 0.1680 and in (b)h = 0.1350.

(2.2) has the least error of conservation of mass, followed by schemes (5.4), (2.7) and (5.3) respectively. In
Fig. 5(c), the graph of conservation of momentum versush is plotted on the same axes for all the schemes.
It is observed that scheme (5.4) has the least error of conservation of momentum, followed by schemes (2.2),
(5.3) and (2.7) respectively. The graph of conservation of energy versush is shown in Fig.5(d) in which all
the schemes are plotted on the same axes. It is seen that scheme (5.4) has the least error of conservation of
energy and then followed by schemes (2.2), (5.3) and (2.7) respectively.

In the next experiment we consider the double-soliton problem as follows

Experiment 2










ut + 6uux + uxxx = 0, ∀ (x, t) ∈ (−L,L)× (0, T ),

u(x, 0) = v(x, 0) ,

u(x− L, t) = u(x+ L, t).

(5.7)
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Table 3: Conservation laws errors for the schemes at timeT = 3 whenk = 0.0015.
Schemes h |errorF1| |errorF2| |errorF3| max |um − u∗m|

Scheme (2.2)
Z-K 0.1574 4.5972 × 10−6 5.1078 × 10−6 3.0133 × 10−5 9.2525 × 10−3

0.1680 1.7692 × 10−5 4.5559 × 10−6 1.9853 × 10−5 1.0624 × 10−2

0.1780 3.6496 × 10−5 8.2205 × 10−6 1.1526 × 10−4 1.3322 × 10−2

0.1860 3.4163 × 10−5 3.4414 × 10−6 5.3341 × 10−6 1.3135 × 10−2

Scheme (2.7)
W-W-H 0.1289 1.9126 × 10−5 3.7254 × 10−5 6.2483 × 10−4 2.0865 × 10−2

0.1350 2.4665 × 10−5 4.4573 × 10−5 6.9683 × 10−4 2.2903 × 10−2

0.1550 3.3478 × 10−5 8.0346 × 10−5 1.0111 × 10−3 3.0205 × 10−2

0.1650 3.2000 × 10−5 9.7421 × 10−5 1.0200 × 10−3 3.4536 × 10−2

Scheme (5.3)
NS1 0.1574 1.4107 × 10−5 8.8169 × 10−6 1.7045 × 10−4 1.6917 × 10−2

0.1680 3.8447 × 10−5 1.0790 × 10−5 2.0809 × 10−4 1.9263 × 10−2

0.1780 6.9244 × 10−5 1.7205 × 10−5 3.6886 × 10−4 2.3225 × 10−2

0.1860 7.0970 × 10−5 1.5019 × 10−5 2.7294 × 10−4 2.3917 × 10−2

Scheme (5.4)
NS2 0.1574 6.9832 × 10−6 2.2598 × 10−6 2.0455 × 10−5 1.1151 × 10−2

0.1680 2.2921 × 10−5 1.2105 × 10−6 3.7724 × 10−5 1.2749 × 10−2

0.1780 4.4749 × 10−5 8.0677 × 10−6 1.7943 × 10−4 1.5774 × 10−2

0.1860 4.3456 × 10−5 1.0472 × 10−6 6.5158 × 10−5 1.5800 × 10−2

whereL = 20 andv(x, t) is the exact solution given by

v(x, t) = 2(log f(x, t))xx.

with

f(x, t) = 1 + eη1 + eη2 + eη1+η2+A12 , ηm = γmx− γ3mt+ η(0)m , and eAij =
γi − γj
γi + γj

,

see [27]. We also setT = 3, γ1 = 1, γ2 =
√
5, η(0)1 = 0 andη(0)2 = 10.73.

Figs. 6 shows the graphs of double soliton solution for the four schemes with a fixed value ofh when
k = 0.0015 at T = 0 andT = 3, plotted on the same axes. As it is well known, a soliton with larger
amplitude has a greater velocity than the smaller one [18]. As T increases, it is observed that the soliton
with larger amplitude catches up with that of smaller one(figure not shown). The two soliton waves coalesce
for a particular period of time and then separate, still maintaining their original profiles but with change
in position. It is also seen that the soliton with the larger amplitude moves ahead of the one with smaller
amplitude atT = 3. In Figs. 7 whenT = 6, the wave with larger amplitude hits the wall of the positive
boundary and then appears at the negative side of the boundary. This is seen to move towards its original
starting point.
For the 2-soliton experiment, Table4 follows the same trend as in Table1 and2 while in Table5, all the
errors are almost the same. Figs.8 shows the graph of dispersion error versush and the graphs of the three
conservation laws for all the schemes plotted on the same axes for 2-soliton experiment. Fig.8(a) shows that
scheme (2.2) has the least dispersion error, followed by schemes (5.4), (5.3) and (2.7) respectively. Scheme
(2.7) has the greatest dispersion error for both single and double soliton experiments. In Fig.8(b), it is seen
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Figure 5: Dispersion error and conservation laws errors for1-soliton solution for all the schemes at time
T = 3 whenk = 0.0015.

that the error of conservation of mass is least for scheme (5.3), followed by schemes (2.2) and (5.4) having
almost the same error, while (2.7) has the greatest error. In Figs.8(c), schemes (2.2) and (5.4) have almost
the same error of conservation of momentum which are least, but ash increases beyond a certain point, it
is observed that scheme (2.2) becomes better than scheme (5.4). Scheme (5.4) is then followed by (5.3)
and (2.7) respectively. In Figs.8(d), scheme (2.2) has the least error of conservation of energy followed by
schemes (5.4), (5.3) and (2.7) respectively.

6 Optimizing parameters for the four schemes

In this section, we aim to compute an optimal value ofh which minimizes the dispersion error for a fixed
value ofk. Based on the results of Experiments1 and2, we observe that the dispersion error is much greater
than the dissipation error as shown in Table1 and4. Hence we follow the same ideas as in the work of
[23, 28] to compute the optimal value ofh for a given value ofk by minimizing the dispersion error. We
next describe briefly how various authors use different optimization techniques to determine coefficients of
numerical methods, especially designed for ComputationalAeroacoustics.
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Figure 6: The graph ofu(x, t) versusx for double soliton problem for all the schemes at timeT = 3 with
k = 0.0015. In (a), (c) and (d),h = 0.1680 and in (b)h = 0.1350.

Tam and Webb [29] constructed a 7-point and 4th -order central difference method based on the mini-
mization of the dispersion error. They approximated the first order derivative atx = x0 via

∂u

∂x
≈ 1

h

3
∑

m=−3

amu(x0 + ih), (6.1)

whereh is the spacing of a uniform mesh and the coefficientsam are such thatam = −a−m, providing a
scheme without dissipation. On applying spatial Fourier Transform to Eq. (6.1), the numerical wavenumber,
θh∗ is obtained and is given by

θh∗ = 2

3
∑

m=1

am sin (mθh). (6.2)
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Figure 7: The graph ofu(x, t) versusx for double soliton problem for all the schemes at timeT = 3 with
k = 0.0015. In (a), (c) and (d),h = 0.1680 and in (b)h = 0.1350.

Taylor expansion ofθh∗ from Eq.(6.2) aboutθh gives

2a1

(

θh− 1

6
(θh)3 +

1

120
(θh)5

)

+ 2a2

(

2θh− 1

6
(2θh)3 +

1

120
(2θh)5

)

+2a3

(

3θh− 1

6
(3θh)3 +

1

120
(3θh)5

)

+ · · · (6.3)

The 4th-order method is obtained for
2a1 + 4a2 + 6a3 = 1

a1 + 8a2 + 27a3 = 0.

Since we have two equations and three unknowns, we can choose, for instance,a1 as a free parameter. Thus

a2 =
9

20
− 4

5
a1,

18



Table 4: Errors for the schemes atT = 3 whenk = 0.0015 for 2-soliton experiment.

Schemes h Dissipation error Dispersion error TMSE
Scheme (2.2)

Z-K 0.1574 1.0818 × 10−10 1.3690 × 10−3 1.3690 × 10−3

0.1680 1.0546 × 10−10 1.8114 × 10−3 1.8114 × 10−3

0.1780 9.9928 × 10−11 2.6563 × 10−3 2.6563 × 10−3

0.1860 1.7882 × 10−10 2.7841 × 10−3 2.7841 × 10−3

Scheme (2.7)
W-W-H 0.1289 2.5571 × 10−8 5.3659 × 10−3 5.3659 × 10−3

0.1350 3.8799 × 10−8 6.4510 × 10−3 6.4510 × 10−3

0.1550 1.2731 × 10−7 1.1108 × 10−2 1.1108 × 10−2

0.1650 1.9461 × 10−7 1.5207 × 10−2 1.5207 × 10−2

Scheme (5.3)
NS1 0.1574 3.0535 × 10−9 4.7940 × 10−3 4.7940 × 10−3

0.1680 3.8099 × 10−9 6.2848 × 10−3 6.2848 × 10−3

0.1780 6.5723 × 10−9 8.5919 × 10−3 8.5919 × 10−3

0.1860 7.4545 × 10−9 9.5599 × 10−3 9.5599 × 10−3

Scheme (5.4)
NS2 0.1574 2.6483 × 10−10 2.0210 × 10−3 2.0210 × 10−3

0.1680 2.8154 × 10−10 2.6638 × 10−3 2.6638 × 10−3

0.1780 3.9376 × 10−10 3.8043 × 10−3 3.8043 × 10−3

0.1860 4.7932 × 10−10 4.0756 × 10−3 4.0756 × 10−3

a3 =
1

5

(

a1 −
2

3

)

.

The numerical wavenumber can be expressed as

θh∗ ≈ 2a1 sin (θh) + 2

(

9

20
− 4

5
a1

)

sin (2θh) + 2

(

1

5
a1 −

2

15

)

sin (3θh).

They also defined their integrated error as

E =

∫ (θh)

0
|θh∗ − θh|2 d(θh),

where the upper limit of the integral is taken to beθh = 1.1, since the RPE behaves better in this region
[30], to find the value ofa1 which minimizesE. One can then find the values ofa2 anda3 and thus the
approximation forux.

Bogey and Bailly [31] minimised the relative difference between the exact phaseangle,θh and the
numerical phase angle,θh∗ and the integrated error is described by

E =

∫ π
2

π
16

|θh∗ − θh|
θh

d(θh).

Tam [32] summarizes some work in Computational Aeroacoustics. In [23], the author has modified the mea-
sures used in [29, 31] in a Computational Aeroacoustic framework to suit them in acase when a numerical
scheme is already constructed in the form

un+1
m = αunm−1 + βunm + γunm+1. (6.4)
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Table 5: Errors for the schemes atT = 6 whenk = 0.0015 for 2-soliton experiment.

Schemes h Dissipation error Dispersion error TMSE
Scheme (2.2)

Z-K 0.1574 1.0299 × 10−1 8.2630 × 10−2 1.8562 × 10−1

0.1680 1.0296 × 10−1 8.2610 × 10−2 1.8557 × 10−1

0.1780 1.0293 × 10−1 8.2589 × 10−2 1.8552 × 10−1

0.1860 1.0291 × 10−1 8.2574 × 10−2 1.8548 × 10−1

Scheme (2.7)
W-W-H 0.1289 1.0078 × 10−1 8.1742 × 10−2 1.8252 × 10−1

0.1350 1.0056 × 10−1 8.1649 × 10−2 8.2213 × 10−1

0.1550 9.9850 × 10−2 8.1335 × 10−2 1.8118 × 10−1

0.1650 9.9432 × 10−2 8.1155 × 10−2 1.8059 × 10−1

Scheme (5.3)
NS1 0.1574 1.0302 × 10−1 8.2640 × 10−2 1.8566 × 10−1

0.1680 1.0300 × 10−1 8.2623 × 10−2 1.8562 × 10−1

0.1780 1.0300 × 10−1 8.2609 × 10−2 1.8560 × 10−1

0.1860 1.0298 × 10−1 8.2596 × 10−2 1.8557 × 10−1

Scheme (5.4)
NS2 0.1574 1.0299 × 10−1 8.2631 × 10−2 1.8562 × 10−1

0.1680 1.0296 × 10−1 8.2610 × 10−2 1.8557 × 10−1

0.1780 1.0294 × 10−1 8.2591 × 10−2 1.8553 × 10−1

0.1860 1.0292 × 10−1 8.2576 × 10−2 1.8550 × 10−1

Then appropriate techniques are devised depending on what we want to minimise. For instance, to minimize
the dispersion error of the scheme in Eq. (6.4), he defined the following integrals: the Integrated Error from
Tam and Webb, (IETAM), and the Integrated Error from Bogey and Bailly, (IEBOGEY). These are defined
as follows:

IETAM =

∫ 1.1

0
|1−RPE|2d ω, (6.5)

IEBOGEY=

∫ 1.1

0
|1−RPE| dω. (6.6)

6.1 Zabusky and Kruskal (1965) scheme

We consider the Z-K scheme given by Eq. (2.2) with k = 0.0015 andumax = 1. The amplification factor
satisfies the equation

ξ2 + I

{

0.018

h
sinω +

0.0015

h3
(2 sin 2ω − 4 sinω)

}

ξ − 1 = 0, (6.7)

and the relative phase error is computed as

RPE=
h3

0.0015ω3
tan−1







0.0015
h3 (2 sinω − sin 2ω)

√

1− 2.25×10−6

h6 (sin 2ω − 2 sinω)2







. (6.8)

We compute

IETAM =

∫ 1.1

0
(1− RPE)2d ω,
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Figure 8: Dispersion error and conservation laws errors for2-soliton solution for all the schemes at time
T = 3 whenk = 0.0015.

which is a function ofh. The plot of the integrated error versush is shown in Fig.9(a). It is seen that the
integrated error increases monotonically with increase inh. Using NLPSolve function in Maple, the optimal
h is 0.1574 correct to 4 significant digits.

6.2 Wang et al. (2008) scheme

We consider the W-W-H scheme given by Eq. (2.7) with k = 0.0015 andumax = 1. The amplification
factor of the scheme is

(cosω − I sinω)ξ2 + 2I sinω

(

1 +
0.009

h
+

0.003

h3
(cosω − 1)

)

ξ − (cosω + I sinω) = 0, (6.9)

and the relative phase error is

RPE=
h3

0.0015ω3
tan−1

{

P cosω +Q sinω

Q cosω − P sinω

}

, (6.10)
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where

P = −2 sinω

{

1 +
0.003

h3
(cos ω − 1)

}

and

Q = 2

√

1− sin2 ω

{

1 +
0.003

h3
(cosω − 1)

}2

.

The plot of the integrated error versush shown in Fig. 9(b). It is observed that the integrated error
increases monotonically with increase inh. The NLPSolve function in Maple gives an optimal value ofh is
0.1289 correct to 4 significant digits.

(a) The Z-K scheme. (b) The W-W-H scheme.

(c) The Z-K scheme. (d) The W-W-H scheme.

Figure 9: The plot of IETAM and IEBOGEY versush.

In Figs. 9, it is observed that there is no much difference between the behaviour of IETAM and IEBOGEY
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as they are both measures of dispersion error. The IETAM and IEBOGEY for W-W-H scheme are over a
larger range when compared with that of Z-K scheme as seen from the graph.

6.3 New schemes

Finally we consider the two new schemes given by Eq. (5.3) and Eq. (5.4) with k = 0.0015 andumax = 1.
The amplification factor and the relative phase error for these schemes are the same as that of Z-K scheme.
Hence similar analysis give the optimalh to be0.1574 correct to 4 significant digits.

6.4 Validation of optimisation process

Next we validate the optimization technique by computing the dispersion error for the two experiments using
the optimal values ofh. The results are shown in Table6.

Table 6: Validation of Numerical experiment.

Schemes Optimalh Dispersion error for single soliton Dispersion error for double soliton
Scheme (2.2)
Z-K 0.1574 4.6514 × 10−6 1.3690 × 10−3

Scheme (2.7)
W-W-H 0.1289 2.3402 × 10−5 5.3659 × 10−3

Scheme (5.3)
NS1 0.1574 1.4464 × 10−5 4.7940 × 10−3

Scheme (5.4)
NS2 0.1574 6.5337 × 10−6 2.0210 × 10−3

7 Conclusion

In this work, we have obtained expressions for amplificationfactor, region of stability and relative phase
error for the four schemes considered in solving the 1D KdV equation. Errors are quantified into dissipative
and dispersive errors and their ability to conserve the firstthree integrals is observed. Our two novel schemes
are compared with two existing schemes; Z-K scheme and W-W-Hscheme. It is found that our schemes
and Z-K scheme have the same region of stability which is different from that of W-W-H scheme. We
observe that Z-K scheme has the least dispersion error for both the single and double soliton experiments
followed by our proposed schemes: (5.4) and (5.3) respectively. W-W-H scheme has the largest dispersion
error when compared with other schemes. For 2-soliton experiment, (5.3) conserves mass better than Z-K
scheme, but for conservation of momentum, Z-K scheme and scheme (5.4) have almost the same error of
conservation of momentum but ash increases, Z-K scheme performs better than others followedby (5.4).
For conservation of energy, Z-K scheme performs better thanthe others followed by schemes (5.4), (5.3)
and W-W-H respectively. The results of our numerical experiment are much influenced by the choice ofh
andk.

The technique of optimisation allows us to compute an optimal value ofh at a given value ofk. This
optimal value ofh is validated using numerical experiment. This work can be extended to 2D KdV equation
and finite volume methods can be used to solve problems described by KdV equations. The Kadomtsev
Petviashvili equation (KP) is a partial differential equation to describe non-linear wave motion that is con-
sidered as a generalization of KdV equation to two dimensions.
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∂

∂x

(

∂u

∂t
+

∂3u

∂x3
+ u

∂u

∂x

)

+ λ
∂2u

∂y2
= 0,

λ 6= 1, u = u(x, y, t): R2 × R
+ → R, t > 0, u ∈ C3

1 .[33].
Dispersive Riemann problem for KdV equation can also be solved. This problem can be described by

ut +

(

1

2
u2 + ǫ2uxx

)

x

= 0,

u(x, 0) =

{

up, x < 0

ur, x > 0.

whereǫ2 << 1.[34, 35]. Appropriate technique of optimisation can also be used tochoose the parameters
h andk for minimal numerical dispersion.
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