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Abstract

Two new explicit finite difference schemes for the solutibthe one dimensional Korteweg-de-Vries
equation are proposed. This equation describes the cbarda wave generated by an incompressible
fluid. We analyse the spectral properties of our schemesistgaio existing schemes proposed by
Zabusky and KruskalRhys. Rev. Lett15(6):240-243,1965) and Wargg al. (Chinese Phys. Lett.
25(7):2335-2338, 2008). An optimization technique basednmimisation of the dispersion error is
implemented to compute the optimal value of the spatial stepat a given value of the temporal step
size and this is validated by some numerical experiment® gérformance of the four methods are
compared in regard to dispersive and dissipative errorgtagid ability to conserve mass, momentum
and energy by using two numerical experiments which inveblgons.
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1 Introduction
In this work, we consider the generalized one dimensionatekeeg-de-Vries (KdV) equation in the form
Ut + YUUgy + Pz =0, xz€R, t>0, (1.2)

which describes the elongation of the wave generated byamipressible fluid at positiom and timet.
Herea andg are positive constants. The second term in EdL)(shows non-linearity due to the occurrence
of the product of the dependent variable and its derivatiiidenthe last term gives the order of the partial
differential equation and is also responsible for dispersiThis equation which was first introduced by
Korteweg and de Vries inl] depicts the character of shallow incompressible fluid waw@gh small but
finite amplitudes. Ludwet al [2] generalized the non-linear one-dimensional equation fidid layer for
any depth and length as an infinite order differential egumator steady waves, and in the limit of long
and shallow incompressible fluid (shallow channel), the@ptained the well known KdV equation together



with its single soliton solution. It has been used to descile occurrences of waves in bubble-liquid
mixtures (incompressible fluid mixture},[4], anharmonic crystalss| 6] and plasma physics/[ 8. The
equation is also important in the analysis of the interactietween nonlinearity and dispersion, as seen
in the well-known Burgers equation which displays the prtps of the interaction between nonlinearity
and dissipationq]. The integrability of (.1) guaranties an infinite invariants. These quantities anstemt
along the solution of the given partial differential eqoat{10], and here we state the first three invariants
as follows:

Fl(u):/Rud:U,

Fy(u) = %/RUQ dz, (1.2)

Fs(u) = /R <§ui — %u?’) dx.

which represent the mass, momentum and energy conservasipactively.

A lot of effort has been devoted to the design of stable, efficand reliable numerical schemes for the
KdV equation. The most well known explicit finite differenseheme for 1.1) was proposed by Zabusky
and Kruskal 1] where the time derivative is leap-frog like in nature. Tlo@eme is second order in time
and conserves the first integral ih.?) to a high degree of accuracy (see for examglg ). A method
which involves the use of central difference for space @¢ines together with a predictor corrector time
step was proposed by ?]. The method was analyzed based on stability criteria amdemical dispersion.
Numerical experiments for the single soliton and for theriattion of more than one soliton were presented
graphically.

Ascher and McLachlanl3] gave an account of the study of symplectic and multi-sytideschemes
for the KdV equation in order to answer the question of whettugled structure preservation such as con-
servative discretization schemes would provide high tpathemes for long time integration of nonlinear
conservative PDEs. KdV equation was used as a case stughcdheluded that it is possible to design a
very stable, conservative difference schemes for the meatj conservative KdV equation. In 2005, Re-
fik [14] used an exponential finite difference scheme, a methodajes@ by Bhattacharyalp], to solve
the KdV equation. It was concluded that the method generateterical results of KdV equation which
are accurate for small time steps. Recently, Wang etld]] groposed a scheme (W-W-H scheme) which
was obtained by substituting an average of forward and bakwifference in time in place of central
difference in time in Z-K scheme. They carried out numeriiatulations of KdV equation with initial
conditionu(z,0) = cosz and it was found that their scheme did not blow up at a longee tivhen com-
pared with Zabusky and Kruskal scheme and multi-symplesiigpoint scheme. They also showed that
their scheme has more relaxed stability than Zabusky andkaitscheme and multi-symplectic six-point
scheme. Attention of many researchers have been drawndswardying this equation due to the impor-
tance as benchmark for proposed schemes, or to reproducgidhative behavior of the solutions of the
equation as above, but no attention has been paid to theipgtion of the methods used in solving this
equation. In this work, we obtain expressions for the angalifon factor and the region of stability for the
schemes considered. We also obtain relative phase errtird@chemes and then optimized the schemes to
compute the optimal value of the spatial step size at a giare\of the temporal step size. Similar analysis
can also be carried out on higher order schemes.

This paper is organised as follows. Sectidrntroduces two existing numerical schemes and also
presents the regions of stability of the schemes. In Se@®jdhe dissipative and dispersive properties of
the schemes are presented and analytical expressionsfordlative phase error are obtained. In Section
4, we quantify errors from the numerical results into dissgraand dispersion errors by using a technique
devised by Takacslp] and obtain some errors based on conservation laws for thatieq. In Sectiorb,
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two additional schemes are introduced, results obtaingd) tke four schemes are presented graphically,
we also tabulate the errors for the methods used in solviegiimerical experiments described. In Section
6, we find the optimal value for the spatial grid size for a fixatue of the time step for the four schemes.
Numerical experiments are presented throughout to valitheise results. Sectigrcontains the conclusions
and possible future work.

2 Numerical schemes for KdV equation

In this section we describe two existing schemes, the fitstrse was introduced irlL]] and the second
scheme in10]. We will investigate the stability of each of the presensetieme fory = 6, 5 = 1. From
now onwards, our study will be based on the partial difféegmquation

up + 6uty + Upee =0, xR, t>0. (2.1)

The equation is solved on a truncated domain with a unifor,shmae> 0, and spatial nodey,, = mh,
m = 0,1,--- , N. The time node is given by, = nk wherek > 0 is the step size and = 0,1, ---.
The exact value of the solution &, x,,) is denoted byu(¢,, z,,) while the discrete numerical solution is
denoted by.’,.

2.1 Zabusky and Kruskal scheme (1965)

The scheme uses central difference approximations in Ipattesand time and is given by

+1 -1 n n n n _amn n _ n n _amn
urett — +6 <um+1 + uy, +um_1> <um+1 um_1>+<um+2 2,1 q + 2ugy, um_2> 0
- )

2k 3 2h 2h3
(2.2)
which can be written explicitly as
A
U= = 2 (U1 + i + i) (U — up—1) — 2 (U = 2t 1 + 2up, g — U, o),
(2.3)

where\ = k/h is the Courant-Friedrichs-Lewy (CFL) number. This schemednsistent of order two
in both space and time. OR, the stability region is obtained by method of freezing oéfficients [L7]
and application of Von Neumann stability analysis i.e., wpressuu, asuma.xu, and substitute the ansatz
ul, = ne!™~ wherew = 6h, to obtain the amplification factor

e 41 {12/\umax sinw + % (2sin 2w — 4sinw)} E—1=0, (2.4)

where¢ is the amplification facto is the wave numbet, is the phase angle and= /—1. Eqg. €.4) can
be written as
A2+ BE+C =0,

where \
A=1, B:I{12)\umaxsinw+ﬁ(2sin2w—4sinw)} and C = —1.

For stability, we follow the analysis irLB, 19]. In particular, we let

f(§) = A&+ B+ C,



and supposé* = % then
fE) =A?+BE 4G,
and
f&) = A2+ B + C,
therefore withf* (&) = £2f(¢*), we have
f1(€) = A+ B¢+ C¢?,

where

A=1, B:—I{lZAumaxsinw—i—%(281n2w—4sinw)} and C = —1.

We define the Bezout resultant as

= gf*w)f(g) — F(0)f*(€)] = (AA — CO) + (AB - BC), (2.5)

where f*(0) = A and f(0) = C. For f to be von Neumann, we must show thfat= 0 and f'(¢) is Von
Neumann. On substituting the values4fA, B, B, C andC into Eq. @.5), we havef = 0. Then, forf to

be von Neumann, we are required to show that) = 2A¢ + B is von Neumann. Hence, we require that
|€] < 1 for this function, i.e.,

-B
=|— <1
=] 55| <

On substituting the values of and B, we have

A
‘—I{l%\umaxsinw + 72 (2sin 2w —4sinw)}‘ < 2.

Since the second expression in the bracket for the abovedtiggdominates the first for small values of
h, we obtainw = 27/3 from the second expression which gives the maximum valuth®mequality. On
substituting this into the inequality, we obtain the regafrstability as

2
3\/3(2umax - %)

A< ; (2.6)

whereuny.x IS the maximum value of.

2.2 Wang et al. scheme (2008)

The second scheme considered here and first derivetDjiwfas inspired by the Z-K scheme introduced
above, it is denoted by W-W-H scheme. Here the time derigativeplaced by an average of the forward
difference approximation at grid point — 1 and backward difference approximation at grid pointt+ 1

while the space derivative is replaced by central diffeeesgproximation. The W-W-H scheme is given by

1 -1
1 Uy — Uy n U1~ Uy 16 U1+ U+ U1\ (U1 = U1
2 k k 3 2h
u o —2u™ +2ur  —ul
+ < m+2 m+12h3 m—1 m—2> _ 0’ (27)



which, for implementation, can be written as

n+tl _ n n n—1 n n n n n
Up = gy — Uy iy — 2 (g g, ) (g — g, g)
A
n n n n
_m (um+2 - 2um+1 + 2um—l - um—2) ’ (28)

which is a consistent scheme of order two in both space arel ths before, we initialize the simulations
using Eq. 6.1). Similarly, by method of freezing of coefficients and apation of Von Neumann stability
analysis, the amplification factor is given below as

A
(cosw — I'sinw)é? + 2T sinw <1 + 6 \Umax + ZE(cosw — 1)) §— (cosw+ Isinw) =0. (2.9)

This can be written as
A2 + BE+C =0,

where
: : A :
A=cosw— Isinw, B=2[sinw 1+6>\umax—|—2m(cosw—l) and C = —(cosw + Isinw).

Following the same analysis as in subsectipri)( we obtain the region of stability given below as

1 2
— <= :
‘1+3)\{2umax hZ}‘ <% (2.10)

3 Numerical Dispersion

The consistent reduction with time, of the amplitude of plamaves is called dissipation. Dissipative
schemes suppress high frequency waves that can cause cainsaiutions to be more oscillatory than
required [L7]. Dispersion is an occurrence of waves of different freqiestraveling at different speeds. It
causes numerical solutions to spread out as time advanagsKdY equation is dispersive in nature as a
result of the third order derivative term. Relative phaserefRPE), is defined as the ratio of the numerical
phase velocity to the exact phase velocity. If the ratio @atgr than unity, then the computed waves move
faster than the exact waves, thereby causing phase leade Rigpoccurs when the computed waves move
slower than the exact waves.

Ascher and McLachlanlf3] have obtained the dispersion relation of the partial ddifeial equation,

up = 2Quty + puy + Vigg, (3.1)
by considering the linearized version of E§.1) in the form
Up = pug + Vilgyy. (3.2)
When discretized by the Z-K scheme, E§.4) gives

VA
up =t pA (U — ) + ﬁ(unmw = 2ty + 2ugy g+ Uy o) (3.3)

They considered plane wave solutions of the form

up, = exp (Ilwm + Q*n]) = exp <I [%mh + %nk]) ) (3.4)

5



whereQ* is the numerical dispersion relation and

u(x,t) = exp <I [%x + %t}) , (3.5)

where() is the dispersion relation andis the phase angle. Using E®.9) and 3.2), we obtain the exact
dispersion relation given by
3
Q:kpg—ku(g) )

h h
which can be written as
QO = kpb — kvo?,

sincew = 6h. On the other hand, the numerical dispersion relation f&¢ 2cheme for Eq. .2) satisfies
the equation

* * A
IV = eIV | pA(elY — e 1) + 2_2( U _gelw | ge=Iw 4 o=2w),
which simplifies as
QF = sin™! <p)\ sin 6h + I;L—;\(sin 20h — 2sin 9h)> .

Following the same idea as Ascher and Mc Lachlan, we obtaitirikarized version of Eq2(1) which is
Ut + Ugzr = 0, (3.6)

we then obtain expressions for the relative phase erroredftb schemes when used to discretise B)(
When Zabusky and Kruskal (1965) scheme is used to approgiEmt 3.6), we have

A

ul =gl 5 (U sg — 2up oy + 2up_y — Ul _y) - (3.7)

Let elementary solution of Eq3(6) be
’LL(QL‘, t) — e[@meat’
see RO Thenu; = ae®tel?®, u, = I10e!%%e, uy, = (10)%e!%%e® andug,, = (16)3e!%et. Substitut-
ing these into Eq.3.6) and simplifying, we get
a+ (I8)% =0,
which givesa = 163. Hence, \
u(m,t) — eIBerG t_ eIG:ca(t)’
wherea(t) = !’
The amplification factor is calculated as

a(tn-i-l) e1k0? (n+1)

a(tn) T elkO3(n) 7

Sexact =

and on simplifying, we have

1k63
gemact =e€ )

where|..qct| = 1 since the PDE is not dissipativé,..,, is obtained from Von Neumann stability analysis.
The relative phase error is given B3/]

arg(gnum)

RPE = ,
arg(gexact)
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where
Eeract = COS (k:@g) + Isin (k‘@g),

therefore,

oy (sin(k6%)\ 4
arg(&ezact) = tan <7COS(/€93) = k0.

We let
gnum = gl + 1527

where¢; and¢s, are the real and imaginary parts&f,., then

arg(&num) = tan ™! <é> ,

&1
therefore . ¢
_ - -1(S2
RPE= 03 tan <§1> .

Usingd = w/h we have

h? §2
RPE= — tan™' [ 2 ).
oo <§1>

To obtain the amplification factor for Z-K scheme, we subsit.”, = £"e/%™" into Eq. ¢.7) and simplify
to obtain

2
€= \/1 - %(sin 20h — 2sin6h)? + 1 {%(2 sin Oh — sin 29h)} . (3.8)

Hence,

h2 A (2sinw — sin 2w
RPE= Ftan—l ol ) .
w \/1—2—i(sin2w—2sinw)2

When the Wangt al. (1998) Scheme is used to approximate Bgg)( we have

n+1 __ un

A
-1
U™ = Uy g — Uy + Up g — 72 (Upag — 2up g + 2up, ) —up, o). (3.9)

On substituting?, = e into Eq. 3.9) and simplifying, we obtain

—Psi P i
I < smw+Qcosw> —|—I< cosw+Qsmw>’ (3.10)
2 2
where "
P = —ZSinw{l—i-Zﬁ(cosw— 1)} (3.11)
and
k 2
Q=2 1—sin2w{1+2m(cosw—l)} . (3.12)
The corresponding expression for the relative phase eftbedN-W-H scheme is given by
h? Pcosw+ @Qsinw
RPE= — tan™* :
ot {Qcosw — Psinw}

Plots of the relative phase error versus phase angle atatiffealues of, whenk = 0.001 andk = 0.0015

are shown in Figsl and2. For small values of phase angle, at a given valuk, diie relative phase error is
not much affected by changes in the values &r Z-K scheme. In the case of W-W-H scheme, changes in
the values ot affect the relative phase error more.
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Figure 1: Plot of relative phase error versus phase anglg-foischeme. The same profiles can be used for
the new proposed schemes.
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Figure 2: Plot of relative phase error versus phase ang/fav-H scheme.

4 Quantification of errors and conservation laws

Takacs [L6] quantifies the errors from numerical results into disgarsind dissipation errors. Many inter-
esting applications using the technique of Takacs can beied2, 23, 24, 25]. In this section, we use the
ideas from [L6] to quantify errors from numerical results into dissipatiand dispersion. We also look at
the conservation laws of Eg2.(1) under periodic boundary conditions.

4.1 Dispersion and dissipation errors

We begin by defining the Total Mean Square Error (TMSHE)[as

(4.1)



whereu,, andv,, are the analytical and numerical solutions respectivelg, given grid pointn and time
t. We can write the TMSE as

L , 1 N , 1 N 2 N
Nmz::l(um—vm) :Nz(u’”) +N2(vm) —Nmzzzlumfum. 4.2)

Let & and@ be the mean values af,, andv,, respectively. Using the definition of variance, we can also
write

1 & 1 &
~ > (um — 1) = ~ > (ud, = 2upm @ + ), (4.3)
m=1 m=1
1 & 1 Y
~ > (vm — ) = ~ > (vh, = 200 + 7). (4.4)
m=1 m=1

The TMSE can therefore be written as

1 1 2
—\2 —\2
W Ty Ty ety
N
> Umtn. (4.5)
The expression in E(l.5) can be written as

N
2
2 2 2 52 -2 -2
o“(u) + o°(v) + 2u° + 20° —u° — v° — N m§:1umvm7 (4.6)

wherea?(u) anda?(v) represent the variance afandv respectivelyz ands denote the mean values of
andv respectively. Therefore the TMSE is given by

o*(u) + o?(v) + (@* — 2(a)(v) + %) + (2(u)(v) — % i:l umvm> : 4.7)
which further simplifies to
N
o2 (u) + 02 (v) + (i — 0)? — 2 (% mz_:lumvm - (u)(v)) , (4.8)
therefore, we have
% f:l(um —o)? = 02() + 02(v) + (7 — )2 — 2 Cov(u, v). (4.9)

Since the correlation coefficien, is given by the fractior%, the TMSE is therefore written as

N
Z (Um — vm)? = 0% (u) + 0% (v) + (@ — )% = 2 p o(u) o(v), (4.10)

m=1

1
N



which reduces to

N
1
& 2 (tm = vm)® = (0(u) =0 (v))* + (= 0)* + 2 (1 = p) o(u) o (v). (4.11)
m=1
On settingp = 1, we obtain2 (1 — p) o(u) o(v) = 0. Thus, we defin€(1 — p)o(u)o(v) as the dispersion
error as correlation coefficient in Statistics, is analagtmuphase lag or phase lead in Computational Fluid

Dynamics. Hencegjo(u) — o(v))? + (4 — v)? measures the dissipation errdf,being the number of spatial
grid points.

4.2 Conservation Laws

The discrete forms of the three conservation laws in Ed) @re given asj0|

N
Fl(w) =) umh, (4.12)
m=1
N 2
1 Uy + U
Fl'(u) = 5 > (%) h, (4.13)
m=1
Yo 1
Fi(u)=> {§’A+Um’2 - gufn} h, (4.14)
m=1

whereFy, F, and F5 are the mass, momentum and energy respectively\and,, = (u,+1 — um—1)/2h.
We shall fixk to compute the errors in conservation laws for the threersekseausing

error [} =F(u") — F(u?), (4.15)
error [ =F(u") — Fi(u?), (4.16)
error Fy =F'(u") — F'(u), (4.17)

whereu” is the numerical solution at thé” time level andu® is the discrete initial time solution.

5 Numerical experiments

In this section, we present several numerical simulationgefuation 2.1) subject to specified initial and
boundary conditions using the two existing schemes inttedun Sectior?, and then introduce our pro-
posed schemes. For implementation, we initialize the titapssusing the following forward difference in
time scheme

A
2h?

1

0 0 0 0 0 0 0 0 0 0
Uy = Upy — )‘(um—i—l + Uy, + um—l) (um—l—l - um—l) (um+2 - 2um—|—1 + 2um—l - um—2) . (51)

We begin by considering the single soliton problem

Experiment 1
up + 6uty + Upey =0, V (z,t) € (=L, L) x (0,7,
u(z,0) = v(z,0), (5.2)
u(zx — L,t) = u(x + L, t).
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whereL = 20 andv(z, t) is the exact solution given by

242

v@,t) = cosh?[u(z — 4p2t)]

See pg|

Experimentl represents a wave packet with ampliti2j¢ and wave velocityl.2. In all the simulations,
we chooseél’ = 3, T = 6 andy = 1/v/2.

From the stability analysis of the Z-K scheme, witk= 0.0010 andk = 0.0015, the respective regions
of stability satisfy the inequalities: > 0.1358 andh > 0.1548. We tabulate the dissipation, dispersion and
TMSE in Tablel and observe that the dispersion error is much greater tleadigsipation error. We also
observe that the dispersion error is least when 0.1574 and greatest whelh = 0.1860 for £ = 0.0015.

Table 1: Errors for the schemesZat= 3 whenk = 0.0015 for 1-soliton experiment.

Schemes h | Dissipation error| Dispersion errof TMSE \
SchemeZ.2)

Z-K 0.1574] 1.0951 x 10713 | 4.6514 x 1076 | 4.6514 x 106
0.1680| 2.3375 x 10713 | 6.1566 x 1076 | 6.1566 x 10~6
0.1780| 8.2518 x 10713 | 9.2490 x 1076 | 9.2490 x 1076
0.1860| 7.2674 x 10713 | 9.4603 x 1076 | 9.4603 x 10~6

SchemeZ.7)

W-W-H 0.1289| 6.7403 x 1071 | 2.3402 x 10™° | 2.3402 x 10~°
0.1350| 9.8285 x 107! | 2.8137 x 107° | 2.8137 x 10~°
0.1550| 3.4079 x 10710 | 4.8620 x 107 | 4.8621 x 107°
0.1650| 4.7927 x 10719 | 6.3868 x 107° | 6.3868 x 107>

Scheme§.3)

NS1 0.1574] 6.5719 x 10712 | 1.4464 x 107> | 1.4464 x 10~°
0.1680| 1.1141 x 10~'* | 1.9062 x 10~ | 1.9062 x 10~°
0.1780]| 3.8082 x 10~ | 2.7082 x 10~° | 2.7082 x 10~°
0.1860| 2.6184 x 107! | 2.9164 x 107° | 2.9164 x 107>

Scheme§.4)

NS2 0.1574| 1.9474 x 10713 | 6.5337 x 1076 | 6.5337 x 106
0.1680| 4.4682 x 10713 | 8.6368 x 1076 | 8.6368 x 106
0.1780| 1.8065 x 10712 | 1.2761 x 10~° | 1.2761 x 10~°
0.1860| 1.2850 x 10712 | 1.3250 x 10~°® | 1.3250 x 107>

The respective regions of stability for the W-W-H schemésgathe inequalities:h > 0.11074 and
h > 0.12645 as obtained from the stability analysis for= 0.0010 andk = 0.0015. The dissipation,
dispersion errors and TMSE are tabulated in Tahleand we observe that the dispersion error is much
greater than the dissipation error. In addition, foe 0.0015 the dispersion error is least whén= 0.1289
and greatest whel = 0.1650.

From Tablel and2, we observe that the errors in W-W-H scheme are higher thesetbf Z-K scheme.
We propose modifications to Z-K scheme with the aim of obteyrbetter schemes. The first which uses
direct local approximation to discretize:, term viau, d,u;,. The resulting finite difference scheme is

n+1 n—1 n I % n _ n n _
Uy, = — Uy + 6u™ (um-i-l um—l) + <um+2 2um-i—l + 2um—l
m

Upy, 3
2k 2h 213 ) =0 63
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Table 2: Errors for the schemesat= 6 whenk = 0.0015 for 1-soliton experiment.

Schemes h | Dissipation error| Dispersion errof TMSE \
SchemeZ.2)

Z-K 0.1574] 2.2442 x 10712 | 1.6414 x 107° | 1.6414 x 10~°
0.1680| 2.4368 x 10712 | 2.2017 x 107° | 2.2017 x 10~°
0.1780| 9.2437 x 1072 | 3.5919 x 10~ | 3.5919 x 10~°
0.1860| 5.7363 x 10712 | 3.4291 x 107° | 3.4291 x 10~°

SchemeZ.7)

W-W-H 0.1289] 5.6542 x 10~ | 6.9921 x 10~° | 6.9921 x 10~°
0.1350| 9.0535 x 1071 | 8.3456 x 107° | 8.3456 x 107>
0.1550| 3.0882 x 10719 | 1.3739 x 10~* | 1.3739 x 10~*
0.1650| 3.8986 x 10719 | 1.9170 x 10~* | 1.9170 x 10~*

Scheme§.3)

NS1 0.1574| 8.1498 x 1072 | 5.6540 x 10~° | 5.6540 x 10~°
0.1680| 1.0879 x 107! | 7.4858 x 107° | 7.4858 x 107>
0.1780| 3.5624 x 107t | 1.0949 x 10~* | 1.0949 x 10~*
0.1860| 2.6794 x 10~'1 | 1.1507 x 10~* | 1.1507 x 10~*

Scheme§.4)

NS2 0.1574| 34778 x 10712 | 2.4079 x 10~° | 2.4079 x 10~°
0.1680| 3.9517 x 10712 | 3.2134 x 107° | 3.2134 x 107°
0.1780| 1.2636 x 1011 | 5.0381 x 10~° | 5.0381 x 10~°
0.1860| 9.4637 x 10712 | 4.9777 x 107° | 4.9777 x 107>

and the second which uses central difference for both $atéatime derivative whose nonlinear approxi-
mation differs from that of Zabusky-Kruskal scheme. Thigiien below as

n+l _ ,n—1

u U

2k

4

2h3

The amplification factor of the linearized version of theestles above is given by

m_ 6 (U%Jrl + 2uy, + U%—l) <U%+1 - U%—1>+<Unm+2 = 2up g+ 2up, g — U,
2h

E+1 {12)\umax sinw + % (2sin 2w — 4sinw)} E—1=0, (5.5)

which is similar to that of the Z-K scheme. Hence the stabiiggion required for these schemes is

2
3\/§(2umax - %) ‘

Following the same arguments as in sectipme obtain the relative phase error as

A<

(5.6)

h? %(2 sin w — sin 2w)

RPE= ~— tan~"
w \/1—2—Z(sin2w—251nw)2

Here we highlight the similarities between the linearizedesne for the two NS and Z-K schemes.
The two new schemes NS1 and NS2 are stablé fer(0.001 andk = 0.0015 in the regions described
by the inequalitiesh > 0.1358 andh > 0.1548 respectively. The tabulated results in Tablshows that

12



the dispersion error is much greater than the dissipatimor.eWe observe that the dispersion error is least
whenh = 0.1574 and greatest whel = 0.1860 for k£ = 0.0015.

Figs. 3 and Figs.4 show the graphs of single soliton solution for the four schemith a fixed value ok
whenk = 0.0015 atT = 0,7 = 3 andT = 0, T = 6 respectively, plotted on the same axes. It is seen that
asT increases, the wave progresses to the right and at othesrhighues off” not shown, the waves hit the
boundary and appears at the other boundary for all the scheomsidered.

1.2 : : : 1.2
1 1
0.8 0.8
~ 0.6 ~ 0.6
% %
> 04 > 04
0.2t 0.2t
0 0
%0 -10 0 10 20 %0 -10 0 10 20
X X
1.2 1.2
1 1
0.8 0.8
~ 0.6 ~ 0.6
X X
= 0.4r S 0.4t
0.2/ 0.2/
0 0
=20 -10 0 10 20 =20 -10 0 10 20
X X
() NS1. (d) NS2.

Figure 3: The graph of(z,t) versusz for single soliton problem for all the schemes with= 0.0015. In
(a), (c) and (d)h = 0.1680 and in (b)h = 0.1350.

In Table3, we present the errors in the conservation laws. We obskatdhe errors for the three conserva-
tion laws are least dt = 0.1574 and greatest wheh = 0.1860 for Z-K and our proposed schemes but for
W-W-H scheme, the least error occurshat 0.1289 and greatest d@t = 0.1650.

Figs. 5 shows the graphs of dispersion error verguand the graphs of the three conservation laws for
all the schemes plotted on the same axes for single solitparement. Figures(a) shows the graph of
dispersion error versusfor all the schemes, plotted on the same axes. It is foundhikatcheme.2) has
the least dispersion error followed by schemd)( (5.3) and @.7) respectively. Fig5(b) shows the graph
of conservation of mass versaglotted on the same axes for all the schemes. It is obseredthemes

13
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Figure 4: The graph of(z, t) versusz for single soliton problem for all the schemes with= 0.0015. In
(@), (c) and (d)h = 0.1680 and in (b)h = 0.1350.

(2.2) has the least error of conservation of mass, followed bemes 5.4), (2.7) and 6.3) respectively. In
Fig. 5(c), the graph of conservation of momentum versus plotted on the same axes for all the schemes.
It is observed that schemg.{) has the least error of conservation of momentum, followesldhemes?.2),
(5.3 and @.7) respectively. The graph of conservation of energy veksissshown in Fig.5(d) in which all
the schemes are plotted on the same axes. It is seen thates¢hdjrhas the least error of conservation of
energy and then followed by schemés?, (5.3) and @.7) respectively.

In the next experiment we consider the double-soliton gnobés follows

Experiment 2
Ut + 6uly + Uggy =0, YV (2,t) € (=L, L) x (0,7),
u(z,0) = v(z,0), (5.7)
u(zr — L,t) = u(x + L, t).

14



Table 3: Conservation laws errors for the schemes atfime3 whenk = 0.0015.

Schemes h lerror Fy | lerrorFy| | JerrorFs| | max |uy, — uj,| |

SchemeZ.2)
Z-K 0.1574| 4.5972 x 1076 | 5.1078 x 1079 | 3.0133 x 10~° | 9.2525 x 1073
0.1680| 1.7692 x 1075 | 4.5559 x 1075 | 1.9853 x 10~° | 1.0624 x 1072
0.1780| 3.6496 x 107° | 8.2205 x 1076 | 1.1526 x 10~* | 1.3322 x 102
0.1860| 3.4163 x 107° | 3.4414 x 1075 | 5.3341 x 1076 | 1.3135 x 1072

SchemeZ.7)
W-W-H 0.1289| 1.9126 x 107° | 3.7254 x 1075 | 6.2483 x 10~* | 2.0865 x 1072
0.1350| 2.4665 x 107° | 4.4573 x 107° | 6.9683 x 10~* | 2.2903 x 1072
0.1550| 3.3478 x 107° | 8.0346 x 107° | 1.0111 x 1073 | 3.0205 x 102
0.1650| 3.2000 x 1075 | 9.7421 x 1075 | 1.0200 x 1073 | 3.4536 x 1072

Scheme§.3)
NS1 0.1574| 1.4107 x 107° | 8.8169 x 1076 | 1.7045 x 10~* | 1.6917 x 102
0.1680| 3.8447 x 107° | 1.0790 x 1075 | 2.0809 x 10~* | 1.9263 x 1072
0.1780| 6.9244 x 107° | 1.7205 x 1075 | 3.6886 x 10~* | 2.3225 x 1072
0.1860| 7.0970 x 107° | 1.5019 x 1075 | 2.7294 x 10~* | 2.3917 x 1072

Scheme§.4)
NS2 0.1574| 6.9832 x 1076 | 2.2598 x 1076 | 2.0455 x 10~° | 1.1151 x 1072
0.1680| 2.2921 x 107° | 1.2105 x 1075 | 3.7724 x 107 | 1.2749 x 1072
0.1780| 4.4749 x 107° | 8.0677 x 1076 | 1.7943 x 10~* | 1.5774 x 1072
0.1860| 4.3456 x 107° | 1.0472 x 1075 | 6.5158 x 10~° | 1.5800 x 1072

whereL = 20 andu(z, t) is the exact solution given by
’U(xv t) = 2(10g f(xv t)):m
with
flz,t)=1+em +e™ + 6171+772+A12’ Nm = Ym® — '713nt + 7729)7 and e — H’
? J

see 7). We also sefl’ = 3,y; = 1, v = /5, 77§0) =0 andngo) =10.73.

Figs. 6 shows the graphs of double soliton solution for the four su® with a fixed value of when

k = 0.0015 atT = 0 andT = 3, plotted on the same axes. As it is well known, a soliton wégér
amplitude has a greater velocity than the smaller d@ [As T increases, it is observed that the soliton
with larger amplitude catches up with that of smaller oneffignot shown). The two soliton waves coalesce
for a particular period of time and then separate, still ri@nng their original profiles but with change
in position. It is also seen that the soliton with the largemplitude moves ahead of the one with smaller
amplitude atl" = 3. In Figs. 7 whenT = 6, the wave with larger amplitude hits the wall of the positive
boundary and then appears at the negative side of the bgunbais is seen to move towards its original
starting point.

For the 2-soliton experiment, Tabfefollows the same trend as in Tableand 2 while in Table5, all the
errors are almost the same. Figsshows the graph of dispersion error veréusnd the graphs of the three
conservation laws for all the schemes plotted on the sansfaxg-soliton experiment. Fig(a) shows that
schemeZ.2) has the least dispersion error, followed by scherfe$,((5.3) and @.7) respectively. Scheme
(2.7) has the greatest dispersion error for both single and dadiiton experiments. In Fig(b), it is seen
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Figure 5: Dispersion error and conservation laws errorslfeoliton solution for all the schemes at time
T = 3 whenk = 0.0015.

that the error of conservation of mass is least for schén®, followed by schemes2(2) and 6.4) having
almost the same error, whil@.() has the greatest error. In Fig¥(c), schemesZ.2) and 6.4) have almost
the same error of conservation of momentum which are leastasdh increases beyond a certain point, it
is observed that schem@.9) becomes better than schente4]. Scheme §.4) is then followed by %.3)
and @.7) respectively. In Figs8(d), schemed.2) has the least error of conservation of energy followed by
schemesH.4), (5.3) and @.7) respectively.

6 Optimizing parameters for the four schemes

In this section, we aim to compute an optimal valug:afzhich minimizes the dispersion error for a fixed
value ofk. Based on the results of Experimeftand2, we observe that the dispersion error is much greater
than the dissipation error as shown in Tabland4. Hence we follow the same ideas as in the work of
[23, 28] to compute the optimal value df for a given value of by minimizing the dispersion error. We
next describe briefly how various authors use differentrojtition techniques to determine coefficients of
numerical methods, especially designed for Computatideabacoustics.
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Figure 6: The graph of(x,t) versusz for double soliton problem for all the schemes at tifie= 3 with
k = 0.0015. In (a), (c) and (d)h = 0.1680 and in (b)h = 0.1350.

Tam and WebbZ49] constructed a 7-point and 4th -order central differencé¢hoe: based on the mini-
mization of the dispersion error. They approximated the dirder derivative at = xq via

Ou 1 ia u(zo + ih) (6.1)
a.~ 7 m 0 ) .
or h it

whereh is the spacing of a uniform mesh and the coefficienisare such that,,, = —a_,,, providing a

scheme without dissipation. On applying spatial Fouri@msform to Eq. §.1), the numerical wavenumber,

fh* is obtained and is given by
3

Oh* =2 Z am, sin (mOh). (6.2)

m=1
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Figure 7: The graph of(z,t) versusz for double soliton problem for all the schemes at tifie= 3 with
k = 0.0015. In (a), (c) and (d)h = 0.1680 and in (b)h = 0.1350.

Taylor expansion of h* from Eq(6.2) aboutfh gives

_1 3 i 5 _1 3 i 5
2a; <9h 6(9h) + 150 (Oh) ) + 2as <29h 6(29h) + 120(29h)
1 3 1 5
+2a3 <3eh 5 (30R)° + == (300) ) - (6.3)

The 4th-order method is obtained for
2a1 + 4as + 6ag =1

a1 + 8ag 4+ 27a3 = 0.
Since we have two equations and three unknowns, we can cHoofsgstanceq, as a free parameter. Thus

9 4
as = — — —a
2 20 517
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Table 4: Errors for the schemesfat= 3 whenk = 0.0015 for 2-soliton experiment.

Schemes h | Dissipation error| Dispersion errof TMSE \
SchemeZ.2)

Z-K 0.1574] 1.0818 x 10719 | 1.3690 x 102 | 1.3690 x 10~3
0.1680| 1.0546 x 10719 | 1.8114 x 1072 | 1.8114 x 1073
0.1780| 9.9928 x 10~ | 2.6563 x 1072 | 2.6563 x 1073
0.1860| 1.7882 x 10710 | 2.7841 x 1072 | 2.7841 x 1073

SchemeZ.7)
W-W-H 0.1289| 2.5571 x 1078 | 5.3659 x 102 | 5.3659 x 1073
0.1350| 3.8799 x 108 | 6.4510 x 1072 | 6.4510 x 1073
0.1550| 1.2731 x 10~7 | 1.1108 x 1072 | 1.1108 x 102
0.1650| 1.9461 x 107 | 1.5207 x 1072 | 1.5207 x 1072

Scheme§.3)

NS1 0.1574| 3.0535 x 1079 | 4.7940 x 1072 | 4.7940 x 1073
0.1680| 3.8099 x 1079 | 6.2848 x 1072 | 6.2848 x 1073
0.1780| 6.5723 x 1079 | 8.5919 x 1072 | 8.5919 x 1073
0.1860| 7.4545 x 107 | 9.5599 x 10~ | 9.5599 x 10~3

Scheme§.4)

NS2 0.1574| 2.6483 x 10719 | 2.0210 x 102 | 2.0210 x 1073
0.1680| 2.8154 x 10719 | 2.6638 x 1072 | 2.6638 x 1073
0.1780]| 3.9376 x 10719 | 3.8043 x 103 | 3.8043 x 10~
0.1860| 4.7932 x 10719 | 4.0756 x 1072 | 4.0756 x 1073

Oh* ~ 2ay sin (Oh) + 2 (— — %a1> sin (20h) + 2 <

575\ 3

The numerical wavenumber can be expressed as

9
20

They also defined their integrated error as

5

1 2 .
—aj; — 1—5> sin (36h).

(on)
E= / |0h* — 6h|? d(6h),
0

where the upper limit of the integral is taken to #¥e = 1.1, since the RPE behaves better in this region
[30], to find the value ofz; which minimizesE. One can then find the values @f andas and thus the
approximation fon,,.

Bogey and Bailly B1] minimised the relative difference between the exact plasge, 64 and the
numerical phase angléh* and the integrated error is described by

2 |0h* — 6h)
E = /16 g d(Oh).

Tam [32] summarizes some work in Computational Aeroacoustics23 fhe author has modified the mea-
sures used in?29, 31] in a Computational Aeroacoustic framework to suit them taae when a numerical
scheme is already constructed in the form
1
ult

= g + Bl yull (6.4)
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Table 5: Errors for the schemesat= 6 whenk = 0.0015 for 2-soliton experiment.

Schemes h | Dissipation error| Dispersion errof TMSE \
SchemeZ.2)

Z-K 0.1574| 1.0299 x 10~ | 8.2630 x 102 | 1.8562 x 10~ *
0.1680| 1.0296 x 10~' | 8.2610 x 102 | 1.8557 x 107"
0.1780| 1.0293 x 10~ | 8.2589 x 102 | 1.8552 x 10~ %
0.1860| 1.0291 x 10~ | 8.2574 x 1072 | 1.8548 x 10~ !

SchemeZ.7)

W-W-H 0.1289| 1.0078 x 10~ | 8.1742 x 102 | 1.8252 x 107"
0.1350| 1.0056 x 10~' | 8.1649 x 102 | 8.2213 x 107!
0.1550| 9.9850 x 10~2 | 8.1335 x 102 | 1.8118 x 10~*
0.1650| 9.9432 x 1072 | 8.1155 x 102 | 1.8059 x 10~ !

Scheme§.3)

NS1 0.1574| 1.0302 x 10~ | 8.2640 x 102 | 1.8566 x 10~ *
0.1680| 1.0300 x 10~ | 8.2623 x 102 | 1.8562 x 107!
0.1780| 1.0300 x 10~ | 8.2609 x 102 | 1.8560 x 10~ *
0.1860| 1.0298 x 10~ | 8.2596 x 102 | 1.8557 x 10~*

Scheme§.4)

NS2 0.1574| 1.0299 x 10~ | 8.2631 x 1072 | 1.8562 x 10~ *
0.1680| 1.0296 x 10~' | 8.2610 x 102 | 1.8557 x 107!
0.1780| 1.0294 x 10~ | 8.2591 x 102 | 1.8553 x 10~ %
0.1860| 1.0292 x 10~ | 8.2576 x 102 | 1.8550 x 10~*

Then appropriate techniques are devised depending on véhabwt to minimise. For instance, to minimize
the dispersion error of the scheme in Eg.4, he defined the following integrals: the Integrated Erronf
Tam and Webb, (IETAM), and the Integrated Error from Bogeg Bailly, IEBOGEY). These are defined
as follows:

1.1
IETAM :/ |1 — RPE*d w, (6.5)
0

1.1
IEBOGEY:/ 11 — RPE| dw. (6.6)
0

6.1 Zabusky and Kruskal (1965) scheme

We consider the Z-K scheme given by EG.4) with £ = 0.0015 andu,,,,,, = 1. The amplification factor
satisfies the equation

0.018 0.0015
52—1—[{ W sinw+T(2sin2w—4sinw)}f—l:0, (6.7)
and the relative phase error is computed as
0.0015
RPE— h3 - 53 (2sinw — sin 2w) 6.8)

3
0.0015w \/1 225x10°7 (gin 2w — 2sinw)?

We compute
1.1
IETAM = / (1 — RPB?d w,
0
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Figure 8: Dispersion error and conservation laws errorfeoliton solution for all the schemes at time
T = 3 whenk = 0.0015.

which is a function ofh. The plot of the integrated error vershigs shown in Fig.9(a). It is seen that the
integrated error increases monotonically with increase tdsing NLPSolve function in Maple, the optimal
h is 0.1574 correct to 4 significant digits.

6.2 Wang et al. (2008) scheme

We consider the W-W-H scheme given by EQ.7j with £ = 0.0015 andu,,.,, = 1. The amplification
factor of the scheme is

0.009  0.003

(cosw—Isinw)§2+2Isinw<l+ N + 3

(cosw — 1)) §— (cosw+ Isinw) =0, (6.9)

and the relative phase error is

>

RPE

3 .
_1{Pcosw+Qsmw}7 (6.10)

S —
0.0015w3 % Qcosw — Psinw
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where

P= —QSinw{l + O'sgg(cosw - 1)}

2
Q= 2\/1—sin2w{1+ %(cosw— 1)} .

The plot of the integrated error versiisshown in Fig. 9(b). It is observed that the integrated error
increases monotonically with increasehinThe NLPSolve function in Maple gives an optimal valug,a$é
0.1289 correct to 4 significant digits.

and
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Figure 9: The plot of IETAM and IEBOGEY versus

In Figs. 9, it is observed that there is no much difference between ¢haviour of IETAM and IEBOGEY

22



as they are both measures of dispersion error. The IETAM BB®DIGEY for W-W-H scheme are over a
larger range when compared with that of Z-K scheme as seantfre graph.
6.3 New schemes

Finally we consider the two new schemes given by BEg3)(@and Eq. 6.4) with k£ = 0.0015 andu,,q, = 1.
The amplification factor and the relative phase error fos¢hechemes are the same as that of Z-K scheme.
Hence similar analysis give the optimiato be0.1574 correct to 4 significant digits.

6.4 Validation of optimisation process

Next we validate the optimization technique by computirgdispersion error for the two experiments using
the optimal values of. The results are shown in Talde

Table 6: Validation of Numerical experiment.

Schemes Optimalh | Dispersion error for single solitoh Dispersion error for double solitoh
SchemeZ.2)
Z-K 0.1574 | 4.6514 x 106 \ 1.3690 x 1073 |
SchemeZ.7)
W-W-H 0.1289 | 2.3402 x 1075 \ 5.3659 x 1073 |
Scheme§.3)
NS1 0.1574 | 1.4464 x 107° \ 4.7940 x 1073 \
Scheme§.4)
NS2 0.1574 | 6.5337 x 106 \ 2.0210 x 10~3 |

7 Conclusion

In this work, we have obtained expressions for amplificafemtor, region of stability and relative phase
error for the four schemes considered in solving the 1D Kdifagign. Errors are quantified into dissipative
and dispersive errors and their ability to conserve thetfirse integrals is observed. Our two novel schemes
are compared with two existing schemes; Z-K scheme and W-8¢hiéme. It is found that our schemes
and Z-K scheme have the same region of stability which issgfiit from that of W-W-H scheme. We
observe that Z-K scheme has the least dispersion error forthe single and double soliton experiments
followed by our proposed schemes$:.4) and 6.3) respectively. W-W-H scheme has the largest dispersion
error when compared with other schemes. For 2-soliton @xeet, 6.3) conserves mass better than Z-K
scheme, but for conservation of momentum, Z-K scheme anehselp.4) have almost the same error of
conservation of momentum but Asncreases, Z-K scheme performs better than others folldwe@.4).

For conservation of energy, Z-K scheme performs better tharothers followed by schemes.4), (5.3

and W-W-H respectively. The results of our numerical experit are much influenced by the choicehof
andk.

The technique of optimisation allows us to compute an ogtwalue of h at a given value of. This
optimal value ofh is validated using humerical experiment. This work can bereed to 2D KdV equation
and finite volume methods can be used to solve problems Hedchy KdV equations. The Kadomtsev
Petviashvili equation (KP) is a partial differential eqoatto describe non-linear wave motion that is con-
sidered as a generalization of KdV equation to two dimerssion
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a—x E‘FW—FU% +)\a—y2:0,

AN#£ 1 u=u(z,y,t): R xRT = R, t>0,uc C3.[33
Dispersive Riemann problem for KdV equation can also beesbl\rhis problem can be described by

0 <8u O 8u> 9%u

1
up + (—u2 + ezum> =0,
2 xr

, <0
ey~ {2

wheree? << 1.[34, 35]. Appropriate technique of optimisation can also be usethtwose the parameters
h andk for minimal numerical dispersion.
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