Effect of probiotic bacteria on the survival of acid tolerant non-O157 Shiga toxin producing E. coli (STEC) strains in fermented goat’s milk

Olanrewaju E. Fayemi, Elna M. Buys*

Department of Food Science, University of Pretoria, Private Bag X 20, Hatfield, 0028, Pretoria, South Africa

Abstract

The ability of goat’s milk fermented with a probiotic, and in combination with commercial starter culture, to inhibit acid adapted (AA) and non-acid adapted (NAA) environmental non-O157 STEC strains was investigated. Acid adapted (AA) and NAA non-O157 STEC strains were not inhibited in the probiotic fermented goat’s milk while the goat’s milk fermented with the combination of probiotic and starter culture inhibited AA more than NAA non-O157 STEC strains. Environmental acid tolerant non-O157 STEC strains were not inhibited by probiotic, starter culture as well as combination; of starter culture with probiotic unless they were subjected to prior acid adaptation such as backslopping.

Keywords: Acid adapted (AA), non-acid adapted (NAA), non-O157, STEC, L. plantarum B411, goat’s milk, weaning food.

*Corresponding author: E. M Buys
Department of Food Science, University of Pretoria
E mail: elna.buys@up.ac.za
Tel: +27 12 4203209
Introduction

Goat’s milk plays an important role in nutrition and wellbeing of developing countries, where it provides basic nutrition and subsistence to rural people (Park and Haenlein 2007). It has higher digestibility, lower allergenic properties compared to cow’s milk and also contains antibacterial characteristics (Haenlein and Wendorff 2006). Probiotics are defined as viable microorganisms that following consumption with food, have potential for improving the health and nutrition of the consumer (Gourbeyre et al. 2011). Bacterial probiotics include various species of Lactobacillus, Bifidobacterium, and Streptococcus, as well as Lactococcus lactis and some Enterococcus species (Argyri et al. 2013).

Lactobacillus has a long history of safe use in food and it plays a major role in fermented milk and other food products (Karska-Wysocki et al. 2010). Probiotics have been examined for their effectiveness in the prevention and treatment of diverse spectrum of gastrointestinal disorders such as antibiotic-associated diarrhoea (Rolfe 2000). They have also been shown to aid in control of diarrhoea in children (McNaught and MacFie 2001) and the use of fermented milks containing Lactobacillus rhamnosus GG has been proven to shorten the duration of diarrhoea in infants (Marteau et al. 2001). Reduced incidence of diarrhoea was also reported in day-care centres when L. plantarum was administered to the children (Vanderhoof 2000). Dairy fermented products, such as fermented milk and yoghurt including goat’s milk (Argyri et al. 2013) have been regarded as the best matrices to deliver probiotics.

Goats have been regarded as natural reservoir for both E. coli O157 and non-O157 STEC and raw goat’s milk may serve as a vehicle of such pathogens transmission (Rey et al. 2006). Non-O157 STEC strains have emerged as important foodborne pathogens worldwide (Wang et al. 2013) and the consumption of dairy products may represent an important route of non-O157 STEC infections in humans (Rangel et al. 2005). It has been shown that non-
O157 STEC strains were not eliminated from lactic cheese made with raw goat’s milk (Caro et al. 2007) because they can tolerate the low pH of fermented food (Elhadidy and Mohammed 2013). This is because adaptation to acid by E. coli can significantly enhance their survival in acidic foods and alter other physiological characteristics of the cell (Rowan 1999).

Non-O157 STEC infections may induce a range of illnesses from mild gastroenteritis to critical illnesses, including haemorrhagic colitis, haemolytic-uraemic syndrome (HUS) and death, either as sporadic cases or in outbreaks (Smith and Fratamico 2012). Although the survival of E. coli O157:H7 in fermented goat milk (Dlamini and Buys 2009) and in yoghurt (Ogwaro et al. 2002) has been documented, however, there is paucity of information on the effect of probiotics on the non-O157 STEC strains in fermented goat milk. Therefore, the aim of this study was to determine the effect of goat’s milk fermented with a probiotic strain on acid tolerant non-O157 STEC strains from environmental sources.

Methodology

Source of the milk

Fresh Saanen goat’s milk was sourced from the experimental farm of the University of Pretoria, Pretoria, South Africa. The goats were milked using standard milking machines under appropriate hygienic condition. The milk was collected in 1 L sterile Schott bottles immediately after milking and transferred to the laboratory within 30 min. Six portions (100 mL each) were then supplemented with skim milk (3 %) (Oxoid, Basingstoke, UK) and gelatin (0.5 %) (Davis, Gauteng, South Africa) for stability and pasteurised at 63 °C for 30 min.
Bacterial preparation and culture conditions

Acid adaption of the non-O157 STEC isolates

The presence of Shiga toxin 1 (stx1), Shiga toxin 2 (stx2) and intimin (eae) genes in the environmental non-O157 STEC strains used in this study had previously been determined (Aijuka et al. 2014). The stock cultures were stored in cryovial beads (Pro-lab Diagnostic, Austin, TX) at -75 °C.

Seventeen (17) environmental non-O157 STEC strains were subjected to acid adaptation as follows; the non-O157 STEC strains were resuscitated in a Tryptone Soy Broth (TSB) (Merck, Darmstadt, Germany) for 18 h before inducing acid adaptation and subsequently acid tolerance. The working cultures were prepared by inoculating 1 mL of the resuscitated cultures into 100 mL of TSB buffered with 100 mM Morpholino propanesulfonic acid (MOPS) (Merck) to pH 7.4 and incubated at 37 °C for 18 h. The procedure of Buchanan and Edelson (1996) was then used to prepare acid adapted (AA) and non-acid adapted (NAA) non-O157 STEC strains. Acid adaptation was induced in the non-O157 STEC strains by inoculating 1 mL of the working cultures into 100 mL of TSB supplemented with 1 % glucose (Merck) (TSB+G) and to pH 4.5 using 2 M lactic acid which was held at 37 °C in a water bath shortly before inoculation. While for NAA non-O157 STEC strains, TSB without glucose (TSB-G) buffered with 100 mM MOPS with a pH 7.4 was inoculated with 1 mL of the working cultures. Both were immediately incubated for 18 h at 37 °C. The viability was determined by plating on Sorbitol MacConkey (SMAC) agar (Oxoid) and incubating at 37 °C for 24 h.

Acid tolerance of the non-O157 STEC test strains

After acid adaptation for 18 h, 8 non-O157 STEC strains with high acid adaptation potential were selected and exposed to lethal acid shock. Cells were harvested by centrifugation at 1095 × g for 15 min at 4 °C and re-suspended in fresh TSB (Merck) previously acidified to
pH 2.5 using 2 M lactic acid and then incubated at 37 °C for 2 h. The viability was determined after 0, 60, 90 and 120 min of exposure to lethal acid shock by plating appropriate dilutions on SMAC agar (Merck), incubated at 37 °C for 24 h and the percentages survival were calculated. After acid tolerance, strain (MPU(W)8(3), MPU(W)9(1) and MPU(W)5(2) were then selected for this study. The selection was based on the strain that had more than 50% level of survival after exposure to lethal acid shock for 2 h. The three non-O157 STEC selected were serotyped as O138:K81 and O83:K-

Starter culture and probiotic strains

A commercial starter culture (*Lactobacillus delbrueckii* ssp. *bulgaricus* and *Streptococcus salivarius* subsp. *thermophilus*) (Cape Food Ingredients, Noordhoek, South Africa) and *L. plantarum* strain B411 (obtained from the Council for Scientific and Industrial Research [CSIR], Pretoria, South Africa) were used for this study. The probiotic characteristics of *L. plantarum* B411 had been determined (data not published). The *L. plantarum* B411 and starter stock culture were activated in MRS broth (de Man, Rogosa and Sharp, 1960) incubated at 37 °C for 18 h to obtain stationary phase cells. The 18 h cultures of *L. plantarum* B411 and starter culture were centrifuged at 1095 × g for 15 min at 4 °C and standardised using McFarland Standard ampules (BioMerieux, Marcyl-l’ Etoile, France) to obtain cells at 10⁶ cfu/mL before suspending in the pasteurised and chilled goat’s milk.

Inoculation of the goat's milk with non-O157 STEC strains

The 3 acid tolerant non-O157 STEC strains (MPU(W)8(3), MPU(W)9(1), MPU(W)5(2)) selected for the study were subjected to acid adaptation as previously described to obtain AA and NAA cells. After 18 h, the resulting cell suspensions were centrifuged at 1095 × g for 15 min at 4 °C and suspended in 0.1 % buffered peptone water (BPW) (Merck). A cocktail of the AA or NAA non-O157 STEC strains was and standardised with McFarland Standard ampules.
(BioMerieux) to obtain cells at final inoculum level 10^6 cfu/mL after suspending in the chilled goat milk.

Fermentation of goat’s milk and enumeration of lactic acid bacteria (LAB) and non-O157 STEC strains during survival studies

Goat’s milk (100 mL) was inoculated with 10^6 cfu/mL of the commercial starter culture. The second portion (100 mL) of the pasteurised milk was inoculated with 10^6 cfu/mL of commercial starter culture in combination with the *L. plantarum* B411 while a third portion was only inoculated with *L. plantarum* B411 (10^6 cfu/mL). Each treatment was prepared in duplicate and inoculated with a cocktail of either AA or NAA non-O157 STEC strains to obtain final inoculum level 10^6 cfu/mL and incubated at 30 °C for 6 h. The inoculation of non-O157 STEC strains was performed when the pH of the milk reached 4.5. The non-O157 STEC strains and lactic acid bacteria (LAB) were enumerated at 0, 2, 4 and 6 h of incubation on SMAC and MRS agar respectively. The SMAC agar plates were incubated at 37 °C for 24 h while MRS agar plates were incubated anaerobically using anaerobic jar together with anaerocult system (Merck) at 37 °C for 48 h.

Changes in the pH and total titratable acid during the survival of AA and NAA non-O157 STEC strains in the fermented goat’s milk

The changes in the pH of the fermented goat’s milk were determined using a Digital pH meter, Hanna pH meter 211 (Hanna instruments, USA)

Statistical analysis

Multifactorial analysis of variance (ANOVA) was used to determine whether factors such as fermentation treatment, acid adaptation and time affected the survival and growth of non-O157 STEC strains significantly (at 5 % level of significance). All samples were analysed with Statistica software for Windows version 12 (Stat-soft, Tulsa, OK).
Table 1: The acid tolerance of acid adapted non-O157 STEC strains in brain heart infusion (BHI) broth at pH 2.5 and the percentage of survival after 2 h of exposure at 37 °C.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Microbial count (log_{10} cfu/mL)</th>
<th>% survival after 120 min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 min</td>
<td>60 min</td>
</tr>
<tr>
<td>MPU(W)8(3)</td>
<td>6.60 ± 0.08<sup>a</sup></td>
<td>5.42 ± 0.01<sup>ab</sup></td>
</tr>
<tr>
<td>MPU(W)9(3)</td>
<td>6.66 ± 0.01<sup>a</sup></td>
<td>5.64 ± 0.06<sup>ab</sup></td>
</tr>
<tr>
<td>MPU(W)8(4)</td>
<td>6.73 ± 0.08<sup>a</sup></td>
<td>4.05 ± 0.07<sup>c</sup></td>
</tr>
<tr>
<td>MPU(W)5(3)</td>
<td>6.12 ± 0.01<sup>a</sup></td>
<td>5.60 ± 0.08<sup>ab</sup></td>
</tr>
<tr>
<td>NW(W)5(1)</td>
<td>6.67 ± 0.02<sup>a</sup></td>
<td>4.31 ± 0.03<sup>cd</sup></td>
</tr>
<tr>
<td>MPU(W)9(1)</td>
<td>6.80 ± 0.06<sup>a</sup></td>
<td>5.30 ± 0.10<sup>a</sup></td>
</tr>
<tr>
<td>MPU(W)5(7)</td>
<td>6.75 ± 0.02<sup>a</sup></td>
<td>6.04 ± 0.10<sup>b</sup></td>
</tr>
<tr>
<td>MPU(W)5(2)</td>
<td>6.84 ± 0.04<sup>a</sup></td>
<td>5.00 ± 0.03<sup>a</sup></td>
</tr>
</tbody>
</table>

Values are the means and standard deviations of three replicate experiments (n = 3).

Means with different superscript in the same column are significantly different at p < 0.05.

nd = not detected
Results

Acid tolerance of the non-O157 STEC strains

There were significant ($p < 0.05$) differences in the level of survival of non-O157 STEC strains that were challenged at pH 2.5. All the strains exhibited acid adaptation at higher pH 4.5 (data not shown) but after 120 min of exposure at pH 2.5, three of the strains did not survive while the percentage survival of the remaining strains ranged between 29 and 57 % (Table 1).

Effect of probiotic on AA and NAA non-O157 STEC strains in fermented goat’s milk

The goat’s milk fermented with the probiotic did not inhibit the growth of either AA or NAA non-O157 STEC strains. The initial counts of AA non-O157 STEC strains in the goat’s milk fermented with the \textit{L. plantarum} B411 increased from $5.3 \pm 0.3 \log_{10} \text{cfu/mL}$ to $6.8 \pm 0.1 \log_{10} \text{cfu/mL}$ after 6 h of incubation. Similarly, the viable counts of the NAA non-O157 STEC strains in the goat’s milk fermented with \textit{L. plantarum} B411 also increased significantly from $5.6 \pm 0.2 \log_{10} \text{cfu/mL}$ to $6.6 \pm 0.1 \log_{10} \text{cfu/mL}$ after 4 h of incubation and then remained constant up to 6 h. Highest significant ($p < 0.05$) increase of $1.1 \log_{10} \text{cfu/mL}$ and $1.0 \log_{10} \text{cfu/mL}$ were recorded between 2 h and 4 h for the counts of AA and NAA non-O157 STEC strains respectively (Fig. 1). The presence of acid adapted cells had no substantial effect on the pH as there was no notable difference in the pH of \textit{L. plantarum} B411 fermented goat milk inoculated with AA or NAA non-O157 STEC strains (Fig. 2). The initial pH of 5.7 for both AA and NAA non-O157 STEC strains decreased to pH 5.4 and 5.5 respectively, after 6 h of incubation at 30 °C.
Figure 1: The effect of goat’s milk fermented with L. plantarum B411, starter culture (Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus salivarius subsp. thermophilus) and combination of starter culture with L. plantarum B411 for 6 h at 30 °C on (A) survival of acid adapted and (B) non-acid adapted environmental acid tolerant non-O157 STEC strains. Results are expressed as mean ± standard deviation (n = 3).
Effect of starter culture on AA and NAA non-O157 STEC strains in fermented goat’s milk

Acid adaptation had a significant (p < 0.05) effect on the survival of the non-O157 STEC strains in the goat’s milk fermented with the starter culture. The AA non-O157 STEC strains in goat’s milk fermented with the starter culture decreased significantly (p < 0.05) from 5.6 ± 0.1 log_{10} cfu/mL to 4.2 ± 0.2 log_{10} cfu/mL after 6 h. While the counts of NAA non-O157 STEC strains in the goat’s milk fermented with the starter culture only decreased by 0.4 log_{10} cfu/mL after 4 h of inoculation and then remained constant up to 6 h (Fig. 1). Similar to what was observed in the goat’s milk fermented with only *L. plantarum* B411, the presence of acid adapted cells had no substantial effect on the pH of the starter culture fermented goat’s milk inoculated with AA or NAA non-O157 STEC strains. The pH declined from 4.6 to 4.3 after 6 h for both starter culture fermented goat’s milk inoculated with AA and NAA non-O157 STEC strains (Fig. 2).

Effect of starter culture combined with probiotic on AA and NAA non-O157 STEC strains in fermented goat’s milk.

The addition of *L. plantarum* B411 and acid adaptation had a significant (p < 0.05) effect on the survival of non-O157 STEC strains in the goat’s milk fermented with the combination of the starter culture and *L. plantarum* B411 after 6 h of exposure. A significant (p < 0.05) reduction from 5.5 ± 0.2 log_{10} cfu/mL to 3.3 ± 0.2 log_{10} cfu/mL was recorded for the counts of AA non-O157 STEC strains after 6 h of inoculation while the counts of NAA non-O157 STEC strains only decreased by 0.5 log_{10} cfu/mL after 6 h in the goat’s milk fermented with the combination of starter culture and *L. plantarum* B411 (Fig. 1). The reduction in the pH was similar to what was recorded in the goat’s milk fermented with the starter culture. The initial pH 4.6 decreased to 4.2 after 6 h, for goat’s milk fermented with the combination of
Figure 2: Changes in the pH during the fermentation of goat’s milk with starter culture (*Lactobacillus delbrueckii* subsp. *bulgaricus* and *Streptococcus salivarius* subsp. *thermophilus*), *L. plantarum* B411 and combination of starter culture and *L. plantarum* B411 for 6 h at 30 °C, inoculated with acid adapted (A) or non-acid adapted (B) environmental acid tolerant non-O157 STEC strains. The pH of the goat’s milk fermented with starter culture and combination of starter culture with *L. plantarum* B411 at the point of inoculating the non-O157 STEC strains was 4.5. Results are expressed as mean ± standard deviation (n = 3).
starter culture and \textit{L. plantarum} B411, inoculated with AA or NAA non-O157 STEC strains (Fig. 2).

\textbf{Enumeration of LAB in fermented goat’s milk inoculated with either AA or NAA non-O157 STEC strains.}

Fermentation of the goat’s milk with starter culture and in combination with the probiotic had a significant (p < 0.05) effect on the LAB counts. The LAB counts in the goat’s milk fermented with only \textit{L. plantarum} B411 inoculated with NAA non-O157 STEC strains increased from 7.7 ± 0.3 log\textsubscript{10} cfu/mL to 8.4 ± 0.3 log\textsubscript{10} cfu/mL after 6 h of inoculation and incubation at 30 °C. The LAB counts in the \textit{L. plantarum} B411 fermented goat’s milk inoculated with AA non-O157 STEC strains also increased from 7.7 ± 0.2 log\textsubscript{10} cfu/mL to 8.3 ± 0.2 log\textsubscript{10} cfu/mL after 4 h and remained constant after 6 h of incubation (Fig. 3). Similarly, there was no difference in the LAB counts of the goat’s milk fermented with starter culture inoculated with AA or NAA non-O157 STEC strains. The LAB counts in the goat’s milk fermented with the starter culture inoculated with AA and NAA non-O157 STEC strains increased slightly from 8.5 ± 0.2 log\textsubscript{10} cfu/mL to 8.6 ± 0.2 log\textsubscript{10} cfu/mL and from 8.4 ± 0.3 log\textsubscript{10} cfu/mL to 8.6 ± 0.3 log\textsubscript{10} cfu/mL respectively, after 6 h of inoculation and incubation at 30 °C (Fig. 3). Similar to what was observed in the goat’s milk fermented with the \textit{L. plantarum} B411 and starter culture, there was no notable difference between the LAB counts in the goat’s milk fermented with the combination of the starter culture and \textit{L. plantarum} B411, inoculated with AA or NAA non-O157 STEC strains. The LAB counts in the goat’s milk fermented with the combination of the starter culture and \textit{L. plantarum} B411 inoculated with AA and NAA non-O157 STEC strains decreased from 8.8 ± 0.2 log\textsubscript{10} cfu/mL to 8.6 ± 0.3 log\textsubscript{10} cfu/mL and from 8.8 ± 0.2 log\textsubscript{10} cfu/mL to 8.6 ± 0.2 log\textsubscript{10} cfu/mL respectively, after 6 h of incubation at 30 °C (Fig. 3).
Figure 3: Lactic acid bacteria counts during the fermentation of goat’s milk with *L. plantarum* B411, starter culture (*Lactobacillus delbrueckii* subsp. *bulgaricus* and *Streptococcus salivarius* subsp. *thermophilus*) and combination of starter culture with *L. plantarum* B411 inoculated with acid adapted (A) or non-acid adapted (B) environmental acid tolerant non-O157 STEC strains for 6 h at 30 °C. Results are expressed as mean ± standard deviation (n = 3).
Discussion

Acid tolerance potential of the non-O157 STEC strains

The survival of the 3 strains selected for this study at pH 2.5 for 2 h suggests the ability of these non-O157 STEC strains to pass through the stomach acidity barrier and possibly initiate infection (Gorden and Small 1993). These strains can be regarded as high acid tolerant based on their survival at pH 2.5. This is in accordance with the study of Benjamin and Datta (1995) who grouped EHEC into highly acid-tolerant (50 to 100 % survival), moderately acid-tolerant (10 to 50 % survival), and slightly acid-tolerant strains (10 % survival) based on their survival at pH 2.5. The observed variations in acid tolerance of the non-O157 STEC strains at pH 2.5 is in agreement with the findings of Duffy et al. (2000) who reported that the behaviour of E. coli cells under acidic conditions varied among the strains of pathogenic E. coli.

Survival of AA and NAA non-O157 STEC strains in the goat’s milk fermented with probiotic.

The goat’s milk fermented with only L. plantarum B411 did not inhibit the growth of both AA and NAA non-O157 STEC strains. This could be attributed to the high pH and low acidification during exposure which enhanced acid adaption of non-O157 STEC strains. According to Dlamini and Buys (2009), high pH enhanced the survival of E. coli O157:H7 for 3 days in fermented goat’s milk amasi. Kingamkono et al. (1995) reported that ETEC inoculated in lactic-fermenting food when the pH was > 5 developed acid-tolerance response (ATR) system that protects them against severe acid stress for a long period. The study of Gran et al. (2003) on the survival of E. coli in fermented milk products revealed that low pH and slow acid production induced acid adaptation and enhanced acid tolerance of acid adapted cells present in the inoculum from backslopping. The non-O157 STEC strains used
in this study possess high level of acid tolerance at low pH, hence explaining the inability of the *L. plantarum* B411 fermented goat’s milk with higher pH to inhibit the growth of both AA and NAA non-O157 STEC strains. This is because the AA non-O157 STEC might have developed acid tolerance during prior adaption to acid at lower pH thereby enhancing their survival at higher pH of the *L. plantarum* B411 fermented goat’s milk while the NAA non-O157 STEC strains adapted to the changing pH due to their ability to tolerate and grow at lower pH as reported for *E. coli* O157:H7 in fermented milk products (Dlamini and Buys 2009).

Survival of AA and NAA non-O157 STEC strains in the goat's milk fermented with the starter culture.

The goat’s milk fermented with the starter culture inhibited AA and NAA non-O157 STEC strains than *L. plantarum* B411 fermented goat’s milk. The study of Dineen *et al.* (1998) on the survival of *E. coli* O157:H7 in the yogurt production process reported that starter culture appeared to synergistically reduce *E. coli* O157:H7 beyond the capability of either culture alone. Ogueke (2008) also reported that the inhibitory level exhibited by the commercial starter culture fermented milk on clinical *E. coli* isolates was higher than by the milk fermented with a single strain of *Lactobacillus* spp. The variation in the level of inhibition in their study was attributed to the higher amounts of antibacterial metabolites produced by the starter culture than by the individual strain of *Lactobacillus* spp when used for the fermentation of milk products. However, the inhibition of AA more than NAA non-O157 STEC strains in the goat’s milk fermented with the starter culture could be attributed to the production of antimicrobial compounds by the starter culture coupled with the effect of prior adaptation to acid. Hsin-Yi and Chou (2001) reported lower survival of a population of acid adapted *E. coli* O157:H7 ATCC 43889 than the non-acid adapted cells in a fermented milk drink after 48 h of exposure. Studies have shown that LAB starter cultures produce
antimicrobials such as organic acids, bacteriocins, hydrogen peroxide, ethanol, and diacetyl which have potential to inhibit the growth of pathogenic bacteria during acidic fermentation (Stern et al. 2006). Furthermore, acid adaptation of non-O157 STEC strains in this study was performed with lactic acid before inoculation into the fermented goat milk. This could have also enhanced the susceptibility of AA non-O157 STEC strains to the inhibition by other organic acids apart from lactic acid produced during the fermentation of the goat milk with starter culture. This is in accordance with the findings of Ryu and Beuchat (1998) who suggested that the response of acid adapted cells depends on the type of acidulant used to induce acid adaptation. In their study, acid induction of E. coli O157:H7 was performed with lactic acid before inoculation into apple cider and orange juice and this was reported to enhance the susceptibility of adapted cells to inhibition by other organic acids apart from lactic acid.

Survival of AA and NA non-O157 STEC strains in the goat’s milk fermented with starter culture combined with probiotic.

The goat’s milk fermented with the starter culture combined with L. plantarum B411 inhibited the growth of AA non-O157 STEC strains more than the goat’s milk fermented with either starter culture or L. plantarum B411 alone. This could possibly be as a result of the starter culture enhancing the growth of the probiotic thereby resulting in the production and accumulation of various antimicrobial compounds and the weakening effects of prior adaptation to acid (Timmerman et al. 2004). Acid adaptation has been reported to increase susceptibility of E. coli O157:H7 to the antimicrobials produced by LAB starter cultures (Hsin-Yi and Chou 2001). The study of Buchanan and Edelson (1996) revealed that acid adaptation did not enhance acid tolerance in an extremely acid tolerant E. coli O157:H7 strain due to the weakening effects of cellular damage during acid adaptation which exceeded the protective effect of acid shock proteins or other protective metabolic changes induced by low
pH. According to Leyer et al. (1995), acid adaptation of *E. coli* O157:H7 resulted in injured or damaged cells while producing protective acid shock proteins leading to inability to survive when exposed to further harsh acidic environment in the presence of other antimicrobial metabolites.

Similar to the results observed in the starter culture fermented goat’s milk, the NAA non-O157 strains survived more than the AA non-O157 STEC strains in the goat’s milk fermented with the starter culture combined with *L. plantarum* B411 after 6 h of exposure. This can be attributed to the fact that the non-O157 STEC strains in this study possess a high level of acid tolerance at low pH and this could have possibly enhanced the survival of NAA non-O157 STEC strains during fermentation due to gradual adaptation to the changing pH. While the sudden shift of the AA non-O157 STEC strains to normal optimum growth conditions followed by the subsequent demand to re-adapt resulted in failure to acquire maximum adaptation as reported by Dlamini and Buys (2009). According to Ryu and Buchant (1998), regardless of prior adaptation to acidic environment, *E. coli* O157:H7 will again undergo physiological changes during subsequent exposure in response to other organic acids and antimicrobial compounds produced. A similar trend of survival was observed in NAA non-O157 STEC strains inoculated into the goat’s milk fermented with only starter culture or starter culture combined with probiotic. This could be attributed to the similar decrease in pH and increase in acidification levels of the two fermented goat’s milk samples. Hence, the rate of adaptation of NAA non-O157 STEC strains to acid during the fermentation of the goat’s milk with starter culture or with the combination of the starter culture and *L. plantarum* B411 seemed similar.
Conclusion

This study shows that non-O157 STEC strains from environmental sources vary in their acid tolerance ability and the acid tolerant strains may not be inhibited either by probiotic, commercial starter culture as well as a starter culture and probiotic combination. However, prior adaptation to acid enhanced the susceptibility of environmental acid tolerant non-O157 STEC strains to inhibition for instance during backslopping as practised during traditional fermentation of goat’s milk. Therefore, traditional practises such as backslopping may contribute to the safety of traditional fermented weaning food from environmental acid tolerant non-O157 STEC strains.

References

