Supplementary material

Table S1. Site selection details of jackal prey preference from a literature review spanning 56 years of study of black-backed jackals (43 different times and places) and 41 years of study of golden jackals (19 different times or places).

Country	Site	Year	Season	Site	Scats	# prey	#	#	%	Study
				#		species	preferred	killed	preferred	
Black-backed	jackal									
Botswana	Northern Tuli Game Reserve	1988		11	106	8	0	1	0.0%	(McKenzie, 1990)
Namibia	Sandwich Harbour	1983		15	122	3	1	3	33.3%	(Nel et al., 1997) ⁷
		1989			225	3	1	2	33.3%	As above
	Skeleton Coast National Park	1982-1985	Summer	17	187	3	2	2	66.7%	As above
		1982-1985	Winter		167	3	2	3	66.7%	As above
South Africa	Addo Elephant National Park	2004-2005	Autumn	1	175	7	1	4	14.3%	(de Klerk, 2005) ⁸
		2004-2005	Spring		180	7	1	4	14.3%	As above
		2004-2005	Summer		160	8	2	5	25.0%	As above
		2004-2005	Winter		180	8	2	5	25.0%	As above
	Benfontein Game Farm	2006	Autumn	2	57	8	2	3	25.0%	(Klare et al., 2010) ¹
		2006	Spring		89	8	0	3	0.0%	As above
		2006-2007	Summer		74	8	0	4	0.0%	As above
		2006	Winter		93	8	0	4	0.0%	As above
	Giant's Castle National Park	1980	Annual	3	70	11	2	6	18.2%	(Rowe-Rowe, 1983) ⁹
	Grasslands-Kentucky Farm	2004	Annual	4	45	7	4	6	57.1%	(Do Linh San et al., 2009)
	Great Fish River Reserve	2009	Annual	5	59	10	3	5	30.0%	(Forbes, 2011)
		2009	Autumn		72	10	1	3	10.0%	(Brassine and Parker, 2011)
		2009	Spring		69	10	3	5	30.0%	As above

	2009-2010	Summer		71	10	3	5	30.0%	As above
	2009	Winter		83	10	3	4	30.0%	As above
Kimberley Farm	2006	Autumn	6	47	10	4	7	40.0%	(Kamler et al., 2012)
	2006	Spring		52	10	3	8	30.0%	As above
	2006	Winter		44	10	2	6	20.0%	As above
Kruger National Park	1969	Annual	7	138	23	4	7	17.4%	(Pienaar, 1969)
Kwandwe Game Reserve	2009	Autumn	8	66	11	3	5	27.3%	(Brassine and Parker, 201
	2009	Spring		42	11	4	5	36.4%	As above
	2009	Summer		38	11	3	6	27.3%	As above
	2009	Winter		55	11	3	4	27.3%	As above
Mankwe Game Reserve	2010	Winter	9	50	16	2	7	12.5%	$($ Yarnell et al., 2013 $)^2$
Mokolodi Nature Reserve	1995-1996	Autumn	10	53	5	0	2	0.0%	(Kaunda and Skinner, 200
	1995-1996	Spring		54	5	0	4	0.0%	As above
	1996-1997	Summer		38	5	1	4	20.0%	As above
	1996-1997	Winter		58	5	0	2	0.0%	As above
Pilanesberg National Park	2010	Winter	12	50	20	6	8	30.0%	(Yarnell et al., 2013)
Retreat Farm	2004	Annual	13	64	7	3	6	42.9%	(Do Linh San et al., 2009
Rooiport Nature Reserve	2006	Autumn	14	123	15	5	7	33.3%	(Klare et al., 2010)
	2006	Spring		100	14	6	9	42.9%	As above
	2006-2007	Summer		118	14	4	8	28.6%	As above
	2006	Winter		181	14	1	5	7.1%	As above
Shamwari Game Reserve	2009-2010	Annual	16	163	27	3	5	11.1%	$(Forbes, 2011)^3$
Timbavati Game Reserve	1964		18	44	7	1	2	14.3%	(Hirst, 1969)
	1965			25	7	2	3	28.6%	As above
	1966/7			13	7	1	0	14.3%	As above

Eurasian ge	olden jackal									
Hungary	Lábod region	2012	Annual	24	26	5	4	5	80.0%	(Lanszki et al., 2015) ⁴
		2013	Annual		36	5	4	5	80.0%	As above
	Mike-Csököly	1997	Winter	25	94	5	1	5	20.0%	(Lanszki and Heltai, 2002)
	Ormánság region (interannual)	2001	Annual	19	99	4	1	3	25.0%	(Lanszki and Heltai, 2010)
		2002	Annual		95	4	2	4	50.0%	As above
		2003	Annual		71	4	1	4	25.0%	As above
		2004	Annual		94	4	2	4	50.0%	As above
	Ormánság region (seasonal)	2001-04	Autumn	26	86	5	2	5	40.0%	(Lanszki et al., 2006)
		2001-04	Spring		92	5	3	5	60.0%	As above
		2001-04	Summer		80	5	3	5	60.0%	As above
		2001-04	Winter		94	5	1	5	20.0%	As above
	Vajszló area	2010	Annual	34	95	6	1	6	16.7%	J. Lanszki (Unpubl. data) ⁴
		2011	Annual		181	6	2	6	33.3%	As above
		2012	Annual		97	6	1	4	16.7%	As above
India	Eravikulam National Park	1979-81		20	139	4	0	3	0.0%	(Rice, 1986)
	Pench Tiger Reserve	2008-2009		27	55	5	2	5	40.0%	(Majumder et al., 2011) 5
	Sariska Tiger Reserve	2007-2009	Summer	28	160	8	4	8	50.0%	(Gupta, 2011)
		2007-2009	Winter		114	8	3	8	37.5%	As above
		2010-11		29	157	8	4	8	50.0%	(Mondal et al., 2012) ⁶
	Van Vihar National Park	2014		30	200	5	1	4	20.0%	(Prerna et al., 2015a, b)
	Velavadar National Park	2000		31	85	4	2	4	50.0%	(Aiyadurai and Jhala, 2006)
Serbia	Surcin	2004-13		32	93 ^ξ	7	2	3	28.6%	(Aleksandra and Duško,
										2015)
	Veliko Gradiste	2004-13		33	201 ^ξ	4	2	4	50.0%	As above

¹ Hare and springhare density from Stenkowitz *et al.* (2010); ² Prey availability from R. Yarnell (*unpubl. data*); ³ Prey availability from J. O'Brien (*unpubl. data*); ⁴ Small mammal availability was from J. Laszlo (unpubl. data). ⁵ Prey availability from Biswas et al. (2002); ⁶ Prey availability from Sankar et al. (2010) and Gupta (2011); ⁷ Prey availability from Nel et al. (2013); ⁸ Prey availability from Hayward et al. (2007); ⁹ small mammals excluded due to inadequate population estimates; [§] Stomach contents

References

Aiyadurai, A., Jhala, Y.V., 2006. Foraging and habitat use by golden jackals (Canis aureus) in the Bhal Region, Gujarat, India. Journal of the Bombay Natural History Society 103, 5.

Aleksandra, P., Duško, Ć., 2015. Seasonal variation in diet of the golden jackal (*Canis aureus*) in Serbia. Mamm Res 60, 309-317.

Biswas, S., Sankar, K., 2002. Prey abundance and food habit of tigers (*Panthera tigris tigris*) in Pench National Park, Madhya Pradesh, India. J. Zool. 256, 411-420.

Brassine, M.C., Parker, D.M., 2011. Does the presence of large predators affect the diet of a mesopredator? African Journal of Ecology 50, 243-246. de Klerk, C., 2005. The Diet of the Black-backed Jackal (*Canis mesomelas*) in the Addo Elephant National Park, Eastern Cape Province. Terrestrial Ecology Research Unit, Nelson Mandela Metropolitan University, South Africa, pp. 1-23.

Do Linh San, E., Malongwe, N.B., Fike, B., Somers, M.J., Walters, M., 2009. Autumn diet of black-backed jackals (*Canis mesomelas*) in the Thicket Biome of South Africa. Wildlife Biology in Practice 5, 96-103.

Forbes, R.W., 2011. The Diet of Black-backed Jackal (*Canis mesomelas*) on Two Contrasting Land-use Types in the Eastern Cape Province, South Africa, and the Validation of a New Analytical Method of Mammalian Hair Identification., Science Department. Rhodes University, Grahamstown, South Africa, p. 198.

Gupta, S., 2011. Ecology of medium and small sized carnivores in Sariska Tiger Reserve, Rajasthan, India. PhD Thesis, Saurashtra University, Biosciences Department, India.

Hayward, M.W., Hofmeyr, M., O'Brien, J., Kerley, G.I.H., 2007. Testing predictions of the prey of the lion (*Panthera leo*) derived from modelled prey preferences. J. Wildl. Manage. 71, 1567-1575.

Hirst, S.M., 1969. Predation as a limiting factor of large ungulate populations in a Transvaal lowveld nature reserve. Zoologica Africana 4, 199-230.

Kamler, J.F., Klare, U., Macdonald, D.W., 2012. Seasonal diet and prey selection of black-backed jackals on a small-livestock farm in South Africa. African Journal of Ecology 50, 299-307.

Kaunda, S., Skinner, J., 2003. Black-backed jackal diet at Mokolodi Nature Reserve, Botswana. African Journal of Ecology 41, 39-46.

Klare, U., Kamler, J.F., Stenkewitz, U., Macdonald, D.W., 2010. Diet, prey selection and predation impact of black-backed jackals in South Africa. J. Wildl. Manage. 74, 1030-1042.

Lanszki, J., Heltai, M., 2002. Feeding habits of golden jackal and red fox in south-western Hungary during winter and spring. Mammalian Biology-Zeitschrift für Säugetierkunde 67, 129-136.

Lanszki, J., Heltai, M., 2010. Food preferences of golden jackals and sympatric red foxes in European temperate climate agricultural area (Hungary). Mammalia 74, 267-273.

Lanszki, J., Heltai, M., Szabó, L., 2006. Feeding habits and trophic niche overlap between sympatric golden jackal (Canis aureus) and red fox (Vulpes vulpes) in the Pannonian ecoregion (Hungary). Can. J. Zool. 84, 1647-1656.

Lanszki, J., Kurys, A., Heltai, M., Csányi, S., Ács, K., 2015. Diet composition of the golden jackal in an area of intensive big game management. Ann. Zool. Fenn. 52, 243-255.

Majumder, A., Qureshi, Q., Sankar, K., Basu, S., Jhala, Y.V., 2011. Occupancy and abundance of dhole (*Cuon alpinus*) in Pench landscape of central India. Journal of the Bombay Natural History Society 108, 158-162.

McKenzie, A.A., 1990. Co-operative Hunting in the Black-backed Jackal *Canis mesomelas* Schreber., Faculty of Science. University of Pretoria, Pretoria, South Africa.

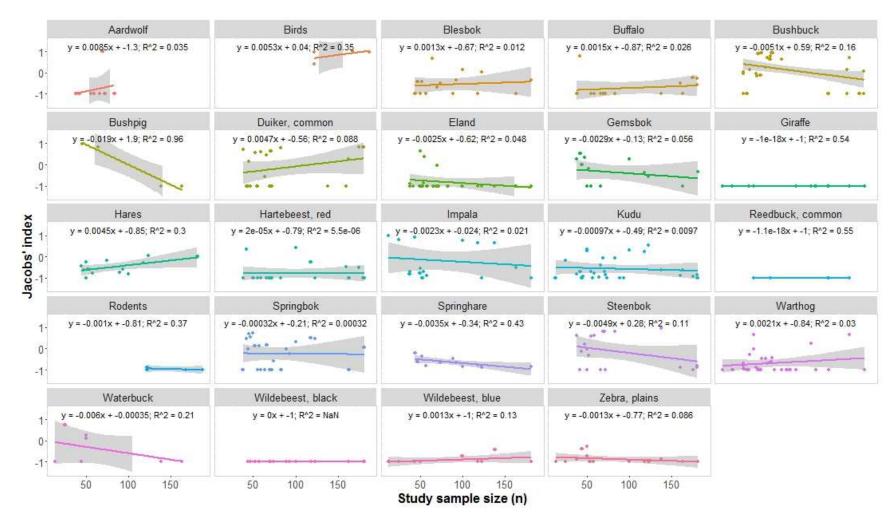
Mondal, K., Gupta, S., Bhattacharjee, S., Qureshi, Q., Sankar, K., 2012. Response of leopards to re-introduced tigers in Sariska Tiger Reserve, western India. International Journal of Biodiversity and Conservation 4, 228-236.

Nel, J.A., Loutit, R.J., Braby, R., Somers, M.J., 2013. Resource dispersion, territory size and group size of black-backed jackals on a desert coast. Acta Theriol. 58, 189-197.

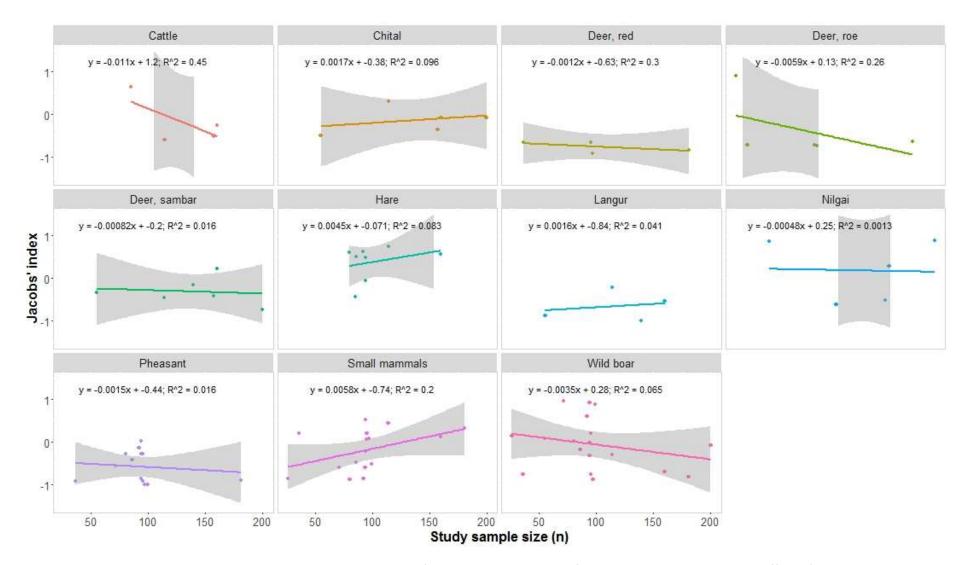
Nel, J.A.J., Loutit, R., Bothma, J.d.P., 1997. Prey use by black-backed jackals along a desert coast. SA J. Wildl. Res. 27, 100-104.

Pienaar, U.d.V., 1969. Predator-prey relationships amongst the larger mammals of the Kruger National Park. Koedoe 12, 108-176.

Prerna, S., Edgaonkar, A., Dubey, Y., 2015a. Diet composition of Golden Jackals Canis aureus (Mammalia: Carnivora: Canidae) in Van Vihar National Park, India, a small enclosed area. Journal of Threatened Taxa 7, 7422-7427.


Prerna, S., Edgaonkar, A., Dubey, Y., 2015b. Status of Golden Jackal Canis aureus and ungulates in a small enclosed area-Van Vihar National Park, Madhya Pradesh, India. Journal of Threatened Taxa 7, 7416-7421.

Rice, C.G., 1986. Observations on predators and prey at Eravikulam National Park, Kerala. Journal of the Bombay Natural History Society 83, 283-305. Rowe-Rowe, D.T., 1983. Black-backed jackal diet in relation to food availability in the Natal Drakensberg. SA J. Wildl. Res. 13, 17-23.


Sankar, K., Qureshi, Q., Nigam, P., Malik, P.K., Sinha, P.R., Mehrotra, R.N., Gopal, R., Bhattacharjee, S., Mondal, K., Gupta, S., 2010. Monitoring of reintroduced tigers in Sariska Tiger Reserve, Western India: preliminary findings on home range, prey selection and food habits. Tropical Conservation Science 3, 301-318.

Stenkewitz, U., Wilson, B., Kamler, J.F., 2010. Seasonal comparisons of barn owl diets in an agricultural and natural area in central South Africa. Ostrich 81, 163-166.

Yarnell, R.W., Phipps, W.L., Burgess, L.P., Ellis, J.A., Harrison, S.W.R., Dell, S., MacTavish, D., MacTavish, L.M., Scott, D.M., 2013. The influence of large predators on the feeding ecology of two African mesocarnivores: the black-backed jackal and the brown hyaena. SA J. Wildl. Res. 43, 155-166.

Supplementary Fig. 1. Relationships between black-backed jackal prey preferences and sample size for all prey species.

Supplementary Fig. 2. Relationships between golden jackal prey preferences and sample size for all prey species. There is no effect of sample size on prey preferences of golden jackals.