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Abstract

This paper addresses the problem of global finite-time synchronization of two different dimensional chaotic systems. Firstly,

the definition of global finite-time synchronization of different dimensional chaotic systems are introduced. Based on the finite-

time stability methods, the controller is designed such that the chaotic systems are globally synchronized in a finite time. Then,

some uncertain parameters are adopted in the chaotic systems, new control law and dynamical parameter estimation are proposed to

guarantee that the global finite-time synchronization can be obtained. By considering a dynamical parameter designed in the controller,

the adaptive updated controller is also designed to achieve the desired results. At last, the results of two different dimensional chaotic

systems are also extended to two different dimensional networked chaotic systems. Finally, three numerical examples are given to

verify the validity of the proposed methods.
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I. I

In the past few decades, the problem of synchronization for chaotic systems has attracted much attention in [1], [2], [3], [4], [5],

[6]. Since the authors have studied the problem of synchronization in 1990 [1], synchronization between two chaotic systems has

been applied into many applications, such as secure communication, neural network, biology and information processing [7], [8],

[9], [10], [11]. Up to now, there exist some different types of synchronization, for instance, complete synchronization [12], cluster

synchronization [13], [14], projective synchronization [15], phase synchronization [16], anti-synchronization [17], generalized

synchronization [18].

It should be noticed that the synchronization problem is almost studied between two identical or similar systems. To the

best knowledge of the authors, there exist some natural behaviors modeling with different orders in our life. For instance, the

synchronization of heart and lung has been studied in [19]. Thus, it is interesting to investigate the synchronization of two systems

with different orders. Up to present, some interesting results have been obtained. For example, the synchronization between two

different dimensional systems is considered based on the secure communication [20], [21]. By using reduced order of the drive
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system, the synchronization between two different dimensional systems is achieved in [22], [23]. The generalized synchronization

of two different dimensional systems are studied in [18], [24], [25], [26]. In [18], a Lyapunov approach is introduced to attain

the desired results.

In practice, the parameters of the chaotic systems sometimes can not be obtained exactly for the different kinds of external

disturbance and noises. Thus, the synchronization problem with unknown parameters is becoming essential for the practical

applications. Some relevant results have been investigated in [22], [23], [27], [28], [29]. In [23], an adaptive control scheme

is proposed to attain the full and reduced order synchronization with uncertain parameters. In [29], based on the finite-time

stability methods [30], faster synchronization of two chaotic systems is achieved in a finite time. In addition, the finite-time

techniques have advantages to enhance the robustness and to overcome the disturbance [31]. Some more results about finite-time

synchronization can be found in [29], [32], [33], [34]. It should be noted that the systems considered are either of some specific

forms or analyzed without considering the unknown parameters. Then, by taking unknown model uncertainties and external

disturbances into account, global finite-time synchronization of two chaotic systems with different orders is investigated in [35].

Moreover, a more general derivative of the Lyapunov function is derived to design finite-time observer for a class of nonlinear

systems in [37], [38]. Based on the aforementioned reasons, it is important to study the finite-time synchronization of different

dimensional chaotic systems with unknown parameters.

In this paper, global finite-time synchronization of two different dimensional chaotic systems is studied. Based on the finite-time

stability, the definition of global finite-time synchronization is given first. Then, the synchronization schemes are derived with

and without considering the unknown parameters, respectively. At last, the adaptive updated law is taken into consideration, the

controller is designed to achieve the desired results. The main contributions of this paper include: i) The synchronization schemes

of two different dimensional systems are proposed to achieve global finite-time synchronization with and without considering

the unknown parameters, respectively. ii) The adaptive updated law of parameters is also proposed to guarantee the stability. iii)

finite-time synchronization of two networked chaotic systems with different order is first considered in this paper.

This paper is organized as follows. In Section II, the problem statement and some definitions and lemmas are introduced. In

Section III, global finite-time synchronization of two different dimensional systems is derived. Then, some unknown parameters

are taken into account, new controller is designed based on the estimations of unknown parameters. In Section IV, two examples

are provided to verify the validity of the our proposed design methods. At last, Section V concludes the paper.

II. P

Let Rn denote n-dimension real space and R+ denote 1-dimension positive real space. For any x ∈ Rn, let ‖x‖ = (xT x)1/2.

Superscript “T” denotes the transpose of a vector or matrix. For a matrix A ∈ Rn×n (∈ Rn×m), A−1 denotes the inverse matrix of

A (the right inverse matrix of A).

Consider the following drive system:

ẋ(t) = F(x(t)), x(0) = x0, (1)

where x(t) ∈ Rn denotes the system state, F : Rn → Rn is a continuous function with F(0) = 0. The controlled response system
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is given by

ẏ(t) = G(y(t)) + u(t), (2)

where y(t) ∈ Rm denotes the system state, u(t) ∈ Rm denotes the control input, G : Rm → Rm is a continuous function.

Remark 1: When m = n, (1) and (2) are chaotic systems with same order. Lots of relevant works about synchronization and

finite-time synchronization have been studied in [29], [32], [33], [34]. When m , n, the generalized synchronization of (1) and (2)

with different order is studied in [18], [24], [27]. There are few results about the finite-time synchronization of chaotic systems

with different order. Therefore, it is essential to give some theoretical results.

Remark 2: When F(x(t)) = Ax + f (x), G(y(t)) = By + g(y), the finite-time synchronization of (1) and (2) is investigated in [27].

By taking into unknown system parameters account, then, F(x(t)) = Ax + f (x) + f1(x)Φ, G(y(t)) = By + g(y) + g1(y)Ψ, where Φ,

and Ψ are the vector of unknown parameters. When A = 0 and B = 0, finite-time synchronization of (1) and (2) is considered

in [28] with unknown parameters. In summary, systems (1) and (2) have an more general form of the existing results. In addition,

it should be noticed that lots of well-known chaotic systems could be written as the form of (1) and (2), such as, Lorenz system,

Chen system, Rössler system, Duffing system, hyperchaotic Lozenz system and hyperchaotic Rössler system.

In this paper, our aim is to design the controller u(t) to guarantee that different dimensional systems (1) and (2) are synchronized

in a finite time. Now, we give the following definition of finite-time synchronization of systems (1) and (2).

Definition 1: [28] Consider systems (1) and (2). If there exist two continuously differentiable functions φ : Rn → Rr and

ϕ : Rm → Rr, an open neighborhood U ⊂ Rr of the origin such that e0 = φ(x0)−ϕ(y0) ∈ U and a function T : U\{0} → (0,+∞)

and
limt→T (e0) ||e(t)|| = limt→T (e0) ||φ(x) − ϕ(y)|| → 0,

||e(t)|| ≡ 0, t > T (e0),
(3)

where e(t) ∈ Rr denotes the synchronization error of different dimensional systems (1) and (2). Then, systems (1) and (2) are said

to be finite-time synchronization. If the open set U can be selected as Rr, systems (1) and (2) are said to be global finite-time

synchronization.

The following lemmas are useful for our main results.

Lemma 1: [36] For any real numbers αi, i = 1, 2, · · · , n and d ∈ (0, 1), the following inequality holds:

(|α1| + |α2| · · · + |αn|)d ≤ |α1|d + |α2|d · · · + |αn|d. (4)

Lemma 2: [37] Assume that there is a Lyapunov function V(e(t)) defined on a neighborhood U ⊂ Rr of the origin, and it

satisfies the following differential inequality

V̇(e(t)) ≤ −kVη(e(t)) − pV(e(t)), ∀t ≥ t0, (5)

where k > 0, 0 < η < 1, and p > 0 are three constants. Then, for any given t0, the following inequality

V1−η(t) ≤ V1−η(t0)e−(1−η)p(t−t0) − k
p

[1 − e−(1−η)p(t−t0)], t0 ≤ t ≤ T ′,

holds and V(t) ≡ 0, ∀t > T ′, T ′ denotes the settling time, given by T ′ = t0 +
ln(1+(p/k)V(e0)1−η)

(1−η)p .

Remark 3: When p = 0, ∀t ≥ t0, V̇(e(t)) ≤ −kVη(e(t)), the global finite-time stability has been studied in [30] with the settling

time T ′′ = t0 +
V1−η(t0)
k(1−η) . It is easy to verify limp→0 T ′ = T ′′. Thus, inequality (5) can be applied with a wider range of forms.
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For instance, finite-time observers have been studied for triangular nonlinear systems in [37], [38]. In [39], global finite-time

observers are designed for a class of Lipschtiz nonlinear systems.

Remark 4: In [27], Lemma 2 is used to prove the finite-time stability with p = 0. By comparing the settling time T ′′ in [27]

and T ′ in this paper, we have that T ′ − T ′′ =
ln(1+(p/k)V(t0)1−η)

p(1−η) − V1−η(t0)
k(1−η) = 1

1−η ( ln(1+(p/k)V(t0)1−η)
p − V1−η(t0)

k ) ≤ 0 and T ′ − T ′′ = 0 if and

only if V(t0) = 0. Thus, by using (5), a faster convergence performance will be achieved. In this paper, our aim is to construct

an appropriate controller to satisfy inequality (5).

III. M 

In this section, our main results include three parts: Global finite-time synchronization of different dimensional chaotic systems

is studied in subsection A. Then, some uncertain parameters are considered in the chaotic systems (1) and (2), sufficient conditions

are also derived to guarantee global finite-time synchronization in subsection B. To the end, the adaptive updated laws of parameters

designed in controllers are adopted, and some new sufficient conditions are given to achieve the desired results. In subsection C,

finite-time synchronization of two chaotic systems is extended to two networked chaotic systems, the corresponding controller is

designed to guarantee the stability.

A. Global finite-time synchronization of chaotic systems

Consider chaotic systems (1) and (2), define e(t) = φ(x) − ϕ(y), the error dynamics are given by

ė = Jφ(x)ẋ − Jϕ(y)ẏ = Jφ(x)F(x) − Jϕ(y)(G(y) + u(t)), (6)

where Jφ(x) and Jϕ(y) denote the Jacobin matrices of functions φ(x) and ϕ(y), respectively. Particularly,

Jφ(x) =



∂φ1(x)
∂x1

∂φ1(x)
∂x2

· · · ∂φ1(x)
∂xn

∂φ2(x)
∂x1

∂φ2(x)
∂x2

· · · ∂φ2(x)
∂xn

...
...

. . .
...

∂φr(x)
∂x1

∂φr(x)
∂x2

· · · ∂φr(x)
∂xn



,

Jϕ(y) =



∂ϕ1(y)
∂y1

∂ϕ1(y)
∂y2

· · · ∂ϕ1(y)
∂ym

∂ϕ2(y)
∂y1

∂ϕ2(y)
∂y2

· · · ∂ϕ2(y)
∂ym

...
...

. . .
...

∂ϕr(y)
∂y1

∂ϕr(y)
∂y2

· · · ∂ϕr(y)
∂ym



.

Assumption 1: r ≤ min{m, n} and matrix Jϕ is row full-rank.

In order to achieve global finite-time synchronization of systems (1) and (2), the following controller is proposed

u(t) = −G(y) + J−1
ϕ (y)(Jφ(x)F(x) + k · η(α, e(t)) + pe(t)), (7)

where η(α, e(t)) = [sign(e1(t))|e1(t)|α, · · · , sign(er(t))|er(t)|α]T , α ∈ (0, 1] are constants, k > 0, p > 0, and e(t) = (e1(t), e2(t), · · · , er(t))T

and sign(·) denotes standard the sign function.
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Remark 5: In [27], the parameter α = m1/m2 is a rational number, where m1 and m2 are two positive odd integers and m2 > m1.

This is a very strong restriction of parameter selection. In this paper, α can be selected in (0, 1] arbitrarily.

Substituting (7) into (6), we have

ė(t) = −k · η(α, e(t)) − pe(t). (8)

Now we give our main results.

Theorem 1: Consider chaotic systems (1) and (2) under Assumption 1, if the controller u(t) is designed in the form of (7), then

the error dynamics (6) are global finite-time stable at the origin. We can also say that systems (1) and (2) are global finite-time

synchronized with the settling time, given by T ′ = t0 +
ln(1+(p/k)V(e0)(1−α)/2)

(1−α)p .

Proof : Consider the following positive definite function

Vα(t) = eT (t)e(t). (9)

Then, the derivative of Vα(t) along (8) can be calculated as

V̇α(t) = 2eT (t)ė(t) = −2keT (t)η(α, e(t)) − 2peT (t)e(t). (10)

When α = 1, the error system can be rewritten as

ė(t) = −ke(t) − pe(t). (11)

The derivative of Vα(t) along the system (11), we have

dVα(t)
dt
|(11) = −2(k + p)eT (t)e(t) < 0,

which implies the system (11) is globally asymptotically stable. Moreover, for the continuity of α, there exists ε > 0 such that
dVα(t)

dt |(8) < 0 for α ∈ (1 − ε, 1). More details can be found in [32], [37]. Next, will prove the global finite-time stability of

system (8). From (10), by Lemma 1, it follows that

V̇α(t) = −2keT (t) · sign(e)|e(t)|α − 2peT (t)e(t)

= −2k
∑r

i=1 |ei(t)|α+1 − 2peT (t)e(t)

≤ −2k(eT (t)e(t))
α+1

2 − 2peT (t)e(t)

≤ −2kVα(t)
α+1

2 − 2pVα(t).

(12)

By Lemma 2, the error dynamics (8) are globally finite-time stable with T ′ = t0 +
ln(1+(p/k)V(e0)(1−α)/2)

(1−α)p . The proof is completed here.

B. Global finite-time synchronization of chaotic systems with unknown parameters

For chaotic systems (1) and (2), if there exist some unknown parameters in them, then, they can be rewritten as

ẋ(t) = F1(x(t)) + f (x)Φ,

ẏ(t) = G1(y(t)) + g(y)Ψ + u(t),
(13)
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where x(t) ∈ Rn denotes the system state, F1 : Rn → Rn, G1 : Rm → Rm, f : Rn → Rn×p, g : Rm → Rm×q are continuous

functions, Φ ∈ Rp and Ψ ∈ Rq denote the vector of unknown parameters. The controller (7) can not be used again for the

existence of unknown parameters. Thus, the following adaptive law is proposed to estimate the unknown parameters Φ and Ψ:

˙̂Φ = (Jφ(x) · f (x))T e(t) − k · sign(Φ̃)|Φ̃|η − pΦ̃,

˙̂Ψ = −(Jϕ(y) · g(y))T e(t) − k · sign(Ψ̃)|Ψ̃|η − pΨ̃,
(14)

where Φ̂, Ψ̂ denote the estimations of Φ and Ψ, Φ̃ = Φ̂ − Φ, Ψ̃ = Ψ̂ − Ψ and η ∈ (0, 1], k > 0, p > 0.

Now, based on (14), the controller u(t) can be designed as

u(t) = −G1(y) − g(y)Ψ̂ + J−1
ϕ (y)[Jφ(x)(F1(x) + f (x)Φ̂) + k · sign(e)|e|η + pe(t)]. (15)

Then, the error dynamics are derived

ė(t) = Jφ(x)(F1(x) + f (x)Φ) − Jϕ(y)(G1(y) + g(y)Ψ + u)

= −Jφ(x) f (x)Φ̃ + Jϕ(y)g(y)Ψ̃ − k · sign(e)|e|η − pe(t).
(16)

Now, we give our main results.

Theorem 2: Consider chaotic systems (13) and (14) under Assumption 1, if the controller u(t) is designed in the form of (15),

then the error dynamics (16) are global finite-time stable at the origin. We can also say that systems (13) and (14) are global

finite-time synchronized with the settling time, given by T ′ = t0 +
ln(1+(p/k)V(e0)(1−η)/2)

(1−η)p .

Proof : Consider the following positive definite function

Vη(t) = e(t)T e(t) + Φ̃T Φ̃ + Ψ̃T Ψ̃. (17)

Then, the derivative of Vη(t) along (16) can be calculated as

V̇η(t) = 2eT (t)ė(t) + 2Φ̃T ˙̃Φ + 2Ψ̃T ˙̃Ψ = 2eT (t)ė(t) + 2Φ̃T ˙̂Φ + 2Ψ̃T ˙̂Ψ

= −2eT (t)Jφ(x) f (x)Φ̃ + 2eT (t)Jϕ(y)g(y)Ψ̃ − 2keT (t) · sign(e)|e|η − 2peT (t)e(t)

+2Φ̃T (Jφ(x) · f (x))T e(t) − 2kΦ̃T · sign(Φ̃)|Φ̃|η − 2pΦ̃T Φ̃

−2Ψ̃T (Jϕ(y) · g(y))T e(t) − 2kΨ̃T · sign(Ψ̃)|Ψ̃|η − 2pΨ̃T Ψ̃

= −2keT (t) · sign(e)|e|η − 2kΦ̃T · sign(Φ̃)|Φ̃|η − 2kΨ̃T · sign(Ψ̃)|Ψ̃|η

−2peT (t)e(t) − 2pΦ̃T Φ̃ − 2pΨ̃T Ψ̃.

(18)

Similar proof to the Theorem 1, it is easy to obtain that the error system (16) is asymptotically stable. Moreover, we also have

V̇η(t) ≤ −2kVη(t)
η+1

2 − 2pVη(t).

Then, the error system (16) is also globally finite-time stable with the settling time T ′ = t0 +
ln(1+(p/k)V(e0)(1−η)/2)

(1−η)p . The proof is

completed.

For system (13), we can also design an adaptive controller as follows:

˙̂Φ = (Jφ(x) · f (x))T e(t) − k · sign(Φ̃)|Φ̃|η − γ(t)Φ̃,
˙̂Ψ = −(Jϕ(y) · g(y))T e(t) − k · sign(Ψ̃)|Ψ̃|η − γ(t)Ψ̃,

u(t) = −G1(y) − g(y)Ψ̂ + J−1
ϕ (y)[Jφ(x)(F1(x) + f (x)Φ̂) + k · sign(e)|e|η + γ(t)e(t)],

γ̇(t) = −e(t)T e(t) − Φ̃T Φ̃ − Ψ̃T Ψ̃ − k · sign(γ(t))|γ(t)|η − pγ(t),

(19)
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where η, p, k are the same as (15).

Based on Theorem 2, we have the following Corollary.

Corollary 1: Consider chaotic systems (13) and (14) under Assumption 1, if the controller u(t) is designed in the form of (19),

then the error dynamics (16) are global finite-time stable at the origin. We can also say that systems (13) and (14) are global

finite-time synchronized.

Proof : Consider the following positive definite function

Vη(t) = e(t)T e(t) + γ(t)2 + Φ̃T Φ̃ + Ψ̃T Ψ̃. (20)

Then, the derivative of Vη(t) along (16) can be calculated as

V̇η(t) = 2eT (t)ė(t) + 2γ(t) ˙γ(t) + 2Φ̃T ˙̂Φ + 2Ψ̃T ˙̂Ψ

= −2keT (t) · sign(e)|e|η − 2kΦ̃T · sign(Φ̃)|Φ̃|η − 2kΨ̃T · sign(Ψ̃)|Ψ̃|η − 2γ(t)eT (t)e(t)

−2γ(t)Φ̃T Φ̃ − 2γ(t)Ψ̃T Ψ̃ + 2γ(t)e(t)T e(t) + 2γ(t)Φ̃T Φ̃ + 2γ(t)Ψ̃T Ψ̃ + 2kγ(t) · sign(γ(t))|γ(t)|η − 2pγ(t)2

= −2keT (t) · sign(e)|e|η − 2kΦ̃T · sign(Φ̃)|Φ̃|η − 2kΨ̃T · sign(Ψ̃)|Ψ̃|η

−2kγ(t) · sign(γ(t))|γ(t)|η − 2pγ(t)2

≤ −2kVη(t)
η+1

2 − 2pVη(t).

(21)

The rest proof is similar to Theorem 2, it is omitted here. The proof is completed.

Remark 6: If m = n, let φ(x(t)) = x(t), ϕ(y(t)) = y(t), the error dynamics are e(t) = x(t) − y(t), then, the it can be transformed

as complete synchronization problem. Obviously, it is a special case of our proposed design methods.

Remark 7: In [27], finite-time synchronization of two chaotic systems with different order is studied, and the relation between

the design parameter, the initial state of system and the convergent time are also discussed. Moreover, the authors investigated

the finite-time synchronization with the error dynamics e(t) = y(t) − φ(x(t)) without considering the unknown parameters. Then,

by considering the unknown parameters, finite-time synchronization with the error dynamics e(t) = φ(x(t)) − ϕ(y(t)) is attained

in [28]. It should be noticed that the parameters designed in controller must be the proportion of two odd integers in both [27]

and [28]. In this paper, the restriction on the parameter is removed. Moreover, the adaptive updated law is proposed to estimate

the parameter, which is designed in the controller.

C. Global finite-time synchronization of networked different dimensional chaotic systems

In this subsection, finite-time synchronization of two different dimensional chaotic systems is extended to finite-time synchro-

nization of networked chaotic systems. Consider the following dynamical networks consisting of N identical nodes:

ẋi(t) = fi(xi(t)) +
∑N

j=1 ai jx j(t), i = 1, 2 · · · ,N, (22)

where xi(t) = [xi1(t), xi2(t), · · · , xin(t), ]T ∈ Rn dentes the state vector of ith node, The abbreviation x(t) = [x1(t)T , · · · , xN(t)T ]T ,

f (x) := [ f1(x1), · · · , fN(xN)]T , where fi : Rn → Rn is a continuous function. A = (ai j) ∈ RN×N denotes the weight configuration

matrix. If there is a connection between nodes i and j (i , j), then ai j = a ji > 0; otherwise, ai j = a ji = 0. The diagonal elements

of matrices A are defined as

aii = −
N∑

j=1, j,i
ai j. (23)

March 26, 2017 DRAFT



8

For simplicity, the drive system (22) can be written in following form:

ẋ(t) = f (x(t)) + Ax(t) = F(x). (24)

The response system can be given as follows:

ẏ(t) = g(y(t)) + Ay(t) + u(t) = G(y) + u(t), (25)

where y(t) = [y1(t)T , · · · , yN(t)T ]T , yi(t) = [yi1(t), yi2(t), · · · , yim(t)]T ∈ Rm denotes the response state vector of xi(t) of the ith node.

u(t) = [u1(t)T , · · · , uN(t)T ]T , ui(t) ∈ Rm denotes the control input of the ith node. g(·) := [g1(·), · · · , gN(·)]T , where gi : Rm → Rm

is a continuous function.

In view of (24)- (25), the synchronization error system can be obtained

ė(t) = Jφ(x)ẋ − Jϕ(y)ẏ = Jφ(x)F(x) − Jϕ(y)(G(y) + u(t)), (26)

where e(t) = [e1(t)T , e2(t)T , · · · , eN(t)T ]T , ei(t) = φ(xi(t))−ϕ(yi(t)). Jφ(x) = diag{Jφ(x1), Jφ(x2), · · · , Jφ(xN)} and Jϕ(y) = diag{Jϕ(y1),

Jϕ(y2), · · · , Jϕ(yN)}, where Jφ(xi) and Jϕ(yi) denote the Jacobin matrices of functions φ(xi) and ϕ(yi), respectively. Particularly,

Jφ(xi) =



∂φ1(xi)
∂xi1

∂φ1(xi)
∂xi2

· · · ∂φ1(xi)
∂xin

∂φ2(xi)
∂xi1

∂φ2(xi)
∂xi2

· · · ∂φ2(xi)
∂xin

...
...

. . .
...

∂φr(xi)
∂xi1

∂φr(xi)
∂xi2

· · · ∂φr(xi)
∂xin



,

Jϕ(yi) =



∂ϕ1(yi)
∂yi1

∂ϕ1(yi)
∂yi2

· · · ∂ϕ1(yi)
∂yim

∂ϕ2(yi)
∂yi1

∂ϕ2(yi)
∂yi2

· · · ∂ϕ2(yi)
∂yim

...
...

. . .
...

∂ϕr(yi)
∂yi1

∂ϕr(yi)
∂yi2

· · · ∂ϕr(yi)
∂yim



.

In order to achieve global finite-time synchronization of systems (24) and (25), the following controller is proposed

u(t) = −G(y) + J−1
ϕ (y)(Jφ(x)F(x) + k · η(α, e(t)) + pe(t)), (27)

where η(α, e(t)) = [η(α, e1(t))T , · · · , η(α, eN(t))T ]T , η(α, ei(t)) = [sign(ei1(t))|ei1(t)|α, · · · , sign(eir(t))|eir(t)|α]T , α ∈ (0, 1] are con-

stants, and sign(·) denotes standard the sign function, k > 0, p > 0.

Substituting (27) into (26), we have

ė(t) = −k · η(α, e(t)) − pe(t). (28)

The main result is stated as follows.

Theorem 3: Consider chaotic systems (24) and (25) under Assumption 1, if the controller u(t) is designed in the form of (27),

then the error dynamics (28) are global finite-time stable at the origin. We can also say that systems (24) and (25) are global

finite-time synchronized with the settling time, given by T ′ = t0 +
ln(1+(p/k)V(e0)(1−α)/2)

(1−α)p .

The rest of proof is similar to Theorem 1 and omitted here.
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IV. N 

In this section, we give two examples to verify the effectiveness of our proposed methods.

Example 1: Consider the following hyperchaotic Rössler system (20) and the Duffing system (30):


ẋ1(t) = −x2(t) − x3(t),

ẋ2(t) = x1(t) + ax2(t) + x4(t),

ẋ3(t) = x1(t)x3(t) + b,

ẋ4(t) = −cx3(t) + dx4(t),

(29)

and 
ẏ1(t) = y2(t) + u1(t),

ẏ2(t) = y1(t) − y3
1(t) − h1y2(t) + h2 cos(t) + u2(t),

(30)

where the system parameters are selected as a = 0.25, b = 3, c = 0.5, d = 0.05, h1 = 1 and h2 = 0.8 such that systems (29) and (30)

are chaotic. Select (29) as the drive system and (30) as the controlled system (n > m). Assume that φ(x) = [x1 + x2 + x3, x4]T and

ϕ(y) = [y1, y2]T . Then, we have Jφ(x) =


1 1 1 0

0 0 0 1

, Jϕ(y) =


1 0

0 1

.

From (6), the error dynamics can be obtained as


ė1(t) = −y2(t) + x1(t) − 0.75x2(t) − x3(t) + x4(t) + x1(t)x3(t) + 3 − u1(t),

ė2(t) = −y1(t) + y3
1(t) + h1y2(t) − h2 cos(t) − 0.5x3(t) + 0.05x4(t) − u2(t).

(31)

By (7), the controller is given by


u1(t) = −y2(t) + x1(t) − 0.75x2(t) − x3(t) + x4(t) + x1(t)x3(t) + 3 + k · sign(e1(t))|e1(t)|α + pe1(t),

u2(t) = −y1(t) + y3
1(t) + h1y2(t) − h2 cos(t) − 0.5x3(t) + 0.05x4(t) + k · sign(e2(t))|e2(t)|α + pe2(t).

(32)

In the simulations, the initial values of systems (29) and (30) are (x1(0), x2(0), x3(0), x4(0)) = (1, 1, 1, 1), (y1(0), y2(0)) = (2.5, 1.5).

In order to show better convergence performance of our controller, a comparison is made with the controller designed in [27].

Based on the controller design (9) in [27], the following controller is given by


u1(t) = −y2(t) + x1(t) − 0.75x2(t) − x3(t) + x4(t) + x1(t)x3(t) + 3 + e1(t)β + e1(t),

u2(t) = −y1(t) + y3
1(t) + h1y2(t) − h2 cos(t) − 0.5x3(t) + 0.05x4(t) + e2(t)β + e2(t),

(33)

where parameter β > 0 is a rational number. The trajectories of errors ei(t) by using controllers (32) and (33) are shown in

Figure 1 with different parameters. When β = 1/3, by using the controller design (33) in [27], the trajectories of errors e1(t) and

e2(t) are shown in Figure 1(a), where the settling time can be estimated by T ′ = 1
1−β ||e(t0)||1−β = 1.1906s. By comparing with

this result, we select k = 1, α = 1/3, p = 1 in our controller design (32), then, the trajectories of errors can be obtained shown

in Figure 1(b) with the settling time T ′ =
ln(1+(p/k)||e(t0)||1−α)

(1−α)p = 0.8764s. By fixing k and α, select p = 4, then a faster convergence

performance is shown in Figure 1(c) with the settling time T ′ =
ln(1+(p/k)||e(t0)||1−α)

(1−α)p = 0.5359s. By fixing p and α, select k = 3, we

can also obtain a faster convergence performance shown in Figure 1(d) with the settling time T ′ =
ln(1+(p/k)||e(t0)||1−α)

(1−α)p = 0.3521s.

From the above comparisons between (33) and (32), it is easy to find that controller (32) has more advantages and shows a better

convergence performance.
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Fig. 1. Trajectories of the errors ei(t) (i = 1, 2): (a) β = 1/3; (b) k = 1, α = 1/3 and p = 1; (c) k = 1, α = 1/3 and p = 4; (d) k = 3, α = 1/3 and p = 1.

Example 2: Consider the Lorenz system as the drive system and the Chen hyperchaotic system as the controlled system. The

dynamics are given as follows: 

ẋ1(t) = a1(x2(t) − x1(t)),

ẋ2(t) = −x2(t) − x1(t)x3(t) + a2x1(t),

ẋ3(t) = x1(t)x2(t) − a3x3(t),

(34)

and 

ẏ1(t) = b1(y2(t) − y1(t)) + y4(t) + u1(t),

ẏ2(t) = b2y1(t) − y1(t)y3(t) + b3y2(t) + u2(t),

ẏ3(t) = y1(t)y2(t) − b4y3(t) + u3(t),

ẏ4(t) = −y2(t)y3(t) + b5y4(t) + u4(t),

(35)

where the parameters are selected as a1 = 10, a2 = 28, a3 = 8/3, b1 = 35, b2 = 7, b3 = 12, b4 = 3 and b5 = 0.5 to guarantee that

systems (31) and (32) are chaotic. Assume that φ(x) = [x1x2, x1 − x3]T and ϕ(y) = [0.5y1 − 0.5y2, 0.5y3 − 0.5y4]T . Then, we have

Jφ(x) =


x2 x1 0

1 0 −1

 ,
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Jϕ(y) =


0.5 −0.5 0 0

0 0 0.5 −0.5

 .

Then, from (14) and (16), the updating laws and the error dynamics can be designed as


˙̂a1(t) = (x2(t) − x1(t))(x2(t)e1(t) + e2(t)) − k · sign(ã1)|ã1|η − pã1,

˙̂a2(t) = x1(t)2e1(t) − k · sign(ã2)|ã2|η − pã2,

˙̂a3(t) = −x3(t)e2(t) − k · sign(ã3)|ã3|η − pã3,

(36)

and 

˙̂b1(t) = 0.5(y1(t) − y2(t))e1(t) − k · sign(b̃1)|b̃1|η − pb̃1,

˙̂b2(t) = 0.5y1(t)e1(t) − k · sign(b̃2)|b̃2|η − pb̃2,

˙̂b3(t) = 0.5y2(t)e1(t) − k · sign(b̃3)|b̃3|η − pb̃3,

˙̂b4(t) = 0.5y3(t)e2(t) − k · sign(b̃4)|b̃4|η − pb̃4,

˙̂b5(t) = 0.5y4(t)e2(t) − k · sign(b̃5)|b̃5|η − pb̃5,

(37)

and


ė1(t) = −x2(t)(x2(t) − x1(t))ã1 − x1(t)2ã2 + 0.5(y2(t) − y1(t))b̃1 − 0.5y1(t)b̃2 − 0.5y2(t)b̃3 − k · sign(e1(t))|e1(t)|η − pe1(t),

ė2(t) = −(x2(t) − x1(t))ã1 + x3(t)ã3 − 0.5y3(t)b̃4 − 0.5y4(t)b̃5 − k · sign(e2(t))|e2(t)|η − pe2(t).
(38)

From (15), the controller can be designed as follows:


u1(t) = −b̂1(y2(t) − y1(t)) − y4(t) + x2(t) − x1(t)x2(t) − x1(t)2x3(t) + x2(t)(x2(t) − x1(t))â1

+x1(t)2â2 + k · sign(e1(t))|e1(t)|η + pe1(t),

u2(t) = −b̂2y1(t) + y1(t)y3(t) − b̂3y2(t) − x2(t) + x1(t)x2(t) + x1(t)2x3(t) − x2(t)(x2(t) − x1(t))â1

−x1(t)2â2 − k · sign(e1(t))|e1(t)|η − pe1(t),

u3(t) = −y1(t)y2(t) + b̂4y3(t) − x1(t)x2(t) + (x2(t) − x1(t))â1 − x3(t)â3 + k · sign(e2(t))|e2(t)|η + pe2(t),

u4(t) = −y2(t)y3(t) − b̂5y4(t) + x1(t)x2(t) − (x2(t) − x1(t))â1 + x3(t)â3 − k · sign(e2(t))|e2(t)|η − pe2(t),

(39)

where the parameters are given as k = 3, p = 2 and η = 0.5. The initial values of systems (34)-(35) are (x1(0), x2(0), x3(0)) =

(4, 2, 2) and (y1(0), y2(0), y3(0), y4(0)) = (3, 4, 1, 5). The initial values of estimations âi and b̂ j are (â1(0), â2(0), â3(0)) = (1, 1, 1)

and (b̂1(0), b̂2(0), b̂3(0), b̂4(0), b̂5(0)) = (2, 2, 2, 2, 2). Then, the trajectories of errors ei(t) are shown in Figure 2(a). The trajectories

of estimations âi and b̂ j are shown in Figure 2(b-c).

From (19), the following adaptive controller can be designed


u1(t) = −b̂1(y2(t) − y1(t)) − y4(t) + x2(t) − x1(t)x2(t) − x1(t)2x3(t) + x2(t)(x2(t) − x1(t))â1

+x1(t)2â2 + k · sign(e1(t))|e1(t)|η − γe1(t),

u2(t) = −b̂2y1(t) + y1(t)y3(t) − b̂3y2(t) − x2(t) + x1(t)x2(t) + x1(t)2x3(t) − x2(t)(x2(t) − x1(t))â1

−x1(t)2â2 − k · sign(e1(t))|e1(t)|η + γe1(t),

u3(t) = −y1(t)y2(t) + b̂4y3(t) − x1(t)x2(t) + (x2(t) − x1(t))â1 − x3(t)â3 + k · sign(e2(t))|e2(t)|η − γe2(t),

u4(t) = −y2(t)y3(t) − b̂5y4(t) + x1(t)x2(t) − (x2(t) − x1(t))â1 + x3(t)â3 − k · sign(e2(t))|e2(t)|η + γe2(t),

γ̇(t) = −(e2
1(t) + e2

2(t)) −∑3
i=1 ã2

i (t) −∑5
i=1 b̃2

i (t) − k · sign(γ)|γ|η + pγ(t),

(40)
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Fig. 2. (a) Trajectories of the error states ei(t)(1 ≤ i ≤ 4); (b) Trajectories of estimations âi (1 ≤ i ≤ 3); (c) Trajectories of estimations b̂ j (1 ≤ j ≤ 5).

where k = 2, p = 1, η = 0.5. The initial value of γ(t) is given as γ(0) = 20, the other initial values are the same. Then, we

can obtain that the trajectories of errors ei(t) are shown in Figure 3(a). The trajectories of estimations âi and b̂ j are shown in

Figure 3(b-c). At last, the trajectory of γ(t) is shown in Figure 3(d).

Example 3: Consider the following multi-layer complex network with 10 identical nodes:

ẋ(t) = f (x(t)) + Ax(t),

ẏ(t) = g(y(t)) + Ay(t) + u(t),
(41)

where

fi(xi(t)) =



−a a 0

b −1 0

0 0 −c





xi1(t)

xi2(t)

xi3(t)


+



0

−xi1(t)xi3(t)

xi1(t)xi2(t)


,

and

gi(yi(t)) =


0 1

1 −1




yi1(t)

yi2(t)

 +


0

−y3
i1(t) + 0.8 cos(t)

 ,
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Fig. 3. (a) Trajectories of the error states ei(t)(1 ≤ i ≤ 4); (b) Trajectories of estimations âi (1 ≤ i ≤ 3); (c) Trajectories of estimations b̂ j (1 ≤ j ≤ 5); (d)

Trajectory of the adaptive updated law γ(t).

A =



−4 0 0 1 1 0 0 0 1 1

0 −4 1 1 0 1 0 1 0 0

0 1 −5 1 0 1 0 1 1 0

1 1 1 −6 0 1 1 1 0 0

1 0 0 0 −3 1 0 0 1 0

0 1 1 1 1 −7 1 1 1 0

0 0 0 1 0 1 −3 0 0 1

0 1 1 1 0 0 0 −6 1 1

1 0 1 0 1 1 0 1 −5 0

1 0 0 0 0 0 1 1 0 −3



,

where the parameters are selected as a = 10, b = 30, c = 8/3, A ∈ R10×10 is a symmetrically coupling matrix. Moreover, the initial

values are given as: x(0) = (3 + i,−5 − 2i, 7 + 2i)T , y(0) = (−2 + 7i,−7 + 8i)T (i = 1, · · · , 10). Assume that φ(xi) = [xi1 + xi2, xi3]T

and ϕ(yi) = [yi1, yi2]T . Then, we have Jφ(xi) =


1 1 0

0 0 1

, Jϕ(yi) =


1 0

0 1

. From (26), the error dynamics can be obtained
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as 
ėi1(t) = 20xi1(t) + 9xi2(t) − xi1(t)xi3(t) − yi2(t) +

∑10
j=1 ai j(xi1(t) + xi2(t) − yi1(t)) − ui1(t),

ėi2(t) = −8/3xi3(t) + xi1(t)xi2(t) − yi1(t) + yi2(t) + y3
i1(t) − 0.8 cos(t) +

∑10
j=1 ai j(xi3(t) − yi2(t)) − ui2(t).

(42)

By (27), the controller is given by


ui1(t) = 20xi1(t) + 9xi2(t) − xi1(t)xi3(t) − yi2(t) +
∑10

j=1 ai j(xi1(t) + xi2(t) − yi1(t)) + k · sign(ei1(t))|ei1(t)|α + pei1(t),

ui2(t) = −8/3xi3(t) + xi1(t)xi2(t) − yi1(t) + yi2(t) + y3
i1(t) − 0.8 cos(t) +

∑10
j=1 ai j(xi3(t) − yi2(t)) + k · sign(ei2(t))|ei2v|α + pei2(t).

(43)

In the simulation, we select parameters k = 1, p = 3, η = 3/5, the simulation results are shown in Figure 4.

0 1 2 3 4 5
−80

−70

−60

−50

−40

−30

−20

−10

0

10

e
i
1
(t
),

1
≤

i
≤

1
0

t

(a)

0 1 2 3 4 5
−50

−40

−30

−20

−10

0

10

e
i
2
(t
),

1
≤

i
≤

1
0

t

(b)

Fig. 4. (a) Trajectories of the errors ei1(t)(1 ≤ i ≤ 10); (b) Trajectories of the errors ei2(t)(1 ≤ i ≤ 10).

V. C

This paper has addressed the problem of global finite-time synchronization of two different dimensional chaotic systems.

Firstly, the definition of global finite-time synchronization of different dimensional chaotic systems were introduced. Based on

the finite-time stability, the controller was proposed such that the chaotic systems were globally synchronized in a finite time.

Then, by taking some uncertain parameters into account, a new control law and dynamical parameters estimation were proposed to

guarantee that the global finite-time synchronization could be achieved. Moreover, by considering a dynamical parameter adopted

in the controller, the adaptive updated controller was also designed to achieve the desired results. Subsequently, the results of

two different dimensional chaotic systems were also extended to two different dimensional networked chaotic systems. Finally,

three numerical examples were given to verify the efficiency of the proposed methods.

In this paper, the finite-time synchronization of different dimensional chaotic systems is considered based on continuous

controller design. To the best of the authors’ knowledge, the amount of information needs to be transferred may be limited

in some cases and synchronization can be still achieved. For two same dimensional networked chaotic systems, finite-time

synchronization has been studied by designing intermittent controllers in our previous research [40]. In our future work, we will

achieve finite-time synchronization of two networked chaotic systems with different orders via intermittent feedback control.
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