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Abstract

Savannas once constituted the range of many species that human encroachment has now

reduced to a fraction of their former distribution. Many survive only in protected areas.

Poaching reduces the savanna elephant, even where protected, likely to the detriment of

savanna ecosystems. While resources go into estimating elephant populations, an ecologi-

cal benchmark by which to assess counts is lacking. Knowing how many elephants there

are and how many poachers kill is important, but on their own, such data lack context. We

collated savanna elephant count data from 73 protected areas across the continent esti-

mated to hold ~50% of Africa’s elephants and extracted densities from 18 broadly stable

population time series. We modeled these densities using primary productivity, water avail-

ability, and an index of poaching as predictors. We then used the model to predict stable

densities given current conditions and poaching for all 73 populations. Next, to generate

ecological benchmarks, we predicted such densities for a scenario of zero poaching. Where

historical data are available, they corroborate or exceed benchmarks. According to recent

counts, collectively, the 73 savanna elephant populations are at 75% of the size predicted

based on current conditions and poaching levels. However, populations are at <25% of eco-

logical benchmarks given a scenario of zero poaching (~967,000)—a total deficit of

~730,000 elephants. Populations in 30% of the 73 protected areas were <5% of their bench-

marks, and the median current density as a percentage of ecological benchmark across pro-

tected areas was just 13%. The ecological context provided by these benchmark values, in

conjunction with ongoing census projects, allow efficient targeting of conservation efforts.

Introduction

There are alarming statistics on extinction and the areas over which still extant species have

lost their habitats [1, 2]. Savanna Africa is no exception. Human disturbance excludes many

species from large fractions of their historical range [3, 4], and poaching threatens species,

even where they are supposedly protected [5, 6]. Some of the protected areas that cover 13% of

Africa struggle to stave off large mammal declines [7]. Such statistics on extinction and habitat
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loss are necessary, but not sufficient. They do not capture how much rarer some species are

now, even within protected areas that aspire to maintain natural habitats.

Unsustainable poaching claimed 6.8% of Africa’s elephants (Loxodonta africana) annually

from 2010–2012, upwards of 100,000 elephants [6]. These losses matter because elephants

have an outsized role in savanna ecosystems. They affect the structure of the physical environ-

ment, disperse seeds, create microhabitats, and tend to dominate mammalian biomass [8–10].

Elephant presence engenders greater species diversity [8, 9]. Thus, human-mediated reduc-

tions in elephant densities will have cascading influences on other savanna species.

Unsurprisingly, there are frequent elephant counts, and elephants have the most compre-

hensive database on the conservation status of any mammal species [11, 12]. Despite this,

there are no estimates of how many elephants we should expect there to be. How big would

particular populations grow if afforded the chance? The lack of context is a serious omission

given the ecosystem importance of elephants and the consequent imperative to conserve ele-

phants effectively. The aim of this paper is to provide such estimates—ecological benchmarks

against which to evaluate population counts and trends.

Elephant numbers are now certainly lower than what they should be. Here we ask: by how

much? We model stable densities extracted from time series, relating them to primary produc-

tivity, water availability, and an index of poaching pressure. For savanna elephant populations

in protected areas across Africa, we then predict stable densities based on both current condi-

tions and a scenario of minimal poaching to generate ecologically relevant benchmarks.

Finally, we compare recent population estimates against these ecological benchmarks to assess

the extent to which elephant numbers are depleted.

Results

We compiled counts for savanna elephants from IUCN category I-VI protected areas larger

than 1,000 km2. This yielded 73 populations covering a total 529,363 km2 across 21 countries

(see Supporting Information Materials and Methods and Figure A in S1 File). Elephants in

these protected areas represent half of the continent’s estimated 473,386 elephants, the remain-

der attributable to smaller protected areas, unprotected regions, and forest (Loxodonta cyclotis)
or hybrid elephants this study does not consider [12].

Under natural conditions, elephant population size should move towards and fluctuate

around an environmentally-mediated equilibrium level [13–15]. To identify such equilibria,

we used a model selection framework to characterize 23 time series by the AICc-selected best

of five candidate growth models [14, 16] (Figure B, Tables A and B in S1 File). Classically, we

expected asymptotic growth patterns, particularly in populations recovering after culling or

poaching, but we expected time series to exhibit different patterns depending on the time scale

of data relative to the population’s history. Ongoing influences such as poaching or habitat

destruction could result in populations in decline. Thus, candidate models included 1) logistic

and 2) Gompertz growth (asymptotic models where the population grows until it reaches sta-

bility, e.g. after recovery from high poaching or culling); 3) the null model (where a lack of

trend is assumed to represent stability); and 4) linear or 5) exponential change (where an

asymptote is not apparent, e.g. a population in decline or an early stage of recovery). Neither

logistic nor Gompertz growth were selected best for any population, while exponential change

was selected for four populations and linear change for one. We extracted stable densities and

their standard errors from the 18 populations where the null model was selected to be the best

(Figure B, Tables A and B in S1 File). Model selection for the null model was robust under

Monte Carlo simulation of time series incorporating uncertainty in counts (Table B in S1

File), and none of these 18 populations exhibited significant linear change over time.
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We used a generalized additive modeling (GAM) framework to explain these stable densi-

ties. A GAM including primary productivity (mean enhanced vegetation index, EVI), water

availability (percentage of protected area within 12km of water), and an index of poaching

(proportion of illegally killed elephants, PIKE) explained 84% of variation in stable densities

and performed well under cross-validation (Fig 1, Table E in S1 File). Primary productivity

and water availability are known determinants of elephant distribution, fecundity, and survival

[13, 14, 17–21]. They are ecological factors that should contribute to maintaining broad popu-

lation stability. The inclusion of an index of poaching in our model shows that ecological fac-

tors alone did not determine stable densities in our study.

No data points had high leverage, although one, Murchison Falls National Park, was found

to be influential (Cook’s distance >1). Murchison Falls had the highest EVI in the training

data (0.404) but a relatively low stable density (0.182 ± 0.048 elephants/km2). We tested the

impact of excluding this data point in modeling and found that predictions of stable density

for populations within the range of EVI of the new training data were correlated with those

from the original model (Figure D in S1 File), and the general conclusions of our analyses

remained the same. However, excluding the point resulted in a continual increase of stable

density with EVI (Figure D in S1 File), a pattern that is likely unrealistic [22, 23], and generates

unreasonably high density estimates for high EVI populations (Figure D in S1 File). Contrast-

ingly, including Murchison Falls pulls down density estimates for high EVI populations and

yields appropriately wide prediction intervals indicating large uncertainty for high EVI popu-

lations (Fig 1). We have no reason to doubt the veracity of data for Murchison Falls, so we

present results including it. However, we note that additional high EVI points would be valu-

able in refining the model.

We expected our model to provide realistic predictions of the approximate stable densities

that savanna elephant populations should reach given current poaching levels. Of course, pop-

ulations may not yet have reached stability after past influences, such as die-offs [24, 25] or

culling [26], but the most recent population estimates for the 73 protected areas in the database

[12] were correlated with predicted stable densities (rs = 0.60, p<0.001). Indeed, recent esti-

mates suggest a collective 237,515 elephants in the 73 protected areas assessed, a reassuring

75% of the modeled value of 317,314 [12] (Table F in S1 File).

We used the model to predict stable densities for the same populations under a scenario of

minimal poaching. For each of the 73 populations, we set PIKE = 0, equivalent to the mini-

mum observed in the original training data (i.e. 0.00 in Etosha National Park), to predict eco-

logical benchmarks. By this, we mean the population densities or sizes we expect in each

protected area if ecological factors, rather than poaching, determined population dynamics.

Under a scenario of current ecological conditions but minimum poaching, ecological bench-

mark densities ranged from 0.23–4.30 elephants/km2 with a median 1.93 elephants/km2 (Fig 2,

Figure E in S1 File).

We assessed the most recent density estimate for each population as a percentage of its pre-

dicted ecological benchmark given minimal poaching. Only six protected areas had popula-

tions at�75% of their respective ecological benchmarks (Chirisa, Gonarezhou, and Hwange

in Zimbabwe; Chobe and Tuli in Botswana; and Tsavo in Kenya, Fig 3, Table F in S1 File).

Although protected areas with higher ecological benchmarks tended to have higher recent

density estimates (Fig 3), across the 73 protected areas assessed, the median recent density esti-

mate as a percentage of ecological benchmark was just 13.35%. The lowest value was 0.07%. In

32 of 73 protected areas, population estimates were�10% of their predicted ecological bench-

mark; in 22 protected areas, they were�5% of benchmarks.

We converted densities to population sizes and subtracted the predicted ecological bench-

mark for each protected area from the most recent population estimate (Fig 4, Table F in S1
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Fig 1. A GAM explains extracted stable densities from time series of 18 savanna elephant

populations. The component smooth functions of mean EVI, percentage of protected area within 12km of

water, and PIKE of the selected best GAM are represented by solid lines transformed to the response scale of

density (elephants/km2). Points represent partial residuals of the 18 extracted densities, and grey lines

represent 1,000 iterations to account for uncertainty.

https://doi.org/10.1371/journal.pone.0175942.g001
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File). Of 73 populations, 72 had an elephant deficit. However, protected areas in the analysis

range in size (1,020–47,666 km2), so those with the highest discrepancy between recent and

ecological benchmark density (Fig 3) do not necessarily have the highest deficit of elephants

(Fig 4) and vice versa.

Fig 2. Predicted ecological benchmark density for savanna elephant populations across 73 protected areas differed according to EVI and

water availability given minimized poaching. (A) Green fill color indicates predicted ecological benchmark density as shown in (B) the frequency

distribution where densities on the x-axis represent bin centers. (C) Twenty-one countries are covered by protected areas in this assessment. See

Figure E and Table F in S1 File for the 95% prediction intervals of predicted ecological benchmarks.

https://doi.org/10.1371/journal.pone.0175942.g002
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Fig 3. Most recent density estimates as a percentage of predicted ecological benchmark densities for savanna elephant populations across

73 protected areas indicate most populations are far from ecological benchmarks. (A) Fill color illustrates most recent density estimates as a

percentage of predicted ecological benchmark density as indicated in (B) the frequency distribution where percentages on the x-axis represent bin

centers. (C) Populations plotted according to the same color scheme show that while few populations are near their predicted ecological benchmark

(indicated by the solid 1:1 line), recent density estimates increased with predicted ecological benchmark density (dashed line: y = 0.31x-0.12, F1,71 =

16.38, p<0.001, R2 = 0.19).

https://doi.org/10.1371/journal.pone.0175942.g003
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Therefore, while the median recent density as a percentage of ecological benchmark was

13.35% across the 73 protected areas assessed, in terms of cumulative numbers, recent popula-

tion estimates (237,515) total just 24.56% of the cumulative ecological benchmark (967,014,

(Figure F in S1 File)). This is a deficit of ~730,000 elephants. Comparing the ecological

Fig 4. Of 73 protected areas assessed, 72 had a deficit of elephants compared to ecological benchmarks. (A) Subtracting predicted ecological

benchmark population size from corresponding recent population estimates yields deficit or surplus estimates for each protected area, illustrated by

size and color of circles (net deficit = 729,505). (B) A frequency distribution, where x-axis represents bin centers, illustrates that few populations have

large deficits, while most are missing fewer than 12,000 elephants. See Table F in S1 File for the 95% prediction intervals of population deficits/

surpluses.

https://doi.org/10.1371/journal.pone.0175942.g004
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benchmark value under minimal poaching to the previously discussed predicted asymptotic

total given current poaching levels (317,314), it is clear that poaching is responsible for the

majority of the deficit.

Discussion

Elephants have major impacts on savanna ecosystems. Consequently, human-mediated reduc-

tions in elephant densities will have cascading influences on many other species and, likely, on

ecosystem processes. In protected areas that seek to minimize human influence and allow nat-

ural ecological processes to occur, elephant populations should tend towards densities where

numbers will be relatively stable. Such numbers might serve as benchmarks for conservation

managers. Despite resources dedicated to counting elephants, an ecological benchmark by

which to evaluate counts was lacking. The models presented here not only predict the size at

which elephant populations should stabilize given current environmental conditions (EVI and

water availability) and PIKE, but also allow exploration of future scenarios such as climate

change, water management, or changes in poaching. We explored the latter—by setting PIKE

to zero, we predicted ecological benchmark densities for 73 protected areas and compared

these benchmarks to recent counts.

Recent population estimates from the 73 protected areas we assessed collectively totaled

<25% of the predicted ecological benchmark. We caution that the situation would likely

appear much worse had it been possible to assess elephants across their entire known range, to

include forest elephant populations, or to get more recent estimates that reflect the recent

uptick in poaching. (The median year of the most recent estimates was 2011, with several pop-

ulations last surveyed before the uptick in poaching since 2007 [27] (Table F in S1 File)).

Overall, 70% of the current distributional range of African elephants may fall outside of

protected areas [11]. Yet, protected areas should be the stronghold for elephants on the conti-

nent, given that they should receive a concentration of funding, management, and law-

enforcement. Accordingly, while the 73 protected areas in this analysis represent just 28% of

the total range over which forest and savanna elephant populations have been assessed by the

African Elephant Database (AED), their savanna elephant populations represent 50% of the

total estimate of forest and savanna elephants combined [11, 12]. That populations are so far

from ecological benchmarks, even within protected areas, is concerning. It bodes poorly for

elephants and their ecological roles, within and beyond protected areas.

While some of the ecological benchmark predictions may seem high, the shifting baseline

effect—a generational amnesia due to lack of experience about past conditions—likely shapes

perceptions [28]. Although estimates of elephant population sizes before the effects of perva-

sive ivory poaching are limited, many of those available correspond to or exceed our median

predictions of ecological benchmarks (see Table F in S1 File for associated prediction inter-

vals). For example, Selous Game Reserve had an estimated 100,000 elephants in 1976 [29],

while we predicted an ecological benchmark of 100,103. In 1972, Mkomazi National Park had

an estimated 2,067 elephants [30]; we predicted 2,118. A total count in 1966 in Murchison

Falls recorded 9,400 elephants [31]; our estimated benchmark was 9,308. In the Luangwa Val-

ley and Tsavo East and West National Parks, elephant population increases in the 1960s and

early 1970s were partially attributed to compression from surrounding landscapes following

human population growth [32, 33]. Conceivably, immigration from surrounding areas could

have resulted in population sizes larger than what would have developed otherwise. In 1973,

South Luangwa had an estimated 31,600 elephants, and North Luangwa had 17,700 [33]. We

predicted ecological benchmarks of 19,893 and 8,114 respectively. Six estimates of elephant

Predicting benchmarks for elephant populations
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population size in Tsavo East and West National Parks between 1962 and 1973 averaged

15,751 elephants [30], while we predicted an ecological benchmark of 9,568.

The predicted stable densities presented here provide a benchmark for assessing conserva-

tion and management success. Models are mere representations of reality and must assess the

inevitable and surely considerable uncertainties. This is reflected in the relatively wide, asym-

metrical 95% prediction intervals calculated via Monte Carlo simulation to include and com-

bine uncertainty in counts, stable density estimates from time series, and modeled PIKE

estimates, as well as model uncertainty in the GAM to predict stable densities. At any given

site, the relatively simple model presented here, based on just three variables, may be an

incomplete representation. Furthermore, predicted stable densities are based on current con-

ditions of primary productivity and water availability. These may have been different in the

past and may change in the future. Additionally, even without poaching, ecological bench-

marks encompass elements of human interference that should be considered in developing

conservation goals. Most protected areas in our analysis are large and unfenced. Surrounding

human settlements and land-use may restrict elephants’ seasonal movements and access to

resources. Additionally, some protected areas encompass human settlements or land use.

Moreover, many protected areas contain artificial waterholes that may increase stable density

over what one would otherwise predict for that area.

Nonetheless, our result that two of the three largest deficits between ecological benchmarks

and recent estimates come from Tanzania’s Selous and Mozambique’s Niassa Game Reserves

(with respective deficits of ~89,000 and ~46,000 elephants, Fig 4) agrees with DNA analysis

[34]. This analysis traced 86–93% of savanna elephant ivory confiscated between 2006 and

2014 to a geographic source in southeastern Tanzania and northern Mozambique [34]. The

deficit of ~50,000 elephants in the Bangweulu System, a patchwork of national parks and

human-inhabited game management areas, supports the suggestion that the remnant popula-

tion of just 136 elephants is in need of conservation intervention [35].

We provide an ecological context to population counts conducted across the continent,

including the pan-African census [36]. The problem of poaching is widely known and dis-

cussed as a serious threat to the species [6, 27], and by extension, savanna ecosystems [37, 38].

Our results quantify the problem against an ecologically relevant benchmark rather than

against simplistic population trends or the zero-point of extinction. This allows for targeted,

goal-driven conservation measures. For example, considering the 72 protected areas with

fewer elephants than they should have, the cumulative deficit of the 10 highest-deficit pro-

tected areas (~373,000) exceeds that of the other 62 protected areas combined (~356,000).

Conservation efforts targeted at high-deficit populations would more efficiently boost total ele-

phant numbers in the long run. Conversely, conservationists concerned with restoring the role

of elephants in savanna ecosystems might focus on protected areas where current populations

represent the lowest percentages of predicted ecological benchmarks, even though relatively

small protected areas contribute little to elephant numbers on a continental scale.

Methods

Ethics Statement

All aspects of the study were completed in accordance with international and national guide-

lines and the Animal Ethics Committee of University of Pretoria (AUCC-040611-013).

Extracting stable densities from time series. We compiled count data on savanna ele-

phants from IUCN category I-VI protected areas� 1,000 km2 (see Supporting Information

Materials and Methods and Figure A in S1 File). From these 73 populations, 23 had adequate
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time-series for assessing population trends. That is, they had populations of� 500 individuals

with� 5 counts with high survey reliability (A or B [11]) since 1989.

We followed published methods [14, 16] and a model-selection approach to assess the

dynamics of the 23 populations for which we had an adequate time-series. Based on different

types of population changes that could be expected (as discussed in the Results), we fitted five

alternative candidate models to determine the most likely trend in density over time for each

population: null (no trend), linear change, exponential change, and two asymptotic increases

experiencing logistic or Gompertz dynamics (see Table A in S1 File for equations). To fit mod-

els, we used “minpack.lm” package in the R language [39] which uses least squares estimation.

We calculated Akaike Information Criteria adjusted for small sample size (AICc) to indicate

the most likely model. Where a linear or exponential model was selected over a null (no

trend), logistic, or Gompertz model, populations were excluded from further analysis. Where

the null model was selected, we confirmed that no populations had a significant change over

time (p>0.05 for linear trend). While some population estimates came from total counts,

many came from sample counts with associated error estimates. To incorporate uncertainty

associated with counts, both in model selection and final estimates of stable densities, we used

Monte Carlo methods to simulate 1,000 time-series for each population based on draws from

the normal distribution given each count’s estimate and standard error (SE). (Note, SE = 0 for

estimates from total counts). We assessed how robust model selection was given count uncer-

tainty as the proportion of the 1,000 runs in which the selected best model matched the

selected best model for the original data. For each population, we calculated stable density and

its SE from the results of fitting the selected best model to each of the 1,000 simulated datasets.,

Predicting stable densities for savanna elephant populations. We used a negative bino-

mial generalized additive modeling (GAM) approach to calculate an explanatory model for

extracted stable population sizes allowing for nonlinear response shapes [40]. GAMs were fit-

ted using the “mgcv” package from the R language [39]. The negative binomial, rather than

Poisson, was used due to over-dispersion (dispersion parameter for the negative binomial dis-

tribution = 3.10) [41]. To avoid overfitting, we used a thin plate regression spline smoothing

function with an upper limit of three smoothing knots per explanatory variable [41]. We used

the generalized cross-validation method to fit smoothers. Explanatory variables were mean

EVI (2000–2013) (EVI), proportion of area within 12km of water (prop_12_water), and PIKE

(PIKE) (from empirical data [42] or modelled where no PIKE data was available [6, 43] (Tables

C and D and Figure C in S1 File) for each protected area (see Supporting Information Materi-

als and Methods in S1 File for details of each variable and model specifications). The natural

log of the area of each site (km2) was included as an offset variable. We constructed three can-

didate models, EVI + prop_12_water, EVI + prop_12_water + PIKE, and a null model, and we

excluded models with other combinations of these variables as ecologically irrelevant. We cal-

culated AICc, ΔAICc, AICc(wi), R2, adjusted R2 (R2
adj), and the correlation coefficient (COR)

for each candidate model. Due to a relatively small sample size, we used leave-one-out cross-

validation (LOOCV) to calculate the cross-validation correlation coefficient (cvCOR) and Wil-

mott’s index of agreement (D) to assess the predictive performance of each model. We calcu-

lated the mean bias error (MBE) to measure potential skew in the distribution of errors. We

selected the model with the optimal set of explanatory variables based on lowest AICc. For

each data point, we calculated hat values, a measure of leverage where hat> 3 times the mean

hat value indicates high leverage, and Cook’s distance, a measure of influence where

values> 1 warrant further inspection [41].

We used the selected GAM to predict stable population sizes for the 73 protected areas in

the analysis based on current conditions of EVI, distance to water, and PIKE and on a scenario

of minimum poaching where PIKE = 0, the lowest in the dataset. The latter represents the

Predicting benchmarks for elephant populations
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ecological benchmark for each protected area. We then compared recent estimates for each

population to its predicted stable density given current conditions and ecological benchmark.

To generate realistic prediction intervals, we used Monte Carlo simulation to incorporate

uncertainty in estimates of both stable densities extracted from time series and modeled PIKE

values with model uncertainty from fitting the GAM. Based on the stable density estimate and

its standard error for each of the 18 time series, we simulated 1,000 datasets from a normal dis-

tribution. Correspondingly, we simulated 1,000 datasets of modeled PIKE values given coeffi-

cient estimates and SE on the scale of the linear predictor of the generalized linear model to

predict PIKE (Table D in S1 File). We then refitted the GAM to predict stable population size

for each of these 1,000 datasets of simulated extracted stable densities and PIKE values. From

each of the 1000 fits of the GAM, we incorporated model uncertainty by simulating from the

posterior distribution of model coefficients of the GAM to generate 1,000 predicted stable pop-

ulation size values for each of the 73 protected areas in the analysis, both given current condi-

tions and a scenario of minimal poaching. For each simulated dataset, we also calculated the

difference between a population’s predicted stable size and its most recent estimate, as well as

an overall total and deficit for all 73 populations. Thus, median values, standard errors and

asymmetrical 95% prediction intervals (i.e. the spread of 95% of estimated values, excluding

the top and bottom 2.5%) were calculated based on 1x10^6 estimate predictions for each pro-

tected area—i.e. 1000 simulated prediction datasets incorporating model uncertainty from

each of the 1000 GAMs refit to the simulated datasets incorporating uncertainty in stable den-

sities and PIKE. As expected, median estimates were approximately equal to the values pre-

dicted from the original GAM, but the 95% prediction intervals better represent the true

uncertainty around the estimates. Throughout the main text, estimates of stable densities

based on current conditions and PIKE, ecological benchmark densities where PIKE = 0, popu-

lation deficits or surpluses, and collective totals of these across the 73 protected areas assessed

refer to median values from the 1x10^6 runs based on Monte Carlo simulations to incorporate

uncertainty. Full simulation results, SE’s, and 95% prediction intervals are available in the sup-

porting information.

Not all uncertainty could be incorporated. Empirical PIKE values are subject to error and

potential bias beyond the scope of this study, but they provide the best available index of

poaching intensity [6]. We minimized stochastic variability in PIKE by amalgamating carcass

counts among all the years of data collection at each site (up to 12 years, 2002–2014) and

excluding PIKE estimates from sites where the amalgamated carcass count was <20. Addition-

ally, although we used the best count data available and incorporated uncertainty for all sample

counts, more count data points would likely reduce prediction intervals and make model selec-

tion more robust. In the future, as more counts accumulate for populations, additional popula-

tions can be assessed for stability, and stability estimates from populations already in our

dataset can be refined.

Supporting information

S1 File. Additional methods and supporting results and references. This file contains Sup-

porting Information Materials and Methods; Figure A (study schematic), Figure B (23 time

series and best-fit population models); Figure C (partial residual plots of components of model

averaged GLM to explain PIKE values from MIKE sites); Figure D (comparison of GAMs to

explain extracted stable densities with and without influential points); Figure E (histogram of

ecological benchmark estimates for each of 73 protected areas illustrating results of Monte

Carlo simulation to incorporate uncertainty); Figure F (histogram of cumulative ecological

benchmark across 73 protected areas recalculated for each of 1x10^6 runs from the Monte
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Carlo simulation to incorporate uncertainty); Table A (alternative candidate models to

describe the population dynamics of 23 time-series populations); Table B (summary informa-

tion on time series and extracted stable density and SE); Table C (summary information for 43

MIKE sites and the explanatory variables used to explain PIKE); Table D (Summary statistics

and variables included in most likely quasi-binomial generalized linear models to explain

PIKE for 43 MIKE sites across Africa and final predictive average model used to generate

PIKE estimates for non-MIKE sites); Table E (selection parameters of candidate generalized

additive models explaining variation in extracted stable population size for 18 populations);

Table F (summary information, predicted stable density (give current PIKE), and ecological

benchmark density (given zero PIKE), and comparisons between most recent density and pop-

ulation size estimates and ecological benchmark density and population size for 73 protected

areas across 21 countries); and Supporting Information References.
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