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Abstract—Gramophone records were the main recording
medium for more than seven decades and regained widespread
popularity over the past several years. Being an analogue storage
medium, gramophone records are subject to distortions caused
by scratches, dust particles, degradation and other means of im-
proper handling. The observed noise often leads to an unpleasant
listening experience and requires a filtering process to remove the
unwanted disruptions and improve the audio quality. This article
proposes a novel approach that employs various feed forward
time delay artificial neural networks to detect and reconstruct
noise in musical sound waves. A set of 800 songs from eight dif-
ferent genres were used to validate the performance of the neural
networks. The performance was analysed according to the outlier
detection and interpolation accuracy, the computational time and
the tradeoff between the accuracy and time. The empirical results
of both the detection and reconstruction neural networks were
compared to a number of other algorithms, including various
statistical measurements, duplication approaches, trigonometric
processes, polynomials and time series models. It was found
that the neural networks’ outlier detection accuracy was slightly
lower than some of the other noise identification algorithms, but
achieved a more efficient tradeoff by detecting most of the noise in
real time. The reconstruction process favoured neural networks
with an increase in the interpolation accuracy compared to
other widely used time series models. It was also found that
certain genres such as classical, country and jazz music were
interpolated more accurately. Volatile signals, such as electronic,
metal and pop music were more challenging to reconstruct and
were substantially better interpolated using neural networks than
the other examined algorithms.

Index Terms—gramophone records, noise detection, noise re-
construction, feed forward neural networks, recurrent neural
networks, time delay neural networks, audio signal modelling

I. INTRODUCTION

GRAMOPHONE records were first introduced as com-
mercial audio storage medium by Berliner in 1889 [1]

based on the research and experimentation of booksellers,
poets and scientists such as Scott, Cros, Edison and Bell [2].
Gramophone records were widely used for more than seven
decades until they were replaced as main recoding medium by
the compact disc (CD) in the late 1980s. Although numerous
new audio technologies were introduced during the past couple
of decades, gramophones regained widespread popularity over
the past few years. Approximately six million records were
sold in 2013 in the United States alone, a 33% increase from
the previous year [3]. However, it was revealed that these
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figures are an underestimate and only represent 15% of the
total sales, since bar codes, which are used to track sales, are
absent from most records [4].

The first gramophones originated half a century before the
first digital computer and master recordings prior to the 1960s
are, therefore, only available on gramophone, making them
invaluable to historic archives. Museums, commercial music
labels and private audiophiles are still digitizing these rare
records to date, a process that is tedious and time consuming,
since most recordings are damaged and need to be refurbished
and remastered. Since gramophone records are an analogue
medium, they are subject to distortions which are mainly
caused by physical scratches. Excessive playback, increased
temperatures, dust particles and imperfections in both the
record and the turntable mechanics also cause minor noise
in the reproduced signal.

This article presents a novel approach that detects and
reconstructs noise in gramophone audio signals by employing
various feed forward artificial neural networks (ANN) to
predict and interpolate the distorted sound waves. The per-
formance of the proposed system is compared to other widely
used noise detection and interpolation algorithms which are
based on numerous statistical measurements, trigonometric
and duplication approaches, polynomials and time series mod-
els. Section II briefly discusses the problem at hand with the
current state of the art of ANNs in audio processing given in
section III. Section IV presents the time delay ANN (TDANN)
for predictive noise detection, followed by the TDANN noise
reconstruction process in section V. The random initial weights
of the networks are discussed in section VI. The test dataset,
performance measurement, computational time and the trade-
off between the detection and reconstruction accuracies and the
execution time is given in section VII. The examination of the
optimal parameters, including the activation function, training
algorithm and epochs, learning rate and momentum, and
the network structure, follows in section VIII. The different
TDANNs are benchmarked in section IX and compared to the
performance of the polynomials and time series models. A
detailed comparison between the investigated TDANNs and
other noise detection and reconstruction algorithms is given
in the appendices.

II. PROBLEM STATEMENT

Gramophone records are subject to distortions, with the
majority of the audible noise caused by physical damage
to the record. Scratches cause the stylus’ needle to move
in an undesirable direction, resulting in disruptions in the
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reproduced sound wave. These disruptions are in most cases
easily identified by the human ear and are commonly referred
to as crackles, pops or clicks. A few examples of noise caused
by scratches are given in figure 1. Although other kinds of
noise, such as dust in the grooves, and turntable rumble and
vibrations, also influence the reproduced signal, the affected
frequencies are typically not observable by the human ear and
are therefore not considered further in this study and left for
future research. In order to improve the sound quality, the noise
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Fig. 1. Typical disruptions caused by scratches on gramophone records.

has to be removed from the signal. Two main approaches exist
in audio processing for noise removal. The first approach is
typically easier to implement and filters the entire signal, either
in the time or the frequency domain, adjusting all samples in
the signal [5]. Hence, not only are the noisy samples adjusted
in order to remove the distortions, but also the segments of
the signal that are not affected by noise, causing undesirable
information loss. The second approach is computationally
more expensive, since two distinct steps have to be conducted
for the noise removal. The first phase detects all the noisy
samples which are then corrected in the second step, leaving
the remainder of the non-noisy signal untouched [6], [7].

This article uses the latter approach which detects the
noise before reconstructing the disruptions. Since only the
noisy samples are adjusted, compared to all samples in the
former approach, the final output signal is of higher quality,
providing a more accurate estimation of the original signal.
Both the detection and reconstruction processes are addressed
using TDANNs, since audio data are time delayed signals and
therefore benefit from the properties of time delayed models
[8], [9].

III. STATE OF THE ART

ANNs are well established in audio processing, with the
majority of current research focusing on speech processing,
such as speech recognition [10], speech enhancement [11],
and speech tagging [12]. Other areas of audio processing
also benefit from ANNs, such as audio classification [13],
feature extraction [14], and audio declipping [15]. However,
comparatively little research has been done on the detection
and removal of impulse disturbances from musical signals.

The signals are recorded from older technologies, such as
gramophone records or magnetic tapes, compared to modern
digital music which is not affected by these disruptions.

Czyzewski proposed an ANN to detect impulse disturbances
which are then reconstructed with another ANN [16]. The
approach only achieved a mean squared error (MSE) of
0.25 requiring 264 minutes of training on only 10 patterns.
Czyzewski concluded that the long training time limits ANNs
for practical use. In addition, detecting various impulses re-
quires the assembly of a large knowledge base of universal
training patterns, which makes the approach ineffective for
gramophone refurbishment, since scratches cause a wide range
of non-universal disruptions. The research was later extended
with ANNs using self organizing maps (SOM) and rough sets,
with computational time still being a major issue [17].

Cocchi and Uncini used a forward and backward prediction
subband ANN to reconstruct large gaps of 200 to 5000 missing
samples [18]. The approach achieved a reconstruction MSE
between 0.002 and 0.04, with no reference given to the
computational time.

Seng et. al. proposed a radial basis function ANN with
forward and backward prediction for the reconstruction of
missing samples [19]. The authors did not provide any re-
sults, neither indicating the interpolation performance, nor the
computational time required.

This article utilizes a number of different ANNs to recon-
struct samples in the time domain, in contrast to using sub-
bands in the frequency domain [18], [19]. Various architectures
were utilized in order to determine the performance benefits
for each architecture, both from an interpolation accuracy
and computational time perspective. Seng et. al. [19] did
not conduct an empirical analysis on the proposed algorithm,
whereas [16]–[18] only ran experiments on a small number of
audio segments from isolated songs. This article uses a large
set of songs in order to verify that the algorithms perform well
on average over the entire dataset and not only on individual
audio segments.

IV. NOISE DETECTION

Disruptions caused by scratches on gramophone records
produce sudden bursts in the sound wave. The noise or outliers
are detected by calculating the deviation of the surrounding
samples in the time domain or by determining the degree of
anomalies in the frequency domain [20], [21].

An alternative outlier detection approach in time series
analysis is to employ a forecasting model to predict the next
few samples in a series. If the predicted samples deviate
from the observed values with a certain degree, they are
marked as outliers. Various predictive outlier detectors were
proposed for time series, utilizing models such as multilayer
perceptrons [22], autoregressive models [23], [24], support
vector regression [25], and nearest cluster prediction [22].

The absolute predictive deviation (APD) using a forecasting
model m on a series y is calculated at time delay t + 1 as
follows:

apd(y) = |yt+1 −m(yt−n+1, . . . , yt)| (1)
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where n is the number of input samples used to approximate
m. An alternative approach replaces the absolute Euclidean
deviation with the Mahalanobis distance [26]. The APD gener-
ates a noise map η containing a value in [0, s] for each sample
in the observed signal where s is depended on the output of the
model m. A binary noise mask η̆ is generated by subjecting
the noise map to a threshold φ as follows:

η̆i =

{
1 for ηi ≥ φ
0 for ηi < φ

(2)

where integer i ranges over all samples in the observed signal.
Applying a threshold in this manner is sound for univariate

outliers. However, if multivariate outliers are present in a low
volatile signal, which is the case with most music signals, the
model estimation from time delay t + 2 onwards is skewed
if the sample at delay t + 1 was flagged as an outlier. If the
sample yt+1 was identified as noise, samples yt+2, . . . , yt+k in
the multivariate outlier stretching over k data points are likely
not flagged as noise, since the models from t + 2 onwards
are approximated using noisy input data. In addition, the inlier
samples immediately succeeding the multivariate outliers from
time delay t + k + 1 are likely to be incorrectly flagged as
noise if the preceding outlier substantially deviates from the
surrounding signal. In order to circumvent this problem, one
of two alternative approaches are utilized.

The first approach, batch prediction, only estimates the
model m once for a single multivariate outlier. If yt+1 was
flagged as noise, all the k subsequent samples are predicted
at once and then subjected to the threshold. Batch prediction
is computationally efficient, but relies on the model’s ability
to accurately predict all k samples. In addition, the model
requires preknowledge about the maximum possible duration
of an outlier. This poses a problem, especially with standard
feed forward ANNs which require the number of output
neurons to be fixed before training commences. A simple
solution is to choose a sensible number of output neurons
that will accommodate all noise durations. However, too many
unnecessary output neurons increase the training and execution
time.

The second approach, recurrent prediction, only forecasts
one sample at a time. If yt+1 was identified as outlier, its
value is replaced before the next model is approximated at
delay t + 2. The sample is either replaced by the previous
prediction, the last known inlier, or a weighted average of the
preceding n samples. Recurrent prediction is computationally
more expensive than batch prediction, since m has to be
estimated k times instead of only once. However, since models
typically struggle to predict far into the future, recurrent
prediction has an advantage over batch prediction by only
forecasting a single sample at a time.

This article investigates two alternative feed forward
TDANNs [27] that are employed for the APD outlier detection
algorithm. On initialization, the TDANNs have a value for
only the first input neuron, all other inputs are set to zero.
Once the first pattern was propagated through the TDANN
and a second pattern is available, all input values are shifted
ahead by one, therefore, introducing a time delay t. The two

alternative TDANNs are implemented as follows:
• Predictive TDANN (APD-TDANN): The TDANN is

trained incrementally on the input signal. The network
has K output neurons where K is the anticipated number
of samples of the largest multivariate outlier in the
signal. K should be chosen cautiously, since a smaller
K only detects short multivariate outliers no longer than
K samples. On the other hand, a larger K is able to detect
longer noise durations, but has a substantial increase
in the training time. Therefore, K should be chosen to
accommodate the largest possible multivariate outlier, but
at the same time should be small enough in order to
not unnecessarily increase the computational time. The
structure of the network is illustrated in figure 11.

• Predictive simple recurrent TDANN (APD-SRTDANN):
A novel approach in time series analysis is to combine
a TDANN and a simple recurrent ANN (SRTDANN) in
order to learn the temporal characteristics of the latests
samples of the series [28]–[30]. A Jordan simple recurrent
ANN [31] is trained incrementally, containing a single
output neuron linked with a recurrent connection as an
additional neuron to the input layer. Unlike the APD-
TDANN, this architecture does not require any preknowl-
edge about the noise duration and can therefore predict
any multivariate outlier duration without adjusting the
output layer. In addition, the training for this architecture
is faster than the APD-TDANN, since the output layer
only contains a single neuron. The network structure is
given in figure 13.

V. NOISE RECONSTRUCTION

Once the noise detection process concludes, the input signal
y and the binary noise mask η̆ are presented to the reconstruc-
tion algorithm. The reconstruction algorithm treats multivariate
outliers as a gap of missing samples and generates a new signal
z by replacing each flagged outlier in y with the output values
of model m as follows:

zi =

{
mi(y) for η̆i = 1

yi for η̆i = 0
(3)

This article analyses various TDANNs that are utilized to
interpolate the gaps of previously identified noisy samples.
Given K as the sample length of the largest multivariate outlier
in the signal and k as the length of the current gap to be
interpolated for 1 ≤ k ≤ K, the reconstruction process applies
the following TDANN architectures:

• Forward incremental TDANN (FI-TDANN): A TDANN
is trained by shifting a moving window over the input
signal and sequentially presenting the samples as inputs
to the network. Incremental training updates the weights
using only the samples preceding the gap. The TDANN
has K output neurons. Therefore, if a gap of k samples is
encountered, the TDANN predicts a series of K samples
and only uses the first k outputs for the interpolation.
Figure 11 illustrates the structure and the manner in which
consecutive samples are presented to the network.



4

• Bidirectional incremental TDANN (BI-TDANN): The
previously discussed FI-TDANN only operates on his-
torical data without considering the future direction of
the signal. Variants of bidirectional ANNs have shown
promising results in other areas of audio processing [32]–
[34]. This approach incrementally trains two separate BI-
TDANNs, one processing the signal from start to end, the
other one from end to start. The gap is then reconstructed
with the average output of both BI-TDANNs. The for-
ward network is given in figure 11 and figure 12 shows
the network processing the signal backwards.

• Forward incremental SRTDANN (FI-SRTDANN): A Jor-
dan SRTDANN is trained incrementally on historic data.
The network has only one output neuron which is recur-
rently linked as an additional neuron in the input layer.
The FI-SRTDANN repeatedly predicts one sample at a
time until the entire gap is reconstructed. The network
structure is illustrated in figure 13.

• Bidirectional incremental SRTDANN (BI-SRTDANN):
Similar to the FI-SRTDANN, two distinct Jordan SRT-
DANNs are trained on the signal in the positive and
negative time directions. The average output of both
networks are used to interpolate the samples. The forward
and backward network structures are given in figure 13
and figure 14 respectively.

• Forward separate batch TDANN (FSB-TDANN): A set
of training patterns is generated with the historical data
of the observed signal. The weights of the network
are updated once for all patterns during an epoch by
employing a batch training algorithm. A total of K
TDANNs are maintained, that is, one TDANN for each
possible gap size. Each network has a different number
of output neurons, equivalent to the number of samples
to be reconstructed. If a gap of k samples is encountered,
the corresponding kth network is selected from the set,
batch trained on the patterns and then used to reconstruct
the k missing samples. The structure of the network is
given in figure 15.

• Bidirectional separate batch TDANN (BSB-TDANN):
The signal is processed in both directions using a set
of FSB-TDANNs and the average of both reconstruction
processes is used to interpolate the gap. No additional
TDANNs are maintained, since one of the K TDANNs
from the forward process is simply reused for the back-
ward interpolation. The structure of the forward network
is given in figure 15, whereas the backward network is
illustrated in figure 16.

• Forward complete batch TDANN (FCB-TDANN): Train-
ing patterns are generated using the historical samples of
the signal. The network has K output neurons and the
weights are updated using a batch training algorithm. If
a gap of k samples is interpolated, only the first k outputs
from the K output neurons are used. Figure 11 shows the
structure of the network.

• Bidirectional complete batch TDANN (BCB-TDANN):
Two separate FCB-TDANNs are trained, one for the
forward interpolation and one for the backward interpo-
lation of the signal. The average output of both FCB-

TDANNs are used to reconstruct the samples. Figure 11
and figure 12 show the forward and backward structures
respectively.

• Interpolation batch TDANN (IB-TDANN): The TDANN
has two sets of inputs which are delayed by k samples.
The first set of inputs consists of the consecutive samples
preceding the gap, the second set created from the sam-
ples succeeding the gap. A total of K IB-TDANNs are
batch trained, one for each possible gap duration. When a
gap of size k is reconstructed, the kth network is selected,
trained with the patterns and then utilized to interpolate
the missing samples. The network structure is given in
figure 17.

VI. INITIAL WEIGHTS

The ANNs are initialized with random weights and gradient-
based algorithms are used for the training. Since the utilized
gradient-based training algorithms are hill climbers, which
are notorious for getting stuck in local minima of the error
function [35], the initial random weights play an important
role in the performance of the ANN. Hence, there is no
guarantee for the ANN to ever reach the global minimum.
In order to reduce the chances of the ANN to converge
to a local minimum, an ensemble ANN may be used or
training the ANN using particle swarm optimization (PSO).
The ensemble technique trains a set of ANNs in parallel, where
each network is initialized with different random weights [36].
In a PSO, each particle represents a candidate ANN where
the network weights are used for the particle’s vector [37].
However, very good results were achieved with the default
initial random weights, indicating that random weights do no
pose a major problem in the given situation. Training using
PSOs or ensemble ANNs are left for future research.

VII. EMPIRICAL PROCEDURE

This section discusses the procedure, test data and noise
generation used for the experiments. The performance mea-
surements for the detection and reconstruction algorithms are
examined, followed by the execution time and the evaluation
of the tradeoff between the performance and the computational
time.

A. Test Data and Noise

Empirical tests were conducted on a set of 800 songs
divided into eight genres, namely classical, country, electronic,
jazz, metal, pop, reggae and rock music, each consisting of
100 tracks. In order to evaluate the performance of the detec-
tion algorithms in a controlled environment, the songs were
subjected to artificially generated noise. The reconstruction
algorithms are not influenced by artificial noise, since outliers
are treated as a gap of missing samples. An additional 83 songs
were recorded from gramophones where the noise was flagged
manually. The 83 tracks served as a validation set to ensure
that the artificially generated and real gramophone noise are
homogeneous and do not cause a significant deviation in the
algorithms’ performance.

In audio processing, clean audio data is commonly distorted
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using Gaussian white noise [38]–[40]. A more advanced
approach suggested to integrate positive pulses with a constant
magnitude and a mixture of white noise and impulses [41].
In order to represent gramophone distortions more precisely,
the experiments for this article subjected the test data to four
different types of artificial generated noise which resemble
the bursts caused by scratches on records. The distortions
were generated using a combination of both positive and
negative pulses which were exposed to a Gaussian white
noise process in order to create more unpredictable outliers.
Most scratches do not affect more than 30 sequential samples.
However, the benchmarking was conducted on multivariate
outliers of up to 50 samples to accommodate possible longer
disruptions as well. Although the results in this article only
represent gaps of up to 50 samples, the algorithms are able to
accommodate noise of any duration without changes to their
implementations.

TABLE I
THE SAMPLE MEAN, SAMPLE STANDARD DEVIATION AND SAMPLE

PEARSON CORRELATION COEFFICIENT OF THE DATASET.

Genre µ σ Positive PCC Negative PCC
Classical -0.0005 0.010 0.76 [0.43, 0.91] -0.73 [-0.36, -0.90]
Country -0.0008 0.029 0.67 [0.26, 0.86] -0.68 [-0.28, -0.88]
Electro +0.0001 0.054 0.49 [0.00, 0.80] -0.51 [-0.02, -0.80]
Jazz -0.0002 0.027 0.69 [0.29, 0.88] -0.65 [-0.22, -0.86]
Metal -0.0002 0.053 0.54 [0.05, 0.82] -0.61 [-0.17, -0.85]
Pop -0.0001 0.046 0.53 [0.04, 0.81] -0.55 [-0.07, -0.82]
Reggae -0.0003 0.043 0.56 [0.09, 0.83] -0.59 [-0.13, -0.84]
Rock -0.0016 0.032 0.59 [0.13, 0.84] -0.63 [-0.19, -0.86]
Average -0.0004 0.037 0.60 [0.15, 0.85] -0.62 [-0.17, -0.85]

The Pearson correlation coefficient (PCC) is a statistical
measurement of the linear dependency between two variables
x and y [42], [43]. The coefficient lies in [−1, 1], where
zero indicates no linear dependency and a positive or negative
one describes a perfect linear correlation. The sample PCC is
defined as

r =

∑n
i=1(xi − µx)(yi − µy)√∑n

i=1(xi − µx)2
√∑n

i=1(yi − µy)2
(4)

where µx and µy are the sample means of x and y respectively.
Table I shows the sample mean, sample standard deviation

and sample PCC for the test dataset, calculated using a sample
size of 32. The sample mean of all genres was close to zero.
The standard deviation shows that electronic and metal music
had the highest volatility, whereas classical, country and jazz
signals were more stable with a strong linear dependency
as indicated by a PCC between ±0.65 and ±0.76. With
an increase in volatility in the electronic and metal genres,
the linearity decreased, although the linear dependency was
still moderate at approximately ±0.5 to ±0.6. The 95%
PCC confidence intervals are given in brackets next to the
correlation coefficients in the table.

The songs were encoded using the Free Lossless Audio
Codec (FLAC) with stereo channels at a sample rate of 44.1
kHz and an integer sample size of 16 bits.

B. Performance Measurement

The noise detectors were evaluated according to their ability
to identify outliers and at the same time keep the incorrectly
flagged inliers, which are the samples unaffected by noise, to
a minimum. The true positives (TP) and true negatives (TN)
are the number of correctly identified outliers and inliers re-
spectively, whereas the false positives (FP) and false negatives
(FN) are the number of incorrectly flagged inliers and outliers
respectively. The sensitivity (SEN) is the algorithm’s capacity
to which outliers are correctly flagged. The specificity (SPE)
on the other hand represents the ability to correctly recognize
inliers. The SEN and SPE is calculated as

SEN =
TP

TP + FN
SPE =

TN
TN + FP

(5)

The Matthews correlation coefficient (MCC) was employed
as a combined measurement to determine the capability of
correctly identifying outliers and penalizing mislabelled inliers
[44]. The MCC is computed using

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

The MCC lies in [−1, 1] where a negative one indicates a total
disagreement, zero a random prediction and a positive one a
perfect correlation.

The reconstruction performance was measured using the
normalized root mean squared error (NRMSE) in [0, 1] be-
tween the original signal y and the reconstructed signal ỹ.
The NRMSE is defined as

NRMSE =

√
1
n

∑n
i=1 (ỹi − yi)

2

ŷ − y̌
(7)

for a sequence of n samples, where a NRMSE of zero
indicates a perfect reconstruction. ŷ and y̌ are the maximum
and minimum amplitudes of the original signal respectively.

C. Computational Time and Tradeoff with Performance

The algorithms were also compared according to their
computational time. The time is measured as the number of
seconds required to process a second of audio data from the
input signal, denoted as s\s. A score of one s\s or lower
indicates that the algorithm can be executed in real time.

Based on the concept of the scoring metric in [45], in order
to assess the tradeoff between an algorithm’s performance
and the required time, the speed-accuracy-tradeoff (SAT) is
calculated using

SAT =

(
κ

κ̂− κ̌
+

τ

τ̂ − τ̌

)−1

(8)

where τ is the computational time measured in s\s. The
fastest and slowest execution times are represented by τ̂ and
τ̌ respectively. The upper bound τ̂ is set to one in order to
avoid skewed scores by increasing the penalty for algorithms
that take considerably longer to execute than the rest. Since
a lower NRMSE specifies a better interpolation accuracy, κ
is set to the NRMSE for the reconstruction SAT. However,
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since a higher MCC indicates a better detection performance,
κ is equal to (1 − MCC) for the noise identification SAT.
κ̂ and κ̌ are the accuracies of the best and worst performing
algorithms respectively. A higher SAT score indicates a more
efficient tradeoff between the accuracy and the execution time.

Benchmarking was conducted using a single thread on an
Intel Core i7 2600 at 3.4 GHz machine with 16 GB of memory
running a 64 bit Linux Ubuntu distribution.

VIII. PARAMETER OPTIMIZATION

The parameters of the ANNs were optimized using frac-
tional factorial design which is a sensible chosen subset of
the experimental executions of a full factorial design [46]. A
set consisting of ten songs from each genre was benchmarked
to find the optimal parameters. The parameter configurations
that on average performed best over all 80 songs in the test
set were used to calculate the outlier detection and recon-
struction accuracy of the entire validation set of 800 songs.
The activation function, training algorithm, epochs, training
patterns, learning rate, learning momentum and the network
structure which were all optimized using fractional factorial
design is discussed below, followed by the optimal parameter
configuration for each ANN.

A. Activation Function
Audio samples are real numbers in [−1, 1] and symmetric

activation functions were therefore utilized for the TDANNs.
Various well known activation functions were tested, including
the symmetric sigmoid function, better known as the hy-
perbolic tangent (tanh) function, a bounded linear activation
function, the symmetric Gaussian function and the symmetric
trigonometric sine and cosine functions [47]. Due to the large
number of samples in an audio track, the activation function
is evaluated millions of times and efficiency is therefore of
utmost importance. The tanh function is defined as

f(net− θ) =
eα(net−θ) − e−α(net−θ)

eα(net−θ) + e−α(net−θ)
(9)

for a net input net and a threshold θ. The gradient is controlled
by the parameter α. The computation of (9) requires the
evaluation of at least two exponents and can be more efficiently
approximated using

f(net− θ) =
2

1 + e−α(net−θ)
− 1 (10)

Even with a single exponential operation, the tanh function
is computationally expensive. Elliot proposed an activation
function that produces similar results to the sigmoid and tanh
functions, but is more efficient to calculate due to absence
of exponential operations [48]. The Elliot function produces
outputs in (0, 1), and is defined as

f(net− θ) =
net−θ

2

1 + |net− θ|
+

1

2
(11)

The symmetric Elliot function in (−1, 1) is even more efficient
to calculate with one less division and addition operation, and
is defined as

f(net− θ) =
net− θ

1 + |net− θ|
(12)

The Elliot functions reach their extremes more slowly than
the sigmoid and tanh functions. Therefore, the output error
will in general be greater, requiring more training epochs to
reach the desire error [47]. Even though the Elliot function is
faster to compute than tanh, the additional training increases
the required time again.

The output error and computational time using different
activation functions is given in table II. The symmetric Elliot
function performed best for all ANNs, except for the recurrent
ANN, which had a notably lower output error when using the
tanh activation function. The Elliot function was also more
efficient than the tanh activation function as indicated by
the lower execution time for all ANNs. The tanh activation
was utilized for the SRTDANNs and the symmetric Elliot
function for all other architectures. Although the bounded
linear activation function performed well, it was still inferior
to the Elliot and tanh functions. Audio samples in music
and speech typically have a zero mean and are distributed
according to a Gaussian function with an expected value close
to zero. Hence, the extremes of the audio signal at -1 and
1 are rarely reached. Therefore, predicting or interpolating
music signal amplitudes favours the Elliot and tanh functions
which reach their extremes more slowly and in general have a
smaller output error when predicting amplitudes close to the
extremes. A linear activation function reaches an amplitude of
±1 notably faster, resulting in a larger output error on average.

B. Training Algorithm

The TDANNs were trained using supervised learning. A
widely used training algorithm is backpropagation which uti-
lizes gradient descent to find a local minimum [49], [50].
Backpropagation can be applied in an incremental, stochastic
or batch fashion. Incremental or online backpropagation up-
dates the weights after each presentation of a new training pat-
tern and has proven effective for training TDANNs, especially
for processing audio and speech due to the slow changes in the
signal [51]–[54]. Batch backpropagation updates the weights
only once after all training patterns were presented.

Quickprop is a variation of the backpropagation algorithm
which is loosely based on Newton’s method [55]. Quickprop
requires the second order derivatives of the error function
and tries to approximate the error surface with a parabola.
Quickprop attempts to use a single step to jump from the
current gradient position directly into the minimum of the
parabola and, therefore, in general trains faster than standard
backpropagation.

Resilient backpropagation (Rprop) is another widely used
learning algorithm that penalizes previous weight adjustments
which were too large, causing the ANN to jump over local
minima [56]. If the partial derivative of a weight changes
sign compared to the previous iteration, Rprop decreases the
weight update by a factor η− for η− < 1, and increases
the weight update by a factor η+ for η+ > 1 if the sign of
the partial derivative does not change. Riedmiller and Braun
suggested η− to be fixed at 0.5 and η+ at 1.2 [57]. iRprop is
an improved version of Rprop which typically decreases the
training time and was shown to outperform the standard Rprop
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and quickprop algorithms [58]. Variations of both Rprop and
iRprop exist. Weight-backtracking is implemented in Rprop+

and iRprop+, whereas Rprop− and iRprop− omit weight-
backtracking [59].

Figure 2 illustrates the average output NRMSE of the batch
trained ANNs using different training algorithms. Standard
batch backpropagation and quickprop performed better for
short training durations, but were inferior to the iRprop
algorithms when trained over more epochs. iRprop+ and
iRprop− produced similar results and the deviation in their
error increased as training continued. iRprop− was employed
for all batch trained ANNs, since it produced the overall lowest
output error when trained for a sensible number of epochs.
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Fig. 2. The average batch training error for different training algorithms.

C. Training Epochs and Patterns

Incremental training for the FI-TDANN, BI-TDANN, FI-
SRTDANN and the BI-SRTDANN has an acceptable execu-
tion time, since each pattern is only presented once during
the updates of the weights. On the other hand, batch training
for the FSB-TDANN, BSB-TDANN, FCB-TDANN, BCB-
TDANN and the IB-TDANN presents each training pattern p
times to the network during the weight updates, where p is the
number of training epochs. Given a typical four minute song
encoded with stereo channels at a sample rate of 44.1 kHz, the
batch trained ANNs are presented with more than 21 million
patterns, resulting in an unacceptably slow execution time.
In addition, a music signal is relatively stable and changes
little over time compared to other more volatile signals. The
slow change causes most consecutive training patterns to have
very similar characteristics when moving the window one
sample at a time over the input signal. In order to reduce the

computational time of batch training, the number of training
patterns were limited to a maximum u. Training patterns
were also accumulated by delaying the consecutive patterns
by v samples, compared to the traditional implementation of
a TDANN where patterns are delayed by one sample. Both
u and v were determined empirically. The lowest value for u
and the highest value for v were chosen without increasing
the ANN’s output error compared to the performance of the
ANN when v was set to one and u was equal to the maximum
number of patterns preceding the gap. Hence, by employing
a pattern count limit u and introducing a pattern delay v, the
training time was substantially reduced without affecting the
output error of the ANN.

Figure 3 shows the training output error for an increasing
number of training epochs. The corresponding interpolation
error is illustrated in figure 4. The training error only stabi-
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Fig. 3. The training output error for different training durations.
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Fig. 4. The interpolation output error for different training durations.

TABLE II
THE INTERPOLATION ERROR AND COMPUTATIONAL TIME FOR DIFFERENT ACTIVATION FUNCTIONS.

Activation Function FI-TDANN FI-SRTDANN FSB-TDANN FCB-TDANN IB-TDANN
NRMSE Time NRMSE Time NRMSE Time NRMSE Time NRMSE Time

Symmetric Elliot 0.071308 64.46232 0.079066 2.502488 0.080021 52.02565 0.080626 89.62463 0.058749 100.0583
Hyperbolic Tangent 0.075551 64.85891 0.072680 2.546073 0.080583 53.08238 0.080856 94.03838 0.058816 101.5186

Bounded Linear 0.079348 64.11473 0.074298 2.540985 0.081192 51.74124 0.081005 92.23812 0.058820 98.67043
Symmetric Gaussian 0.122094 64.66294 0.106832 2.577210 0.422160 53.25786 0.195167 94.30679 0.341095 101.2180

Symmetric Sine 0.077475 63.17457 0.073495 2.515352 0.080711 53.45751 0.080937 94.54052 0.059552 101.9032
Symmetric Cosine 0.105983 64.73592 0.119519 2.532297 0.348429 54.59695 0.122637 95.07163 0.257964 102.9752
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lized around the 100th epoch, whereas the interpolation error
converged more quickly. The interpolation error of the FSB-
TDANN, FCB-TDANN and IB-TDANN steadied after the
16th, 10th and 34th epoch respectively. The maximum number
of epochs was set to 50 for all batch trained TDANNs.

D. Learning Rate and Momentum

The influence of the learning rate and momentum on the
output error of the incrementally trained ANNs is given in
figure 5. Since Rprop is an adaptive training algorithm, the
batch trained ANNs do neither require a learning rate nor
a learning momentum. The autocovariance of music signals
is small, meaning that the signal changes little over time.
Incremental training performed better with lower learning
rates, where smaller consecutive weight updates corresponded
to the gradual transition of the input signal. The learning in
incrementally trained TDANNs performed best at a rate of 0.1
and without a momentum.
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Fig. 5. The output error for different learning rates and momentums.

E. Network Structure

By itself, an artificial neuron is capable of learning linearly
separable functions if the summation unit is used [60]. In order
to realize complex non-linearly separable functions, neurons
are combined into a network architecture. It was proven that
a single hidden layer with a sufficient number of neurons can
be used to model any continuous function [61]–[63].

The TDANNs’ structures were optimized using factorial

design in order to determine the ideal number of hidden
layers and neurons. An input layer with up to 1536 neurons
and three hidden layers with up to 512 neurons each was
tested and formed the bounds of the factorial design search.
It was found that a set of perceptrons, that is an ANN
without any hidden layer, performed best. These findings are
supported by the PCCs in table I, indicating that there are
strong linear dependencies between the inputs and outputs
of the preceptrons. Since most music signals are relatively
stable, a linear combination of the input samples generally
achieves a better interpolation accuracy than a nonlinear input
composition.

F. Parameter Configurations
The optimal parameter configurations for both the noise

detection and reconstruction ANNs are given in table III. The
layers’ structure is given in the format g-o, where g represents
the number of input neurons and o the number of output
neurons. The last column in the table is given in the format
u-v. The batch trained ANNs performed best with a limit u
of either 256 or 768 training patterns. These training patterns
were delayed by v, which was set to six samples for the FSB-
TDANN and the BSB-TDANN, and to eight samples for the
other TDANNs.

IX. EMPIRICAL ANALYSIS

This section presents the empirical result of the TDANNs
for the outlier detection and reconstruction processes. The
performance of the TDANNs is compared with that of other
outlier detection and reconstruction algorithms discussed in
[64] and [65] which are based on proximity-based algorithms,
trigonometric approaches, polynomials and commonly used
time series models. The algorithms in [64] and [65] are
static and in most cases are unable to adapt to different
signals changing over time. By employing ANNs, the detection
and reconstruction algorithms adapt to the signal over time,
providing more accurate predictions and interpolations of the
signal. Finally, correlations are drawn between the results
from the ANNs proposed in this article and those from other
publications and a practical example is given.

A. Noise Detection
Previous research benchmarked a number of statistical out-

lier detection algorithms such as the standard score (SS), me-

TABLE III
THE OPTIMAL PARAMETER CONFIGURATIONS FOR THE ANNS.

Network Type Layer Structure Training Algorithm Learning Rate Activation Function Training Epochs Training Patterns
APD-TDANN 12-K Incremental Backprop 0.1 Symmetric Elliot 1 -

APD-SRTDANN 17-1 Incremental Backprop 0.1 Hyperbolic Tangent 1 -
FI-TDANN 832-K Incremental Backprop 0.1 Symmetric Elliot 1 -
BI-TDANN 832-K Incremental Backprop 0.1 Symmetric Elliot 1 -

FI-SRTDANN 961-1 Incremental Backprop 0.1 Hyperbolic Tangent 1 -
BI-SRTDANN 961-1 Incremental Backprop 0.1 Hyperbolic Tangent 1 -
FSB-TDANN 224-k iRprop− - Symmetric Elliot 50 256-6
BSB-TDANN 224-k iRprop− - Symmetric Elliot 50 256-6
FCB-TDANN 220-K iRprop− - Symmetric Elliot 50 256-8
BCB-TDANN 220-K iRprop− - Symmetric Elliot 50 256-8

IB-TDANN 256-k iRprop− - Symmetric Elliot 50 768-8
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dian absolute deviation (MAD), Mahalanobis distance (MHD),
nearest neighbour deviation (NND) and the mean absolute
spectral deviation (MASD) [64]. In addition, the APD algo-
rithm was tested by predicting the input series using various
polynomials and time series models. The polynomials included
the standard polynomial (STP), osculating standard polyno-
mial (OSP), Fourier polynomial (FOP), osculating Fourier
polynomial (OFP), Newton polynomial (NEP) and the Hermite
polynomial (HEP). The time series models consisted of the
autoregressive (AR) model, moving average (MA) model,
a combination of the AR and MA models (ARMA), AR
integrated MA (ARIMA) model, AR conditional heteroskedas-
ticity (ARCH) model and the generalized ARCH (GARCH)
model.

Figure 6 shows the detection sensitivity for an increasing
multivariate outlier duration. The figure compares the two
TDANNs used in conjunction with the APD algorithm, with
the other best performing outlier detectors. The TDANNs were
only superior to the SS, MAD and MHD for most durations,
but lagged behind the NND and the other APD-based algo-
rithms which achieved a sensitivity of approximately 0.8 or
higher.
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Fig. 6. The detection sensitivity for an increasing noise duration.

The detection accuracy for different genres is given in figure
7. The TDANNs’ accuracy was slightly inferior to some of the
other algorithms for stable signals, such as classical, country,
jazz and rock music. Noise detection in more volatile signals,
including electronic, metal, pop and reggae music, benefited
more from the TDANNs. Since a TDANN learns the temporal
characteristics of the input signal, it adapts to changes in the
signal, which is problematic or even impossible with the other
detection algorithms. The APD-GARCH also performed well
for unstable signals, since it was specifically designed for high
volatile financial markets [66]–[68].

The detailed comparison of the noise detection TDANNs
and the outlier detectors from [64] is given in table IV. The
highest sensitivity and specificity was achieved by the NND
and MHD respectively. The best detection rate, as indicated by
the MCC, was accomplished by employing the APD algorithm
using an ARIMA model. The main cause of the slightly lower
detection accuracy of the TDANNs compared to the AR,
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Fig. 7. The detection accuracy for different genres.

ARMA and ARIMA models was the more accurate prediction
of the AR-based models for durations of seven samples and
shorter. On average the TDANNs had a good forecasting
accuracy for all durations, whereas the AR-based models were
slightly superior with regards to the prediction of the immedi-
ate samples following the input data. The APD-TDANN had
the lowest computational time. The TDANNs also achieved
the highest tradeoff between the detection accuracy and the
computational time with a SAT score twice as high as the next
best algorithm. Due to a small number of neurons, the TDANN
detectors were one of only four noise identification algorithms
that were executed in real time. Although the TDANNs had
a lower detection accuracy, the MCC difference of 0.009
between the APD-SRTDANN and APD-ARIMA algorithms
is so marginal, that in practice most users would put more
emphasis on the lower execution time. A detailed report on
the performance of the outlier detection algorithms according
to the noise duration and genre is given in appendix B.

TABLE IV
THE NOISE DETECTION SENSITIVITY, SPECIFICITY, ACCURACY,

COMPUTATIONAL TIME AND TRADEOFF.

Algorithm SEN SPE MCC Time SAT
SS 0.68113 0.99976 0.79238 5.4666 0.1405

MAD 0.63657 0.99937 0.74072 19.164 0.0430
MHD 0.68519 0.99982 0.79887 15.473 0.0533
NND 0.82475 0.99303 0.75386 1.6906 0.3503

MASD 0.38406 0.99834 0.55823 0.5064 0.4594
APD-STP 0.78489 0.99749 0.80177 13.806 0.0595
APD-OSP 0.78345 0.99762 0.80375 30.858 0.0273
APD-FOP 0.80210 0.99750 0.81840 24.692 0.0340
APD-OFP 0.80095 0.99743 0.82019 68.227 0.0125
APD-NEP 0.71231 0.99925 0.80804 7.1771 0.1104
APD-HEP 0.53563 0.99807 0.64657 0.4968 0.5410
APD-AR 0.81119 0.99802 0.83552 4.2692 0.1796
APD-MA 0.75252 0.99586 0.74685 24.767 0.0336

APD-ARMA 0.82254 0.99753 0.83456 26.644 0.0316
APD-ARIMA 0.80346 0.99826 0.83668 11.497 0.0715
APD-ARCH 0.80114 0.99795 0.82990 14.585 0.0568

APD-GARCH 0.80114 0.99795 0.82990 14.585 0.0568
APD-TDANN 0.75388 0.99774 0.78043 0.1421 1.0481

APD-SRTDANN 0.74422 0.99927 0.82722 0.1637 1.2325
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B. Noise Reconstruction

Prior research analysed various duplication and trigonomet-
ric approaches, polynomials and time series models which
showed potential for the reconstruction of audio signals but
mostly lacked the ability to learn the temporal characteristics
of the signal [65]. A number of duplication techniques were
benchmarked, including the adjacent window interpolation
(AWI), mirroring window interpolation (MWI), nearest neigh-
bour interpolation (NNI) and similarity interpolation (SI). Co-
sine interpolation (CI) and Lanczos interpolation (LI) formed
part of the trigonometric methods. Besides the STP, OSP, FOP,
OFP, NEP and HEP, spline interpolation was also considered
for the STP (SPS) and the FTP (FPS). The AR, MA, ARMA,
ARIMA, ARCH and GARCH models were tested to determine
the capacity to which they able to reconstruct audio signals.

Figure 8 illustrates the examined TDANNs’ interpolation
error for an increasing noise duration. The IB-TDANN per-
formed best over all gap sizes, followed by the BI-SRTDANN.

The reconstruction accuracy for different genres is given in
figure 9. The IB-TDANN achieved the lowest NRMSE for all
genres, except for metal and rock music which was more

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

 5  10  15  20  25  30  35  40  45  50

N
R

M
S

E

Gap Size (Samples)

Fig. 8. The interpolation accuracy for an increasing noise duration.

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11

C
la
ss
ic
al

C
ou
nt
ry

E
le
ct
ro

Ja
zz

M
et
al

P
op

R
eg
ga
e

R
oc
k

N
R
M
S
E

Genre

Fig. 9. The interpolation accuracy for different genres.

accurately interpolated using the BI-SRTDANN.
Table V lists the overall interpolation error, execution time

and the tradeoff for the different reconstruction algorithms.
The IB-TDANN performed best overall, followed by the BI-
SRTDANN and BSB-TDANN. None of the TDANNs were
able to execute in under 1 s\s using a single thread, therefore,
making them infeasible for real time applications. However,
since the digitization process of gramophone records is only
conducted once for every recording, a higher audio quality
is mostly preferred above real time execution. The full com-
parison of all interpolation algorithms according to the noise
duration and genre is given in appendix C.

TABLE V
THE INTERPOLATION ACCURACY, COMPUTATIONAL TIME AND TRADEOFF.

Algorithm NRMSE Time SAT
AWI 0.111371 0.049794 0.593457
MWI 0.104806 0.051691 0.628663
NNI 0.090748 0.027313 0.735624
SI 0.087269 0.054413 0.74839
LI 0.093215 0.027908 0.716238
CI 0.081218 0.027128 0.820088

STP 0.080057 0.03149 0.828606
OSP 0.086014 0.034523 0.770803
SPS 0.080057 0.038588 0.823627
FOP 0.122412 0.068523 0.535829
OFP 0.117923 5.325502 0.138812
FPS 0.081493 0.033035 0.813341
NEP 0.080058 0.027329 0.831552
HEP 0.081066 0.027557 0.821287
AR 0.071764 0.092778 0.870951
MA 0.087952 0.029541 0.757201

ARMA 0.071709 2.435243 0.281283
ARIMA 0.080201 6.808781 0.122321
ARCH 0.089057 0.062245 0.72967

GARCH 0.089057 0.062378 0.729598
FI-TDANN 0.068145 64.46232 0.014868
BI-TDANN 0.058917 129.051 0.00749

FI-SRTDANN 0.069853 2.663952 0.265745
BI-SRTDANN 0.054953 5.23738 0.161561
FSB-TDANN 0.071659 52.02565 0.018339
BSB-TDANN 0.058147 104.2376 0.009259
FCB-TDANN 0.072788 89.62463 0.010731
BCB-TDANN 0.058637 179.7895 0.005386

IB-TDANN 0.054247 100.0583 0.009648

C. State of the Art Comparison

All ANNs proposed in this article had a considerable
improvement in the interpolation accuracy over the ANN
proposed by Czyzewski [16]. In addition, the time required
to train the ANNs was substantially lower in comparison to
the training time of Czyzewski’s approach, especially for the
recurrent architectures.

The proposed ANNs had a reconstruction accuracy compa-
rable to that of the methods proposed by Cocchi and Uncini
[18]. The best performing architecture in this paper, namely
the IB-TDANN, had an interpolation NRMSE between 0.020
and 0.058. In comparison, Cocchi’s best performing ANN
only achieved a NRMSE of approximately 0.024 to 0.105.
Although, it has to be noted that Cocchi reconstructed larger
gap sizes which has a direct impact on the interpolation and
justifies the larger error. No indication was given in relation to
the training time. However, since Cocchi used hidden layers,
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more neurons and utilized backpropagation for training, which
generally has a slower convergence than iRprop, training in
[18] is computationally more expensive.

It is also important to note that different datasets were used
for the experiments in the various articles, which might also
had an impact the the reconstruction accuracy. A very small
dataset was used in [16] and [18] which does not necessarily
represent the performance for a variety of songs, especially
from different genres. For instance, Cocchi only used a few
songs from the classical, jazz, and pop genres [18], which
are stable and easier to reconstruct compared to more volatile
genres such as metal and electro, as shown in figure 9.

D. Reconstruction Example

Figure 10 depicts an example of a sound wave before
and after reconstruction using the APD-SRTDANN for the
noise detection and the IB-TDANN for the interpolation. The
signal in question is a segment from Mozart’s “Eine kleine
Nachtmusik”. All the impulse disturbances where successfully
removed and a reconstruction NRMSE of 0.042 was achieved.

Fig. 10. The sound wave before and after reconstruction.

X. CONCLUSION

Analogue storage mediums, such as gramophone records,
are subject to noise caused by damages to the medium. This
article investigated a number of TDANNs for the detection
and reconstruction of distortions in gramophone audio signals.
The TDANNs were compared to other algorithms, including
polynomials and time series models amongst others. It was
found that the TDANNs for outlier detection purposes were
slightly inferior to other detection algorithms, but were more
efficient by achieving an acceptable detection rate within a
limited timespan. The interpolation TDANNs had a notable
decrease in the reconstruction error, but were computationally
expensive due to training a network with a large number of
neurons.

This article processed the channels in audio signal sep-
arately. Future research should examine the combined pro-
cessing of all available channels using TDANNs. The noise

from one channel can, therefore, be detected and reconstructed
using the information from other channels. In addition, due to
the performance deviation between different genres, further
investigation is needed to determine the capabilities of a
TDANN when trained in a dynamic environment. A TDANN
might achieve a better detection and interpolation rate if it
dynamically adapts to the current volatility of the signal. One
set of parameters may be used when the signal is stable, and
another one if the volatility increases.

This article also directly used the time series data as input
to the TDANNs. A more accurate approximation of the signal
may be achieved by generating the ANNs’ training patterns
with the output of other time series models, such as the AR,
ARIMA or GARCH model. Combing the output of other
models with the time series data and feeding it as input into
an ANN or using other ANNs other than TDANNs may also
prove beneficial.

The training time of the reconstruction ANNs is still high,
which is a common problem with most ANNs [16], [17].
Further research is needed in order to determine how the
computational time can be reduced.

APPENDIX A
NETWORK STRUCTURES

Figure 11 - 17 show the ANN structures as discussed in
section IV and section V. The vertical arrows on the left
indicate the direction in which the consecutive patterns are
presented to the ANNs as the sample window moves across
the signal.
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Fig. 11. The network structure of the APD-TDANN, FI-TDANN, BI-
TDANN, FCB-TDANN, and the BCB-TDANN.
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Fig. 12. The network structure of the BI-TDANN and the BCB-TDANN.

APPENDIX B
DETECTION ALGORITHMS

Table VI shows the detection sensitivity for an increasing
noise duration. The APD employing the ARCH and GARCH
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Fig. 13. The network structure of the APD-SRTDANN, FI-SRTDANN, and
the BI-SRTDANN.
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Fig. 14. The network structure of the BI-SRTDANN.
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Fig. 15. The network structure of the FSB-TDANN.
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Fig. 16. The network structure of the BSB-TDANN.
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Fig. 17. The network structure of the IB-TDANN.

models detected most outliers of ten samples or shorter. The
NND had the best detection sensitivity for all other noise
durations.

Table VII shows the detection accuracy for different genres.
The TDANNs had a good detection rate for the volatile signals,
with the APD-SRTDANN achieving the highest MCC for
electronic music.

APPENDIX C
RECONSTRUCTION ALGORITHMS

Table VIII shows the interpolation performance of all recon-
struction algorithms for an increasing gap size. The ARIMA
model outperformed all TDANNs for durations of five samples
or shorter. The IB-TDANN interpolated most accurately for all
other gap sizes.

Table IX provides the detailed reconstruction performance
for different genres. The IB-TDANN performed best for all
genres, except for metal and rock music, which had a better
interpolation using the BI-SRTDANN.
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TABLE VIII
THE INTERPOLATION ACCURACY (NRMSE) FOR DIFFERENT NOISE DURATIONS.

Algorithm Noise Duration (Samples)
1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50

AWI 0.061014 0.109485 0.125043 0.136948 0.144415 0.150030 0.153123 0.154301 0.156253 0.155272
MWI 0.059964 0.103136 0.119742 0.130193 0.135851 0.140522 0.143783 0.144848 0.146167 0.146004
NNI 0.056626 0.079500 0.093445 0.103867 0.110910 0.116589 0.121023 0.124764 0.128621 0.131256
SI 0.046737 0.077438 0.091772 0.101091 0.107379 0.112918 0.117000 0.120439 0.123543 0.125800
LI 0.082024 0.090207 0.098707 0.108305 0.115674 0.122870 0.126692 0.128696 0.130498 0.130745
CI 0.040126 0.065559 0.079875 0.090035 0.097060 0.103097 0.107760 0.111767 0.115634 0.118414

STP 0.039622 0.064877 0.079025 0.088880 0.095711 0.101678 0.106250 0.110211 0.113940 0.116665
OSP 0.061543 0.081832 0.092446 0.100407 0.105845 0.110766 0.114665 0.117806 0.121388 0.123443
SPS 0.039622 0.064877 0.079025 0.088880 0.095711 0.101678 0.106250 0.110211 0.113940 0.116665
FOP 0.202796 0.186715 0.178200 0.172345 0.168306 0.165825 0.163481 0.161402 0.160532 0.159072
OFP 0.184722 0.172651 0.166623 0.162677 0.160186 0.158954 0.157642 0.156505 0.156499 0.155782
FPS 0.078763 0.086066 0.092466 0.097982 0.101775 0.105398 0.108191 0.110807 0.113462 0.115133
NEP 0.039622 0.064877 0.079025 0.088880 0.095711 0.101678 0.106250 0.110211 0.113940 0.116665
HEP 0.039987 0.065400 0.079712 0.089849 0.096861 0.102896 0.107556 0.111562 0.115421 0.118198
MA 0.054773 0.081479 0.094212 0.102923 0.108755 0.114096 0.117949 0.121148 0.124229 0.126381
AR 0.030029 0.057569 0.071434 0.080595 0.086715 0.091646 0.095414 0.098726 0.101605 0.103628

ARMA 0.030004 0.057530 0.071380 0.080535 0.086644 0.091576 0.095325 0.098638 0.101511 0.103538
ARIMA 0.029804 0.058760 0.074316 0.085561 0.093578 0.100808 0.106410 0.111270 0.115704 0.119112
ARCH 0.066648 0.088248 0.098274 0.106027 0.111099 0.116074 0.119463 0.122308 0.125319 0.127295

GARCH 0.066648 0.088248 0.098274 0.106027 0.111099 0.116074 0.119463 0.122308 0.125319 0.127295
FI-TDANN 0.072333 0.085071 0.086784 0.088125 0.088401 0.089063 0.089311 0.088237 0.090019 0.090038
BI-TDANN 0.058700 0.071916 0.073863 0.074745 0.075087 0.075114 0.075603 0.075026 0.075571 0.075606

FI-SRTDANN 0.059302 0.076061 0.081416 0.085289 0.086782 0.088947 0.091104 0.091821 0.093910 0.094866
BI-SRTDANN 0.044118 0.060706 0.065364 0.068048 0.069115 0.070546 0.071822 0.072469 0.073727 0.074216
FSB-TDANN 0.061664 0.079459 0.084955 0.088101 0.090425 0.091868 0.093698 0.094503 0.096128 0.096704
BSB-TDANN 0.049145 0.064435 0.068994 0.071298 0.073352 0.074577 0.075689 0.076588 0.077611 0.078249
FCB-TDANN 0.058659 0.078179 0.084913 0.088521 0.091095 0.092803 0.094748 0.095571 0.097449 0.097802
BCB-TDANN 0.046572 0.062613 0.068248 0.070626 0.073378 0.074491 0.075936 0.076933 0.077963 0.078512

IB-TDANN 0.040480 0.053674 0.060134 0.063966 0.066642 0.068205 0.070240 0.071853 0.073499 0.073833

TABLE IX
THE INTERPOLATION ACCURACY (NRMSE) FOR DIFFERENT GENRES.

Algorithm Classical Country Electro Jazz Metal Pop Reggae Rock
AWI 0.094831 0.112448 0.119919 0.117352 0.112000 0.111454 0.122570 0.100393
MWI 0.082085 0.100996 0.114205 0.105853 0.107922 0.105229 0.110541 0.094273
NNI 0.065920 0.085024 0.105180 0.087931 0.103765 0.094996 0.098086 0.085083
SI 0.067175 0.083507 0.099116 0.086747 0.095450 0.090004 0.095424 0.080727
LI 0.064791 0.085723 0.111587 0.089531 0.105977 0.099367 0.101492 0.087248
CI 0.058249 0.075599 0.094691 0.077718 0.093754 0.085322 0.088126 0.076281

STP 0.057997 0.074762 0.093071 0.076897 0.091734 0.083901 0.087085 0.075014
OSP 0.065010 0.082054 0.097175 0.084630 0.096641 0.088736 0.093376 0.080489
SPS 0.057997 0.074762 0.093071 0.076897 0.091734 0.083901 0.087085 0.075014
FOP 0.085755 0.118242 0.141207 0.123283 0.137256 0.132658 0.122470 0.118423
OFP 0.084521 0.113369 0.136857 0.118546 0.130239 0.126993 0.120449 0.112408
FPS 0.056885 0.074597 0.097833 0.077936 0.093035 0.086956 0.088596 0.076109
NEP 0.057997 0.074762 0.093071 0.076897 0.091734 0.083901 0.087085 0.075014
HEP 0.058174 0.075469 0.094503 0.077584 0.093540 0.085153 0.087980 0.076127
MA 0.068295 0.084632 0.099053 0.087845 0.095938 0.090286 0.096153 0.081411
AR 0.044684 0.063066 0.089517 0.063907 0.083930 0.079821 0.079634 0.069552

ARMA 0.044558 0.063004 0.089505 0.063807 0.083903 0.079800 0.079607 0.069484
ARIMA 0.057269 0.074376 0.096327 0.075326 0.087477 0.085975 0.090019 0.074839
ARCH 0.070394 0.086568 0.099060 0.089795 0.096041 0.090729 0.097582 0.082284

GARCH 0.070394 0.086568 0.099060 0.089795 0.096041 0.090729 0.097582 0.082284
FI-TDANN 0.031090 0.051052 0.090200 0.049207 0.093168 0.091573 0.073144 0.065724
BI-TDANN 0.026660 0.042709 0.079468 0.041094 0.080332 0.081278 0.063294 0.056501

FI-SRTDANN 0.031740 0.052813 0.095891 0.051151 0.092425 0.089477 0.081454 0.063870
BI-SRTDANN 0.024608 0.041309 0.075553 0.039394 0.074140 0.069712 0.063043 0.051867
FSB-TDANN 0.032444 0.055585 0.096158 0.053605 0.096645 0.089199 0.075290 0.074350
BSB-TDANN 0.026225 0.044085 0.080297 0.041578 0.080555 0.073196 0.060170 0.059070
FCB-TDANN 0.031616 0.055558 0.099710 0.052884 0.098522 0.092059 0.076620 0.075334
BCB-TDANN 0.025598 0.043566 0.083219 0.040344 0.081443 0.075228 0.060567 0.059130

IB-TDANN 0.021309 0.040269 0.074772 0.038974 0.074652 0.069089 0.058380 0.056536
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