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Abstract

Hedetniemi conjectured in 1966 that if G and H are finite graphs with chromatic number
n, then the chromatic number χ(G × H) of the direct product of G and H is also n. We
mention two well-known results pertaining to this conjecture and offer an improvement of
the one, which partially proves the other. The first of these two results is due to Burr, Erdős
and Lovász, who showed that when every vertex of a graph G with χ(G) = n+1 is contained
in an n-clique then χ(G×H) = n+1 whenever χ(H) = n+1. The second, by Duffus, Sands
and Woodrow, and, obtained independently by Welzl, states that the same is true when G
and H are connected graphs each with clique number n. Our main result reads as follows:
If G is a graph with χ(G) = n+ 1 and has the property that the subgraph of G induced by
those vertices of G that are not contained in an n-clique is homomorphic to an (n+1)-critical
graph H, then χ(G ×H) = n + 1. This result is an improvement of the result by the first
authors. In addition we will show that our main result implies a special case of the result
by the second set of authors. Our approach will employ a construction of a graph F , with
chromatic number n+ 1, that is homomorphic to G and H.
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1 Preliminaries and Introduction

All graphs considered here are simple, undirected and unlabelled, and have finite non-empty
vertex sets. For a graph G we represent the vertex set and edge set of G by V (G) and E(G),
respectively. Given a vertex x ∈ G, we denote the set of all neighbours of x in G by NG(x).
For an edge uv ∈ E(G) and a vertex x ∈ V (G) we represent the graph obtained from G by
deleting the edge uv by G−uv, and represent the graph obtained from G by deleting the vertex
x along with the edges incident to it by G − x. For a subset A of V (G), G[A] will denote the
subgraph of G induced by A. For a positive integer n, a proper n-colouring of G is a mapping
f : V (G) −→ {1, 2, . . . , n} that does not assign the same value to any two adjacent vertices.
Since such a mapping naturally induces a partition of the vertex set of G into n independent
subsets we shall also refer to any partition of V (G) into n such subsets as a proper n-colouring.
The chromatic number χ(G) of a graph G is the least integer n required to achieve a proper
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n-colouring. The clique number ω(G) of a graph G is the largest integer k such that G contains
a complete subgraph on k vertices. We use the symbol GtH for the disjoint union of the graphs
G and H. The disjoint union of k graphs H1, H2, . . . ,Hk will be denoted by

⊔k
j=1Hj . The direct

product G×H of G and H is that graph with vertex set

V (G×H) = V (G)× V (H)

and edge set E(G×H) satisfying the following:

(a1, b1)(a2, b2) ∈ E(G×H) if and only if a1a2 ∈ E(G) and b1b2 ∈ E(H).

A homomorphism from a graph G to a graph H is an edge-preserving mapping from the
vertex set of G into the vertex set of H. When such a mapping exists, we write G −→ H. A
graph G is critical if, for all e ∈ E(G), we have that χ(G − e) < χ(G). We say G is n-critical
if G is critical and χ(G) = n. This definition implies that χ(G − x) < χ(G) for all vertices
x ∈ V (G) of positive degree.

Hedetniemi’s Conjecture 1. [7] For all positive integers n and all graphs G and H, if χ(G) =
χ(H) = n, then χ(G×H) = n.

Our interest in Hedetniemi’s conjecture has been to prove that it holds for those graphs G
with ω(G) + 1 = χ(G). To do this would imply, as shown by Duffus and Sauer in [3], that the
chromatic number of the direct product of two n-chromatic graphs is at least n

2 . We have not
been successful in settling this special case. The following two theorems have a bearing on the
above conjecture.

Theorem 1. (Burr, Erdős and Lovász [1]) For all positive integers n and all graphs G and H
with χ(G) = χ(H) = n+ 1, if every vertex of G lies in an n-clique, then χ(G×H) = n+ 1.

Theorem 2. (Duffus, Sands and Woodrow [2], Welzl [9]) For all positive integers n and all
connected graphs G and H with χ(G) = χ(H) = n+ 1, if ω(G) = ω(H) = n, then χ(G×H) =
n+ 1.

From these results two questions immediately arise. The first, inspired by Theorem 1, is how
many of the vertices of G are required to be in an n-clique. The second, arising from Theorem
2, is whether we can obtain the same result if ω(H) ≤ n − 1. Both of these questions we will
partially answer, but we require that some restrictions be placed on G and H. Our answer to
both is as follows: If those vertices of G not belonging to an n-clique induce a subgraph of G
that has a homomorphism to an (n + 1)-critical subgraph of H, then the clique number of H
may be relaxed to below n, and the number of vertices of G not in an n-clique need not to be
prescribed.

We intend to show that Theorem 1 is in fact a corollary of our Theorem 3, and lastly, we will
show that our Theorem 4, our main result, is not only an improvement of Theorem 1 but it also
proves the special case of Theorem 2 when G and H are (n+ 1)-critical. Our proof will involve
the construction of a graph F that is homomorphic to G and H, and has the same chromatic
number.

For the interested reader, an alternative proof of Theorem 1, involving uniquely n-colourable
graphs, can be found in [2]. E. El-Zahar and N. Sauer have offered alternative proofs of Theorem
1 and Theorem 2 in [4].
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2 Main results

We introduce in this section a construction that is reminiscent of the Hajós Construction [5],
followed by another construction. Both are chromatic number preserving constructions.

Let G and H be graphs, e = uv an edge of H, and X a subset of V (G). For each x ∈ X,
let Hx be a copy of H − e in which each vertex w in H − e has been renamed wx. Thus ux and
vx are the vertices in Hx that correspond to the vertices u and v in H, respectively. For each
x ∈ X, replace x with Hx, then, for each pair Hx and Hy with x 6= y, make ux adjacent to vy
or vx adjacent to uy, but not both, if and only if x and y are adjacent in G. Lastly, for each
Hx make ux or vx adjacent to a vertex y in V (G) \X, but not both, if and only if x and y are
adjacent in G. Any resulting graph we refer to as a Hajós-type construct (Ht-construct) of G
and H obtained through X and e.

Lemma 1. Let G be a graph with χ(G) = n ≥ 2, and H be an n-critical graph. If X ⊆ V (G)
then every Ht-construct of G and H obtained through X and any edge e of H, has chromatic
number n.

Proof. Let G, H, and X be as described above, and let e = uv be an edge of H, and F be an
Ht-construct of G and H obtained through X and e.

First we show that χ(F ) ≥ n. Suppose, to the contrary, that χ(F ) < n, and let f be a
proper (n − 1)-colouring of F . Since H is a n-critical graph it follows that in every proper
(n−1)-colouring of H−e the vertices u and v are assigned the same colour. Thus, for all x ∈ X,
it follows that f(ux) = f(vx). Now let g be a colouring of G determined by f as follows: For
each x ∈ V (G),

g(x) =

{
f(ux) if x ∈ X, and
f(x) if x ∈ V (G) \X.

Since χ(G) = n, it follows that g(x) = g(y) for some adjacent vertices x and y in G. Furthermore,
at least one of these vertices belongs to X. Suppose first that both x and y belong to X. Then it
follows that f(ux) = f(vx) = f(uy) = f(vy). But, by the construction of F , either uxvy ∈ E(F )
or vxuy ∈ E(F ). This, of course, implies that f is not a proper (n− 1)-colouring of F . Clearly
this is a contradiction. Now suppose that x belongs to X and y belongs to V (G) \ X. Then
f(ux) = f(vx) = f(y), but, by the construction of F , either uxy ∈ E(F ) or vxy ∈ E(F ). This,
clearly, implies that f is not a proper (n−1)-colouring of F , which is a contradiction. Therefore
it follows that χ(F ) ≥ n.

Now we give an n-colouring of F . Let c be a proper n-colouring of G, then, for each x ∈ X,
allow cx to be a proper (n − 1)-colouring of Hx satisfying cx(ux) = cx(vx) = c(x). Next, let c′

be an n-colouring of F defined, for each z ∈ V (F ), in the following way:

c′(z) =

{
cx(z) if z ∈ V (Hx), and
c(z) if z ∈ V (G) \X.

Then c′ is a proper n-colouring of F .

The following result, which is given without proof, will be used in the proof of Theorem 3.

Lemma 2. Let G and H be graphs with χ(G) = χ(H) = n, then χ(G ×H) = n if and only if
there exists a graph F with χ(F ) = n satisfying F −→ G and F −→ H.

Theorem 3. Let G and H be graphs with χ(H) ≥ χ(G) = n + 1 ≥ 3 and ω(G) = n. Let
A be the set of vertices of G that are not contained in an n-clique. If there exists a proper
(n+ 1)-colouring V1, . . . , Vn+1 of G satisfying A ⊆ Vn ∪ Vn+1, then χ(G×H) = n+ 1.
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Proof. Let G, H, A, and V1, . . . , Vn+1 be as described above. We will construct a graph F
with χ(F ) = n + 1, satisfying F −→ G and F −→ H. This will imply, by Lemma 2, that
χ(G×H) = n+ 1.

Let H ′ be any (n + 1)-critical subgraph of H. Such a subgraph exists and is connected.
Begin by fixing an edge e = uv of H ′. Then, for each x ∈ V1 ∪ V2 ∪ . . . ∪ Vn−1, let H ′x be a copy
of H ′ − e as described earlier. Next, let F be the Ht-construct of G and H ′ obtained through
V1 ∪ V2 ∪ . . . ∪ Vn−1 and e by introducing edges as follows.

For a pair H ′x and H ′y with xy ∈ E(G), it follows, without loss of generality, that x ∈ Vi and
y ∈ Vj for some integers i and j satisfying 1 ≤ i < j ≤ n − 1. We introduce the edge uxvy if j
is even, and the edge vxuy if j is odd. Lastly, for each H ′x and vertex y ∈ Vn ∪ Vn+1 satisfying
xy ∈ E(G), make y adjacent to ux if n is even and y ∈ Vn or if n is odd and y ∈ Vn+1, otherwise
make y adjacent to vx. By Lemma 1 we have that χ(F ) = n+ 1.

Let U = {ux ∈ V (F ) | x ∈ V1 ∪ . . . ∪ Vn−1}, and V = {vx ∈ V (F ) | x ∈ V1 ∪ . . . ∪ Vn−1}. If
n+1 is odd then, for every vertex x ∈ Vn, we have that NF (x) ⊆ Vn+1∪U , and, for every vertex
x ∈ Vn+1, we have that NF (x) ⊆ Vn ∪ V . If n+ 1 is even then, for every vertex x ∈ Vn, we have
NF (x) ⊆ Vn+1 ∪ V , and, for every vertex x ∈ Vn+1, we have NF (x) ⊆ Vn ∪ U . In addition, it
follows by the construction of F , that U and V are independent subsets of V (F ).

Now we prove that F −→ H ′. Let φ : V (F ) −→ V (H ′) be the mapping defined as follows:
For each vertex wx in Hx, φ(wx) = w. Thus the image of the restriction of φ to U is u, and the
image of the restriction of φ to V is v. If n+ 1 is even, the image of the restriction of φ to Vn is
u, and the image of the restriction of φ to Vn+1 is v. If n+ 1 is odd, the image of the restriction
of φ to Vn is v, and the image of the restriction of φ to Vn+1 is u. Then φ is a homomorphism
from F to H ′. Since H ′ is a subgraph of H it follows that F −→ H.

Finally we prove that F −→ G. Since χ(H ′x) = n there exists a homomorphism γ from H ′x
to Kn, and γ is such that γ(ux) = γ(vx). For each x ∈ V1 ∪ . . . ∪ Vn−1, we have that x /∈ A,
therefore it belongs to a copy of Kn. So we can let γx be a homomorphism that maps H ′x into a
complete subgraph Kn of G containing x. In addition let γx satisfy γx(ux) = γx(vx) = x. Finally,
let φ : V (F ) −→ V (G) be the mapping defined as follows: for each x ∈ V1 ∪ . . . ∪ Vn−1, the
restriction of φ to H ′x is γx, and, for each x ∈ Vn ∪ Vn+1, φ(x) = x. Then φ is a homomorphism
from F to G.

This completes our proof.

The following corollary shows that the result obtained by Burr, Erdős and Lovász can be
derived quite easily from Theorem 3.

Corollary 1. [1] Let G and H be graphs with χ(G) = χ(H) = n+ 1, ω(G) = n. Let A, the set
of vertices of G that are not contained in any n-clique of G, be empty. Then χ(G×H) = n+ 1.

Proof. Let G, H and A be as described above, then assume that A = ∅. In addition, let H ′ be
an (n+ 1)-critical subgraph of H. Then it follows that, for each (n+ 1)-colouring V1, . . . , Vn+1

of V (G) we have that A ⊆ Vn ∪ Vn+1. By Theorem 3, we obtain that χ(G×H ′) = n+ 1. Since
G ×H ′ is a subgraph of G ×H it follows that χ(G ×H) ≥ χ(G ×H ′) = n + 1. From this we
obtain that χ(G×H) = n+ 1.

Next we develop the second of the two constructions mentioned earlier.
For an (n+ 1)-critical graph H, n ≥ 2, and a path P = (x1, x2, . . . , xk+1) in H with k ≥ 2,

let Hi, for each 1 ≤ i ≤ k, be a copy of the graph H − xixi+1 in which each vertex w has been
renamed wi. Next, starting with

⊔k
j=1Hj , for each integer 1 ≤ j ≤ k − 1, identify the vertex
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xjj+1 of Hj with the vertex xj+1
j+1 of Hj+1 to form a new vertex x′j+1. This new graph we shall

refer to as the P -string of H with respect to P .
If G is an (n + 1)-chromatic graph, and e = ab is an edge of G, then the Hajos-Pe-string

construct, also written as HPes-construct, of G and H, is obtained by “replacing” the edge e
of G with the P -string of H as follows: First, identify the vertex a of G − ab with the vertex
x11 of the P -string of H. We rename this newly formed vertex a. Next, we make the vertex b of
G − ab adjacent to the vertex xkk+1 of the P -string of H. This replacement of the edge e = ab

with a P -string in such a manner that b is made adjacent to xkk+1 shall also be referred to as
hanging the P -string on b or attaching the P -string on a.

For a set P of paths in H of length at least 2, and a set E of edges of G, consider the graph
obtained by replacing, as described above, each and every edge in E with a P -string of H for
some P ∈ P. Let these replacements be done in such a way that for all P ∈ P there exists an
edge e ∈ E such that the edge e was replaced with the P -string of H. We call this graph a
Hajos-PE-string-construct or HPEs-construct of G and H.

Lemma 3. Let G and H be connected graphs such that χ(G) = χ(H) = n + 1 ≥ 3 and H is
critical. If P is a set paths of H, each of length at least 2, and E ⊆ E(G) is a set of edges of G,
then every HPEs-construct of G and H has chromatic number n+ 1.

Proof. Let G, H, P, and E be as described above, and let F be an HPEs-construct of G and
H. Assume that χ(F ) < n+ 1, and let P = (x1, x2, . . . , xk+1) be a path in P. Then there exists
an edge e = ab ∈ E that was replaced by hanging the P -string of H, without loss of generality,
on b. Let C : V (F ) −→ {1, . . . , n} be a proper n-colouring of F . The subgraph of F induced by
the vertices of the P -string of H hung on b is composed of graphs that are each isomorphic to
H − xixi+1 for some integer 1 ≤ i ≤ k. Since H is (n+ 1)-critical it follows, for each 1 ≤ i ≤ k,
that every proper n-colouring of H −xixi+1 assigns the same colour to the vertices xi and xi+1.
Therefore C satisfies

C(a) = C(x′2) = C(x′3) = · · · = C(x′k) = C(xkk+1).

Since xkk+1 is adjacent to b in F it follows that C(xkk+1) 6= C(b), and hence C(a) 6= C(b). We can
therefore conclude, for all edges ab ∈ E, that C(a) 6= C(b). This implies that the restriction of
C to V (G) is a proper n-colouring of G, which, of course, is a contradiction since χ(G) = n+ 1.
Therefore it follows that χ(F ) ≥ n+ 1.

Now we show that χ(F ) ≤ n+ 1. Let C be a proper (n+ 1)-colouring of G. Associate each
edge e = ab ∈ E with the path P = (x1, x2, . . . , xk+1) in P that is related to the P -string that
replaced e. For each edge ab ∈ E and its related path P , let b be the vertex which the P -string
of H was hung on, then assign a proper n-colouring De

P to the P -string of H that satisfies

C(a) = De
P (x11) = De

P (x′2) = De
P (x′3) = · · · = De

P (x′k) = De
P (xkk+1).

Such an n-colouring exists since all P -strings discussed here are n-colourable. These n-colourings
De

P are not restricted to using only the colours in {1, 2, . . . n} but can use any n colours from
the set {1, 2, . . . , n, n + 1} as long as the above equality has been met. Now, for all vertices
u ∈ V (F ), let D : V (F ) −→ {1, . . . , n+ 1} be defined as follows

D(u) =

{
C(u) if u ∈ V (G), and
De

p(u) if u belongs to the P -string of H that replaces e.

Then D is a proper (n+ 1)-colouring of F .
From the two above arguments we can conclude that χ(F ) = n+ 1.
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Theorem 4. Let G and H be connected graphs such that χ(G) = χ(H) = n+ 1 ≥ 3, ω(G) = n,
and H is critical. Let A be the set of vertices of G that are not contained in any n-clique of G.
If G[A] −→ H then χ(G×H) = n+ 1.

Proof. Let G, H, and A be as described above, and assume that G[A] −→ H. We will prove that
χ(G×H) = n+1 by constructing a graph F , with chromatic number n+1, that is homomorphic
to G and H.

Note that if A = ∅ then we can arrive at χ(G×H) = n+1 by the use of Corollary 1, therefore
we can assume that |A| ≥ 1. We remark that the graph G[A] may or may not be connected.
Let f : A −→ V (H) be a homomorphism from G[A] to H, and let B be the subset of A that
contains those vertices of G that are adjacent to at least one vertex in V (G)\A. Note that each
component of G[A] contains at least one vertex that belongs to B. For some integer k ≥ 1, we
can partition B into k non-empty sets B1, . . . , Bk satisfying the following: For all b, b′ ∈ B, we
have that

f(b) = f(b′) if and only if b and b′ belong to the same set Bi

From this it follows that there exist k vertices u, v2 . . . , vk ∈ V (H) such that u ∈ f(B1) and
vi ∈ f(Bi) for all 2 ≤ i ≤ k. This means that f(B) = {u, v2, . . . , vk}. For all 2 ≤ i ≤ k, let Pi

be a shortest (in length) uvi-path in H. For each 2 ≤ i ≤ k, such a path Pi exists since H is
connected.

Next, let P be the set of all these paths, then partition it into P1 and P2, where P1 is the
set of those paths in P of length 1. Finally let v ∈ V (H) be any vertex adjacent to u. We point
out that v may belong to the set {v2, . . . , vk}, and P1 or P2 may be empty, possibly both. If P1
and P2 are empty, then f(x) = u for each x ∈ B. Later, each path in P2 will be used to create
P -strings of H provided that P2 is not empty.

Now, consider the subgraph G[V (G) \A] of G. If χ(G[V (G) \A]) = n+ 1 then, by Corollary
1, we have that χ(G[V (G)\A]×H) = n+ 1 which implies that χ(G×H) = n+ 1. Therefore we
may assume that χ(G[V (G) \A]) = n. Let V1, . . . , Vn be a proper n-colouring of G[V (G) \A].

For each x ∈ V (G) \A, let Hx be a copy of H − uv as described earlier. Next, let F ′ be the
Ht-construct of G and H obtained through V (G) \ A and uv by introducing edges as follows:
For a pair Hx and Hy with xy ∈ E(G[V (G) \ A]), it follows, without loss of generality, that
x ∈ Vi and y ∈ Vj for some integers i and j satisfying 1 ≤ i < j ≤ n. We introduce the edge
uxvy if j is even, and the edge vxuy if j is odd. Lastly, for each Hx and vertex y ∈ A satisfying
xy ∈ E(G), make y adjacent to ux if y ∈ B \ B1, and make y adjacent to vx if y ∈ B1. By
Lemma 1 we have that χ(F ′) = n+ 1.

We are now at the final step of our construction. Let E be the set of all edges of F ′ that
connect a vertex of B to a vertex not in A, that is

E = {wy ∈ E(F ′) | w ∈ V (F ′) \A and y ∈ B}.

Thus the set E is not empty since |A| ≥ 1 and G is connected. Notice that if wy ∈ E and
y ∈ B \ B1 then w = ux for some x ∈ V (G) \ A. For each integer i with 1 ≤ i ≤ k let
Ei = {wy ∈ E | y ∈ Bi}. Then the sets E1, . . . , Ek are mutually disjoint, and E = E1 ∪ . . .∪Ek.
If P2 = ∅ then we let F be the graph F ′, and we are done. If P2 6= ∅ then we proceed as follows.
For each integer 2 ≤ i ≤ k, replace each edge xy ∈ Ei, where y ∈ Bi, with a Pi-string of H hung
on y if and only if Pi ∈ P2. It should be clear that if, for some 2 ≤ j ≤ k, the path Pj belongs
to P1 then none of the edges in Ej are replaced. We call this new graph F . For some E∗ ⊂ E,
the graph F is an HP2(E∗)s-construct of F ′ and H, and thus, by Lemma 3, χ(F ) = n+ 1.

Let U = {ux ∈ V (F ) | x ∈ V (G) \A}, and V = {vx ∈ V (F ) | x ∈ V (G) \ A}. Then the sets
U and V are independent sets of vertices of F . This follows as a result of the construction of F .
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Next we describe a homomorphism φ from F toH. For each path Pi = (u = x1, x2, . . . , xr+1 =
vi) in P2 let Ti be the Pi-string of H. The mapping φPi : V (Ti) −→ V (H) defined, for all
z ∈ V (Ti), by

φPi(z) =

{
xj if z = x′j for some 2 ≤ j ≤ r, and

w if z = wj for some 1 ≤ j ≤ r

is a homomorphism from Ti to H. Let φ : V (F ) −→ V (H) be the mapping defined as follows:
The restriction of φ to A is the homomorphism f described in the beginning. The restriction of
φ to a Pi-string of H is the homomorphism φPi . For each vertex z in F that belongs to an Hx

for some x ∈ V (G) \A, since z = wx for some w ∈ V (H), let φ(z) = w.
By this definition, it follows that the image of the restriction of φ to U is u, and the image of

the restriction of φ to V is v. One can quite easily verify that the mapping φ is a homomorphism
from F to H.

Lastly we give a description of a homomorphism γ from F to G. For each Hx, let γx be a
homomorphism that maps Hx into an n-clique of G that contains x. Select γx to be such that
γx(ux) = γx(vx) = x.

For each edge wy ∈ E, where y ∈ B \ B1, that was replaced by some Pi-string, we have
that w = ux for some x ∈ V (G) \ A. Let Pi = (u = x1, x2, . . . , xr+1 = vi), and let Twy be that
subgraph of F which is the Pi-string that replaced the edge wy. Next, for each integer j with
1 ≤ j ≤ r, let γHj be a homomorphism from Hj to an n-clique of G containing w. In addition
let γHj be such that γHj (xj) = γHj (xj+1) = w.

Now define the mapping γwy : V (Twy) −→ V (G) as follows. For all z ∈ V (Twy),

γwy(z) =

{
w if z ∈ {x′2, . . . , x′r}
γHj (z) if z = xj for some 1 ≤ j ≤ r.

Then γwy is a homomorphism. Finally, define γ : V (F ) −→ V (G) as follows: the restriction of
γ to A is the identity mapping, the restriction of γ to a Pi-string of H that replaced an edge
wy ∈ E is the homomorphism γwy, and, the restriction of γ to any V (Hx) is γx. Then γ is a
homomorphism from F to G. This completes our proof.

It is not too difficult to see that Theorem 3 is a special case of Theorem 4.

3 Corollaries

In this section we describe some corollaries to Theorem 4 and link them to known results from
[2] and [9]. We then offer one last result which is obtained by further increasing the restrictions
on the graphs G and H. All the proofs that follow exploit the existence of a homomorphism
from G[A] to H.

Corollary 2. Let G and H be graphs with χ(G) = χ(H) = n+ 1 ≥ 3, ω(H) ≤ n = ω(G), and
H is (n+ 1)-critical. Let A be the set of vertices of G that are not contained in any n-clique of
G. If χ(G[A]) ≤ ω(H) then χ(G×H) = n+ 1.

Proof. Let G, H, and A be as described. Since χ(G[A]) ≤ ω(H), there is a homomorphism from
G[A] to H, and thus, by Theorem 4, it follows that χ(G×H) = n+ 1.

The next corollary is a special case of the result in [2] and [9]. Although it bears a striking
similarity to the aforementioned result, it requires that G and H be critical. This is to ensure
that χ(G[A]) ≤ n, which guarantees that G[A] −→ H.
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Corollary 3. Let G and H be connected (n+ 1)-critical graphs with ω(G) = ω(H) = n. Then
χ(G×H) = n+ 1.

Proof. Let G and H be as described above and let A be the set of all vertices not contained in an
n-clique of G. We may assume A is not empty, since otherwise we would have χ(G×H) = n+ 1
by Corollary 1. Since G is critical it follows that χ(G[A]) ≤ n, and thus χ(G[A]) −→ H since
ω(H) = n. Then, by Theorem 4, we have that χ(G×H) = n+ 1.

For our final result we will require two definitions; the first of these two concepts is introduced
in [6]. A graph G with χ(G) = n is uniquely n-colourable if there is exactly one partition of its
vertex set V (G) into n independent sets. A graph G is said to be a homomorphic image of a
graph H if there exists a homomorphism φ from H onto G satisfying the following: For every
edge xy ∈ E(G) there exists an edge uv ∈ E(H) such that φ(u) = x and φ(v) = y. We note
that this concept is essentially the same as the one defined in [8].

Theorem 5. Let G and H be connected graphs such that χ(G) = χ(H) = n+ 1, ω(G) = n, and
H is (n + 1)-critical. In addition, let A, the set of vertices of G that are not contained in an
n-clique of G, be such that χ(G[A]) = n. If there exists a uniquely n-colourable subgraph H ′ of
H with G[A] a homomorphic image of H ′, then χ(G×H) = n+ 1.

Proof. Let G,H,H ′ and A be as described above. Let φ be a homomorphism from H ′ to G[A]
and let B ⊆ A to be the set of those vertices of G that are adjacent to a vertex in V (G) \ A.
Finally let G′ be that graph with vertex set V (G′) = (V (G) \A) ∪ V (H ′) and edge set

E(G′) = E(G[V (G) \A]) ∪ E(H ′) ∪N,

where N = {xy | x ∈ V (G)\A, y ∈ V (H ′), φ(y) ∈ B and xφ(y) ∈ E(G)}. It follows immediately
that G′ −→ G: This can be seen from the mapping γ : V (G′) −→ V (G) whose restriction to
V (G) \ A is the identity mapping and whose restriction to V (H ′) is φ. From this it follows
that χ(G′) ≤ χ(G) = n + 1. We claim that χ(G′) = n + 1. Suppose this is not so, then
χ(G′) = n since ω(G′) = n. From this it follows that there exists a proper n-colouring C of G′.
In addition, |C(φ−1(x))| = 1 for all x ∈ A, since the assumption that |C(φ−1(x))| > 1 for some
x ∈ A implies that there exists an alternative proper n-colouring of H ′, one in which the vertices
of φ−1(x) have been assigned at least two different colours, which would imply that H ′ is not
uniquely n-colourable. But then |C(φ−1(x))| = 1 for all x ∈ A, which implies that the mapping
C ′ : V (G) −→ {1, 2, . . . , n} defined below is a proper n-colouring of G. For all x ∈ V (G), let

C ′(x) =

{
C(x) if x ∈ V (G) \A and
C(φ−1(x)) if x ∈ A.

This is clearly a contradiction, thus it follows that χ(G′) = n + 1. By Theorem 4 it now
follows that χ(G′ ×H) = n + 1 since the vertices of G′ which are not contained in an n-clique
induce a subgraph of G′ that is homomorphic to H. From χ(G × H) ≥ χ(G′ × H) we obtain
that χ(G×H) = n+ 1.

If the hypothesis of Theorem 5 permitted χ(G[A]) to be less than n and H ′ to be uniquely
χ(G[A])-colourable, then we would be faced with the difficulty of proving that the colouring C
in the proof of Theorem 5 is such that |C(φ−1(x))| = 1 for all x ∈ A. The reason for this is that
the restriction of C to V (H ′) may use more colours than χ(G[A]) which would not allow us to
use the unique χ(G[A])-colourability of H ′.
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