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Abstract

This thesis was aimed developing a fundamental understanding of the boundary layer response
to arbitrary motion. In this context arbitrary motion was defined as the unsteady translation and
rotation of an object.

Research objectives were developed from the gaps in knowledge as defined during the literature sur-
vey. The objectives were divided into three main activities; mathematical formulations for non-inertial
bulk flow and boundary layer equations, implementation of said formulations in a numerical solver and
simulations for various applications in arbitrary motion.

Mathematical formulations were developed for the bulk flow and boundary layer equations in arbi-
trary motion. It was shown that the conservation of momentum and energy equations remains invariant
in the non-inertial forms. The conservations of momentum equation can at most have six fictitious terms
for unsteady arbitrary motion. The origin of the terms were found to be from transformation of the ma-
terial derivative to the non-inertial frame. All fictitious terms were found to be present in the boundary
layer equations, none could be eliminated during an order of magnitude analysis.

The vector form of the non-inertial equations were implemented in a novel OpenFOAM solver. The
non-inertial solver requires prescribed motion input and operate on a stationary mesh. Validation of the
solver was done using analytical solutions of a steady, laminar flat plate and rotating disk respectively.

Numerical simulation were done for laminar flow on a translating plate, rotating disk and rotating
cone in axial flow. A test matrix was executed to investigated various cases of acceleration and decel-
eration over a range of 70 g to 700 000g. The boundary layer profiles, boundary layer parameters and
skin friction coefficients were reported.

Three types of boundary layer responses to arbitrary motion were defined. Response Type I is vis-
cous dominant and mimics the steady state velocity profile. In Response Type II certain regions of the
boundary layer are dominated by viscosity and others by momentum. Response Type III is dominated
by momentum. In acceleration the near-wall velocity gradient increases with increasing acceleration. In
deceleration separation occurs at a result of momentum changes in the flow.

Themechanism that causes these responses have been identified using the developed boundary layer
equations. In acceleration the relative frame fictitious terms become a momentum source which results
in an increase in velocity gradient at the wall. In deceleration the relative frame fictitious terms become
a momentum sink that induced an adverse pressure gradient and subsequently laminar separation.
Keywords
Non-Inertial Reference Frames, Fictitious Forces, Boundary Layer Equations, OpenFOAM, Laminar
Flat Plate, Laminar Rotating Disk, Rotating Cone in Axial Flow.
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Abstrak

Hierdie tesis is gerig op die ontwikkeling van 'n fundamentele begrip aangaande die grenslaag
reaksie op arbitrêre beweging. In hierdie konteks word arbitrêre beweging gedefinieer as die
ongestadigde translasie en rotasie van 'n voorwerp.

Navorsingsdoelwitte is ontwikkel uit die gapings soos omskryf in die literatuuroorsig. Die doel-
witte is verdeel in drie hoof aktiwiteite; wiskundige formulerings vir ongestadigde vloei en grenslaag
vergelykings, implementering van hierdie formulerings in 'n numeriese kode en simulasies vir verskeie
gevalle van arbitrêre beweging.

Wiskundige formulerings is ontwikkel vir die vloei en grenslaag vergelykings in arbitrêre beweg-
ing. Daar is bewys dat die behoud van massa en energie vergelykings onveranderd in die nie-inertiële
vorms bly. Die behoud van momentum vergelyking kan hoogstens ses fiktiewe terme vir ongestadigde,
arbitrêre beweging hê. Die oorsprong van die terme is vanuit die transformasie van die ongestadigde
en adveksie terme (aan die linker kant van die momentum vergelyking) na die nie-inertiële raam. Alle
fiktiewe terme is teenwoordig in die grenslaag vergelykings.

Die vektor vorm van die nie-inertiële vergelykings is in 'n nuwe OpenFOAM oplosser geïmple-
menteer. Die nie-inertiële oplosser vereis voorgeskrewe beweging insette en werk op 'n stilstaande
rooster. Die oplosser is getoets teen analitiese oplossings van 'n gestadigde, laminêre plaat plaat en
'n roterende skyf, onderskeidelik.

Numeriese simulasies is gedoen vir laminêre vloei op 'n translerende plaat, roterende skyf en roterende
konus in aksiale vloei. 'n Toets matriks is gebruik om ondersoek in te stel na gevalle van versnelling en
vertraging oor 'n verskeidenheid van 70 g tot 700 000 g. Die grenslaag profiele, grenslaag parameters
en oppervlak wrywingskoëffisiënte is aangemeld nie.

Drie tipes grenslaag reaksies op arbitrêre beweging is gedefinieer. Reaksie Tipe I is viskeus dom-
inant en boots die bestendige snelheidsprofiel na. In reaksie Tipe II sekere dele van die grenslaag is
oorheers deur viskositeit en ander deur momentum. Reaksie Tipe III word in totaliteit oorheers deur
momentum. In versnelling die snelheid helling teen die objek neem toe met toenemende versnelling. In
vertraging is 'n negatiewe snelheidsprofiel waargeneem as gevolg van momentum veranderinge in die
vloei.

Die meganisme wat hierdie reaksies veroorsaak is geïdentifiseer deur die grenslaag vergelykings. In
versnelling word die fiktiewe terme 'n bron van momentum. Dit lei tot 'n toename in snelheid helling op
die objek. In vertraging word die fiktiewe terme 'n momentum gebruiker wat 'n negatiewe drukgradiënt
veroorsaak en gevolglik laminêre vloei wegbreking veroorsaak.
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Résumé

Cette thèse avait pour but de développer une compréhension fondamentale de la réponse de la
couche limite au mouvement arbitraire. Dans ce contexte, le mouvement arbitraire a été défini
comme la traduction instationnaire d'un objet.

Les objectifs ont été divisés en trois parties principales; formulationsmathématiques pour l'écoulement
dans un repère non-inertiel, mise en œuvre desdites formulations dans un solveur numérique et diverses
applications en mouvement arbitraire.

Les formulations mathématiques ont été développées pour le flux de masse et les équations de la
couche limite en mouvement arbitraire. Il a été montré que la conservation de masse et d'énergie restent
invariantes sous les formes non inertielles. La conservation de l'équation met en exergue six termes
inertiels en mouvement arbitraire instable.

La forme vectorielle des équations non-inertielles ont été mis en œuvre dans le code OpenFOAM.
Ce code nécessite des conditions initiales de quantité de mouvement prescrites et un maillage fixe. La
validation du code a été effectuée à l'aide de solutions analytiques pour une plaque plane laminaire
stable et un disque en rotation.

Les simulations numériques ont été réalisées pour un écoulement laminaire sur une plaque en trans-
lation, un disque en rotation et un cÙne en rotation-translation. Les effets d'un écoulement en accéléra-
tion et décélération ont été étudiés entre 70 g et 700000 g. Les paramètres de la couche limite et des
coefficients de frottement de paroi ont été déterminés.

Trois types de réponse pour la couche limite dans un mouvement arbitraire ont été définis.
La réponse de type 1 : la viscosité est dominante et le profil de vitesse est similaire à celui de l'état

d'équilibre. La réponse de type 2 : Certaines régions de la couche limite sont dominées par les effets
de viscosité et d'autres par la quantité de mouvement. La réponse type 3 est dominée par la quantité de
mouvement. Avec l'augmentation de l'accélération de l'écoulement, le gradient de vitesse proche de la
paroi augmente. Dans le cas de la décélération, une séparation de la couche limite se produit à la suite
des changements des quantités de mouvement dans l'écoulement.

Lemécanisme qui provoque ces phénomènes a été identifié en analysant la couche limite. Les termes
de l'accélération deviennent une source d'impulsion qui se traduit par une augmentation du gradient
de vitesse sur la paroi. Les termes dus à la décélération deviennent un puit d'énergie de quantité de
mouvement induisant un gradient de pression négative et par la suite une séparation.
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Абстрактные

Этот тезис был направлен разработка фундаментального понимания реакции пограничного
слоя на произвольные движения. В этом контексте произвольное движение было опреде-
лено как неустановившемся сдвига и вращения объекта.

Цели исследования были разработаны на основе пробелов в знаниях, как это определено в
ходе исследования литературы. Цели были разделены на три основных направлений деятельно-
сти; математические формулировки для неинерциальной объемного потока и уравнений погра-
ничного слоя, реализация указанных композиций в численном решателя и моделирования для
различных применений в произвольном движении.

Математические препараты были разработаны для потока сыпучих и уравнений погранично-
го слоя в произвольном движении. Было показано, что сохранение импульса и энергии уравнений
остается неизменной в неинерциальных формах. В консервирования уравнения импульса мож-
но самое большее шесть фиктивных условия для произвольного неустановившегося движения.
были найдены происхождение терминов, чтобы быть от превращения производного материала
к неинерциальной. Все они были признаны фиктивными термины присутствовать в уравнениях
пограничного слоя, ни одна не может быть устранена в течение порядка анализа величины.

Вектор форма неинерциальных уравнений были реализованы в новой OpenFOAM решателя.
Неинерциальную решатель требует предписанного входного движения и действуют на стаци-
онарной сеткой. Проверка решателя было сделано с использованием аналитических решений
устойчивой, ламинарного плоской пластины и вращающегося диска соответственно.

Численное моделирование проводились для ламинарного потока на переводческой пластине,
вращающийся диск и вращающийся конус в осевом потоке. Тест матрица была выполнена для
исследованных различных случаев ускорения и замедления в диапазоне от 70 г до 700 000 г.
Профили пограничного слоя, были представлены параметры пограничного слоя и коэффициенты
трения кожи.

Были определены три типа ответов пограничного слоя произвольного движения. Ответ Тип
I вязкая доминирующими и мимику установившийся профиль скорости. В типе реагирования
II определенные области пограничного слоя преобладают вязкости и другие по инерции. Ответ
типа III преобладают импульса. При ускорении пристенных градиента скорости возрастает с уве-
личением ускорения. При замедлении разделение происходит в результате изменения импульса
в потоке.

Механизм, который вызывает эти реакции были идентифицированы с использованием разра-
ботанных уравнений пограничного слоя. При ускорении Относительный каркасные фиктивные
термины становятся источником импульса, который приводит к увеличению градиента скоро-
сти у стенки. В замедлении Относительный кадра фиктивные члены становятся стоком импульс,
который индуцируется неблагоприятный градиент давления, а затем ламинарный разделение.
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1
Introduction

The aim of this research is to investigate the response of the boundary layer on the surface of an
aero-ballistic airframe subjected to arbitrary motion. In this context arbitrary motion is defined
as unsteady acceleration and deceleration respectively, in both translation and rotation. The re-

search question for this project is defined as:

How does the boundary layer on an airframe in arbitrary motion respond the unsteady flow con-
ditions?

Research Question

1.1 Background

There are significant gaps in the body of knowledge with regards to studies in arbitrary motion. The
few studies that investigate these effects, rely mostly on steady motion and therefore do not activate
the non-inertial effects (Biedron and Thomas [1], Gardi [2], Limache [3] There are some cases that
consider pre-scribed motion and transient effects, however most fail to realise the importance of the
boundary layer. It makes use of inviscid formulations of the standard Navier-Stokes equations and slip
wall conditions (Inoue et al. [4], Roohani and Skews [5]).

The standard Navier-Stokes equation cannot capture the relative flow properties involved in ar-
bitrary motion. This form of the equations resolves the flow problem in an inertial reference frame
(Batchelor [6], Greenspan [7]). In rotational flow problems, the symmetry between the inertial frame
and the non-inertial frame is broken. The mathematical model in the inertial frame cannot account for
the observed behaviour. This can be accounted for by the inclusion of non-inertial effects that present
as fictitious forces on the right hand side of the non-inertial momentum equation (Meriam and Kraige
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CHAPTER 1. INTRODUCTION

[8], White [9]). Solving the system from the non-inertial perspective leads to enhanced simulation re-
sults that are capable of quantifying the acceleration terms.

In this work two observational reference frames are considered: an inertial and a non-inertial frame
of reference. The inertial frame is tied to the stationary state of motion of the observer (Eulerian per-
spective) where all the laws of physics take the simplest form. In the non-inertial frame (Lagrangian
perspective) the simplest form does not prevail; the observer is no longer stationary and fictitious forces
must be introduced to account for observer motion. This is illustrated through Newton's Second Law of
Motion (Meriam and Kraige [8]). In the case of an inertial frame the equation is:

ΣFi = mai (1.1)

The subscript "i" indicates that the vectors are described in the inertial coordinate system. In the
case on a non-inertial frame the equation becomes:

ΣFr +ΣF f ictitious = mar (1.2)

In this equation the subscript "r" indicates that the vectors are described from the non-inertial co-
ordinate system.

A rotating reference frame is a special case of a non-inertial reference frame. This frame rotates
relative to an inertial frame (Figure 1.1).

Figure 1.1: Rotating Reference Frame Depicting the Motion of the Moving Earth

An everyday example is the surface of the earth. The effect of the rotating reference frame can be
illustrated by utilizing a Foucault pendulum (Hart et al. [10], Somerville [11]). The rotation of the Earth
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1.1. BACKGROUND

causes the pendulum to change its plane of oscillation (fixed in space) with respect to its surroundings
(moving with the Earth). The explanation of the apparent change in orientation from an Earth-bound
(non-inertial) frame of reference requires the introduction of the fictitious Coriolis force (associated with
a rotational reference frame). In an inertial frame outside the Earth, no such fictitious force is necessary.
Therefore, fictitious forces do not arise from any physical interaction but rather from the acceleration
of the non-inertial frame itself.

The fictitious forces at play here - Coriolis, Euler and Centrifugal forces (Persson [12]) - are pro-
portional to the mass of the fluid element. The Coriolis force acts in a direction perpendicular to the
rotational axis and to the velocity of the body in the rotating frame. The centrifugal force acts outward
in the radial direction and is proportional to the distance of the body from the axis of the rotating frame.
Both these forces are proportional to the angular velocity of the mass in the rotating frame. The Euler
force appears when the rotational speed of the frame is not constant. It is therefore proportional to the
mass as well as the angular acceleration.

Apart from the fictitious forces that are observed in the non-inertial frame, there are a number of
body effects that influences the trajectory of airframes executing arbitrary motion. One such effect, that
is high applicable in the aerospace and defence environment, is the Magnus effect (Magnus [13]). This
occurs due to the rotation of the object around its own axis while in forward motion (Figure 1.2).

Figure 1.2: Relation between the Inertial and Non-Inertial Reference Frames

This rotation is used as a stabilization method since launched airframes are inherently unstable
during the initial stages of flight. Positive attitude (a combination of the pitch and yaw angles) must
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CHAPTER 1. INTRODUCTION

be maintained either through fin or spin stabilization of the projectile. High rates of change in angular
acceleration, along with the changes in airframe attitude, influence the aerodynamic properties of the
airframe significantly (Costello and Sahu [14], DeSpirito and Heavy [15]).

Aerodynamic characteristics, such as drag and lift coefficients, are transient parameters required
as input to computational performance models. Examples in the defence environment are trajectory
codes, missile manoeuvring codes and combustion codes. Most of these applications occur in arbitrary
motion. The accuracy of the result of the simulations depends on the confidence of the aerodynamic
characteristics (Costello and Sahu [14], Sahu [16, 17], Silton [18]).

Current methods of characterizing aerodynamic coefficients are through empirical methods, wind
tunnel measurements, spark range testing and computational models (Davis et al. [19], Pettersson et al.
[20], Wernert et al. [21]). In specialized cases, i.e. where accelerating flow is present, neither of these
methods (with the exception of spark range testingwhich is costly and complicated) provides an accurate
representation of reality. Conventional wind tunnels are limited by its inability to control the temperature
of the airflow. The exact flow conditions, whether it is for internal or external flow, cannot be accurately
mimicked. A further drawback that the test piece remains stationary, therefore the rotational effects are
not taken into account.

Simulation techniques fail to obtain accurate results since the physics associated with variable ro-
tational and accelerating flow is not fully accounted for. Flow that is in acceleration further requires
specialised discretization and meshing techniques that allow for a stable solution.

No case could thus far be found where the simulation was conducted in the relative frame with
inclusion of the boundary layer. Some studies accounted for the non-internal effects by the artificial
addition of mass (Gledhill et al. [22], Roohani and Skews [5]). Although this method is recommended
by certain commercial codes it cannot accurately describe the response of the boundary layer to the
arbitrary acceleration in the bulk flow. Other studies do derive the non-inertial terms but makes use a
hybrid method in the absolute frame in order to neglect these non-inertial sources terms. This makes the
matrices significantly easier to solve (with a reduced stiffness in comparison with matrices containing
the source terms) with conventional numerical schemes. Most studies, however, works exclusively from
the absolute frame and thus avoid the overhead of resolving the flow in the relative frame.

Investigating the response of boundary layers in arbitrary accelerating flow conditions requires an
in-depth understanding of the underlying flow physics. This is be accomplished though the development
of a complete mathematical model from first principles. The origin of the fictitious terms, (Coriolis, Eu-
ler and centrifugal as well as acceleration of the relative frame with respect to the absolute frame), are
seated within the relativity of the non-inertial frame and can be properly evaluated through mathemat-
ical derivation (Kageyama and Hyodo [23]). This method can be extended to compressible, viscous
derivation of the non-inertial Navier-Stokes equation for arbitrary motion.
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1.2. RESEARCH APPROACH

In order to clearly define the scope of this research, the following gaps in the literature are addressed
within this work:

• Mathematical derivation of non-inertial Navier-Stokes and boundary layer equations. A rigorous
and formalized approach are followed and documented.

• Implementation of a non-inertial Navier-Stokes formulation in OpenFOAM. To the best knowl-
edge of the applicant no solver has been written that makes provision for all the acceleration
terms.

• Response of the boundary layer to arbitrary motion. Most boundary layer response studies fo-
cussed on linear acceleration while aero-ballistic airframes require investigation into arbitrary
motion.

1.2 Research Approach

The research question is:

How does the boundary layer on an airframe in arbitrary motion respond to the unsteady flow con-
ditions?

The research approach used is depicted in Figure 1.3. The phases of the thesis and corresponding ob-
jectives are shown. The novelties, competencies built and outcome of each objective is depicted. The
objectives address the gaps in knowledge as identified in the literature survey:

• Objective 1: Derive the non-inertial Navier-Stokes bulk flow and boundary layer equations. The
outcome of this phase is the mathematical formulations for the bulk flow and boundary layer
in arbitrary motion. This is accomplished by the development of an Eulerian method for non-
inertial equation derivation. The boundary layer equations are derived using an order ofmagnitude
analysis.

• Objective 2: Implement the non-inertial Navier-Stokes equations in a solver in OpenFOAM. The
outcome of this phase is the development of a solver for prescribed, arbitrary motion in the non-
inertial reference frame, implemented in OpenFOAM.

• Objective 3: Conduct numerical simulations to determine the response of the boundary layer to
arbitrary motion. The outcome of this phase is to provide insight into the response of the boundary
layer to arbitrary motion. This is accomplished through analysis of the simulation results.
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CHAPTER 1. INTRODUCTION

Figure 1.3: Flow Diagram Depicting the Research Approach
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1.3. THESIS OVERVIEW

1.3 Thesis Overview

The introduction,Chapter 1, provides the background to thework conducted in this research. It discusses
the research approach that is followed and gives an overview of the thesis. The literature survey is
discussed in Chapter 2.

In Chapter 3 the non-inertial equations are derived in the vector form. This is done for pure rotation
both in constant and variable rotation. The Eulerian method established is extended to derive the non-
inertial equations for full arbitrary motion. The equations established here were implemented in the
non-inertial solver in OpenFOAM.

The component form of the equations derived in Chapter 3 is obtained in Chapter 4. Equations
are described in the Cartesian, Cylindrical and Curvilinear co-ordinates systems respectively. These
formulations are used in Chapter 5 where the boundary layer equations are derived using a order of
magnitude analysis.

The non-inertial boundary layer equations of Chapter 5 is used in Chapters 7, 8 and 9 to devise a
mechanism for the response of the boundary layer to arbitrary motion.

In Chapter 6 the non-inertial equations are implemented in a solver. The code implementation, the-
oretical formulations, case set-up and validation results for this solver is discussed in this chapter.

Chapters 7, 8 and 9 provides the simulation results for arbitrary motion of a flat plate, rotating disk
and rotating cone in axial flow respectively. The response of the boundary layer to arbitrary motion is
determined in each case. A mechanism is proposed to explain the response of the velocity profile, shape
factor and skin friction coefficient in each case.

This study is concluded with Chapters 10. In this chapter the contributions of this work is discussed.
Further work and alternative applications of the methods is indicated.

The thesis has two appendixes. In Appendix A proof of the identities used in the derivations are
given. Appendix B depicts the code formulations for the Accelerating Reference Frame solving utility
designated ARFrhoPimpleFoam.
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2
Literature Survey

The literature survey focussed on studies that implemented accelerating flow conditions, deriva-
tions of the non-inertial Navier-Stokes equations and investigations that resolved the boundary
layer for various cases. In this thesis the laminar flat plate, laminar rotating disk and rotating

cone in axial flow are used as validation and implementation cases.

2.1 Accelerating Flow Implementation

It has only been in recent years that arbitrary acceleration of airframes had been investigated (Roohani
and Skews [5], Gledhill et al. [22]). Studies were previously limited to steady state conditions (DeSpir-
ito and Heavy [15], Garibaldi et al. [24]) and in the small number of cases that considered acceleration,
constant properties both in translation and rotation was assumed (Limache [3], Biedron and Thomas [1],
Gardi [2]). This can be attributed to the difficulty in obtaining experimental results to for validation pur-
poses, the level of difficulty to implement and resolve the formulations of the non-inertial equations and
the high expense in computational resources. The recent advances in and availability of computational
resources, along with the increased cost of experimentation, has seen to an increase in the requirement
and feasibility for high validity Computational Fluid Dynamic (CFD) studies of a more advanced nature.
This literature survey has shown that, although the mathematical models that describe arbitrary accel-
eration have been developed in the 19th century, there are still gaps in published literature concerning
this topic.

The derivation of the Navier-Stokes equation in a non-inertial frame (Batchelor [6], Greenspan
[7]) has been the foundation for the finite volume formulation. The implementation and application
of these equations has been done in various manners in the literature (Biedron and Thomas [1], Gardi
[2], Gledhill et al. [22], Inoue et al. [4], Limache [3], Roohani and Skews [5]).
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CHAPTER 2. LITERATURE SURVEY

Gledhill et al. [22]made use of the formulation of Forsberg [25], where a hybridmethod is developed
from the perspective of the absolute frame utilizing co-rotating velocities. This method negates the
detrimental effect of the source terms where the properties of the numerical scheme are affected and the
conservative character is lost (2.1).

Figure 2.1: The Fixed and Relative Frame as Described by Forsberg [25]

Although the use of the relative velocities serves to reduce the inaccuracies arising from the trun-
cation error in the solution, the matrix increases in stiffness with the addition of the non-inertial source
terms. The hybrid method is further significantly easier to implement into a moving grid. This study
investigated acceleration effects on missiles at sharp turns, but the hybrid method does not allow for
variable rotational velocities.

Roohani and Skews [5] made use of the standard Navier-Stokes formulation (without the accelera-
tion terms in the non-inertial frame) and accounted for the acceleration effects through time-dependant
boundary conditions and user-defined functions for mass addition. This methodology artificially intro-
duces the lumped effect of acceleration without quantifying the terms involved. Comparisons where
made between the steady state values, acceleration and retardation effects on aerofoils and it was found
that there is a significant change in the position of the shock wave location (and hence the aerodynamic

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



2.1. ACCELERATING FLOW IMPLEMENTATION

performance) at the same Mach number for steady state and transient acceleration with the greatest
effects occurring in the transient regime.

Limache [3] investigated the implementation of non-inertial frame for the purpose of aerodynamic
modelling (Figure 2.2).

Figure 2.2: Reference Frames of an Aircraft Flying in Arbitrary Motion (Limache [3])

He briefly describes the formulations of the non-inertial Navier-Stokes equations with arbitrary
acceleration, but implements the equations in its steady form (aerodynamic steady motion) for inviscid
applications (Euler equations).

Biedron and Thomas [1] also describe the formulation of the non-inertial Navier-Stokes Equation,
but implement the equations in a manner similar than Gledhill et al. [22] in the absolute frame for steady
aerodynamic motions. It is noted in this work that using the absolute-velocity formulation allows for
more accurate evaluation of the fluxes in a finite-volume scheme. It is described in this paper as a
conservative manner of handling the equations. The energy equation in Biedron and Thomas [1] in the
relative frame is implemented without the source terms associated with the acceleration effects. This is
in contrast with the formulations of Gardi [2] and Limache [3].

Gardi [2] investigated the differences between the Moving Reference Frame and Arbitrary La-
grangian Eulerian approaches to the study of moving domains. He very briefly touches on the derivation
of the material acceleration in a non-inertial reference frame using a Lagrangian approach. But, as is
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CHAPTER 2. LITERATURE SURVEY

the case with this approach, it is more intuitive (utilizing Newton’s second law) than rigorously math-
ematical. In this study all the non-inertial acceleration terms were implemented and partially validated
against theoretical results. In the last validation case that concerned the flutter on a NACA0012 aerofoil,
preference was given to an inviscid solution with slip wall boundaries.

Inoue et al. [4] investigates the focusing of shock waves generated by the linear acceleration of
projectiles. The main contribution of the paper is through the simulation of an unsteady flow field past
a projectile in parabolic motion and linear acceleration. The acceleration terms are not included in the
formulation of the momentum equations and the viscous (diffusion) terms are neglected. In supersonic
flow conditions the tendency of most studies is to neglect the viscous terms from the Navier-Stokes
equations.

Studies such as Garibaldi et al. [24] and DeSpirito and Heavy [15] investigates spinning bodies
in the absolute frame. The non-inertial acceleration effects is not taken into account, inclusion thereof
enhance the understanding of the observed effects during flight and result in more accurate prediction
of aerodynamic coefficients.  

2.2 Derivation of Non-Inertial Navier-Stokes Equations

It is apparent from the literature that very few studies derived the equations from first principles. Instead
the equation is just implemented in the form it is obtained in from the citations listed in the references.
A proper understanding of the meaning of terms can be obtained through derivation of the equations.
In some instances it is difficult to differentiate between the terms in the absolute frame and the relative
frame, understanding the origin of the terms negates such confusions. The studies that do derive the
equations (Forsberg [25]) generally make use of the Lagrangian fluid parcel concept. As an alternative
method, adopting an Eulerian approach to the derivation of the non-inertial Navier-Stokes equations
Kageyama and Hyodo [23] has the following advantages:

• This approach is general and can be used for any vector field even in cases where the fluid parcel
concept is not relevant.

• The physical meaning of this type of derivation is clear as it makes use of local Galilean and
rotational transformations.

• This approach is mathematically rigorous.

2.3 Boundary Layers in Unsteady Flow

Studies (Brinich and Neumann [26]), Yuan and Piomelli [27], Back [28], Escudier et al. [29], Webster
and Eaton [30]) have shown that in favourable pressure gradients (associated with accelerating flow) the
structure of the turbulent boundary layer undergo significant changes and resembles the characteristics
of a laminar boundary layer. This is referred to re-laminarization of the turbulent boundary layer. The
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2.3. BOUNDARY LAYERS IN UNSTEADY FLOW

physics of the boundary layer can be adequately described by laminar boundary layer theory if the
acceleration parameter exceeds 3x10−6 (Escudier et al. [29], Yuan and Piomelli [27],Webster and Eaton
[30]). In the low velocity, laminar near-wall region the viscous components of the flow are orders larger
than the momentum components. The flow in the near wall region can therefore not be approximated
with either slip wall conditions or Euler equations. Proper resolution of the laminar boundary layer is
required both for studies that investigate far-field shock structures and wall-bounded shock interactions
(Pirozzoli et al. [31]).

There are a few studies that investigated acceleration effects within the boundary layer (Moore [32],
Brinich and Neumann [26],Vleggaar [33],Back [28], Back and Cuffel [34], Bogolepov and Lipatov
[35],Dala and Lipatov [36], Samad & Garret (2010)). The majority of the studies took place in the
seventies and made use of analytical approaches, mainly the asymptotic methods. This was before com-
putational power was developed at a level that allowed for flow to be solved by means of computational
fluid dynamics. There is a gap in the literature with regards to asymptotic methods in acceleration that
extends from the late 70’s to the late 90’s. During this period boundary layers in accelerating flow was
either neglected or approximated with wall functions. In recent years, the analytical methods were rein-
troduced as studies have shown that wall functions cannot adequately describe the response of boundary
layers to acceleration effects. The asymptotic methods are a useful tool that enhances understanding of
the flow physics.

Moore [32] stated that unsteady laminar boundary layer flow in bodies starting from rest was used
by Blasius [37] to investigate the onset of separation and transient effects of impulsive start. He pointed
out that those studies only accounted for the earliest phase of motion and that studies were required to
investigate unsteady boundary layer flow for longer times elapsed since start and higher at speeds. His
applications related to rocket-driven missiles where the boundary layer effects such as skin friction and
heat transfer are unsteady for entire ballistic trajectory. Moore further discussed the assumption (Kay
[38]) that at high speeds the boundary layer responds with no time lag to changes in stream velocity. The
boundary layer would therefore be given the same properties at any instance as it would be in a steady
simulation. The question that arises from this: is there a delay in the response of the boundary layer
to external stimulus and how does the temporal changes in the bulk flow propagate into the boundary
layer? From Roohani and Skews [5] it can be seen that there is a delay in the response of the terminal
shock to external flow changes. If the boundary layer in this case were to respond immediately, while
the terminal shock is delayed, it will result in interactions between the boundary layer and the shock
system. This can not be ignored as it not only influence the aerodynamic performance of the airframe,
but it also have an impact on the bulk flow.

In Moore [32] a compressible, laminar flow over semi-infinite flat plate in rectilinear accelerated
flight through still air – which is an idealization of missile flight – investigated through asymptotic
methods. His work concluded that in comparison with a quasi-steady state the constant acceleration
case results in a thinner boundary layer with greater skin friction coefficient and lower wall temperature.
The results indicate that boundary layers in arbitrarily accelerating flow do not respond in the same
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CHAPTER 2. LITERATURE SURVEY

manner as a steady state boundary layer. Therefore there is a temporal effect in the response that must
be considered. It cannot be assumed without investigation that the response of the boundary layer and
the shock system are within the same temporal phase. It is possible that there is some differences in the
mechanisms of temporal transportation of information from the bulk flow to the boundary layer and
across a terminal shock respectively. Interactions between the boundary layer and the shock wave will
then appear.

Back [28] investigated the structure of laminar boundary layer analytically over a large range of
flow acceleration, surface cooling (Figure 2.3) and flow speeds (Figure 2.4).

Figure 2.3: Surface Cooling Effect on the Boundary Layer Profile (Back [28])

The focus was on the influence of the variable parameters on skin friction and heat transfer para-
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2.3. BOUNDARY LAYERS IN UNSTEADY FLOW

Figure 2.4: Flow Speed Effect on the Boundary Layer Profile (Back [28])

meters as well as boundary layer thickness. The effects of acceleration, cooling and flow speed were
found to be significant in aero-ballistic applications. Back [28] noted that due to surface cooling, ac-
celeration and lower Reynolds numbers associated with higher altitude flights or higher internal flow
temperatures, laminar boundary layer pockets are found over increasingly larger portions of the surface.
Even turbulent boundary layers have been found to revert towards laminar boundary layers in regions
of flow acceleration under certain conditions. He further noted that studies on the effects of accelera-
tion and cooling on the structure of laminar boundary layers were becoming more important at the time.
In his work it was found that velocity and total enthalpy profiles are steepened near the surface due
to acceleration and cooling, while flow speed (compressibility) effects react opposite to this. Boundary
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CHAPTER 2. LITERATURE SURVEY

layer thicknesses are strongly dependent on acceleration, cooling and flow speed while friction and heat
transfer increased with acceleration and decreased with cooling. This study was extended to include the
compressibility effects (Back and Cuffel [34]), in laminar boundary layers with large acceleration and
cooling with application on a supersonic nozzle.

Vleggaar [33] investigated the heat transfer and momentum transfer to accelerating surfaces. He
followed a systematic approach of formulating the conservation equation for the asymptotic method
both in rectangular co-ordinates as well as cylindrical. Three types of cases were considered: acceler-
ation on finite surfaces and continuous surface with and without acceleration and rotation. Vleggaar
[33] concentrated on the method to the extent that almost no comments were made with regards to the
results obtained. His results on a continuous flat surface have the same tendency as the results from
Back [28]; with acceleration shear stress and heat flux increase, while displacement, momentum and
boundary layer thicknesses decrease. On the continuous cylindrical surfaces a rotation component is
added, yet all accelerations are constant. Momentum transfer increase with acceleration and rotation. It
is however curious that the heat transfer decrease with acceleration, but show increase when adding the
rotation component. Momentum and displacement thicknesses decrease with acceleration and rotation
and the boundary layer reacts in a similar manner.

The most recent study that was found is from Samad and Garrett [39] who investigated the laminar
boundary-layer flow over rotating spheroids. The numerical solution and an asymptotic method for
determining the laminar boundary was compared with one another. They noted very few studies have
been done at that point on laminar flow over spheroids.

2.4 Boundary Layers in Rotating Flow

Two cases in this study have been selected for analysing unsteady rotational flow. The first is the laminar,
rotating disk and the second is the rotating cone in axial flow. These cases are of interest not only
for their fundamental interest, but for the practical applications as well. Applications of interest in the
turbo-machinery and aeronautical where flow control relies on accurate prediction of boundary layer
disturbance propagation and transitions (Kohama [40]).

An analytical solution for the laminar, rotating disk were derived by von Karman [41] an discussed
in detail by Schlichting [42]. The limit for laminar flow were determined by Imayama [43] and Schmid
and Henningson [44]. The flow can generally be assumed laminar on a smooth disk for a Reynolds
number below 500.

The velocity profiles (Ram [45]) and spiral vortex visualization (Kobayashi et al. [46]) is shown in
Figure 2.5 below. The tangential velocity component of the rotating disk assume the velocity of the disk
in the near-wall region and approaches zero velocity further away from the disk. This is as observed
from the absolute frame where the flow in the far-field is stationary and the disk is in motion. The flow
has a radial component due to the Coriolis and Centrifugal forces acting in the radial direction. Spiral
vortices are observed in the transition region (Kobayashi et al. [46]) at a rotational Reynolds number of
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2.4. BOUNDARY LAYERS IN ROTATING FLOW

approximately 500.

Figure 2.5: Visualization of the Boundary Layer Profiles (Ram [45] left) and Transition (Kobayashi [46]
right) on a Rotating Disk

A cyclonic vortex is present at the centre of the disk (Moulin and Flór [47]). This vortex becomes
smaller with increasing disk rotational velocity. The von Karman solution of the rotating disk do not
account for the effect of this vortex on the boundary layer. Zoueshtiagh et al. [48] conducted hot-wire
experiments on smooth rotating disks. His results indicates that there are differences in the far-field
profile values between the von Karman results and the experimental results (Figure 2.6). However, the
von Karman solution provides a good estimate of the velocity profile in the near-wall region.

Figure 2.6: Hot-Wire Measurement of the Mean Velocity Profile in the Radial (left) and Azimuthal
(right) Directions (Zoueshtiagh [48])

Various studies have been conducted in recent years to investigate transition, stability, heat transfer
and surface suction on rotating disks (Attia [49], Harris et al. [50], Siddiqui [51], Zoueshtiagh et al. [48]).
The studies are aimed at obtaining a better understanding of the mechanisms in the boundary layer for
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CHAPTER 2. LITERATURE SURVEY

flow control purposes.
The rotating disk provide results that are analogous with rotating machines such as turbine blades.

In the aeronautical field flying objects, such a projectiles and aircraft nose cones, resemble rotating
cone. A vast number of studies are available that investigates transition on rotating cones in axial flow
(Garret and Peake [52], Hussain et al. [53], Kargar and Mansour [54], Kobayashi et al. [55], Kohama
[40], Towers and Garrett [56]).

Figure 2.7: Disturbance Propagation and Boundary Layer Transition on Spinning Objects in Axial Flow
(Kohama [40], Kobayashi [55])

A rotating cone in axial flow can be considered laminar below a Reynolds number of 249.64 (Man-
sour and Kargar [57]). Significant work has been done byGarret and Peake [52] to investigates the effect
of cone angle and axial flow on transition. It has been found that a larger cone angle delays separation.
Furthermore, axial flow stabilizes the boundary layer on a cone and further delays separation.
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3
Non-Inertial Equations in Vector Form

Arbitrary flow conditions, which segregate inertial from non-inertial reference frames, are widely
applicable to the motion of aero-ballistic airframes such as missiles, projectiles, grenades and
mortars. A missile can be accelerated by an on-board engine that generates thrust to counter

the effect of drag. Spin stabilized projectiles are subjected to high rates of change in the spin axis
over the ballistic trajectory. Grenades and mortars experience unsteady deceleration as the target is
approached. All of these are examples of arbitrary motion in non-inertial reference frames. The flow
field surrounding the airframes can be expressed using the non-inertial Navier-Stokes equations.

Developing a fundamental understanding of the non-inertial equations is pertinent to the develop-
ment of a computational code that is capable of solving such flows accurately. Firstly the correct formu-
lations of the equations are not intuitive and must be rigorously derived. Secondly, once the equations
are implemented, the correct boundary and initial conditions must be utilized to obtain a stable and
realistic solution. Deriving the non-inertial equations enhance understanding of the flow physics. This
in turn assists in formulating the numerical methods required for computations.

Deriving the equations in the vector form is general. This allows for direct implementation of the
governing equations in the computational code, OpenFOAM as described in Chapter 6. In this chapter
the non-inertial Navier-Stokes Equations for constant rotation, variable rotation and arbitrary motion
(both in rotation and translation) are derived. The mathematical identities related to this chapter are
located in Appendix A.
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

3.1 Non-inertial Navier-Stokes Equations for Constant, Pure Rotation

The non-inertial Navier-Stokes equations for constant rotation is derived here using a method based on
the work of Kageyama and Hyodo [23]. They established an Eulerian method for deriving the Coriolis
force in the momentum equation. This was done for constant, pure rotation in incompressible flow. The
method is expanded upon to derive the full set of non-inertial Navier-Stokes equations for compressible
flow. In subsequent sections, Sections 3.2 and 3.3respectively, the equation sets are derived for variable
rotation and full arbitrary motion.

3.1.1 Frame Transformations

The first step in the derivation is to define the relation of the inertial and non-inertial frames with respect
to each other. These relations are mathematically described in terms of transformation operators, i.e. lo-
cal Galilean transform and rotational transform, and is used to change the perspective of the observer.

Assume that three (3) frames exist; O, O' and Ô as indicated in Figure 3.1.

Figure 3.1: Frames of Observation (O, O' and Ô) for Point P

Frame O is the stationary, inertial frame. This is also referred to as the absolute frame. Frame O'
is an orientation preserving frame (i and i' has the same orientation), which can be either inertial or
non-inertial depending on the cases analysed. This frame shares an origin with the rotational Frame Ô.
Frame Ô is the non-inertial, rotational frame and is therefore not orientation preserving. This frame is
also referred to as the relative frame.

Now consider a point P which can be observed, and therefore described, from all the frames; Frame
O, Frame O' and Frame Ô. Point P is rotating around the origin of Frame O, but it is stationary in Frames
O' and Ô.
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3.1. NON-INERTIAL NAVIER-STOKES EQUATIONS FOR CONSTANT, PURE ROTATION

A set of equations are developed to describe the motion of point P in the rotational Frame Ô. This
development results in the non-inertial Navier-Stokes equations for constant, pure rotation. Point P is
described below in Frame O from where a local Galilean transformation (defined in Section 3.1.1.1),
GM, is used to transform it to Frame O'. The rotational transform (defined in Section 3.1.1.2), RΩt, is
then used to transform the resulting equations (as described in Frame O') to the rotational Frame Ô.

3.1.1.1 Local Galilean Transformation

The standard Galilean transform is limited in its application to constant translation cases. In Figure 3.2
such a motion is depicted between Frames O and O'. The Galilean transform is used to transform vectors
between two reference frames that only differ by a constant vector of motion.

A visual example of this is a train going through a station at constant velocity on a straight train
track. If the station platform is considered to be Frame O (which is stationary), then the train is in Frame
O' and the displacement between the station and the train can be described as shown in the figure below.

Figure 3.2: Galilean Transformation between Frames

Assume that the origins of the two frames above intersect at time t = 0 (the train drives through the
station at time t = 0) and that Frame O' is moving at a constant velocity V in the x-direction (the train
is moving at constant speed on a straight track). At time t =∆t, the Frames O and O' are then distance
xrel from each other (the train is distance xrel from the station).

The relationship between the coordinates points for this single event between Frames O and O' is
described by Equation 3.1. This is known as a standard form of the Galilean transform.

x′ = x−V∆t

y′ = y

z′ = z

t′ = t

(3.1)
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

If it is assumed that the constant motion need not be exclusively in the x-direction (or in translation
for that matter) and that it can be presented as a vector of motion as shown in Figure 3.3. The motion
between the frames is then described by the vector xrel as it was done in Kageyama and Hyodo [23].

Figure 3.3: Local Galilean Transformation between Frames

Let all the Frames (O,O' and Ô) share the same origin where the point P is stationary in the rotational
Frame Ô. If the rotation is around the z-axis of Frame O, the angular acceleration vectorΩ is described
by Ω= (0,0,Ω). Therefore point P is rotating with a constant angular velocity, vrel, around the origin
or the inertial Frame O. The xrel component is described as:

xrel =Vrel∆t (3.2)

where

Vrel =Ω∧x (3.3)

The local Galilean transform operator, GM, is introduced. Any vector defined in the inertial Frame
O can be related to the vector as observed from the orientation preserving Frame O' by:

u′(x′, t)=GMu(x, t) (3.4)

This definition leads to amathematical description that directly relates the vector fields in the inertial
Frame O, to the vector fields in the orientation preserving Frame O':

u′(x′, t)=GMu(x, t)

=GΩ∧xu(x, t)

=u(x, t)−Ω∧x

u′(x′, t)=u(x, t)+x∧Ω

(3.5)
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3.1. NON-INERTIAL NAVIER-STOKES EQUATIONS FOR CONSTANT, PURE ROTATION

3.1.1.2 Rotational Transformation

Frame Ô shares an origin with the Frame O', therefore the vector components in Ô is related to O'
through a rotational transform (Figure 3.4).

Figure 3.4: Relation between Frame O' and Frame Ô

The rotation, in this case, is around the z-axis of Frame O (that shares and origin with Frame O')
with a constant angular velocity ofΩ= (0,0,Ω). The rotational transform, RΩt, that relates the vectors
in Frame O' to the vectors in Frame Ô is described by,

RΩt =


cosΩt sinΩt 0

−sinΩt cosΩt 0

0 0 1

 (3.6)

such that:


x̂

ŷ

ẑ

= RΩt


x′

y′

z′

 (3.7)

The first column of the RΩt tensor represents the projection of the x′ vector component (defined
in the O' Frame) on the x̂, ŷ and ẑ axis (defined in the Ô Frame). In the same manner is the second and
third columns the projection of y′ and z′ respectively on the rotational axes, ŷ and ẑ.
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

From the above, a description follows that relates the vectors in Frame O' to the vectors in Frame
Ô:

û(x̂, t)= RΩtu′(x′, t) (3.8)

Equations 3.8 and 3.5 can further be used to describe a vector as seen from Frame Ô in relation to
a vector in Frame O.

û(x̂, t)= RΩtGΩ∧xu(x, t) (3.9)

RΩt is therefore the rotational transform that operates on x′ to obtain the x̂ coordinates in the rota-
tional frame. From Equations 3.5 and 3.9 it is shown that for the velocity vector the following relation
holds:

û(x̂, t)= RΩt[u(x, t)+x∧Ω
]

(3.10)

3.1.2 Incompressible Flow Conditions

The local Galilean invariance, GΩ∧x, and the rotational transform, RΩt, have been described for con-
stant rotational conditions. Both the operators are required to derive the non-inertial Navier-Stokes
equations for constant rotation. The Galilean invariance is required to account for the relative motion
between the frames, whilst maintaining the orientation of the unit vectors. The rotational transform is
required to account of the change in orientation of the unit vectors due rotational motion of the relative
frame.

In this section the non-inertial Navier-Stokes equations for conservation of mass, momentum and
energy for constant rotation in incompressible flow are derived using an Eulerian approach adapted from
Kageyama and Hyodo [23]. The derivation commences from the perspective of the absolute observer
(Eulerian approach) instead of using the conventional Lagrangian method where the derivation is done
directly from the relative observation point.

3.1.2.1 Continuity Equation

The conservation of mass equation, referred to as the continuity equation, in the inertial frame takes the
form (White [9]):

∂ρ

∂t
+ (∇·ρu)= 0 (3.11)

The first term represents the temporal change in density due to compressibility of the flow. In com-
pressible fluids the density is a non-constant function of pressure and temperature (Anderson [58]). Any
fluid particle that interacts with a adjacent fluid particle as a result of a bulk pressure force undergoes
compression where the specific volume of the flow is decreased. Specific volume is the inverse of den-
sity and results in temporal variation of the density field. When the bulk compressibility of the flow is
small in comparison to pressure variations in the free stream, variations in pressure cause only small
changes in specific volume and hence density. The flow is then assumed to be incompressible when
changes in pressure and temperature causes very small temporal variations in density. This assumption
is used in lowMach number flows, typically belowMach 0.3. This case is assumed to be incompressible

24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



3.1. NON-INERTIAL NAVIER-STOKES EQUATIONS FOR CONSTANT, PURE ROTATION

and the temporal density term can be neglected (Anderson [58], White [9]), but for the purposes of the
derivation it remains in the equation until the last step.

The second term is the divergence of density and velocity which represents the residual mass flux of a
given control volume.

The non-inertial form of the unsteady density term can be described as:

∂ρ̂

∂t
(x̂t, t)= lim

∆t→0

ρ̂(x̂t+∆t, t+∆t)− ρ̂(x̂t, t)
∆t

(3.12)

A Taylor series expansion of the term ρ̂(x̂t+∆t, t+∆t) provides:

ρ̂(xt+∆t, t+∆t)= ρ̂(xt, t)+ [∆t(Ω∧xt) ·∇]ρ̂(xt, t)+ (∆t
∂

∂t
)ρ̂(xt, t)+ ... (3.13)

Substitution of this expansion in the Equation 3.12 and manipulation result in an expression that
relates the non-inertial, unsteady density to the inertial frame.

∂ρ̂

∂t
= RΩt[

∂ρ

∂t
+ (Ω∧xt) ·∇ρ]

(3.14)

The second term of the continuity equation is affected by both frame transformations since it contains
the velocity vector:

(∇̂ · ρ̂û) = RΩtGΩ∧x(∇·ρu)

= RΩt[∇·ρ(GΩ∧xu)] (3.15)

Equation 3.10 is used to complete the local Galilean transformation, and the equation becomes:

(∇̂ · ρ̂û)= RΩt[∇·ρ(u+x∧Ω)]

= RΩt[∇· (ρu)+∇·ρ(x∧Ω)]

The equation can be manipulated to the convenient form where the second term is of equal size and
opposite sign on the second term in Equation 3.14 .

∇̂ · ρ̂û= RΩt[∇· (ρu)− (Ω∧x) ·∇ρ]
(3.16)

The addition of Equations 3.14 and 3.16 lead to a relation between the continuity equation in the inertial
and rotational frames:

∂ρ̂

∂t
+∇̂ · ρ̂û= RΩt[∂ρ

∂t
+∇· (ρu)

]
(3.17)

The right hand side of the equation is equal to zero since this represents the continuity equation in
the inertial frame (Equation 3.11):

∂ρ̂

∂t
+∇̂ · ρ̂û= 0 (3.18)
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

Since this is the incompressible case, the temporal term is equal to zero. The continuity equation
for the rotational frame therefore takes the form:

∇̂ · ρ̂û= 0 (3.19)

The physical meaning of this equation describes the very nature of incompressible flow assumption;
the residual mass flux in a specific control volume is zero (Anderson [58]). This means that there are
no compressible effects in the flow because the same amount of mass flux that enters a domain exits it.
The transient density term causes a change in the residual mass flux in the domain that manifests itself
in the form of compressibility.

3.1.2.2 Momentum Equation

The inertial equation for incompressible momentum conservation is describe by the equation below
(White [9]):

∂u
∂t

+ (u ·∇)u=−∇ψ+ν∇2u (3.20)

where ψ is the pressure per unit mass where the pressure is divided by the density. The density was
divided into all the terms of the equation since the flow is assumed to be incompressible:

ψ= p
ρ

(3.21)

The transformation of the equation above to the rotational frame is done in a similar manner as in
Section 3.1.2.1 - the terms are transformed separately and then summed to find the final expression.

The first term that is transformed, to obtain an expression that relates the inertial Frame O to the rota-
tional Frame Ô, is the time dependant term. It is expressed here through the definition of the derivative
at a point (Tannehill et al. [59]):

∂û
∂t

(x̂t, t)= lim
∆t→0

û(x̂t+∆t, t+∆t)− û(x̂t, t)
∆t

(3.22)

The expression above, which is in the non-inertial Frame Ô, can be related to the inertial Frame O
by finding an inertial expression for û(x̂t+∆t, t+∆t) in the form of Equation 3.9:

û(x̂t+∆t, t+∆t)= RΩ(t+∆t)GΩ∧xt+∆t
[
u(xt+∆t, t+∆t)

]
(3.23)

The method that is used to expand the relation above, in the inertial frame, is described in the para-
graph below.

Perform a Taylor series expansion for xt+∆t:

xt+∆t = xt +Vrel∆t+O(∆t2) (3.24)
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3.1. NON-INERTIAL NAVIER-STOKES EQUATIONS FOR CONSTANT, PURE ROTATION

The resulting series is truncated at the second order term since this case involves constant motion and
the higher order terms represents the arbitrary motion. The derivative term is substituted with Equation
3.3. Re-arrangement of the terms lead to an expression for displacement over the specific time interval:

xt+∆t −xt = x∆t = (Ω∧xt)∆t (3.25)

A Fourier series expansion is done for u(xt+∆t, t+∆t), and with substitution of Equation 3.25 it
results in:

u(xt+∆t, t+∆t)=u(xt, t)+ [
∆t(Ω∧xt) ·∇

]
u(xt, t)+ (

∆t
∂

∂t
)
u(xt, t) (3.26)

Equation 3.26 is substituted into Equation 3.23 to get the expression:

û(x̂t+∆t, t+∆t)= RΩ(t+∆t)GΩ∧xt+∆t
{
u(xt, t)+ [

∆t(Ω∧xt) ·∇
]
u(xt, t)+ (

∆t
∂

∂t
)
u(xt, t)

}
(3.27)

GΩ∧xt+∆t can be simplified as shown below. Equation 3.24 is substituted in the operator and trun-
cated at the first order. The error made with this simplification is of order ∆t. It is shown further on in
this section that ∆t approximates a very small number, ε. Therefore the error approximates a very small
number ε, when

∆t → ε

ε→ 0
(3.28)

Subsequently, it can be shown that:

GΩ∧xt+∆t =GΩ∧{xt+∆t(Ω∧xt+O[∆t2])}

=GΩ∧{xt(1+O[∆t])} ≈GΩ∧xt
(3.29)

The expression for û(x̂t+∆t, t+∆t), then becomes:

û(x̂t+∆t, t+∆t)= RΩ(t+∆t)GΩ∧xt
{
u(xt, t)+ [

∆t(Ω∧xt) ·∇
]
u(xt, t)+ (

∆t
∂

∂t
)
u(xt, t)

}
(3.30)

The assumption was made that point P is fixed in the rotating frame and the rotation is around the
shared origin of the Frames O, O' and Ô, with this in mind an expression can be derived for xt:

x̂= RΩ(t+∆t)xt+∆t = RΩtxt

xt = RΩ∆txt+∆t
(3.31)

This relation is substituted in the Taylor series expansion for xt+∆t:

xt+∆t = xt +∆tV+O[∆t2]

= RΩ∆txt+∆t +∆t(Ω∧xt)+O[∆t2]
(3.32)

Re-arrange this equation and consider in the limit as ∆t approaches ε as ε tends to 0:

lim
∆t→0

RΩ∆txt+∆t −xt+∆t

∆t
= lim

∆t→0

(
xt ∧Ω

) (3.33)
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

Considering this relation for any vector b (where in the case b → xt ), and take into account that
xt+∆t → xt as ∆t → 0, the following equation is arrived at:

lim
∆t→0

RΩ∆tb−b
∆t

=b∧Ω (3.34)

By applying the same analogies as in Equation 3.31 to the velocity field, it can be shown that Equa-
tion 3.34 is valid when b→ut.

Substitute Equation 3.30 into Equation 3.22 to obtain the equation:

∂û
∂t

(x̂t, t)= lim
∆t→0

RΩ(t+∆t)GΩ∧xt
{[

1− 1
RΩ∆t +

(
∆t(Ω∧xt) ·∇

)]
u(xt, t)+ (

∆t ∂
∂t

)
u(xt, t)

}
∆t

(3.35)

By using Equation 3.34 , and after re-arrangement of the terms the following expression is arrived
at:

∂û
∂t

(x̂t, t)= RΩt[ ∂

∂t
+ (Ω∧xt) ·∇−Ω∧ ][

GΩ∧xu(xt, t)
]

(3.36)

Substitution of Equation 3.10 into the equation above results in:

∂û
∂t

(x̂t, t)= RΩt[ ∂

∂t
+ (Ω∧xt) ·∇−Ω∧ ](

u(xt, t)
)

+RΩt[ ∂

∂t
+ (Ω∧xt) ·∇−Ω∧ ]

(xt ∧Ω)
(3.37)

In the equation above the transient component of [ ∂
∂t + (Ω∧xt) · ∇−Ω∧](xt ∧Ω) is equal to zero.

This is shown piecewise in the paragraphs below. Consider the transient components of the term first:

∂

∂t
(xt ∧Ω)= ∂xt

∂t
∧Ω+xt ∧ ∂Ω

∂t
= 0 (3.38)

The first term is zero because the magnitude of xt is constant over the time domain; its magnitude
does not change with respect to the origin since this case involves pure rotation. The second term is zero
due to constant rotation of the point P. In the case where the rotation is not constant, this term plays a
role as seen in Section 3.2 .

By introduction of the identity below (see Appendix A ), the terms [(Ω∧xt) · ∇ −Ω∧](xt ∧Ω) can
be simplified. In this case a represents a vector.

(a ·∇)(xt ∧Ω)= a∧Ω (3.39)

The entire term is hence cancelled out:[
(Ω∧xt) ·∇−Ω∧ ]

(xt ∧Ω)= [
(Ω∧xt) ·∇

]
(xt ∧Ω)−Ω∧ (xt ∧Ω)

=Ω∧ (xt ∧Ω)−Ω∧ (xt ∧Ω)

= 0

(3.40)
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3.1. NON-INERTIAL NAVIER-STOKES EQUATIONS FOR CONSTANT, PURE ROTATION

This leads to the final description of the unsteady terms in the momentum equation. Note the ap-
pearance of one part of the Coriolis effect manifesting in the relation below.

∂û
∂t

(x̂t, t)= RΩt[ ∂

∂t
+ (Ω∧xt) ·∇−Ω∧ ](

u(xt, t)
)︸ ︷︷ ︸

Coriolis
(3.41)

The relation of the inertial to the rotational advection term is described in the following manner:

(û · ∇̂)û= RΩtGΩ∧x(u ·∇)u

= RΩt(GΩ∧xu ·∇)GΩ∧xu
(3.42)

Substitution of Equation 3.10 into the equation above results in:

(û · ∇̂)û= RΩt[(u+x∧Ω) ·∇]
(u+x∧Ω)

= RΩt[(u+x∧Ω) ·∇]
u+RΩt[(u+x∧Ω) ·∇]

(x∧Ω)
(3.43)

Dividing out all the terms gives the final relation of the advection term between the frames. Note
the appearance of the centrifugal effect and the other part of the Coriolis effect from the transformation
of the advection term.

(û · ∇̂)û= RΩt[(u ·∇)u+ (
(x∧Ω) ·∇)

u+ (u∧Ω)︸ ︷︷ ︸
Coriolis

+ (x∧Ω)∧Ω︸ ︷︷ ︸
Centrifugal

]
(3.44)

The gradient of the specific pressure term in the momentum equation is described between Frames Ô
and O in the following manner:

∇̂ψ̂= RΩtGΩ∧x∇ψ (3.45)

Scalars are invariant under Galilean transformation (Kleppner and Kolenkow [60], McCauley [61]).
Scalars are not invariant under the rotational transform if spatial operations is performed on it since the
axis along which the discretization is performed, changes between all the frames. The relation between
the gradient of specific pressure in the inertial and rotational frames is therefore described by:

∇̂ψ̂= RΩt∇ψ
(3.46)

The diffusion term in the inertial Frame O can be related to the rotational Frame Ô in the following
manner:

ν∇̂2û= RΩtGΩ∧xν∇2u

= RΩtν∇2GΩ∧xu

= RΩtν∇2(u+x∧Ω)

= RΩtν
[∇2u+∇2(x∧Ω)

]
(3.47)
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

If it is considered that, as shown in Appendix A,

∇2(x∧Ω)= 0 (3.48)

the diffusion term is invariant under Galilean transformation:

ν∇̂2û= RΩtν∇2u (3.49)

Note that the pressure and viscous terms are Galilean invariant in this instance and combine the two
components in a vector f(x, t):

f(x, t)=−∇ψ+ν∇2u (3.50)

The new, combined parameter in the inertial and rotational frames is related in the following manner
due to the invariance:

f̂(x̂, t)= RΩtf(x, t)
(3.51)

The transformation of themomentum is completed through the summation of the unsteady and advection
terms in the rotational and inertial frames as determined in Equations 3.41 and 3.44:

∂û
∂t

+ (û · ∇̂)û= RΩt[∂u
∂t

+ (u ·∇)u+2u∧Ω+x∧Ω∧Ω
]

= RΩt[∂u
∂t

+ (u ·∇)u
]+RΩt[2u∧Ω+x∧Ω∧Ω

] (3.52)

The first term grouping of the equation above is simplified as shown in the equations below. This
was done using Equations 3.20, 3.50 and 3.51.

RΩt[∂u
∂t

+ (u ·∇)u
]= RΩt(−∆ψ+ν∇2u)

= RΩtf(x, t)

= f̂(x̂, t)

(3.53)

The second term grouping, with the insertion of Equation 3.10, becomes:

RΩt[2u∧Ω+x∧Ω∧Ω
]= 2(RΩtu)∧Ω+ (RΩtx)∧Ω∧Ω

= 2
[
û−RΩt(x∧Ω)

]∧Ω+ (RΩtx)∧Ω∧Ω

= 2û∧Ω− x̂∧Ω∧Ω

(3.54)

The two simplifications above are filled back into Equation 3.52 and results in the non-inertial
momentum equation for constant rotation.

∂û
∂t

+ (û · ∇̂)û=−∇̂ψ̂+ν∇̂2û+2û∧Ω︸ ︷︷ ︸
Coriolis

− x̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

(3.55)

It can be seen from the equation above that the fictitious forces associated with constant rotation is
the centrifugal and the Coriolis effects. The centrifugal effect originates from the transformation of the
advection terms while the Coriolis effect is from both the transient and advection terms.
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3.1. NON-INERTIAL NAVIER-STOKES EQUATIONS FOR CONSTANT, PURE ROTATION

3.1.2.3 Energy Equation

The general energy equation in the inertial Frame O takes the following form (White [9]):

∂ρe
∂t

+ (∇·ρeu)=−p(∇·u)+∇· (k∇T)+φ (3.56)

The time dependant term is transformed in a similar manner as shown in Section 3.1.2.1 where the
continuity equation was derived. The first term is therefore transformed and the non-inertial component
becomes:

∂ρ̂ ê
∂t

= RΩt[∂ρe
∂t

+ (Ω∧x) ·∇(ρe)
]

(3.57)

The convective term is transformed between FramesO andÔwith the use of the rotational transform,
local Galilean transform and by substitution of Equation 3.10:

(∇̂ · ρ̂ êû)= RΩtGΩ∧x(∇·ρeu)

= RΩt[∇·ρe(u+x∧Ω)
]

= RΩt[∇·ρeu+∇·ρe(x∧Ω)
] (3.58)

The terms that represents the rate of work done by the normal pressure forces is transform between
the Frames O and Ô and Equation 3.10 is inserted:

−p̂(∇̂ · û)= RΩtGΩ∧x[− p(∇·u)
]

= RΩt[− p∇· (u+x∧Ω)
]

= RΩt[− p∇·u− p∇· (x∧Ω)
] (3.59)

It can be shown that this terms is also invariant under transformation by the insertion of Identity 1
in Appendix A :

− p̂(∇̂ · û)= RΩt(−p∇·u) (3.60)

The diffusion is invariant under Galilean transformation since the heat transfer coefficient (k) and
temperature (T) are scalars. The transformation between the frames O and Ô then becomes:

∇̂ · (k̂∇̂T̂)= RΩtGΩ∧x[∇· (k∇T)
]

= RΩt[∇· (k∇T)
] (3.61)

The dissipation function, φ, is a scalar value that represents the rate at which mechanical energy is
expended in the process of deformation of the fluid due to viscosity (Anderson [58]). This property, in
component form, can be described by:

τ :∇u= 2µ
[(

∂u
∂x

)2
+

(
∂v
∂y

)2
+

(
∂w
∂z

)2
− 1

3
(∇·u)2

]
+µ

[(
∂v
∂x

+ ∂u
∂y

)2
+

(
∂w
∂y

+ ∂v
∂z

)2
+

(
∂u
∂z

+ ∂w
∂x

)2]
(3.62)
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

The above equation indicates that the dissipation function is a scalar and therefore invariant under
Galilean transformation:

φ̂= RΩtGΩ∧xφ

= RΩtφ
(3.63)

All the transformed terms of the energy equation is summed to obtain the equation below.

∂ρ̂ ê
∂t

+ (∇̂ · ρ̂ êû)+ p̂(∇̂ · û)−∇̂ · (k̂∇̂T̂)+ φ̂= RΩt[∂ρe
∂t

+ (∇·ρeu)+ p(∇·u)−∇· (k∇T)+φ
]

(3.64)

The right hand side of the equation is equal to zero, as shown in Equation 3.56 . The energy equation
in the non-inertial frame for constant rotation is invariant under transformation in this specific case:

∂ρ̂ ê
∂t

+ (∇̂ · ρ̂ êû)=−p̂(∇̂ · û)+∇̂ · (k̂∇̂T̂)+ φ̂ (3.65)

This equation can be further simplified with the assumption of incompressibility and usingEquation
3.19 :

∂ρ̂ ê
∂t

+ (∇̂ · ρ̂ êû)= ∇̂ · (k̂∇̂T̂)+ φ̂I (3.66)

Note that the energy equation is invariant under transformation. This is in agreement with the work
of Diaz et al. [62] who determined that there are no fictitious effects in the non-inertial energy equation
using a point mass method.

3.1.3 Compressible Flow Conditions

The effect of compressibility in the boundary layer of an object in arbitrary motion cannot be assumed
negligible. The boundary layer equations for this type of flowmust first be determined. This investigates
the presence of compressible terms in the non-inertial boundary layer for arbitrary rates of change in
translation and rotation. This is further explored in Chapter 5 .
The full compressible formulations for non-inertial Navier-Stokes equations for conservation of mass,
momentum and energy for constant rotation in compressible flow are derived using the same Eulerian
approach (Kageyama and Hyodo [23]) as in Section 3.1.2.

3.1.3.1 Continuity Equation

The general continuity equation in the rotational Frame Ôwas derived in Equation 3.18. This has shown
that the equation is invariant under transformation. The compressible, non-inertial equation thus re-
mains:

∂ρ̂

∂t
+∇̂ · ρ̂û= 0 (3.67)
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3.1. NON-INERTIAL NAVIER-STOKES EQUATIONS FOR CONSTANT, PURE ROTATION

3.1.3.2 Momentum Equation

The incompressible form of the momentum equation as shown in Equation 3.20, made the assumption
that the temporal change in density is negligible (Anderson [58]). Therefore, the equation could be sim-
plified by dividing density into all the terms as there are no temporal change in density. The diffusion
term in particular could be simplified in a manner that would facilitate easy transformation for incom-
pressible conditions. In this case the divergence of the velocity gradient yields the same results as taking
the laplacian of the velocity vector.

Incompressible Momentum Equation︷ ︸︸ ︷
∂u
∂t

+ (u ·∇)u=−∇ψ+ ν∇2u︸ ︷︷ ︸
Laplacian

(3.68)

This is not the case when compressibility has to be accounted for. The compressible Navier-Stokes
Equation in the inertial frame takes the form (White [9], Anderson [58], Tannehill et al. [59]):

Compressible Mometum Equation︷ ︸︸ ︷
∂

∂t
ρu+∇· (ρu⊗u)︸ ︷︷ ︸
Material Derivative

=−∇p+∇· [µ(∇u+∇uT )+λ(∇·u)I
]︸ ︷︷ ︸

Compressible Stress Tensor
(3.69)

Density, ρ, remains part of the momentum material derivative. Pressure gradients are represented by
∇p, instead of pressure gradient per unit mass, ∇ψ.

The full compressible stress tensor is used to represent momentum diffusion in the flow:

τ(x, y, z)=


2µ∂u

∂x +λ∇·u µ
(
∂u
∂y + ∂v

∂x
)

µ
(
∂u
∂z + ∂w

∂x
)

µ
(
∂u
∂y + ∂v

∂x
)

2µ ∂v
∂y +λ∇·u µ

(
∂v
∂z + ∂w

∂y
)

µ
(
∂u
∂z + ∂w

∂x
)

µ
(
∂v
∂z + ∂w

∂y
)

2µ∂w
∂z +λ∇·u

 (3.70)

The same methodology that was used in Section 3.1.2 is used here to derive the non-inertial form of
the momentum equation. Inertial terms are transformed to the non-inertial frame using the local Galilean
transformation for pure rotation (Equation 3.5 ), and the Rotational transform matrix (Equation 3.10).

First consider the unsteady term in the rotational Frame Ô and apply the product rule for partial deriva-
tives. This operation results in two terms that were not considered during the incompressible case:

∂

∂t
(ρ̂û)= ρ̂

∂û
∂t

+ û
∂ρ̂

∂t
(3.71)

With the aid of Equation 3.9 (which describe a vector as seen from Frame Ô in relation to a vector
in Frame O) and Equation 3.36 (which expressed the non-inertial velocity derivative in terms of inertial
parameters) the above becomes:

∂

∂t
(ρ̂û)= RΩtGΩ∧x[

ρ
∂u
∂t

+ρ(Ω∧x) ·∇u−ρΩ∧u+u
∂ρ

∂t
]

(3.72)
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

The product rule is then used to combine the terms ρ ∂u
∂t andu∂ρ

∂t so that the equation above simplifies
to:

∂

∂t
(ρ̂û)= RΩt[ ∂

∂t
(ρ)+ρ(Ω∧x) ·∇−ρΩ∧ ]

GΩ∧xu (3.73)

The equation is of the same form as Equation 3.36 . It is therefore shown that the final form of the
equation is similar to Equation 3.41, but with the inclusion of the density scalar:

∂

∂t
(ρ̂û)= RΩt[ ∂

∂t
(ρ)+ρ(Ω∧x) ·∇−ρΩ∧ ]

u︸ ︷︷ ︸
Coriolis

(3.74)

The relation between the non-inertial and inertial frames for the advection term in the compressible
Navier-Stokes momentum equation is:

∇̂ · (ρ̂û⊗ û)= RΩtGΩ∧x[∇· (ρu⊗u)
]

(3.75)

By using Equation 3.5 the equation above is expanded into:

∇̂ · (ρ̂û⊗ û)= RΩt{∇·ρ[
(u+x∧Ω)⊗ (u+x∧Ω)

]}
= RΩt{(∇·ρu)⊗u+ (∇·ρu)⊗ (x∧Ω)+ [∇·ρ(x∧Ω)

]⊗u+ [∇·ρ(x∧Ω)
]⊗ (x∧Ω)

} (3.76)

As shown in Section 3.1.2.2 and Appendix A , the identity below can be used to simplify the equation.

(∇·a)⊗ (x∧Ω)= a∧Ω (3.77)

This leads to the following expression for relating the diffusion term in the rotational Frame Ô to
the terms in the inertial Frame O:

∇̂ · (ρ̂û⊗ û)= RΩt[∇·ρu⊗u+ρu∧Ω︸ ︷︷ ︸
Coriolis

+∇·ρ(x∧Ω)⊗u+ (ρx∧Ω)∧Ω︸ ︷︷ ︸
Centrifugal

]
(3.78)

The pressure gradient term in the momentum equation is transformed in a similar manner than shown
in Section 3.1.2.2 . This part of the equation remains Galilean invariant since it is a scalar (Kleppner
and Kolenkow [60], McCauley [61]).

∇̂p̂ = RΩtGΩ∧x∇p

∇̂p̂ = RΩt∇p
(3.79)

In the transformation of the diffusion term the difference between the compressible and incompressible
cases must be noted. Divergence of the velocity vector is not equal to zero, therefore the completed
diffusion term must be accounted for. The expression for relating the diffusion term between Frame Ô
and Frame O hence becomes:

∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î
]= RΩtGΩ∧x∇· [µ(∇u+∇uT )+λ(∇·u)I

]
(3.80)

With implementation of Equation 3.10, the right hand side of the equation above becomes:

RΩt∇·{µ[∇(u+x∧Ω)+∇(u+x∧Ω)T]+λ
(∇· (u+x∧Ω)

)
I
}

(3.81)
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3.1. NON-INERTIAL NAVIER-STOKES EQUATIONS FOR CONSTANT, PURE ROTATION

If it is considered (as derived in Appendix A ) that,

∇(x∧Ω)+∇(x∧Ω)T = 0 (3.82)

and
∇· (x∧Ω)= 0 (3.83)

it can be shown that, as in the case of incompressible flow, the diffusion component of the momen-
tum equation is invariant for constant rotation conditions:

∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î
]= RΩt∇· [µ(∇u+∇uT )+λ(∇·u)I

]
(3.84)

The same principle of summation of the parts, as used in Section 3.1.2.2, is used to obtain the final form
of the non-inertial momentum equation:

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î
]+2ρû∧Ω︸ ︷︷ ︸

Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal (3.85)

3.1.3.3 Energy Equation

The general energy equation remains the same as described in the previous section:

∂ρe
∂t

+ (∇·ρeu)=−p(∇·u)+∇· (k∇T)+φ (3.86)

This equation remains invariant in the non-inertial frame as shown in Equation 3.65

∂ρ̂ ê
∂t

+ (∇̂ · ρ̂ êû)=− p̂(∇̂ · û)+∇̂ · (k̂∇̂T̂)+ φ̂ (3.87)

Take again note that there are not fictitious effects present in the energy equation.

3.1.4 Incompressible Equations as a Special Case of the Compressible Equations

The incompressible momentum equation is a special case of the compressible momentum equation. The
latter assumes that the velocity of the flow is low enough (belowMach 0.3) that the compressible effects
does not have a significant effect on the flow properties. The difference between the incompressible
flow (Equation 3.55) and the compressible flow (Equation 3.85) is seen in the diffusion terms and the
presence of the density parameter in all terms. The fictitious forces, Coriolis and Centrifugal, are again
presents and has the same origins, from the material derivative, as in the incompressible case.

If the flow is assumed to be incompressible, the mass flux is close to zero. This is a special case of
compressible flow that assumes that no temporal changes in density occurs.

The compressible continuity equation in the rotational frame was determined in Equation 3.18 :

∂ρ̂

∂t
+∇̂ · ρ̂û= 0 (3.88)
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

The applied assumption of incompressibility results in the transient change in density being zero:

∂ρ̂

∂t
→ ε

ε→ 0
(3.89)

The equation therefore becomes:

∇̂ · ρ̂û= 0 (3.90)

This provides the same result Equation 3.19 which is the derived, incompressible continuity equa-
tion in the rotational frame.

The derived, compressible momentum equation in the rotational frame (Equation 3.85 ) is:

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂ p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î
]+2ρû∧Ω−ρx̂∧Ω∧Ω (3.91)

The first term that must be simplified to account from incompressibility is the diffusion term:

∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î
]

(3.92)

Let's consider the x-momentum components of the divergence of the deviatoric stress tensor (Equa-
tion 3.70 ). Assume in this instance that the dynamic viscosity µ is a constant. Viscosity is a function of
temperature which in turn is a function of pressure and density. Therefore, since density is constant in
incompressible flow, viscosity is as well. Simplify the relation to obtain the form as shown below:

∂

∂x
(
2µ

∂u
∂x

+λ∇·u)+ ∂

∂y

(
µ
(∂u
∂y

+ ∂v
∂x

))+ ∂

∂z

(
µ
(∂u
∂z

+ ∂w
∂x

))
=µ

(
2
∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2 + ∂2v

∂y∂x
+ ∂2w
∂z∂x

)+ ∂

∂x
(
λ∇·u)

=µ∇2u+µ
∂

∂x
(∇·u)+ ∂

∂x
(
λ∇·u)

(3.93)

This relation can be written in the vector form to account for all the components of the diffusive
momentum if it is assumed that the second viscosity, λ, is constant according to Stokes Hypothesis
(White [9]):

∇̂ · µ̂∇̂û+∇̂ · [(µ̂+ λ̂)(∇̂ · û)
]

(3.94)

The second term in the expression above is equal to zero if the incompressible continuity equation
is substituted into the relation. This result in the following equation:

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂p̂+∇̂ · µ̂∇̂û+2ρû∧Ω−ρx̂∧Ω∧Ω (3.95)

Since density is constant in the equation above, it can be divided into the equation. This leads to the
non-inertial momentum equation:

∂û
∂t

+ (û · ∇̂)û=−∇̂ψ̂+ν∇̂2û+2û∧Ω− x̂∧Ω∧Ω (3.96)
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3.1. NON-INERTIAL NAVIER-STOKES EQUATIONS FOR CONSTANT, PURE ROTATION

This equation above it the same as Equation 3.55 which was derived from first principles.

The conservation of energy equation in the rotational frame for compressible flow is described by (Equa-
tion 3.237):

∂ρ̂ ê
∂t

+ (∇̂ · ρ̂ êû)=− p̂(∇̂ · û)+∇̂ · (k̂∇̂T̂)+φ (3.97)

When the continuity equation (Equation 3.19) is applied to this equation it results in:

∂ρ̂ ê
∂t

+ (∇̂ · ρ̂ êû)= ∇̂ · (k̂∇̂T̂)+ φ̂I (3.98)

This is the same as Equation 3.66 where the incompressible energy equation in the rotational frame
was derived.

The derived incompressible equation provided the same results as the compressible equations with
incompressibility conditions. This section therefore indicates that there are no observed discrepancies
between the derived equations for the compressible and incompressible cases in the rotational frame.
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

3.2 Non-inertial Navier-Stokes Equations for Variable, Pure Rotation

In Section 3.1 the non-inertial Navier-Stokes Equations for constant, pure rotation were derived. In re-
ality there are very few rotational flow applications where a constant rotational speed is maintained.
Even if such a speed is desirable to maintain a specific performance region, the rotation is not constant
over the entire duration of the event. Start-up and shut-down conditions involve variable rotational ve-
locities. Examples include helicopter blades, turbine rotors and ship propellers. Additional non-inertial
terms manifest when the rotation is about a moving axis of variable nature. In this section these terms
are derived and isolated to obtain a better understanding of non-inertial terms for unsteady rotational
flow.

3.2.1 Frame Transformations

Assume that the same three frame exists as described in Section 3.1.1; O, O' and Ô (Figure 3.5). O
is again the stationary frame, O' is the orientation preserving frame and Ô is the rotational frame. In
Section 3.1.1 Ô was rotating at a constant velocity around the shared origin. Here Ô is rotating around
the shared origin with a constant rotational acceleration.

Figure 3.5: Local Galilean Transformation between Frames

3.2.1.1 Local Galilean Transformation

The local Galilean transform, as described in Section 3.1.1.1, is here expanded to account for rotational
acceleration.

Assume that the frame origins intersect at time t = 0 and that Frame O' is moving at unsteady
velocity, vrel, with acceleration arel in three dimensional space. At time t =∆t Frame O and Frame O'
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3.2. NON-INERTIAL NAVIER-STOKES EQUATIONS FOR VARIABLE, PURE ROTATION

are distance xrel from each other. In Equation 3.2 there was not an accelerating component, but in this
case it is incorporated in the expression to account for the distance travelled by the particle:

xrel =Vrel∆t+ 1
2

arel∆t2 (3.99)

In the equation above the velocity is again described as in Equation 3.3 :

Vrel =Ω∧x (3.100)

The acceleration is the time derivative of the velocity:

∂Vrel
∂t

= ∂

∂t
[
Ω∧x

]= ∂Ω

∂t
∧x+Ω∧ ∂x

∂t
(3.101)

The second term is equal to zero since this case involves pure rotation. The accelerating component
for the rotational case is therefore expressed as:

arel = Ω̇∧x (3.102)

Equation 3.99 is a Taylor series expansion that was truncated after the second order term since
constant acceleration was assumed. Had the acceleration not been constant, the additional terms are
accounted for by the inclusion of further derivative terms:

xrel =Vrel∆t+ 1
2!

arel∆t2 + 1
3!

ȧrel∆t3 + ... (3.103)

In this equation it can already be seen that the effect of further derivatives onxrel becomes negligible.
This is due to the coefficient ∆tn that becomes smaller and smaller. Subsequently, the effects of the
higher order terms are diminished.
In the same manner as in Equation 3.5, the relation between the order preserving Frame O' and the
inertial Frame O is defined with the inclusion of the accelerating components:

u′(x′, t)=GMu(x, t)

=GΩ∧x+(Ω̇∧x)∆tu(x, t)

=u(x, t)+x∧Ω+ (x∧Ω̇)∆t

(3.104)

3.2.1.2 Rotational Transformation

The rotational transform for this case can be defined in the same manner as Equation 3.9. The vec-
tor components in Frame Ô is related to Frame O' by defining a rotational transform and substituting
Equation 3.104 to relate Frame Ô to Frame O:

û(x̂, t)= RΩt+Ω̇t2
u′(x′, t)

= RΩt+Ω̇t2
GΩ∧x+(Ω̇∧x)∆tu(x, t)

(3.105)
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

RΩt+Ω̇t2 is the rotational transform that operates on the vector x′, defined in Frame O', to obtain the
x̂ coordinates in the unsteady rotational Frame Ô (Figure 3.6).

Figure 3.6: Relation between Frame O' and Frame Ô

Let's assume that the rotation is around the z-axis. The vector Ω is described as Ω = (0,0,Ω) and
vector Ω̇ is described as Ω̇= (0,0,Ω̇). The rotational transform in this case is described by:

RΩt+Ω̇t2 =


cos(Ωt+ Ω̇t2) sin(Ωt+ Ω̇t2) 0

−sin(Ωt+ Ω̇t2) cos(Ωt+ Ω̇t2) 0

0 0 1

 (3.106)

From Equations 3.104 and 3.105 it is derived that the following relation holds:

û(x̂, t)= RΩt+Ω̇t2
[u(x, t)+x∧Ω+ (x∧Ω̇)∆t] (3.107)

3.2.2 Incompressible Flow Conditions

3.2.2.1 Continuity Equation

Consider the continuity equation in the inertial reference Frame O (White [9]):

∂ρ

∂t
+ (∇·ρu)= 0 (3.108)
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3.2. NON-INERTIAL NAVIER-STOKES EQUATIONS FOR VARIABLE, PURE ROTATION

The non-inertial form of the unsteady density term can be described as, the same at in Section 3.1.2.1
:

∂ρ̂

∂t
(x̂t, t)= lim

∆t→0

ρ̂(x̂t+∆t, t+∆t)− ρ̂(x̂t, t)
∆t

(3.109)

A Taylor series expansion of the term ρ̂(x̂t+∆t, t+∆t) provides an expression similar to Equation
3.13 but with the inclusion of the rotational acceleration:

ρ̂(xt+∆t, t+∆t)= ρ̂(xt, t)+{
[∆t(Ω∧xt)+ 1

2
∆t2(Ω̇∧xt)] ·∇

}
ρ̂(xt, t)+ (∆t

∂

∂t
)ρ̂(xt, t) (3.110)

Substitution of this expansion in the Equation 3.109 and manipulation result in an expression that
relates the non-inertial, unsteady density to the inertial frame. This is exactly the same as Equation 3.14.

∂ρ̂

∂t
= RΩt+Ω̇t2[∂ρ

∂t
+ (Ω∧xt) ·∇ρ

]
(3.111)

Equation 3.105 is used to obtain an expression that relates the inertial form of the second term in Equa-
tion 3.108 to the non-inertial Frame Ô:

(∇̂ · ρ̂û)= RΩt+Ω̇t2
GΩ∧x+(Ω̇∧x)∆t(∇·ρu)

= RΩt+Ω̇t2∇·ρ(GΩ∧x+(Ω̇∧x)∆tu)
(3.112)

Substituting Equation 3.107 into the expression above simplifies it to:

(∇̂ · ρ̂û)= RΩt+Ω̇t2∇·ρ[
u+x∧Ω+ (x∧Ω̇)∆t

]
(3.113)

The third term in the relation above is equal to zero as shown in Appendix A :

∇· (x∧Ω̇)= 0 (3.114)

The relation is hence simplified to the following relation, that is the same a Equation 3.16:

∇̂ · ρ̂û= RΩt+Ω̇t2
(∇· (ρu)− (Ω∧x) ·∇ρ) (3.115)

The addition of Equation 3.111 and Equation 3.115 gives a relation for continuity in the rotational
Frame Ô:

∂ρ̂

∂t
+∇̂ · ρ̂û= RΩt+Ω̇t2(∂ρ

∂t
+∇·ρu

)
(3.116)

Implementing Equation 3.108 and invoking the assumption that the flow is incompressible leads to
the final equation for mass conservation in the non-inertial Frame Ô :

∇̂ · ρ̂û= 0 (3.117)

Consider the term (x∧Ω̇)∆t inEquation 3.113. This term originates from the Taylor series expansion
in Equation 3.103 and contains a ∆t component. Any further expansions, due to changes in acceleration
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

in rotation, contain a ∆tn component. These acceleration terms become negligible in the limit as ∆tn

approaches zero:

lim
∆t→0

(
x∧Ω̇

)
��>

0
∆t = 0 (3.118)

Divergence of the cross product further ensure that these terms, and any higher order terms, becomes
zero in accordance to Equation 3.114. In the light of this, the derivations for the continuity equation in
the rotational FrameÔ had been proven Galilean invariant whether the rate of rotation it is zero, constant
or variable. In any rotational frame Equation 3.117 holds for incompressible conditions.

3.2.2.2 Momentum Equation

The conservation of momentum equation in the inertial Frame O is expressed by (White [9]):

∂u
∂t

+ (u ·∇)u=−∇ψ+ν∇2u (3.119)

The terms are again, as in Section 3.1.2.2 , treated separately and then combined to obtain the final
transformed equation.

The first transformation concerns the unsteady term where the limit at a point equation is used:

∂û
∂t

(x̂t, t)= lim
∆t→0

û(x̂t+∆t, t+∆t)− û(x̂t, t)
∆t

(3.120)

The first task is to find an expression for the term û(x̂t+∆t, t+∆t) as a function of the terms in the
inertial frame. It follows from Equation 3.105 that it can be expressed as:

û(x̂t+∆t, t+∆t)= RΩ(t+∆t)+Ω̇(t2+∆t2)[GΩ∧xt+∆t+(Ω̇∧xt+∆t)∆tu(xt+∆t, t+∆t)
]

(3.121)

For simplification purposes the rotational and local Galilean transforms in this case are shown in
the following manner (Equation 3.29) :

RΩ(t+∆t)+Ω̇(t2+∆t2) = RMt+∆t

GΩ∧xt+∆t+(Ω̇∧xt+∆t)∆t =GMt+∆t (3.122)

The Taylor series expansion for xt+∆t is expressed as:

xt+∆t = xt +Vrel∆t+ 1
2

arel∆t2 +O(∆t3) (3.123)

The equation above is truncated at the second order since the change in acceleration in the case is
considered zero. With the substitution of Equations 3.100 and 3.102 the equation above becomes:

xt+∆t −xt = x∆t = (Ω∧xt)∆t+ 1
2

(Ω̇∧xt)∆t2 (3.124)

The Fourier series expansion is obtained for u(xt+∆t, t+∆t). Substitute Equation 3.124 into the
expression to obtain:

u(xt+∆t, t+∆t)=u(xt, t)+{[
∆t(Ω∧xt)+ 1

2
∆t2(Ω̇∧xt)

] ·∇}
u(xt, t)+ (

∆t
∂

∂t
)
u(xt, t) (3.125)
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3.2. NON-INERTIAL NAVIER-STOKES EQUATIONS FOR VARIABLE, PURE ROTATION

The equation above is substituted into Equation 3.121 to get an expression for the non-inertial terms
as a function of the inertial terms:

û(x̂t+∆t, t+∆t)= RMt+∆t
GMt+∆t{

u(xt, t)+ [
∆t(Ω∧xt)+ 1

2
∆t2(Ω̇∧xt)

] ·∇}
u(xt, t)+ (

∆t
∂

∂t
)
u(xt, t)}

(3.126)
In Section 3.1.2.2 Equation 3.29 it was shown that the following simplification can be made to the

local Galilean transformation parameter:

GMt+∆t ≈GMt
(3.127)

The above leads to a simplified form:

û(x̂t+∆t, t+∆t)= RMt+∆t
GMt{

u(xt, t)+[
∆t(Ω∧xt)+1

2
∆t2(Ω̇∧xt)

]·∇}
u(xt, t)+(

∆t
∂

∂t
)
u(xt, t)} (3.128)

In order to complete the substitution for Equation 3.120 further expressions must be defined. As-
sume that the point P is fixed in the rotating frame, and the rotation is around the origin (meaning that
O and O' share an origin), then:

x̂= RMt+∆t
xt+∆t = RMt

xt

xt = RM∆t
xt+∆t

(3.129)

Use the expression above and conduct a Taylor series expansion for xt+∆t:

xt+∆t = xt +V∆t+ 1
2

a∆t2 +O[∆t3]

= RM∆t
xt+∆t + (Ω∧xt)∆t+ 1

2
(Ω̇∧xt)+O[∆t3]

(3.130)

Re-arrange the expression above and consider it in the limit:

lim
∆t→0

RM∆txt+∆t −xt+∆t

∆t
= lim

∆t→0

(
(xt ∧Ω)− 1

2
∆t(Ω̇∧xt)−O[∆t3]

)
(3.131)

If the above is considered for any vector b, and if it is taken into account that xt+∆t → xt as ∆t → 0,
the following equation related to rotation is obtained:

lim
∆t→0

RM∆tb−b
∆t

=b∧Ω (3.132)

This is the same as Equation 3.34 and is valid for displacement and velocity vectors as shown in
Section 3.1.2.2.

With all the required expressions in place Equation 3.120 can now be completed:

∂û
∂t

(x̂t, t)= lim
∆t→0

RMt+∆t
GMt{[

1− 1
RΩ∆t +∆t(Ω∧xt) ·∇+ 1

2∆t2(Ω̇∧xt) ·∇
]
u(xt, t)+ (

∆t ∂
∂t

)
u(xt, t)

}
∆t

(3.133)
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

Equation 3.132 is used to simplify the expression above and with some re-arrangement of terms the
following expression is obtained:

∂û
∂t

(x̂t, t)= RMt[ ∂

∂t
+ (Ω∧xt) ·∇−Ω∧ ][

GMt
u(xt, t)

]
(3.134)

This equation above is the same as Equation 3.36 for constant rotation. It retains its current form
irrespective of any further changes in unsteady rotational motion. All higher order terms, accounting
for unsteady rates of change, become negligible when the expression is considered in the limit.

Equation 3.107 is substituted in the equation above to remove the local Galilean operator from the
equation:

∂û
∂t

(x̂t, t)= RMt[ ∂

∂t
+ (Ω∧xt) ·∇−Ω∧ ]

(u(xt, t))

+RMt[ ∂

∂t
+ (Ω∧xt) ·∇−Ω∧ ]

(xt ∧Ω)

+RMt[ ∂

∂t
+ (Ω∧xt) ·∇−Ω∧ ]

(xt ∧Ω̇)∆t

(3.135)

The different parts of [ ∂
∂t + (Ω∧xt) ·∇−Ω∧](xt∧Ω) , which is the second combination of terms in

Equation 3.135 , are considered here.

The transient term in the equation above can be expanded on with the use of the product rule for partial
differential equations:

∂

∂t
(xt ∧Ω)= ∂xt

∂t
∧Ω+xt ∧ ∂Ω

∂t
(3.136)

In the equation above the first term on the right hand side is zero because the magnitude of xt is
constant, it does not change it's magnitude with respect to the origin. The second term is not equal to
zero in this case and has to be taken into account since it represents the unsteady rotation, this is called
the Euler fictitious force.

The terms [(Ω∧xt) ·∇−Ω∧](xt ∧Ω) has already been shown in Section 3.1.2.2 to be equal to zero:[
(Ω∧xt) ·∇−Ω∧ ]

(xt ∧Ω)= 0 (3.137)

Therefore, the relation [ ∂
∂t + (Ω∧xt) ·∇−Ω∧](xt ∧Ω) , for this case, simplifies to:

[ ∂

∂t
+ (Ω∧xt) ·∇−Ω∧ ]

(xt ∧Ω)=xt ∧Ω̇ (3.138)

The different parts of [ ∂
∂t + (Ω∧xt) · ∇−Ω∧](xt ∧ Ω̇)∆t, which is the third combination of terms in

Equation 3.135 , are considered below.
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3.2. NON-INERTIAL NAVIER-STOKES EQUATIONS FOR VARIABLE, PURE ROTATION

The transient component of the terms can be expanded again using the product rule. In this case the
terms are all equal to zero:

∂

∂t
(xt ∧Ω̇)= ∂xt

∂t
∧Ω̇+xt ∧ ∂Ω̇

∂t
= 0 (3.139)

The first term in the equation above is equal to zero because the magnitude of xt is constant due
to the pure rotation. The second term in the equation is equal to zero because constant acceleration is
considered in this case.

Now consider the term [(Ω∧xt) ·∇−Ω∧](xt ∧Ω̇)∆t. If the identity Appendix A:

(a ·∇)(xt ∧Ω̇)= a∧Ω̇ (3.140)

is considered, it can be shown that the entire term is equal to zero:[
(Ω∧xt) ·∇−Ω∧ ]

(xt ∧Ω̇)= (Ω∧xt)∧Ω̇−Ω∧ (xt ∧Ω̇)

= 0
(3.141)

The entire third combination of terms in Equation 3.135 therefore becomes zero:

[
∂

∂t
+ (Ω∧xt) ·∇−Ω∧](xt ∧Ω̇)∆t = 0 (3.142)

The expressions above leads to the final description of the unsteady terms in themomentum equation
for constant rotation:

∂û
∂t

(x̂t, t)= RMt[ ∂

∂t
+ (Ω∧xt) ·∇−Ω∧ ](

u(xt, t)
)︸ ︷︷ ︸

Coriolis

+RMt
(xt ∧Ω̇)︸ ︷︷ ︸

Euler

(3.143)

At this stage it must noted that in any pure rotation, this is the form the unsteady component of the
equation takes. Higher order terms that appear in rotation as a result of unsteady behaviour becomes
negligible as demonstrated in this section.

Take note in this equation of the appearance of a part of the Coriolis effect and the Euler effect. The
Euler term account for the variability in the rotational velocity and is not seen in Equation 3.20 since
that equation is for constant conditions.

The advection term in the non-inertial Navier-Stokes equation for constant rotation is transformed in
the following paragraphs. The relation between the inertial and rotational frames can be described by
the equation below:

(û · ∇̂)û= RMt
GMt

(u ·∇)u

= RMt
(GMt

u ·∇)GMt
u

(3.144)

With the use of Equation 3.107 , the equation above is expanded into:

(û · ∇̂)û= RMt[(
u+x∧Ω+ (x∧Ω̇)∆t

) ·∇]
u

+RMt[(
u+x∧Ω+ (x∧Ω̇)∆t

) ·∇]
(x∧Ω)

+RMt[(
u+x∧Ω+ (x∧Ω̇)∆t

) ·∇]
(x∧Ω̇)∆t

(3.145)
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

The equation above can be simplified by considering it in the limit of ∆t as it approaches zero and
using the identity in Equation 3.39 . This leads to the equation:

(û · ∇̂)û= RMt[
(u ·∇)u+ (

(x∧Ω) ·∇)
u+ (u∧Ω)︸ ︷︷ ︸

Coriolis

+ (x∧Ω)∧Ω︸ ︷︷ ︸
Centrifugal

]
(3.146)

This is the form the advection terms of the momentum equation take in rotation, irrespective of any
unsteady rates of change. In this equation the appearance of the second part of the Coriolis effect and
the Centrifugal effect is shown.

The pressure gradient term is considered next. The relation between the inertial and rotational frame for
the pressure gradient can be expressed in the manner below:

∇̂ψ̂= RMt
GMt∇ψ (3.147)

Since scalars are Galilean invariant under transformation, the equation simplifies to:

∇̂ψ̂= RMt∇ψ (3.148)

The last term in the momentum equation that must be transformed is the diffusion term. The relation
between the inertial and non-inertial frames is described below and Equation 3.107 is used to expand
on the relation:

ν∇̂2û= RMt
GMt

ν∇2u

= RMt
ν∇2GMt

u

= RMt
ν∇2[

u+x∧Ω+ (x∧Ω̇)∆t
] (3.149)

If the following identities, as proofed in Appendix A , is substituted in the equation above,

∇2(x∧Ω)= 0

∇2[
(x∧Ω̇)∆t

]= 0
(3.150)

the advection terms of the momentum equation becomes:

ν∇̂2û= RMt
ν∇2u (3.151)

Note that the pressure and viscous term is Galilean invariant in this instance and the two components
can be combined into a single variable f:

f(x, t)=−∇ψ+ν∇2u (3.152)

The relation for f between the inertial and rotational frames can therefore be described by:

f̂(x̂, t)= RMt
f(x, t) (3.153)
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3.2. NON-INERTIAL NAVIER-STOKES EQUATIONS FOR VARIABLE, PURE ROTATION

Expressions have been obtained for all the parts of themomentum equation that relates the inertial Frame
O to the rotational Frame Ô. The transformed equation is obtained by the summation of the transient
and advection components as derived in Equations 3.143 and 3.146 :

∂û
∂t

+ (û · ∇̂)û= RMt[∂u
∂t

+ (u ·∇)u+2u∧Ω+x∧Ω∧Ω+x∧Ω̇
]

= RMt[∂u
∂t

+ (u ·∇)u
]+RMt[

2u∧Ω+x∧Ω∧Ω+x∧Ω̇
] (3.154)

First grouping of terms on the right hand side of the equation above can be simplified using Equa-
tions 3.119, 3.152 and 3.153 :

RMt[∂u
∂t

+ (u ·∇)u
]= RMt

(−∇ψ+ν∇2u)

= RMt
f(x, t)

= f̂(x̂, t)

(3.155)

Second grouping of terms in the transformed equation can be simplified using Equation 3.107 and
become:

RMt
(2u∧Ω+x∧Ω∧Ω+x∧Ω̇)= 2û∧Ω− x̂∧Ω∧Ω+ x̂∧Ω̇ (3.156)

The above simplifications can be substituted into Equation 3.154 and result in the non-inertial mo-
mentum equation in a rotational frame:

∂û
∂t

+ (û · ∇̂)û=−∇̂ψ̂+ν∇̂2û+2û∧Ω︸ ︷︷ ︸
Coriolis

− x̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+ x̂∧Ω̇︸ ︷︷ ︸
Euler

(3.157)

IThe only difference between the momentum equation in constant rotation, Equation 3.55, and vari-
able rotation, Equation 3.157, is the appearance of the Euler term.

The Euler term x̂∧Ω̇ represents the unsteady rotational acceleration of the point P around the axis
of rotation which in this case is the origin of Frame O. It has also been shown that the equation above
always take this form whether the acceleration in rotation is constant or variable.

3.2.2.3 Energy Equation

Consider the energy equation in the inertial frame (White [9]):

∂ρe
∂t

+ (∇·ρeu)=−p(∇·u)+∇· (k∇T)+φ (3.158)

The various terms can be transformed to the rotational frame separately and then combined to ob-
tained the energy equation in the rotational frame, the same method as was followed in Section 3.1.2.3 .

The time dependant term can be related between Frame Ô and Frame O by using the equation below.
This is the same equation as in Section 3.1.2.3 and it is valid in this case as well.

∂ρ̂ ê
∂t

= RΩt+Ω̇t2[∂ρe
∂t

+ (Ω∧x) ·∇(ρe)
]

(3.159)
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

The relation for the convective term between the inertial and rotational frame is shown below. This
equation can be expanded upon with the used of Equation 3.107 :

(∇̂ · ρ̂ êû)= RMt
GMt

(∇·ρeu)

= RMt[∇·ρe
(
u+x∧Ω+ (x∧Ω̇)∆t

)]
= RMt[∇·ρeu+∇·ρe(x∧Ω)+∇·ρe(x∧Ω̇)∆t

] (3.160)

The third term on the right hand side of the equation above was shown in Equation 3.114 to be equal
to zero. The convective term therefore becomes Galilean invariant under transformation:

(∇̂ · ρ̂ êû)= RMt
(∇·ρeu+∇·ρe(x∧Ω)) (3.161)

The term that represents the rate of work done by the normal force can be related in the inertial and
rotational frames as shown below. This term can be expanded upon using Equation 3.107 .

− p̂(∇̂ · û)= RMt
GM t[− p(∇·u)

]
= RMt[− p∇· (u+x∧Ω+ (x∧Ω̇)∆t

)]
= RMt[− p∇·u− p∇· (x∧Ω)− p∇· (x∧Ω̇)∆t

] (3.162)

Showing that the second and third terms is again equal to zero, the same as above and indicated in
Equation 3.114 , this transformation is also invariant.

−p̂(∇̂ · û)= RMt
(−p∇·u) (3.163)

The diffusive term in the rotational frame can be expressed in the inertial frame with the following
relation:

∇̂ · (k̂∇̂T̂)= RMt
GM t[∇· (k∇T)

]
(3.164)

Since k and T are scalars the relation is invariant under transformation:

∇̂ · (k̂∇̂T̂)= RMt[∇· (k∇T)
]

(3.165)

The full relation between the rotational and inertial frames for the energy equation can be obtained by
summation of the components obtained above. This leads to the equation:

∂ρ̂ ê
∂t

+ (∇̂ · ρ̂ êû)+ p̂(∇̂ · û)−∇̂ · (k̂∇̂T̂)+ φ̂= RMt[∂ρe
∂t

+ (∇·ρeu)+ p(∇·u)−∇· (k∇T)
]+φ (3.166)

The right hand side of the equation is equal to zero, this can be seen from re-arrangement of the
terms in Equation 3.158 . The non-inertial energy equation is invariant under transformation in this
specific case for constant acceleration in rotation, but it can be seen that this equation remains in this
form even if the acceleration is not constant. Equation 3.117 is further used to arrive at:

∂ρ̂ ê
∂t

+ (∇̂ · ρ̂ êû)= ∇̂ · (k̂∇̂T̂)+ φ̂I (3.167)
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3.2. NON-INERTIAL NAVIER-STOKES EQUATIONS FOR VARIABLE, PURE ROTATION

3.2.3 Compressible Flow Conditions

3.2.3.1 Continuity Equation

The continuity equation was shown to be invariant under the local Galilean transformation for constant
rotational acceleration in Equation 3.116 . Since the compressible case is considered here, the trans-
formed equation becomes:

∂ρ̂

∂t
+∇̂ · ρ̂û= 0 (3.168)

The continuity equation was proven invariant in all instances of unsteady rotation.

3.2.3.2 Momentum Equation

The difference between the compressible and incompressible momentum equation was discussed in
Section 3.1. It was shown in Section 3.1.3 that the difference between the incompressible and compress-
ible case only manifests in the diffusion term. The equation for variable rotation takes a form similar to
Equation 3.85, but with the inclusion in this case of the Euler term as seen in Equation 3.157:

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î
]+2ρû∧Ω︸ ︷︷ ︸

Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+ρx̂∧Ω̇︸ ︷︷ ︸
Euler

(3.169)

In the case only pure rotations were considered. If the rotationwas about amoving axis, an additional
fictitious term would have been present in the momentum equation. This term has its origin from the
transient term as shown in Equation 3.136 . The resulting momentum equation would be:

∂ρ̂û
∂t

+∇̂· (ρ̂û⊗ û)=−∇̂ p̂+∇̂·[µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î
]+2ρû∧Ω︸ ︷︷ ︸

Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+ρx̂∧Ω̇︸ ︷︷ ︸
Euler

+ ρẋ∧Ω︸ ︷︷ ︸
Moving Axis
(3.170)

This equation applies to all bodies in unsteady rotation. It has been shown that no additional terms
are added to the non-inertial formulation even if the rotational rate of change is unsteady (Equation
3.143).

3.2.3.3 Energy Equation

The energy equation remains invariant in the non-inertial frame as shown in Equation 3.167, only here
the incompressibility assumption is not made. The non-inertial energy equation in compressible flow
therefore becomes:

∂ρ̂ ê
∂t

+ (∇̂ · ρ̂ êû)=− p̂(∇̂ · û)+∇̂ · (k̂∇̂T̂)+ φ̂ (3.171)

It was shown in Section 3.2.2.3 that the energy equation is invariant under transformation in all
cases of rotation.
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

3.2.4 Constant Rotation Equations as a Special Case of the Variable Rotation
Equations

In Sections 3.1.2 and 3.2.2 it was shown that the continuity and conservation of energy equations are
invariant under Galilean transformation for all cases of rotation. This is an important result to show. Even
though mass and energy are scalar values which is invariant under Galilean transformation (Kleppner
and Kolenkow [60], McCauley [61]), it is not obvious that there are no fictitious effects when deriving
the equations using the a Lagrangian approach. The derivation of themomentum equation for the various
cases not only provided the appropriate fictitious forces for each case, but it also showed from which
transformations the forces originated (see Equations 3.55, 3.85, 3.157 and 3.169 ).

The derivations are based on a Taylor series expansion of the relative motion between the origin
of Frame O and the combined origin of Frames O' and Ô. The constant rotation case is a special case
of the variable rotation case since the order at which the Taylor series was truncated, determines the
fictitious force involved (see Equations 3.2 and 3.99 ). The variable rotation formulation lead directly
to the constant rotation formulation if constant rotation conditions is applies to it. Since the conservation
of mass and energy equations is invariant no changes occur in those formulation. This is demonstrated
using the momentum equations below.

Consider the momentum equation for variable, pure rotation in the rotational frame in incompress-
ible flow (Equation 3.157):

∂û
∂t

+ (û · ∇̂)û=−∇̂ψ̂+ν∇̂2û+2û∧Ω︸ ︷︷ ︸
Coriolis

− x̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+ x̂∧Ω̇︸ ︷︷ ︸
Euler

(3.172)

The fictitious forces involved are the Coriolis force, Centrifugal force and Euler force. In the case
where the rotational is constant, Ω̇ = 0 , the Euler force becomes zero, x̂∧ Ω̇ = 0. The equation then
becomes:

∂û
∂t

+ (û · ∇̂)û=−∇̂ψ̂+ν∇̂2û+2û∧Ω︸ ︷︷ ︸
Coriolis

− x̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

(3.173)

This is the same as Equation 3.55 which describes the momentum equation for constant rotation as
seen from the rotational frame. This indicates consistency in the derivations.
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3.3. NON-INERTIAL NAVIER-STOKES EQUATION FOR ARBITRARY MOTION

3.3 Non-Inertial Navier-Stokes Equation for Arbitrary Motion

Rotational cases, as discussed in the previous sections, are very specific. The formulations only applies
in applications such as wind turbines and other stationary machinery.

Applications that display fully arbitrary non-inertial behaviour can be found in the aeronautical and
aero-ballistic fields. Military aircraft that executes high acceleration manoeuvres and artillery projec-
tiles with air-breathing engines are some examples where arbitrary motion in six degrees of freedom is
observed.

The non-inertial mathematically formulations for airframes executing arbitrary motion (both in
translation and rotation) are derived here.

3.3.1 Frame Transformations

In this derivation three reference frames (the same as used in Sections 3.1 and 3.2) are made use of to
transform the inertial Navier-Stokes equations to the non-inertial form (Figure 3.7).

Figure 3.7: Frames of Observation (O, O' and Ô) for Point P

These frames comprise of:

• Frame O, which is an inertial frame. This frame is stationary.

• FrameO', which is a non-inertial frame. This frame is orientation preservingwith respect to Frame
O. It therefore has three degrees of freedom and is free to translate. This frame accounts for the
relative translation motion between the inertial and non-inertial frames.

• Frame Ô, which is a non-inertial, rotating frame. This frame does not preserve orientation there-
fore it has six degrees of freedom. It can translate and rotate as predicted by the unsteady motion
imposed on point P. This frame shares an origin with Frame O' so that it can account for the
relative rotational motion between the inertial and non-inertial frames.
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

Consider the point P. The motion of this point can be described from each of the three frames. This
point is in arbitrary motion in translation and rotation. The rotational axis is about the shared origins of
Frame Ô and Frame O'.

The flow field that surrounds this point can be described from any of the reference frames. The
standard Navier-Stokes equations hold in the inertial frame, therefore the objective is to obtain the
correct form of the equations in Frame Ô. It is accomplished by conducting two transformations.

The first transformation accounts for arbitrary motion between the inertial frame and the orientation
preserving frame. Since Frame O' and Frame Ô shares an origin, this transformation accounts for the
translation of Frame Ô as well. A local Galilean Transformation for unsteady motion is used to this
effect.

The second transformation accounts for arbitrary rotation. A transformation from FrameO' to Frame
Ô is defined. The relation derived during the first transformation is used to describe the flow field in
Frame Ô in terms of the vectors of Frame O.

3.3.1.1 Local Galilean Transformation

For the local Galilean transformation assume that the frame origins intersect at time t = 0 and that frame
Ô is moving at velocity vrel and acceleration arel in three dimensional space. At time t =∆t Frames O
and O' are distance xrel from each other. The is depicted in Figure 3.8.

Figure 3.8: Point Description between Frames

In Figure 3.8 the absolute distance can be described in terms of the relative and non-inertial dis-
tances:

x= xrel +x′ (3.174)
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3.3. NON-INERTIAL NAVIER-STOKES EQUATION FOR ARBITRARY MOTION

The relative distance between the two frames is a summation of the accelerating translation and
rotation and is described by:

xrel =Vrel∆t+ 1
2

arel∆t2 (3.175)

The relative velocity component consist of the translating and rotating velocity components so that:

Vrel =Vtranslating +Vrotating

=V(t)+Ω∧x′ (3.176)

In this equation the translation component is a function of time only as it describes the motion
between the origins of Frames O and O'. The rotation is taking place in Frame O' and is therefore
defined in this frame.

The acceleration is the time derivative of the velocity:

∂Vrel
∂t

= ∂

∂t
[V(t)+Ω∧x′]

=a(t)+ ∂Ω

∂t
∧x′+Ω∧ ∂x′

∂t

(3.177)

The first term represents the translational acceleration, while the second and third terms is a result of
the rotational velocity. Since both the derivative of x andΩ is not equal to zero, these terms contribute
to the total relative unsteady motion. The accelerating component can therefore be expressed as:

arel = atranslating +arotating

= a(t)︸︷︷︸
Translating

+Ω̇∧x′+Ω∧ ẋ′︸ ︷︷ ︸
Rotating

(3.178)

A description for the relative motion can be obtained by substituting Equations 3.178 and 3.176
into Equation 3.175. This results in:

xrel = [V(t)+Ω∧x′]∆t+ 1
2

[a(t)+Ω̇∧x′+Ω∧ ẋ′]∆t2 (3.179)

The relation between the order preserving frame and the inertial frame is defined through a local
Galilean transformation:

u′(x′, t)=GMt
u(x, t)

=u(x, t)−V(t)+x′∧Ω− [a(t)+Ω̇∧x′+Ω∧ ẋ′]∆t
(3.180)

3.3.1.2 Rotational Transform

The rotational transform for this case can be defined as the projection of the vectors in the orientation
preserving frame on the rotational frames. This is depicted in Figure 3.9 .

The vector components in Frame Ô is related to Frame O' by defining a rotational transform and
substituting Equation 3.180:

û(x̂, t)= RMt
u′(x′, t)

= RMt
GMt

u(x, t)
(3.181)

53

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

Figure 3.9: Relation between Rotational and Orientation Preserving Frames

Lets assume that the rotation is around the z-axis, then the vector Ω is described as Ω = (0,0,Ω)

and vector Ω̇ is described as Ω̇= (0,0,Ω̇). The rotational transform in this case is described by:

RMt =


cos(Ωt+ Ω̇t2) sin(Ωt+ Ω̇t2) 0

−sin(Ωt+ Ω̇t2) cos(Ωt+ Ω̇t2) 0

0 0 1

 (3.182)

From Equations 3.180 and 3.181 it can be derived that the following relation holds:

û(x̂, t)= RM[u(x, t)−V(t)+x′∧Ω− [a(t)+Ω̇∧x′+Ω∧ ẋ′]∆t] (3.183)

3.3.2 Compressible Flow Conditions

3.3.2.1 Continuity Equation

Consider the continuity equation in the inertial reference frame (White [9]):

∂ρ

∂t
+ (∇·ρu)= 0 (3.184)

The time dependant term in the inertial and non-inertial frame is related by the same expression in
Sections 3.1.2.1 and 3.2.2.1. The exception in this case is that the rotation is around the origin of Frame
O':

∂ρ̂

∂t
= RMt[∂ρ

∂t
+ (Ω∧x′) ·∇ρ]

(3.185)
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3.3. NON-INERTIAL NAVIER-STOKES EQUATION FOR ARBITRARY MOTION

The relation between the inertial and non-inertial formulations of the second term in the continuity
equation becomes:

(∇̂ · ρ̂û)= RMt
GMt

(∇·ρu)

= RMt∇·ρ(GMt
u)}

(3.186)

With the implementation of Equation 3.183 the relation is simplified to:

(∇̂ · ρ̂û)= RMt∇·ρ[u−V(t)+x′∧Ω− [a(t)+Ω̇∧x′+Ω∧ ẋ′]∆t] (3.187)

The divergence of a cross product is equal to zero (see Appendix A for the proof), hence a number
on the terms in the above relation is cancelled out:

∇· (Ω̇∧x′)= 0

∇· (Ω∧ ẋ′)= 0
(3.188)

Furthermore, the divergence of the translational components are equal to zero. This is due to the
translation being dependant on the time dimension alone - V(t) and a(t) are constant throughout the
spatial domain at any given time step:

∇·V(t)= 0

∇·a(t)= 0
(3.189)

The relation is hence simplified to an invariant relation as all the additional terms cancels out:

∇̂ · ρ̂û= RMt
(∇·ρu+∇·ρx′∧Ω) (3.190)

The addition of Equations 3.185 and 3.190 give a relation for continuity in the non-inertial frame:

∂ρ̂

∂t
+∇̂ · ρ̂û= RMt

(
∂ρ

∂t
+∇·ρu) (3.191)

By implementing Equation 3.184, the final equation for mass conservation in the accelerating frame
is obtained:

∂ρ̂

∂t
+∇̂ · ρ̂û= 0 (3.192)

The derivations for the continuity equation, here and in Sections 3.1.2.1 and 3.2.2.1, in the non-
inertial frame have shown to be invariant to transformation whether the acceleration is zero, constant
or variable. In any non-inertial frame Equation 3.192 holds for compressible conditions.

3.3.2.2 Conservation of Momentum Equation

The compressible Navier-Stokes Equation in the inertial frame takes the form (White [9]):

∂

∂t
ρu︸ ︷︷ ︸

Unsteady

+∇· (ρu⊗u)︸ ︷︷ ︸
Advection

=− ∇p︸︷︷︸
Pressure Gradient

+∇· [µ(∇u+∇uT )+λ(∇·u)I]︸ ︷︷ ︸
Compressible Stress Tensor

(3.193)
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

The non-inertial forms of the separate terms of the equation, are derived from this form to obtain
the compressible equations in the acceleration frame.

First consider the unsteady term in the rotational frame and apply the product rule for partial deriva-
tives. This operation results in two terms that was not considered during the incompressible case:

∂

∂t
(ρ̂û)= ρ̂

∂û
∂t

+ û
∂ρ̂

∂t
(3.194)

The first transformation concerns the unsteady term where an expression is found for:

∂û
∂t

(x̂t, t)= lim
∆t→0

û(x̂t+∆t, t+∆t)− û(x̂t, t)
∆t

(3.195)

The first task is to find an expression for the term û(x̂t+∆t, t+∆t). The expression takes a form that
is similar to Equation 3.181:

û(x̂t+∆t, t+∆t)= RMt+∆t
u′(x′

t+∆t, t+∆t) (3.196)

The Taylor series expansion for x′
t+∆t is expressed as:

x′
t+∆t = x′

t +V′∆t+ 1
2

a′∆t2 +O(∆t3) (3.197)

The expression above is as seen from the orientation preserving frame. Since this frame is free to
translate, but not to rotate, only the rotation terms are relevant here. The equation above is truncated at
the second order as further changes in acceleration does not have a effect in the non-inertial frame. With
the substitution of the rotational components of Equations 3.176 and 3.178 and further re-arrangement
the equation becomes:

x′
t+∆t −x′

t = x′
∆t = (Ω∧x′

t)∆t+ 1
2

(Ω̇∧x′
t +Ω∧ ẋ′

t)∆t2 (3.198)

The Fourier series expansion is obtained for u′(x′
t+∆t, t+∆t). Substitute Equation 3.198 into the

expression to obtain:

u′(x′
t+∆t, t+∆t)=u′(x′

t, t)+ {[∆t(Ω∧x′
t)+

1
2
∆t2(Ω̇∧x′

t +Ω∧ ẋ′
t)] ·∇}u(xt, t)+ (∆t

∂

∂t
)u(xt, t)

(3.199)

The equation above is substituted into Equation 3.196 to get the expression:

û(x̂t+∆t, t+∆t)= RMt+∆t
{u′(x′

t, t)+ {[∆t(Ω∧x′
t)+

1
2
∆t2(Ω̇∧x′

t +Ω∧ ẋ′
t)] ·∇}u′(x′

t, t)+ (∆t
∂

∂t
)u′(x′

t, t)}

(3.200)

The assumption are made that the point P is fixed in the rotating frame, and the rotation is around
the origin of Frame O'. The relation of motion between two time steps are:

x̂= RMt+∆t
x′

t+∆t = RM t
x′

t

x′
t = RM∆t

x′
t+∆t (3.201)

56

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



3.3. NON-INERTIAL NAVIER-STOKES EQUATION FOR ARBITRARY MOTION

Next a Taylor series expansion for x′
t+∆t is developed and the equation above is used to arrive at:

x′
t+∆t = x′

t +V′∆t+ 1
2

a′∆t2 +O[∆t3]

= RM∆t
x′

t+∆t + (Ω∧x′
t)∆t+ 1

2
(Ω̇∧x′

t +Ω∧ ẋ′
t)∆t2 +O[∆t3]

(3.202)

Re-arrange the expression above and consider it in the limit yields:

lim
∆t→0

RM∆tx′
t+∆t −x′

t+∆t

∆t
= lim

∆t→0
[−Ω∧x′

t −
1
2
∆t(Ω̇∧x′

t +Ω∧ ẋ′
t)−O[∆t3]] (3.203)

If this expression is considered for any vector b, and taken into account that xt+∆t → xt as ∆t → 0,
the following equation related to rotation is obtained:

lim
∆t→0

RM∆tb−b
∆t

=b∧Ω (3.204)

With all the required expressions in place Equation 3.195 can now be completed:

∂û
∂t

(x̂t, t)= lim
∆t→0

RMt+∆t
{[1− 1

RM∆t +∆t(Ω∧x′
t) ·∇+ 1

2∆t2(Ω̇∧x′
t +Ω∧ ẋ′

t) ·∇]u′(x′
t, t)+ (∆t ∂

∂t )u
′(x′

t, t)}

∆t
(3.205)

Equation 3.204 is used to simplify the expression above and with some rearrangement of terms the
following expression is obtained:

∂û
∂t

(x̂t, t)= RMt
[
∂

∂t
+ (Ω∧x′

t) ·∇−Ω∧][GMt
u(xt, t)] (3.206)

This equation above retains its current form irrespective of any further changes in acceleration. All
other terms that is inserted to account for variation in acceleration become negligible when the expres-
sion is considered in the limit. This equation is similar to Equations 3.36 and 3.134 indicating that the
higher order acceleration terms do not cause any changes in this expression.

Substitute Equation 3.206 into Equation 3.194 and with the aid of Equation 3.181 the above be-
comes:

∂

∂t
(ρ̂û)= RMt

GMt
[ρ

∂u
∂t

+ρ(Ω∧x′
t) ·∇u−ρΩ∧u+u

∂ρ

∂t
] (3.207)

The product rule is then used to combine the terms ρ ∂u
∂t and u∂ρ

∂t so that the equation simplifies to:

∂

∂t
(ρ̂û)= RMt

[
∂

∂t
(ρ)+ρ(Ω∧x′

t) ·∇−ρΩ∧]GMt
u (3.208)
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

Equation 3.183 is substituted in the equation above to remove the local Galilean operator from the
equation:

∂ρû
∂t

(x̂t, t)= RMt
[
∂

∂t
(ρ)+ρ(Ω∧x′

t) ·∇−ρΩ∧](u(xt, t))

−RMt
[
∂

∂t
(ρ)+ρ(Ω∧x′

t) ·∇−ρΩ∧](V(t))

+RMt
[
∂

∂t
(ρ)+ρ(Ω∧x′

t) ·∇−ρΩ∧](x′
t ∧Ω)

+RMt
[
∂

∂t
(ρ)+ρ(Ω∧x′

t) ·∇−ρΩ∧](a(t)+Ω̇∧x′
t +Ω∧ ẋ′

t)∆t

(3.209)

The different parts of [ ∂
∂t (ρ)+ρ(Ω∧x′

t) ·∇−ρΩ∧](x′
t∧Ω), which is the third combination of terms

in Equation 3.209 , are considered here.

The transient term in the equation above can be expanded on with the use of the product rule for partial
differential equations:

∂

∂t
(x′

t ∧Ω)= ∂x′
t

∂t
∧Ω+ (x′

t ∧
∂Ω

∂t
) (3.210)

In the equation above the first term on the right hand side represents the unsteady motion of point P
in the frame O' in cases where the rotation is not purely about the fixed axis. In pure rotation cases this
term is equal to zero. The second term represents the unsteady rotation, this is referred to as the Euler
fictitious force.

The terms [(Ω∧x′
t) ·∇−Ω∧](x′

t ∧Ω) is equal to zero and cancels out:

[(Ω∧x′
t) ·∇−Ω∧](x′

t ∧Ω)= 0 (3.211)

The relation [ ∂
∂t (ρ)+ρ(Ω∧x′

t) ·∇−ρΩ∧](x′
t ∧Ω), for this case, simplifies to:

[
∂

∂t
(ρ)+ρ(Ω∧x′

t) ·∇−ρΩ∧](x′
t ∧Ω)= ρẋ′

t ∧Ω+ρx′
t ∧Ω̇ (3.212)

The entire fourth combination of terms in Equation 3.209 falls away.
The above leads to the final description of the unsteady terms in themomentum equation for arbitrary

acceleration:

∂ρû
∂t

(x̂t, t)= RMt
[
∂

∂t
(ρ)+ρ(Ω∧x′

t) ·∇−ρΩ∧](u(xt, t)︸ ︷︷ ︸
Coriolis

−V(t))+RMt
( ρẋ′

t ∧Ω︸ ︷︷ ︸
Moving Axis

+ρx′
t ∧Ω̇︸ ︷︷ ︸
Euler

) (3.213)

In any arbitrary acceleration case, this is the form the unsteady component of the equation always
take. Take note in this equation of the appearance of a part of the Coriolis effect, Euler effect and a term
that is related to in frame motion due to rotation that is not purely around a stationary axis.
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3.3. NON-INERTIAL NAVIER-STOKES EQUATION FOR ARBITRARY MOTION

The relation between the frames for the advection term in the compressible Navier-Stokes momen-
tum equation is:

∇̂ · (ρ̂û⊗ û)= RMt
GMt

[∇· (ρu⊗u)] (3.214)

By using Equation 3.180 the equation above is expanded into:

∇̂ · (ρ̂û⊗ û)= RMt
{∇·ρ[(u−V(t)+x′∧Ω− [a(t)+Ω̇∧x′+Ω∧ ẋ′]∆t)

⊗ (u−V(t)+x′∧Ω− [a(t)+Ω̇∧x′+Ω∧ ẋ′]∆t)]}

= RΩt{(∇·ρu)⊗u− (∇·ρu)⊗ (V(t))+ (∇·ρu)⊗ (x′∧Ω)

− [∇·ρ(V(t))]⊗u+ [∇·ρ(V(t))]⊗ (V(t))− [∇·ρ(V(t))]⊗ (x′∧Ω)

+ [∇·ρ(x′∧Ω)]⊗u− [∇·ρ(x′∧Ω)]⊗ (V(t))+ [∇·ρ(x′∧Ω)]⊗ (x′∧Ω)}

(3.215)

The identity as derived in Appendix A below can be used to simplify the equation.

(∇·a)⊗ (x′∧Ω)= a∧Ω (3.216)

This leads to the following expression for relating the diffusion term in the rotational frame to the
terms in the inertial frame:

∇̂ · (ρ̂û⊗ û)= RMt
[∇·ρu⊗u+ρu∧Ω︸ ︷︷ ︸

Coriolis

+∇·ρ(x′∧Ω)⊗u+ (ρx′∧Ω)∧Ω︸ ︷︷ ︸
Centrifugal

+ρV(t)∧Ω︸ ︷︷ ︸
Magnus

] (3.217)

The original of the second part of the Coriolis and the Centrifugal terms can be seen here. Fur-
thermore, an additional term that represents the change in diffusion due to the interaction between the
translating and rotating part of the flow can be seen here. This is referred to as the Magnus force.

The pressure gradient term in the momentum equation is transformed. This part of the equation
remain invariant since it is a scalar.

∇̂ p̂ = RMt
GMt∇p

∇̂ p̂ = RMt∇p
(3.218)

In the transformation of the diffusion term the difference between the compressible and incompress-
ible cases must be noted. The divergence of the velocity vector is not negligible, therefore the completed
diffusion term must be accounted for. The expression for relating the diffusion term between the frames
hence becomes:

∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î]= RMt
GMt∇· [µ(∇u+∇uT )+λ(∇·u)I] (3.219)

With the implementation of Equation 3.183, the right hand side of the equations becomes:

RMt∇· {µ[∇( u−V(t)+x′∧Ω− [a(t)+Ω̇∧x′+Ω∧ ẋ′]∆t)

+∇(u−V(t)+x′∧Ω− [a(t)+Ω̇∧x′+Ω∧ ẋ′]∆t)T ]

+λ(∇· (u−V(t)+x′∧Ω− [a(t)+Ω̇∧x′+Ω∧ ẋ′]∆t))I}

(3.220)
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

If it is considered that, as shown in Appendix A,

∇(x′∧Ω)+∇(x′∧Ω)T = 0

∇· (x′∧Ω)= 0
(3.221)

It can be shown that the diffusion component of the momentum equation is invariant for constant
rotation conditions:

∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î= RΩt∇· [µ(∇u+∇uT )+λ(∇·u)I] (3.222)

The final transformation of the momentum equation relies on the summation of the transient and
advection terms, as well as further manipulation of the resulting groups of terms.

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)= RMt
[

Group 1︷ ︸︸ ︷
∂

∂t
(ρu)+∇·ρu⊗u− ∂

∂t
(ρV(t))

+
Group 2︷ ︸︸ ︷

ρẋ′∧Ω+ρx′∧Ω̇+ (ρx′∧Ω)∧Ω+2ρu∧Ω

+
Group 3︷ ︸︸ ︷

∇·ρ(x′∧Ω)⊗u+ρ(Ω∧x′) ·∇u−ρ(Ω∧x′) ·∇V(t)

+
Group 3︷ ︸︸ ︷

ρV(t)∧Ω+ρΩ∧V(t))]

(3.223)

Group 1 is replace by the equation below, where Equation 3.193 was used the rotational transform
multiplied through the equation. Subsequently the non-inertial form of the terms were obtained:

RMt
[
∂

∂t
(ρu)+∇·ρu⊗u]= RMt

[−∇p+∇· [µ(∇u+∇uT )+λ(∇·u)I]]

=−∇̂p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î]
(3.224)

The Group 2 terms represents the majority of the fictitious forces. These were manipulated as shown
below to determine the non-inertial form:

RMt
[ρẋ′∧Ω+ρx′∧Ω̇+ (ρx′∧Ω)∧Ω+2ρu∧Ω]

= ρ(RMt
)ẋ′∧Ω+ρ(RMt

)x′∧Ω̇+ (ρ(RMt
)x′∧Ω)∧Ω+2ρ(RMt

)u∧Ω

= ρ ˆ̇x∧Ω+ρx̂∧Ω̇+ρx̂∧Ω∧Ω+2ρ[û+V(t)− x̂∧Ω+ (arelative)∆t]∧Ω

= ρ ˆ̇x∧Ω+ρx̂∧Ω̇+ρx̂∧Ω∧Ω+2ρû∧Ω+2ρV(t)∧Ω−2ρx̂∧Ω∧Ω

= ρ ˆ̇x∧Ω+ρx̂∧Ω̇−ρx̂∧Ω∧Ω+2ρû∧Ω+2ρV(t)∧Ω

(3.225)

The remainder of the terms, Group 3 conveniently cancels each other out.

∇·ρ(x′∧Ω)⊗u+ρ(Ω∧x′) ·∇u−ρ(Ω∧x′) ·∇V(t)+ρV(t)∧Ω+ρΩ∧V(t))= 0 (3.226)

Summation of the transformed parts of the momentum equation lead to the final form of the com-
pressible, non-inertial momentum equation for full arbitrary motion:
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3.3. NON-INERTIAL NAVIER-STOKES EQUATION FOR ARBITRARY MOTION

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î]

− ∂

∂t
(ρV(t))︸ ︷︷ ︸

Translation

+ρ ˆ̇x∧Ω+ρx̂∧Ω̇︸ ︷︷ ︸
Euler︸ ︷︷ ︸

Unsteady motion

+2ρû∧Ω︸ ︷︷ ︸
Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+2ρV(t)∧Ω︸ ︷︷ ︸
Magnus

(3.227)

The equation above indicates that there are six fictitious terms in the non-inertial momentum equa-
tion for fully arbitrary motion. These are the only terms that is present during arbitrary acceleration. The
higher order terms become negligible or cancel out with other terms during the derivation. A fictitious
force that is not present in the rotation cases manifests here. This is the Magnus force that represents the
interaction between the translation and rotation of the object. The unsteady translation term, two terms
due to unsteady motion and one part of both the Coriolis and the Magnus terms originate in the transfor-
mation of the unsteady component of the momentum equation. The remainder inertial terms,second part
of the Coriolis and Magnus terms and the Centrifugal term, all has their original in the transformation
of the advection term.

3.3.2.3 Energy Equation

Consider the energy equation in the inertial frame (White [9]):

∂ρe
∂t

+ (∇·ρeu)=−p(∇·u)+∇· (k∇T)+φ (3.228)

The various terms can be transformed to the rotational frame separately and then combined to ob-
tained the energy equation in the rotational frame.

The time dependant term can be related between the frames as shown:

∂ρ̂ ê
∂t

= RMt[∂ρe
∂t

+ (Ω∧x′) ·∇ρe
]

(3.229)

The relation for the convective term between the inertial and rotational frame is shown below. This
equation can be expanded upon with the used of Equation 3.183:

(∇̂ · ρ̂ êû)

= RMt
GMt

(∇·ρeu)

= RMt
[∇·ρe(u−V(t)+x′∧Ω− [a(t)+Ω̇∧x′+Ω∧ ẋ′]∆t)]

(3.230)

The third term grouping on the right hand side of the equation above was shown in Equation 3.189
to be equal to zero. The convective term therefore becomes Galilean invariant under transformation:

(∇̂ · ρ̂ êû)= RMt
[∇·ρeu+∇·ρe(x′∧Ω)] (3.231)

61

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

The term that represents the rate of work done by the normal force can be related in the inertial and
rotational frames as shown below. This term can be expanded upon using Equation 3.183 .

− p̂(∇̂ · û)

= RMt
GMt

[−p(∇·u)]

= RMt
[−p∇· (u−V(t)+x′∧Ω− [a(t)+Ω̇∧x′+Ω∧ ẋ′]∆t)]

(3.232)

Showing that the second and third terms is again equal to zero, the same as above and indicated in
Equation 3.188, this transformation is also invariant.

− p̂(∇̂ · û)= RMt
[−p∇·u] (3.233)

The diffusive term in the rotational frame can be expressed in the inertial frame with the following
relation:

∇̂ · (k̂∇̂T̂)= RMt
GMt

[∇· (k∇T)] (3.234)

Since k and T are scalars the relation is invariant under transformation:

∇̂ · (k̂∇̂T̂)= RMt
[∇· (k∇T)] (3.235)

The full relation between the rotational and inertial frames for the energy equation can be obtained
by summation of the components obtained above. This leads to the equation:

∂ρ̂ ê
∂t

+ (∇̂ · ρ̂ êû)+ p̂(∇̂ · û)−∇̂ · (k̂∇̂T̂)+ φ̂= RMt
[
∂ρe
∂t

+ (∇·ρeu)+ p(∇·u)−∇· (k∇T)+φ] (3.236)

The right hand side of the equation is equal to zero, this can be seen from re-arrangement of the terms
in Equation 3.228. The non-inertial energy equation is invariant under transformation in this specific
case for constant acceleration in rotation (Diaz et al. [62]). It can be seen that this equation remains in
this form even in the case of unsteady acceleration. Equation 3.192 is further used to arrive at:

∂ρ̂ ê
∂t

+ (∇̂ · ρ̂ êû)=−p̂(∇̂ · û)+∇̂ · (k̂∇̂T̂)+ ϕ̂ (3.237)

3.3.3 Special Cases of the Arbitrary Acceleration Flow for Compressible Conditions

The non-inertial momentum equation for arbitrary acceleration, both in translation and rotation, was
derived in Equation 3.227 :

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂ p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î]

− ∂

∂t
(ρV(t))︸ ︷︷ ︸

Translation

+ρ ˆ̇x∧Ω+ρx̂∧Ω̇︸ ︷︷ ︸
Euler︸ ︷︷ ︸

Unsteady motion

+2ρû∧Ω︸ ︷︷ ︸
Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+2ρV(t)∧Ω︸ ︷︷ ︸
Magnus

(3.238)

The equation above contains all the possible fictitious effects that can be present in a fully arbitrary
system as well as the full formulation for the compressible stress tensor. This equation can be used to
obtain the formulations for special cases such a the incompressible case and various combinations of
translational and rotational formulations.
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3.3. NON-INERTIAL NAVIER-STOKES EQUATION FOR ARBITRARY MOTION

3.3.3.1 Incompressible Flow Conditions

This incompressible form of the non-inertial momentum equation for arbitrary acceleration can be ob-
tained through a combination of the fictitious terms in Equation 3.227 and the formulation of the diffu-
sive terms as in Equation 3.157. This leads to the following equation for the conservation of non-inertial
momentum:

∂û
∂t

+ (û · ∇̂)û=−∇̂ψ̂+ν∇̂2û− ∂

∂t
(V(t))︸ ︷︷ ︸

Translation

+ ˆ̇x∧Ω+ x̂∧Ω̇︸ ︷︷ ︸
Euler︸ ︷︷ ︸

Unsteady motion

+2û∧Ω︸ ︷︷ ︸
Coriolis

− x̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+2V(t)∧Ω︸ ︷︷ ︸
Magnus (3.239)

As it was shown in all derivations of the non-inertial conservation of mass and energy equations
in this chapter, those equations remain unchanged by in its formulations irrespective of the rotations or
translations of the associated frames - there are no fictitious effects present (Diaz et al. [62]).

3.3.3.2 Various Translation and Rotation Formulations

Case I - Pure, Unsteady Rotation

Equation 3.227 is used to obtain the non-inertial formulation for the case of pure, unsteady rotation.
The limiting conditions for such is flow is where both the translational velocity and subsequently the
translational acceleration is zero. There is also be no translational motion within the non-inertial frame:

∂V(t)
∂t

= 0

V(t)= 0

ˆ̇x= 0

(3.240)

The conditions above is applies to Equation 3.227 to cancel out the terms that is not relevant to this
specific case.

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î]

−
�����*0
∂

∂t
(ρV(t))+����:0

ρ ˆ̇x∧Ω+ρx̂∧Ω̇︸ ︷︷ ︸
Euler

+2ρû∧Ω︸ ︷︷ ︸
Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+������:0
2ρV(t)∧Ω

(3.241)

The result is an expressed that corresponds with the expression derived in Equation 3.169 for the
non-inertial momentum equation in unsteady, pure rotation:

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î
]+2ρû∧Ω︸ ︷︷ ︸

Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+ρx̂∧Ω̇︸ ︷︷ ︸
Euler

(3.242)
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

Case II - Pure, Steady Rotation

The limiting conditions for steady, pure rotation is the same as in the unsteady case with the inclusion
of the rotational acceleration being equal to zero:

∂V(t)
∂t

= 0

V(t)= 0

ˆ̇x= 0
ˆ̇Ω= 0

(3.243)

This results in an expression for the non-inertial momentum equation in steady, pure rotation that is
the same as Equation 3.85 that was derived using the Eulerian approach.

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂ p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î
]+2ρû∧Ω︸ ︷︷ ︸

Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

(3.244)

Case III - Unsteady Translation

In the unsteady translation case all the rotation parameters are equal to zero:

ˆ̇x= 0
ˆ̇Ω= 0

Ω̂= 0

(3.245)

This results in the non-inertial momentum equation for unsteady translation:

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂ p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î]− ∂

∂t
(ρV(t))︸ ︷︷ ︸

Translation

(3.246)

Case IV - Steady Translation

The steady translation case is the simplest off all the special cases. All the motion parameters is equal
to zero with the exception of the relative frame velocity that is equal to a constant value:

∂V(t)
∂t

= 0

ˆ̇x= 0
ˆ̇Ω= 0

Ω̂= 0

(3.247)

This results in the inertial momentum equation which indicates that constant translation does not
cause any fictitious effects in the flow:

∂ρu
∂t

+∇· (ρu⊗u)=−∇p+∇· [µ(∇u+∇uT )+λ(∇·u)I] (3.248)
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3.3. NON-INERTIAL NAVIER-STOKES EQUATION FOR ARBITRARY MOTION

Case V - Steady Translation, Unsteady Rotation

In the case where the translation is steady and the rotation is unsteady, the translational acceleration
becomes zero and the translational velocity has a constant value:

∂V(t)
∂t

= 0 (3.249)

Applying the above conditions result in an equation where all the rotational terms is preserved as
well as the term the represents the interaction between the translation and rotation:

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î]

+ρ ˆ̇x∧Ω+ρx̂∧Ω̇︸ ︷︷ ︸
Euler︸ ︷︷ ︸

Unsteady motion

+2ρû∧Ω︸ ︷︷ ︸
Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+2ρV(t)∧Ω︸ ︷︷ ︸
Magnus

(3.250)
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

3.4 Closure

This chapter formalized an Eulerian method for the derivation of non-inertial Navier-Stokes equations.
The original method was used by Kageyama and Hyodo [23] to derive the Coriolis force for constant
rotational flows in incompressible fluids. It was extended here to account for all ranges of motion, from
constant pure rotation to full arbitrary accelerating flows, and applied to compressible cases. The main
contributions of this chapter can be described as follow:

• It has been shown mathematically that there are no fictitious components in the non-inertial con-
tinuity or energy equations. The non-inertial equations takes the same general form as the inertial
equations.

• Clarification was obtained on the mathematical origin of the fictitious forces through the deriva-
tions. This indicated that the fictitious forces stems from the transformation of the temporal and
advection terms. The diffusion terms remain invariant under transformation

• The mathematical sign (positive or negative) of the fictitious forces is dependant on the selection
of the positive and negative directions. The signs of the terms that are appropriate in a system
conforming to standard sign conventions have been determined.

• The presence of fictitious forces is case dependant. The non-inertial momentum equation for a
aero-ballistic case, which involves acceleration in six degrees of freedom, has been derived. It
has been shown that the six fictitious forces derived in this chapter is the only additional forces
acting on an aero-ballistic system. From this equation the appropriate terms of a specific case can
easily be determined.

• The physical meaning of the mathematical fictitious forces can be explored from the equations
established in this chapter.

There are a number of misconceptions that have been observed in literature with regards to flow equa-
tions in non-inertial reference frames. An example where discrepancies in the literature is seen is in the
conservation of energy equation. Some sources add fictitious energy terms to these equations (Limache
[3], Gardi [2]). It was shown through derivation that both the continuity and conservation of energy
equations remains invariant under transformation - no additional terms are added to these equations:

∂ρ̂

∂t
+∇̂ · ρ̂û= 0 (3.251)

∂ρ̂ ê
∂t

+ (∇̂ · ρ̂ êû)=−p̂(∇̂ · û)+∇̂ · (k̂∇̂T̂)+ φ̂ (3.252)

The equation for full arbitrary acceleration below indicates that there are six fictitious terms in the
non-inertial momentum equation. These are the only terms that are present during arbitrary acceleration;
the higher order terms become negligible or cancel out with other terms during the derivation. The
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3.4. CLOSURE

equation for fully arbitrary acceleration can be used to explore the appropriate form of the non-inertial
momentum equation for steady translation and unsteady rotation.

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î]

− ∂

∂t
(ρV(t))︸ ︷︷ ︸

Translation

+ρ ˆ̇x∧Ω+ρx̂∧Ω̇︸ ︷︷ ︸
Euler︸ ︷︷ ︸

Unsteady motion

+2ρû∧Ω︸ ︷︷ ︸
Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+2ρV(t)∧Ω︸ ︷︷ ︸
Magnus

(3.253)

The mathematical origin of the fictitious terms can be observed during the derivations. The unsteady
translation term, two terms due to unsteady rotational motion and the first parts of the Coriolis and
Magnus terms originates in the transformation of the unsteady component of the momentum equation
(Equation 3.213).

∂ρû
∂t

(x̂t, t)= RMt
[
∂

∂t
(ρ)+ρ(Ω∧x′

t) ·∇−ρΩ∧](u(xt, t)−V(t))︸ ︷︷ ︸
Coriolis & Magnus

+RMt
( ρẋ′

t ∧Ω︸ ︷︷ ︸
Moving Axis

+ρx′
t ∧Ω̇︸ ︷︷ ︸
Euler

) (3.254)

The remainder inertial terms, second part of the Coriolis, Centrifugal and the term representing
the interaction between the rotation and translation, all has their original in the transformation of the
advection term (Equation 3.217).

∇̂ · (ρ̂û⊗ û)= RMt
[∇·ρu⊗u+ρu∧Ω︸ ︷︷ ︸

Coriolis

+∇·ρ(x′∧Ω)⊗u+ (ρx′∧Ω)∧Ω︸ ︷︷ ︸
Centrifugal

+ρV(t)∧Ω︸ ︷︷ ︸
Magnus

] (3.255)

The presence of the majority of the fictitious forces can be intuitively explained as the result of
accelerating motion. However, the physical meaning of the Coriolis force has been a subject of many
discussions (Dolovich et al. [63], Persson [12], Thornton and Marion [64]). Observation of the effect
of both Coriolis and Magnus effects can be explained using a mathematical approach which is seated
in an understanding of the cross product operation.

The Coriolis force was first mathematically formulated in 1835 by Gaspard Coriolis ,but obser-
vations of the effect long preceded the formulation (Persson [12]). Deflections in motion due to the
Coriolis effect is three dimensional, but the term Coriolis force is mostly associated with horizontal
deflections in the Northern and Southern Hemispheres with respect to the surface of the earth. This has
specific application in Meteorology and Geophysics since weather patterns and sea currents are directly
influenced by the horizontal component of the Coriolis force.

In Figure 3.10 it is shown that a particle travelling in North on the earth's surface deflects to the
right in the North Hemisphere and to the left in the Southern Hemisphere. The difference in deflection
is a function of the surface curvature of the earth where a velocity vector in the South has a different
orientation than in the North. The result is that the cross product of the velocity and the rotation has a
resultant force that is dependant on the hemisphere it operates in.

While the deflection on the surface of the earth has been the most general observation of the Coriolis
force, the component vertical to the earth's surface has only been measured in 1908 by Lorand Eötvös
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CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

Figure 3.10: Deflections of a Particle Travelling in the Northern and Southern Hemispheres (left) and
the Corresponding Directions of the Velocity Vector (right)

(Persson [12]). He observed the effect through gravity readings collected by research ships which indi-
cated that the gravity measurements increased with motion towards the west and decreased when the
ships sailed in an easterly direction (Figure 3.11).

Figure 3.11: Two Components of the Coriolis force: Outward Component due to Eötvös effect (left) and
Deflection on the Earth's Surface in Northern and Southern Hemisphere (right)
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3.4. CLOSURE

The Coriolis force is therefore described as a non-inertial force that operates on an object that is in
motion relative to a rotational reference frame. The effect of the Coriolis force is to cause deflection of
the object in three dimensions in with a magnitude and direction that is determined by the cross product
of the object's non-inertial velocity and the rotation of the frame, 2ρû∧Ω.

The Magnus force has a similar formula to the Coriolis force, but it has a different physical mean-
ing. It is a function of the object's translation and represents the interaction between the rotating and
translating motion of the object. It is therefore a non-inertial force that operates on a rotating object that
is in motion relative to a inertial reference frame. The effect of the Magnus force is to cause deflection
of the object (Figure 3.12 ) in three dimensions with a magnitude and direction that is determined by
the cross product of the object's translational velocity and the rotation of the object, 2ρV(t)∧Ω.

Figure 3.12: Deflection due to the Magnus Effect in the Inertial Frame (left) and the Non-Inertial Frame
(right)

The presence of theMagnus force in the non-inertial momentum equation is not generally seen in lit-
erature (Meriam and Kraige [8],White [9]) since non-inertial formulations does not regularly include all
the aero-ballistic accelerations and is generally applied to rotating flows. In CFD applications the Mag-
nus force is mostly investigated using a predictive approach (Cayzac et al. [65], Silton [66], Weinacht
et al. [67]) instead of with prescribed motion as suggested here.

The work done in this chapter assisted in developing a clear understanding of non-inertial Navier-
Stokes equations and provided a baseline with correct formulations for the subsequent chapters.
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4
Non-Inertial Equations in Component Form

In this chapter the component form of the equations are given in the Cartesian, Cylindrical and
Curvilinear systems. The Cartesian coordinates system is the most common system; introductory
calculus and mechanics textbooks (Anderson [58], Steward [68], Versteeg and Malalasekera [69])

largelymake use of this system and only provides a brief description of other coordinate systems (Figure
4.1).

Figure 4.1: Depiction of Various Coordinates Systems

Most aero-ballistic and aeronautical applications lends itself toward analysis in cylindrical or curvi-
linear coordinates as their geometric features, consisting of cylindrical forms and curves, are better
described in such systems. Advanced textbooks that make use of cylindrical systems do provide some
formulations for non-inertial Navier-Stokes equations, but those are limited to constant rotation cases
(Schlichting [42], White [9]) for turbo-machinery applications. The aim of this chapter is to provide a
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CHAPTER 4. NON-INERTIAL EQUATIONS IN COMPONENT FORM

frame work for the non-inertial equations for full arbitrary accelerations in component form which are
used in a subsequent chapter for boundary layer analysis.

4.1 Non-Inertial Equations in Cartesian Coordinates

4.1.1 Incompressible Flow Conditions

The incompressible continuity equation is obtained from White [9]:

∇̂ · ρ̂û= 0 (4.1)

This equation can be expressed in the Cartesian component form using the Cartesian definition of
divergence (Anderson [58], Aris [70]):

∂û
∂x̂

+ ∂v̂
∂ ŷ

+ ∂ŵ
∂ẑ

= 0 (4.2)

In Chapter 3, Equation 3.239 the non-inertial momentum equation for arbitrary acceleration in
incompressible conditions have been derived:

∂û
∂t

+ (û · ∇̂)û=−∇̂ψ̂+ν∇̂2û+2û∧Ω︸ ︷︷ ︸
Coriolis

− x̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+ x̂∧Ω̇︸ ︷︷ ︸
Euler

+ ˆ̇x∧Ω

︸ ︷︷ ︸
Unsteady motion

+2V(t)∧Ω︸ ︷︷ ︸
Magnus

− ∂

∂t
(V(t))︸ ︷︷ ︸

Translation
(4.3)

This equation can be expanded into the component form using the Cartesian vector operations, dot
and cross products, for divergence, gradient and laplacian operators (Anderson [58], Aris [70]). Each
grouping of fictitious terms can be expanded into components in the following manner:

2û∧Ω=


î ĵ k̂

2û 2v̂ 2ŵ

ωx ωy ωz

= (2v̂ωz −2ŵωy)î+ (2ŵωx −2ûωz)ĵ+ (2ûωy −2v̂ωx)k̂ (4.4)

These operations result in the non-inertial component form of the Navier-Stokes equations for full
arbitrary acceleration;
x̂-momentum

∂û
∂t

+ û
∂û
∂x̂

+ v̂
∂û
∂ ŷ

+ ŵ
∂û
∂ẑ

=−∂ψ̂

∂x̂
+ ν̂

(∂2û
∂x̂2 + ∂2û

∂ ŷ2 + ∂2û
∂ẑ2

)
+2v̂ωz −2ŵωy︸ ︷︷ ︸

Coriolis

+ x̂(ωz
2 +ωy

2)− ŷωxωy − ẑωxωz︸ ︷︷ ︸
Centrifugal

+ ŷω̇z − ẑω̇y︸ ︷︷ ︸
Euler

+ ˆ̇yωz − ˆ̇zωy

︸ ︷︷ ︸
Unsteady motion

+2Vyωz −2Vzωy︸ ︷︷ ︸
Magnus

− ∂Vx

∂t︸︷︷︸
Translation

(4.5)
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4.1. NON-INERTIAL EQUATIONS IN CARTESIAN COORDINATES

ŷ-momentum
∂v̂
∂t

+ û
∂v̂
∂x̂

+ v̂
∂v̂
∂ ŷ

+ ŵ
∂v̂
∂ẑ

=−∂ψ̂

∂ ŷ
+ ν̂

(∂2v̂
∂x̂2 + ∂2v̂

∂ ŷ2 + ∂2v̂
∂ẑ2

)
+2ŵωx −2ûωz︸ ︷︷ ︸

Coriolis

+ ŷ(ωz
2 +ωx

2)− x̂ωxωy − ẑωyωz︸ ︷︷ ︸
Centrifugal

+ ẑω̇x − x̂ω̇z︸ ︷︷ ︸
Euler

+ ˆ̇zωx − ˆ̇xωz

︸ ︷︷ ︸
Unsteady motion

+2Vzωx −2Vxωz︸ ︷︷ ︸
Magnus

− ∂Vy

∂t︸︷︷︸
Translation

(4.6)

ẑ-momentum
∂ŵ
∂t

+ û
∂ŵ
∂x̂

+ v̂
∂ŵ
∂ ŷ

+ ŵ
∂ŵ
∂ẑ

=−∂ψ̂

∂ẑ
+ ν̂

(∂2ŵ
∂x̂2 + ∂2ŵ

∂ ŷ2 + ∂2ŵ
∂ẑ2

)
+2ûωy −2v̂ωx︸ ︷︷ ︸

Coriolis

+ ẑ(ωy
2 +ωx

2)− x̂ωxωz − ŷωyωz︸ ︷︷ ︸
Centrifugal

+ x̂ω̇y − ŷω̇x︸ ︷︷ ︸
Euler

+ ˆ̇xωy − ˆ̇yωx

︸ ︷︷ ︸
Unsteady motion

+2Vxωy −2Vyωx︸ ︷︷ ︸
Magnus

− ∂Vz

∂t︸︷︷︸
Translation

(4.7)

4.1.2 Compressible Flow Conditions

The compressible continuity equation is expressed as (White [9]):
∂ρ̂

∂t
+ (∇̂ · ρ̂û)= 0 (4.8)

The component form of this equation subsequently becomes (Anderson [58], Aris [70]):
∂ρ̂

∂t
+ ∂ρ̂û

∂x̂
+ ∂ρ̂v̂

∂ ŷ
+ ∂ρ̂ŵ

∂ẑ
= 0 (4.9)

The non-inertial equation for incompressible flow in full arbitrary acceleration conditions were deter-
mined in Chapter 3, Equation 3.227:

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂p̂+
Deviatoric stress︷ ︸︸ ︷

∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î]

+2ρû∧Ω︸ ︷︷ ︸
Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+ρx̂∧Ω̇︸ ︷︷ ︸
Euler

+ρ ˆ̇x∧Ω

︸ ︷︷ ︸
Unsteady motion

+2ρV(t)∧Ω︸ ︷︷ ︸
Magnus

− ∂

∂t
(ρV(t))︸ ︷︷ ︸

Translation

(4.10)

The equation can be expressed in the component form using the approach of Section 4.1.1. The
deviatoric stress tensor components is obtained from Hoffmann and Chiang [71]:

τ(x, y, z)=


2µ∂u

∂x +λ∇·u µ
(
∂u
∂y + ∂v

∂x
)

µ
(
∂u
∂z + ∂w

∂x
)

µ
(
∂u
∂y + ∂v

∂x
)

2µ ∂v
∂y +λ∇·u µ

(
∂v
∂z + ∂w

∂y
)

µ
(
∂u
∂z + ∂w

∂x
)

µ
(
∂v
∂z + ∂w

∂y
)

2µ∂w
∂z +λ∇·u

 (4.11)
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CHAPTER 4. NON-INERTIAL EQUATIONS IN COMPONENT FORM

The compressible non-inertial momentum equations in the component form is subsequently ex-
pressed as;
x̂-momentum

∂ρ̂û
∂t

+ û
∂ρ̂û
∂x̂

+ v̂
∂ρ̂û
∂ ŷ

+ ŵ
∂ρ̂û
∂ẑ

=−∂ p̂
∂x̂

+ ∂

∂x̂

[
2µ̂

∂û
∂x̂

+ λ̂
(∂û
∂x̂

+ ∂v̂
∂ ŷ

+ ∂ŵ
∂ẑ

)]+ ∂

∂ ŷ

[
µ̂
(∂û
∂ ŷ

+ ∂v̂
∂x̂

)]+ ∂

∂ẑ

[
µ̂
(∂û
∂ẑ

+ ∂ŵ
∂x̂

)]
︸ ︷︷ ︸

Compressible diffusion terms

+2ρ̂v̂ωz −2ρ̂ŵωy︸ ︷︷ ︸
Coriolis

+ ρ̂ x̂(ωz
2 +ωy

2)− ρ̂ ŷωxωy − ρ̂ ẑωxωz︸ ︷︷ ︸
Centrifugal

+ ρ̂ ŷ ˆ̇ωz − ρ̂ ẑ ˆ̇ωy︸ ︷︷ ︸
Euler

+ρ̂ ˆ̇yωz − ρ̂ ˆ̇zωy

︸ ︷︷ ︸
Unsteady motion

+2ρ̂Vyωz −2ρ̂Vzωy︸ ︷︷ ︸
Magnus

− ∂ρ̂Vx

∂t︸ ︷︷ ︸
Translation

(4.12)

ŷ-momentum

∂ρ̂v̂
∂t

+ û
∂ρ̂v̂
∂x̂

+ v̂
∂ρ̂v̂
∂ ŷ

+ ŵ
∂ρ̂v̂
∂ẑ

=−∂ p̂
∂ ŷ

+ ∂

∂x̂

[
µ̂
(∂û
∂ ŷ

+ ∂v̂
∂x̂

)]+ ∂

∂ ŷ

[
2µ̂

∂v̂
∂ ŷ

+ λ̂
(∂û
∂x̂

+ ∂v̂
∂ ŷ

+ ∂ŵ
∂ẑ

)]+ ∂

∂ẑ

[
µ̂
(∂v̂
∂ẑ

+ ∂ŵ
∂ ŷ

)]
︸ ︷︷ ︸

Compressible diffusion terms

+2ρ̂ŵωx −2ρ̂ûωz︸ ︷︷ ︸
Coriolis

+ ρ̂ ŷ(ωz
2 +ωx

2)− ρ̂ x̂ωxωy − ρ̂ ẑωyωz︸ ︷︷ ︸
Centrifugal

+ ρ̂ ẑ ˆ̇ωx − ρ̂ x̂ ˆ̇ωz︸ ︷︷ ︸
Euler

+ρ̂ ˆ̇zωx − ρ̂ ˆ̇xωz

︸ ︷︷ ︸
Unsteady motion

+2ρ̂Vzωx −2ρ̂Vxωz︸ ︷︷ ︸
Magnus

− ∂ρ̂Vy

∂t︸ ︷︷ ︸
Translation

(4.13)

ẑ-momentum

∂ρ̂ŵ
∂t

+ û
∂ρ̂ŵ
∂x̂

+ v̂
∂ρ̂ŵ
∂ ŷ

+ ŵ
∂ρ̂ŵ
∂ẑ

=−∂p̂
∂ẑ

+ ∂

∂x̂

[
µ̂
(∂û
∂ẑ

+ ∂ŵ
∂x̂

)]+ ∂

∂ ŷ

[
µ̂
(∂v̂
∂ẑ

+ ∂ŵ
∂ ŷ

)]+ ∂

∂ẑ

[
2µ̂

∂ŵ
∂ẑ

+λ
(∂û
∂x̂

+ ∂v̂
∂ ŷ

+ ∂ŵ
∂ẑ

)]
︸ ︷︷ ︸

Compressible diffusion terms

+2ρ̂ûωy −2ρ̂v̂ωx︸ ︷︷ ︸
Coriolis

+ ρ̂ ẑ(ωy
2 +ωx

2)− ρ̂ x̂ωxωz − ρ̂ ŷωyωz︸ ︷︷ ︸
Centrifugal

+ ρ̂ x̂ ˆ̇ωy − ρ̂ ŷ ˆ̇ωx︸ ︷︷ ︸
Euler

+ρ̂ ˆ̇xωy − ρ̂ ˆ̇yωx

︸ ︷︷ ︸
Unsteady motion

+2ρ̂Vxωy −2ρ̂Vyωx︸ ︷︷ ︸
Magnus

− ∂ρ̂Vz

∂t︸ ︷︷ ︸
Translation

(4.14)
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4.2. INERTIAL NAVIER-STOKES EQUATIONS IN CYLINDRICAL COORDINATES

4.2 Inertial Navier-Stokes Equations in Cylindrical Coordinates

The component forms of the Cylindrical formulations of the inertial Navier-Stokes equations are first
established in this section. The non-inertial equations are explored in the next section, Section 4.3.

4.2.1 Transformation for Cartesian to Cylindrical Coordinates

The vector form of the non-inertial Navier-Stokes equations is independent of the coordinates system
(White [9]). Therefore the equations that were developed in Chapter 3 can refer to either the Cartesian,
Cylindrical or Curvilinear system. Expression of an inertial equation in the Cylindrical system does not
place it in the non-inertial form; the equation remains in the inertial form. The Cylindrical formulation
is just a different manner of expressing the same event in an alternative coordinate system (Figure 4.2).

Figure 4.2: Description of a Point in the Cartesian and Cylindrical Coordinates System

The Cylindrical form of the Navier-Stokes equations can be obtain either by deriving it from first
principles or, the method that is used here, converting it from the Cartesian component form to the
Cylindrical (Figure 4.3).

Figure 4.3: Cartesian and Cylindrical descriptions of point P
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CHAPTER 4. NON-INERTIAL EQUATIONS IN COMPONENT FORM

The conversion is done geometrically. The displacement and velocity components are transformed
as indicated in Equations 4.15 and 4.16 respectively (Anderson [58], Aris [70], Steward [68]).

x = rcosθ

y= rsinθ

z = z
(4.15)

u = ur cosθ−uθsinθ

v = ursinθ+uθcosθ

w = uz
(4.16)

The derivatives in the Cartesian and Cylindrical system is related by the following matrix (Anderson
[58]): 

∂ϕ
∂x
∂ϕ
∂y
∂ϕ
∂z

=


cosθ − sinθ

r 0

sinθ cosθ
r 0

0 0 1




∂ϕ
∂r
∂ϕ
∂θ
∂ϕ
∂z

 (4.17)

4.2.2 Incompressible Flow Conditions

4.2.2.1 Continuity Equation

The incompressible continuity equation in component form was obtained in Equation 4.2:

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= 0 (4.18)

Substitution the conversion equations as described in Section 4.2.1 results in the following expres-
sion:(

cosθ
∂

∂r
− sinθ

r
∂

∂θ

)
(ur cosθ−uθsinθ)+ (

sinθ
∂

∂r
+ cosθ

r
∂

∂θ

)
(ursinθ+uθcosθ)+ ∂uz

∂z
= 0 (4.19)

Re-arrangement of the terms leads to an equation,

∂ur

∂r
(
cos2θ+ sin2θ

)+ ur

r
(
cos2θ+ sin2θ

)+ 1
r
∂uθ

∂θ

(
cos2θ+ sin2θ

)+ ∂uz

∂z
= 0 (4.20)

that can be simplified by using the equation:

cos2θ+ sin2θ = 1 (4.21)

The final equation that represents the Continuity Equation in cylindrical component then becomes:

∂ur

∂r
+ ur

r
+ 1

r
∂uθ

∂θ
+ ∂uz

∂z
= 0 (4.22)

This form is in agreement with equations shown in the literature (Anderson [58], Aris [70], Schlicht-
ing [42], White [9]).
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4.2. INERTIAL NAVIER-STOKES EQUATIONS IN CYLINDRICAL COORDINATES

4.2.2.2 Conservation of Momentum Equation

The incompressible momentum equation is expressed as White [9]:

∂u
∂t

+ (u ·∇)u=−∇ψ+ν∇2u (4.23)

Using the definitions for Cartesian gradient and laplacian operations results in the following equa-
tion that describes the conservation of momentum in the x-direction (Anderson [58], Aris [70]):

∂u
∂t

+u
∂u
∂x

+v
∂u
∂y

+w
∂u
∂z

=−∂ψ

∂x
+ν

(∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2

)
(4.24)

This equation can be converted to the Cylindrical system term by term. The Cartesian transient term
is transformed to a cylindrical form by using the equations of Section 4.2.1:

∂u
∂t

→ ∂

∂t
(ur cosθ−uθsinθ) (4.25)

The product rule applies and the expression is expanded to:

∂

∂t
(ur cosθ−uθsinθ)= ∂ur

∂t
cosθ+ ∂cosθ

∂t
ur − ∂uθ

∂t
sinθ− ∂sinθ

∂t
uθ (4.26)

The assumptions are made here that,

• the coordinate systems is attached to the body analysed

• the Cartesian and Cylindrical system shares an origin

• the analysis considers small perturbations of the order ε

The value of θ is subsequently very small when, θ→ ε as ε→ 0. Furthermore, cosθ→ 1, sinθ→ 0 and
Equation 4.26 simplifies to:

∂u
∂t

→ ∂ur

∂t
(4.27)

Using the methodology above the Cylindrical form of the remainder of the Cartesian terms can be
obtained.
Convective terms,

u
∂u
∂x

→ ur
∂ur

∂r

v
∂u
∂y

→ uθ

r
∂ur

∂θ
− u2

θ

r

w
∂u
∂z

→ uz
∂ur

∂z

(4.28)

Pressure term,

∂ψ

∂x
→ ∂ψ

∂r
(4.29)
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CHAPTER 4. NON-INERTIAL EQUATIONS IN COMPONENT FORM

Diffusive terms,

∂2u
∂x2 → ∂2ur

∂r2

∂2u
∂y2 → 1

r
∂ur

∂r
+ 1

r2
∂2ur

∂θ2 − 2
r2

∂uθ

∂θ
− ur

r2

∂2u
∂z2 → ∂2ur

∂z2

(4.30)

The resulting equation represents the conservation of momentum equation in the r-direction of the
Cylindrical system which is in agreement with the equation from literature (Anderson [58], Aris [70],
Schlichting [42], White [9]):

∂ur

∂t
+ur

∂ur

∂r
+ uθ

r
∂ur

∂θ
− u2

θ

r
+uz

∂ur

∂z
=−∂ψ

∂r
+ ∂2ur

∂r2 + 1
r
∂ur

∂r
+ 1

r2
∂2ur

∂θ2 − 2
r2

∂uθ

∂θ
− ur

r2 + ∂2ur

∂z2

(4.31)

Using the method above it can be shown that for the y-momentum and z-momentum equations
respectively,

∂v
∂t

+u
∂v
∂x

+v
∂v
∂y

+w
∂v
∂z

=−∂ψ

∂y
+ν

(∂2v
∂x2 + ∂2v

∂y2 + ∂2v
∂z2

)

∂w
∂t

+u
∂w
∂x

+v
∂w
∂y

+w
∂w
∂z

=−∂ψ

∂z
+ν

(∂2w
∂x2 + ∂2w

∂y2 + ∂2w
∂z2

) (4.32)

the equations can be expressed in Cylindrical coordinates for the θ-direction and z-direction res-
pectively:

∂uθ

∂t
+ur

∂uθ

∂r
+ uθ

r
∂uθ

∂θ
+ uθur

r
+uz

∂uθ

∂z
=−1

r
∂ψ

∂θ
+ ∂2uθ

∂r2 + 1
r
∂uθ

∂r
+ 1

r2
∂2uθ

∂θ2 + 2
r2

∂ur

∂θ
− uθ

r2 + ∂2uθ

∂z2

∂uz

∂t
+ur

∂uz

∂r
+ uθ

r
∂uz

∂θ
+uz

∂uz

∂z
=−∂ψ

∂z
+ ∂2uz

∂r2 + 1
r
∂uz

∂r
+ 1

r2
∂2uz

∂θ2 + ∂2uz

∂z2

(4.33)

The equations above are in agreement with the literature (Anderson [58], Aris [70], Schlichting
[42], White [9]) and indicates consistency in the method used.

4.2.3 Compressible Flow Conditions

4.2.3.1 Continuity Equation

The component form of the compressible continuity equation in Cartesian coordinates was obtained in
Equation 4.8,

∂ρ

∂t
+ ∂ρu

∂x
+ ∂ρv

∂y
+ ∂ρw

∂z
= 0 (4.34)
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4.2. INERTIAL NAVIER-STOKES EQUATIONS IN CYLINDRICAL COORDINATES

Using the same method as in Section 4.2.2.1 the Cylindrical component form is obtained. This
equation is similar to the incompressible form but with the inclusion of the transient term.

∂ρ

∂t
+ ∂ρur

∂r
+ ρur

r
+ 1

r
∂ρuθ

∂θ
+ ∂ρuz

∂z
= 0 (4.35)

4.2.3.2 Conservation of Momentum Equation

The compressible conservation of momentum equation is expressed by White [9]:

∂

∂t
ρu+∇· (ρu⊗u)=−∇p+∇· [µ(∇u+∇uT )+λ(∇·u)I]︸ ︷︷ ︸

deviatoric stress
(4.36)

In Chapter 3 it was shown that the major difference between the incompressible and compressible
formulations of the Navier-Stokes equations lies in the diffusion terms. In Equation 3.19 it was shown
that a number of terms in the deviatoric stress tensor can be neglected in the incompressible case (specif-
ically the terms associated with ∇·u= 0) and which leads to significant simplifications to the diffusion
terms (see Equation 3.20). In compressible flow those simplifications are not relevant (since ∇·u ̸= 0

as shown in Equation 4.8) and the full deviatoric stress tensor is considered.

The deviatoric stress tensor takes the following form in the compressible, Cartesian case (Hoffmann
and Chiang [71]):

τ(x, y, z)=


τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 (4.37)

τ(x, y, z)=


2µ∂u

∂x +λ∇·u µ
(
∂u
∂y + ∂v

∂x
)

µ
(
∂u
∂z + ∂w

∂x
)

µ
(
∂u
∂y + ∂v

∂x
)

2µ ∂v
∂y +λ∇·u µ

(
∂v
∂z + ∂w

∂y
)

µ
(
∂u
∂z + ∂w

∂x
)

µ
(
∂v
∂z + ∂w

∂y
)

2µ∂w
∂z +λ∇·u

 (4.38)

The difference between the Cartesian and Cylindrical formulations of the deviatoric stress tensor
relies on the geometrical conversions established in Section 4.2.1. It is be used here to conduct the
conversion with as described by Figure 4.4.
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CHAPTER 4. NON-INERTIAL EQUATIONS IN COMPONENT FORM

Figure 4.4: Cartesian (left) and Cylindrical (right) Control Volumes

The conversions are done separately for each term in the tensor matrix as shown in Equation 4.38.
The term in first row, first column is designated τxx and is converted as follow:

τxx = 2µ
∂u
∂x

+λ
(∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

)]→[
2µ

(
cosθ

∂

∂r
− sinθ

r
∂

∂θ

)(
ur cosθ−uθsinθ

)
+λ

((
cosθ

∂

∂r
− sinθ

r
∂

∂θ

)(
ur cosθ−uθsinθ

)+ (
sinθ

∂

∂r
+ cosθ

r
∂

∂θ

)(
ursinθ+uθcosθ

)+ ∂w
∂z

)
= 2µ

∂ur

∂r
+λ(

∂ur

∂r
+ ur

r
+ 1

r
∂uθ

∂r
+ ∂uz

∂z
)

= 2µ
∂ur

∂r
+λ∇·u= τrr

(4.39)

The term in the first row, second column of Equation 4.38 is designated τxy and is converted as
follow:

τxy =µ
(∂u
∂y

+ ∂v
∂x

)→
µ
[(

sinθ
∂

∂r
+ cosθ

r
∂

∂θ

)
(ur cosθ−uθsinθ)+ (

(
cosθ

∂

∂r
− sinθ

r
∂

∂θ

)
)(ursinθ+uθcosθ)

]
=µ

(1
r
∂ur

∂θ
− uθ

r
+ ∂uθ

∂r
)= τrθ

(4.40)

The term in the first row, second column is designated τxz and is converted as follow:

τxz =µ
(∂u
∂z

+ ∂w
∂x

)→
µ
[ ∂

∂z
(ur cosθ−uθsinθ)+ (

(
cosθ

∂

∂r
− sinθ

r
∂

∂θ

)
)(uz)

]
=µ

(∂ur

∂z
+ ∂uz

∂r
)= τrz

(4.41)
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4.2. INERTIAL NAVIER-STOKES EQUATIONS IN CYLINDRICAL COORDINATES

By transforming all the terms in the Cartesian deviatoric stress tensor to the Cylindrical system, it
can be shown that the Cylindrical stress tensor is expressed as:

τ(x, y, z)=


τrr τrθ τrz

τθr τθθ τθz

τzr τzθ τzz

 (4.42)

τ(r,θ, z)=


2µ∂ur

∂r +λ∇·u µ
(1

r
∂ur
∂θ

− uθ

r + ∂uθ

∂r
)

µ
(∂ur
∂z + ∂uz

∂r
)

µ
(1

r
∂ur
∂θ

− uθ

r + ∂uθ

∂r
)

2µ
(1

r
∂uθ

∂θ
+ ur

r
)+λ∇·u µ

(1
r
∂uz
∂θ

+ ∂uθ

∂z
)

µ
(∂ur
∂z + ∂uz

∂r
)

µ
(1

r
∂uz
∂θ

+ ∂uθ

∂z
)

2µ∂uz
∂z +λ∇·u

 (4.43)

This agrees with the literature as indication in Aris [70].
The x-momentum equation is expressed as:

∂ρu
∂t

+u
∂ρu
∂x

+v
∂ρu
∂y

+w
∂ρu
∂z

=−∂p
∂x

+ ∂

∂x

[
2µ

∂u
∂x

+ (
λ∇·u)]+ ∂

∂y

[
µ
(∂u
∂y

+ ∂v
∂x

)]+ ∂

∂z

[
µ
(∂u
∂z

+ ∂w
∂x

)] (4.44)

The r-momentum equation, using the compressible form of Equation 4.31 and the relevant terms of
Equation 4.43, can then be expressed as:

∂ρur

∂t
+ur

∂ρur

∂r
+ uθ

r
∂ρur

∂θ
− ρu2

θ

r
+uz

∂ρur

∂z
=−∂p

∂r

+ ∂

∂r

[
2µ

∂ur

∂r
+λ∇·u

]
+ ∂

∂θ

[
µ
(1

r
∂ur

∂θ
− uθ

r
+ ∂uθ

∂r
)]+ ∂

∂z

[
µ
(∂ur

∂z
+ ∂uz

∂r
)] (4.45)

In a similar manner it can be showed that the momentum equations in the θ- and z-direction respec-
tively become:

∂ρuθ

∂t
+ur

∂ρuθ

∂r
+ uθ

r
∂uθ

∂θ
+ ρuθur

r
+uz

∂ρuθ

∂z
=−1

r
∂p
∂θ

+ ∂

∂r

[
µ
(1

r
∂ur

∂θ
− uθ

r
+ ∂uθ

∂r
)]+ ∂

∂θ

[
2µ

(1
r
∂uθ

∂θ
+ ur

r
)+λ∇·u

]
+ ∂

∂z

[
µ
(1

r
∂uz

∂θ
+ ∂uθ

∂z
)]

∂ρuz

∂t
+ur

∂ρuz

∂r
+ uθ

r
∂ρuz

∂θ
+uz

∂ρuz

∂z
=−∂p

∂z

+ ∂

∂r

[
µ
(∂ur

∂z
+ ∂uz

∂r
)]+ ∂

∂θ

[
µ
(1

r
∂uz

∂θ
+ ∂uθ

∂z
)]+ ∂

∂z

[
2µ

∂w
∂z

+λ∇·u
]

(4.46)
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CHAPTER 4. NON-INERTIAL EQUATIONS IN COMPONENT FORM

4.3 Non-Inertial Navier-Stokes Equations in Cylindrical Coordinates

In Section 4.2 the Cylindrical form of the inertial Navier-Stokes equations were established. This section
builds on that work and formulates the non-inertial Navier-Stokes equations in Cylindrical coordinates.

4.3.1 Incompressible Flow Conditions

4.3.1.1 Constant, Pure Rotation

The non-inertial Navier-Stokes equation for incompressible flow in constant, pure rotation was derived
in Chapter 3, Equation 3.55 :

∂û
∂t

+ (û · ∇̂)û=−∇̂ψ̂+ ν̂∇̂2û+2û∧Ω︸ ︷︷ ︸
Coriolis

− x̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

(4.47)

The inertial components of this equation were converted to the Cylindrical system in Section 4.2,
here the cylindrical forms of the fictitious forces are obtained. This can be done in one of two manners;
the first is to convert from the Cartesian components using the formulations in Section 4.1 and the sec-
ond is to obtain the components directly from the Cylindrical vector operations. Both methods are used
for the conversion of the Coriolis force.

Method I - Convert from Cartesian Components
The component form of the Coriolis force is obtained though the cross product of the non-inertial ve-
locity vector and the rotation vector both in Cartesian coordinates. The conversion equations in Section
4.1 is used to convert from the Cartesian to the Cylindrical coordinates:

2û∧Ω=


î ĵ k̂

2û 2v̂ 2ŵ

ωx ωy ωz

= (2v̂ωz −2ŵωy)î+ (2ŵωx −2ûωz)ĵ+ (2ûωy −2v̂ωx)k̂ (4.48)

→ [2(ûrsinθ̂+ ûθcosθ̂)ωz −2ûz(ωrsinθ̂+ωθcosθ̂)]êr

+ [2ûz(ωr cosθ̂−ωθsinθ̂)−2(ûr cosθ̂− ûθsinθ̂)ωz]êθ

+ [2(ûr cosθ̂− ûθsinθ̂)(ωrsinθ̂+ωθcosθ̂)−2(ûrsinθ̂+ ûθcosθ̂)(ωr cosθ̂−ωθsinθ̂)]êz
(4.49)

Using the same assumptions, as in Section 4.2 ,that θ→ εwhere ε→ 0, then cosθ̂→ 1 and sinθ̂→ 0.
The equation above then simplifies to the Coriolis force components in Cylindrical coordinates:

2û∧Ω= 2(ûθωz − ûzωθ)êr +2(ûzωr − ûrωz)êθ+2(ûrωθ− ûθωr)êz
(4.50)
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4.3. NON-INERTIAL NAVIER-STOKES EQUATIONS IN CYLINDRICAL COORDINATES

Method II - Directly from Cylindrical Vector Operation
The second methods obtains the component form of the Coriolis force though the cross product of the
non-inertial velocity vector and the rotation vector both in Cylindrical coordinates:

2û∧Ω=


êr êθ êz

2ûr 2ûθ 2ûz

ωr ωθ ωz

= 2(ûθωz − ûzωθ)êr +2(ûzωr − ûrωz)êθ+2(ûrωθ− ûθωr)êz (4.51)

The two methods produce exactly the same results. Therefore either of the two can be used. The
most direct method is to obtain the fictitious force components directly from the Cylindrical vector
operations. This method is used from this point forward.
The centrifugal force components are obtained by in a similar manner as shown above for the Coriolis
components:

x̂∧Ω=


êr êθ êz

r̂ r̂θ̂ ẑ

ωr ωθ ωz

= (r̂θ̂ωz − ẑωθ)êr + (ẑωr − r̂ωz)êθ+ (r̂ωθ− r̂θ̂ωr)êz (4.52)

x̂∧Ω∧Ω=


êr êθ êz

r̂θ̂ωz − ẑωy ẑωx − r̂ωz r̂ωy − r̂θ̂ωx

ωr ωθ ωz

 (4.53)

= [(ẑωr − r̂ωz)ωz − (r̂ωθ− r̂θ̂ωr)ωθ]êr + [(r̂ωθ− r̂θ̂ωr)ωr − (r̂θ̂ωz − ẑωθ)ωz]êθ

+ [(r̂θ̂ωz − ẑωθ)ωθ− (ẑωr − r̂ωz)ωr]êz

→ (ẑωrωz − r̂ω2
z − r̂ω2

θ)êr + (r̂ωrωθ+ ẑωθωz)êθ+ (r̂ωrωz − ẑω2
r − ẑω2

θ)êz

(4.54)

The components forms of the Coriolis and Centrifugal fictitious forces have been obtained above,
and in addition to Equations 4.31 and 4.33 the components form of the non-inertial momentum equation
for constant, pure rotation are derived:

r̂-momentum

∂ûr

∂t
+ ûr

∂ûr

∂r̂
+ ûθ

r̂
∂ûr

∂θ̂
− û2

θ

r̂
+ ûr

∂ûr

∂ẑ
=− ∂ψ̂

∂r̂
+ ∂2ûr

∂r̂2 + 1
r̂
∂ûr

∂r̂
+ 1

r̂2
∂2ûr

∂θ̂2
− 2

r̂2
∂ûθ

∂θ̂
− ûr

r̂2 + ∂2ûr

∂ẑ2

+2ûθωz −2ûzωθ︸ ︷︷ ︸
Coriolis

− ẑωrωz + r̂ω2
z + r̂ω2

θ︸ ︷︷ ︸
Centrifugal

(4.55)

θ̂-momentum
∂ûθ

∂t
+ ûr

∂ûθ

∂r̂
+ ûθ

r̂
∂ûθ

∂θ̂
+ ûθ ûr

r̂
+ ûr

∂ûθ

∂ẑ
=− 1

r̂
∂ψ̂

∂θ̂
+ ∂2ûθ

∂r̂2 + 1
r̂
∂ûθ

∂r̂
+ 1

r̂2
∂2ûθ

∂θ̂2
+ 2

r̂2
∂ûr

∂θ̂
− ûθ

r̂2 + ∂2ûθ

∂ẑ2

+2ûzωr −2ûrωz︸ ︷︷ ︸
Coriolis

− r̂ωrωθ− ẑωθωz︸ ︷︷ ︸
Centrifugal

(4.56)
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CHAPTER 4. NON-INERTIAL EQUATIONS IN COMPONENT FORM

ẑ-momentum

∂ûr

∂t
+ ûr

∂ûr

∂r̂
+ ûθ

r̂
∂ûr

∂θ̂
+ ûr

∂ûr

∂ẑ
=− ∂ψ̂

∂ẑ
+ ∂2ûr

∂r̂2 + 1
r̂
∂ûr

∂r̂
+ 1

r̂2
∂2ûr

∂θ̂2
+ ∂2ûr

∂ẑ2

+2ûrωθ−2ûθωr︸ ︷︷ ︸
Coriolis

− r̂ωrωz + ẑω2
r + ẑω2

θ︸ ︷︷ ︸
Centrifugal

(4.57)

4.3.1.2 Arbitrary Rotation

The non-inertial momentum equation for variable, pure rotation in incompressible flow was derived in
Chapter 3, Equation 3.157:

∂û
∂t

+ (û · ∇̂)û=−∇̂ψ̂+ ν̂∇̂2û+2û∧Ω︸ ︷︷ ︸
Coriolis

− x̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+ x̂∧Ω̇︸ ︷︷ ︸
Euler

(4.58)

The Cylindrical components of the Euler fictitious force are obtained in a similar manner as the
Centrifugal force components in Section 4.3.1.1:

x̂∧Ω̇=


êr êθ êz

r̂ r̂θ̂ ẑ

ω̇r ω̇θ ω̇z

= (r̂θ̂ω̇z − ẑω̇θ)êr + (ẑω̇r − r̂ω̇z)êθ+ (r̂ω̇θ− r̂θ̂ω̇r)êz (4.59)

Following from Equations 4.55, 4.56 and 4.57 and the description of the Euler components above,
the non-inertial momentum equation in cylindrical components is as follow;

r̂-momentum

∂ûr

∂t
+ ûr

∂ûr

∂r̂
+ ûθ

r̂
∂ûr

∂θ̂
− û2

θ

r̂
+ ûr

∂ûr

∂ẑ
=− ∂ψ̂

∂r̂
+ ∂2ûr

∂r̂2 + 1
r̂
∂ûr

∂r̂
+ 1

r̂2
∂2ûr

∂θ̂2
− 2

r̂2
∂ûθ

∂θ̂
− ûr

r̂2 + ∂2ûr

∂ẑ2

+2ûθωz −2ûzωθ− ẑωrωz + r̂ω2
z + r̂ω2

θ− ẑω̇θ︸︷︷︸
Euler

(4.60)

θ̂-momentum

∂ûθ

∂t
+ ûr

∂ûθ

∂r̂
+ ûθ

r̂
∂ûθ

∂θ̂
+ ûθ ûr

r̂
+ ûr

∂ûθ

∂ẑ
=− 1

r̂
∂ψ̂

∂θ̂
+ ∂2ûθ

∂r̂2 + 1
r̂
∂ûθ

∂r̂
+ 1

r̂2
∂2ûθ

∂θ̂2
+ 2

r̂2
∂ûr

∂θ̂
− ûθ

r̂2 + ∂2ûθ

∂ẑ2

+2ûzωr −2ûrωz − r̂ωrωθ− ẑωθωz + ẑω̇r − r̂ω̇z︸ ︷︷ ︸
Euler

(4.61)

ẑ-momentum

∂ûr

∂t
+ ûr

∂ûr

∂r̂
+ ûθ

r̂
∂ûr

∂θ̂
+ ûr

∂ûr

∂ẑ
=− ∂ψ̂

∂ẑ
+ ∂2ûr

∂r̂2 + 1
r̂
∂ûr

∂r̂
+ 1

r̂2
∂2ûr

∂θ̂2
+ ∂2ûr

∂ẑ2

+2ûrωθ−2ûθωr − r̂ωrωz + ẑω2
r + ẑω2

θ+ r̂ω̇θ︸︷︷︸
Euler

(4.62)
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4.3. NON-INERTIAL NAVIER-STOKES EQUATIONS IN CYLINDRICAL COORDINATES

In the case where the rotation is fully arbitrary, in other words the rotation is around of movable
axis, Chapter 3 has indicated that the non-inertial momentum equation takes the form:

∂û
∂t

+ (û · ∇̂)û=−∇̂ψ̂+ ν̂∇̂2û+2û∧Ω︸ ︷︷ ︸
Coriolis

− x̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+ x̂∧Ω̇︸ ︷︷ ︸
Euler

+ ẋ∧Ω︸ ︷︷ ︸
Moving Axis

(4.63)

The Cylindrical components of the arbitrary rotation term (due to the movable axis) is determined
is the same manner as for the previous fictitious forces - directly from the Cylindrical vector operation:

ẋ∧Ω=


êr êθ êz

ûr ûθ ûz

ωr ωθ ωz

= (ûθωz − ûzωθ)êr + (ûzωr − ûrωz)êθ+ (ûrωθ− ûθωr)êz (4.64)

Following from Equations 4.60, 4.61 and 4.62 and the description of the arbitrary rotation terms
above, the non-inertial momentum equations in Cylindrical component form becomes;

r̂-momentum

∂ûr

∂t
+ ûr

∂ûr

∂r̂
+ ûθ

r̂
∂ûr

∂θ̂
− û2

θ

r̂
+ ûr

∂ûr

∂ẑ
=−∂ψ̂

∂r̂
+ ∂2ûr

∂r̂2 + 1
r̂
∂ûr

∂r̂
+ 1

r̂2
∂2ûr

∂θ̂2
− 2

r̂2
∂ûθ

∂θ̂
− ûr

r̂2 + ∂2ûr

∂ẑ2

+2ûθωz −2ûzωθ− ẑωrωz + r̂ω2
z + r̂ω2

θ− ẑω̇θ+ ûθωz − ûzωθ︸ ︷︷ ︸
Arbitrary Rotation

(4.65)

θ̂-momentum

∂ûθ

∂t
+ ûr

∂ûθ

∂r̂
+ ûθ

r̂
∂ûθ

∂θ̂
+ ûθ ûr

r̂
+ ûr

∂ûθ

∂ẑ
=−1

r̂
∂ψ̂

∂θ̂
+ ∂2ûθ

∂r̂2 + 1
r̂
∂ûθ

∂r̂
+ 1

r̂2
∂2ûθ

∂θ̂2
+ 2

r̂2
∂ûr

∂θ̂
− ûθ

r̂2 + ∂2ûθ

∂ẑ2

+2ûzωr −2ûrωz − r̂ωrωθ− ẑωθωz + ẑω̇r − r̂ω̇z + ûzωr − ûrωz︸ ︷︷ ︸
Arbitrary Rotation

(4.66)

ẑ-momentum

∂ûr

∂t
+ ûr

∂ûr

∂r̂
+ ûθ

r̂
∂ûr

∂θ̂
+ ûr

∂ûr

∂ẑ
=−∂ψ̂

∂ẑ
+ ∂2ûr

∂r̂2 + 1
r̂
∂ûr

∂r̂
+ 1

r̂2
∂2ûr

∂θ̂2
+ ∂2ûr

∂ẑ2

+2ûrωθ−2ûθωr − r̂ωrωz + ẑω2
r + ẑω2

θ+ r̂ω̇θ+ ûrωθ− ûθωr︸ ︷︷ ︸
Arbitrary Rotation

(4.67)

4.3.1.3 Arbitrary Acceleration

In Chapter 3, Equation 3.239 the non-inertial momentum equation for arbitrary acceleration in incom-
pressible conditions has been derived:

∂û
∂t

+ (û · ∇̂)û=−∇̂ψ̂+ν∇̂2û+2û∧Ω︸ ︷︷ ︸
Coriolis

− x̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+ x̂∧Ω̇︸ ︷︷ ︸
Euler

+ ˆ̇x∧Ω

︸ ︷︷ ︸
Unsteady motion

+2V(t)∧Ω︸ ︷︷ ︸
Magnus

− ∂

∂t
(V(t))︸ ︷︷ ︸

Translation

(4.68)
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CHAPTER 4. NON-INERTIAL EQUATIONS IN COMPONENT FORM

Following from the derivations in Section 4.3.1 and Section 4.3.2, the Cylindrical component form
of the equations are determined;
r̂-momentum

∂ûr

∂t
+ ûr

∂ûr

∂r̂
+ ûθ

r̂
∂ûr

∂θ̂
− û2

θ

r̂
+ ûr

∂ûr

∂ẑ
=− ∂ψ̂

∂r̂
+ ∂2ûr

∂r̂2 + 1
r̂
∂ûr

∂r̂
+ 1

r̂2
∂2ûr

∂θ̂2
+ 2

r̂2
∂ûθ

∂θ̂
− ûr

r̂2 + ∂2ûr

∂ẑ2

+2ûθωz −2ûzωθ︸ ︷︷ ︸
Coriolis

− ẑωrωz + r̂ω2
z + r̂ω2

θ︸ ︷︷ ︸
Centrifugal

− ẑω̇θ︸︷︷︸
Euler

+ ûθωz − ûzωθ︸ ︷︷ ︸
Arbitrary Rotation

+2Vθωz −2Vzωθ︸ ︷︷ ︸
Magnus

− ∂Vr

∂t︸︷︷︸
Unsteady Translation

(4.69)

θ̂-momentum

∂ûθ

∂t
+ ûr

∂ûθ

∂r̂
+ ûθ

r̂
∂ûθ

∂θ̂
+ ûθ ûr

r̂
+ ûr

∂ûθ

∂ẑ
=− 1

r̂
∂ψ̂

∂θ̂
+ ∂2ûθ

∂r̂2 + 1
r̂
∂ûθ

∂r̂
+ 1

r̂2
∂2ûθ

∂θ̂2
− 2

r̂2
∂ûr

∂θ̂
− ûθ

r̂2 + ∂2ûθ

∂ẑ2

+2ûzωr −2ûrωz︸ ︷︷ ︸
Coriolis

− r̂ωrωθ− ẑωθωz︸ ︷︷ ︸
Centrifugal

+ ẑω̇r − r̂ω̇z︸ ︷︷ ︸
Euler

+ ûzωr − ûrωz︸ ︷︷ ︸
Arbitrary Rotation

+2Vzωr −2Vrωz︸ ︷︷ ︸
Magnus

− ∂Vθ

∂t︸︷︷︸
Unsteady Translation

(4.70)

ẑ-momentum

∂ûr

∂t
+ ûr

∂ûr

∂r̂
+ ûθ

r̂
∂ûr

∂θ̂
+ ûr

∂ûr

∂ẑ
=− ∂ψ̂

∂ẑ
+ ∂2ûr

∂r̂2 + 1
r̂
∂ûr

∂r̂
+ 1

r̂2
∂2ûr

∂θ̂2
+ ∂2ûr

∂ẑ2

+2ûrωθ−2ûθωr︸ ︷︷ ︸
Coriolis

− r̂ωrωz + ẑω2
r + ẑω2

θ︸ ︷︷ ︸
Centrifugal

+ r̂ω̇θ︸︷︷︸
Euler

+ ûrωθ− ûθωr︸ ︷︷ ︸
Arbitrary Rotation

+2Vrωθ−2Vθωr︸ ︷︷ ︸
Magnus

− ∂Vz

∂t︸︷︷︸
Unsteady Translation

(4.71)
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4.3. NON-INERTIAL NAVIER-STOKES EQUATIONS IN CYLINDRICAL COORDINATES

4.3.2 Compressible Flow Conditions

4.3.2.1 Constant, Pure Rotation

The non-inertial Navier-Stokes equation for compressible flow in constant, pure rotation was derived
in Chapter 3, Equation 3.85 :

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î
]+2ρû∧Ω︸ ︷︷ ︸

Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

(4.72)

By using the stress components from the deviatoric stress tensor (Equation 4.43) andEquations 4.55,
4.56 and 4.57 (that provides the formulation for constant, pure rotation in incompressible flow) the com-
ponent form of the compressible momentum equation in Cylindrical coordinates are determined;

r̂-momentum

∂ρ̂ûr

∂t
+ ûr

∂ρ̂ûr

∂r̂
+ ûθ

r̂
∂ρ̂ûr

∂θ̂
− ρ̂û2

θ

r̂
+ ûz

∂ρ̂ûr

∂ẑ
=−∂p̂

∂r̂

+ ∂

∂r̂

[
2µ̂

∂ûr

∂r̂
+ λ̂∇̂ · û

]
+ ∂

∂θ̂

[
µ̂
(1

r̂
∂ûr

∂θ̂
− ûθ

r̂
+ ∂ûθ

∂r̂
)]+ ∂

∂ẑ

[
µ̂
(∂ûr

∂ẑ
+ ∂ûz

∂r̂
)]

+2ρ̂ûθωz −2ρ̂ûzωθ︸ ︷︷ ︸
Coriolis

− ρ̂ ẑωrωz + ρ̂ r̂ω2
z + ρ̂ r̂ω2

θ︸ ︷︷ ︸
Centrifugal

(4.73)

θ̂-momentum

∂ρ̂ûθ

∂t
+ ûr

∂ρ̂ûθ

∂r̂
+ ûθ

r̂
∂ûθ

∂θ̂
+ ρ̂ûθ ûr

r̂
+ ûz

∂ρ̂ûθ

∂ẑ
=−1

r̂
∂p̂
∂θ̂

+ ∂

∂r̂

[
µ̂
(1

r̂
∂ûr

∂θ̂
− ûθ

r̂
+ ∂ûθ

∂r̂
)]+ ∂

∂θ̂

[
2µ̂

(1
r̂
∂ûθ

∂θ̂
+ ûr

r̂
)+ λ̂∇̂ · û

]
+ ∂

∂ẑ

[
µ̂
(1

r̂
∂ûz

∂θ̂
+ ∂ûθ

∂ẑ
)]

+2ρ̂ûzωr −2ρ̂ûrωz︸ ︷︷ ︸
Coriolis

− ρ̂ r̂ωrωθ− ρ̂ ẑωθωz︸ ︷︷ ︸
Centrifugal

(4.74)

ẑ-momentum

∂ρ̂ûz

∂t
+ ûr

∂ρ̂ûz

∂r̂
+ ûθ

r̂
∂ρ̂ûz

∂θ̂
+ ûz

∂ρ̂ûz

∂ẑ
=−∂p̂

∂ẑ

+ ∂

∂r̂

[
µ̂
(∂ûr

∂ẑ
+ ∂ûz

∂r̂
)]+ ∂

∂θ̂

[
µ̂
(1

r̂
∂ûz

∂θ̂
+ ∂ûθ

∂ẑ
)]+ ∂

∂ẑ

[
2µ̂

∂ŵ
∂ẑ

+ λ̂∇̂ · û
]

+2ρ̂ûrωθ−2ρ̂ûθωr︸ ︷︷ ︸
Coriolis

− ρ̂ r̂ωrωz + ρ̂ ẑω2
r + ρ̂ ẑω2

θ︸ ︷︷ ︸
Centrifugal

(4.75)
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CHAPTER 4. NON-INERTIAL EQUATIONS IN COMPONENT FORM

4.3.2.2 Arbitrary Rotation

The non-inertial momentum equation for variable, pure rotation in compressible flow was derived in
Chapter 3, Equation 3.169:

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î
]+2ρû∧Ω︸ ︷︷ ︸

Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+ρx̂∧Ω̇︸ ︷︷ ︸
Euler

(4.76)

Again the stress components are determined by the compressible stress tensor (Equation 4.43) and
by also using Equations 4.60, 4.61 and 4.62 (providing the formulation for variable, pure rotation in
incompressible flow) the component form of the compressible momentum equation in Cylindrical co-
ordinates are determined;

r-momentum:

∂ρ̂ûr

∂t
+ ûr

∂ρ̂ûr

∂r̂
+ ûθ

r̂
∂ρ̂ûr

∂θ̂
− ρ̂û2

θ

r̂
+ ûz

∂ρ̂ûr

∂ẑ
=−∂ p̂

∂r̂

+ ∂

∂r̂

[
2µ̂

∂ûr

∂r̂
+ λ̂∇̂ · û

]
+ ∂

∂θ̂

[
µ̂
(1

r̂
∂ûr

∂θ̂
− ûθ

r̂
+ ∂ûθ

∂r̂
)]+ ∂

∂ẑ

[
µ̂
(∂ûr

∂ẑ
+ ∂ûz

∂r̂
)]

+2ρ̂ûθωz −2ρ̂ûzωθ︸ ︷︷ ︸
Coriolis

− ρ̂ ẑωrωz + ρ̂ r̂ω2
z + ρ̂ r̂ω2

θ︸ ︷︷ ︸
Centrifugal

− ρ̂ ẑω̇θ︸ ︷︷ ︸
Euler

(4.77)

θ̂-momentum

∂ρ̂ûθ

∂t
+ ûr

∂ρ̂ûθ

∂r̂
+ ûθ

r̂
∂ûθ

∂θ̂
+ ρ̂ûθ ûr

r̂
+ ûz

∂ρ̂ûθ

∂ẑ
=−1

r̂
∂p̂
∂θ̂

+ ∂

∂r̂

[
µ̂
(1

r̂
∂ûr

∂θ̂
− ûθ

r̂
+ ∂ûθ

∂r̂
)]+ ∂

∂θ̂

[
2µ̂

(1
r̂
∂ûθ

∂θ̂
+ ûr

r̂
)+ λ̂∇̂ · û

]
+ ∂

∂ẑ

[
µ̂
(1

r̂
∂ûz

∂θ̂
+ ∂ûθ

∂ẑ
)]

+2ρ̂ûzωr −2ρ̂ûrωz︸ ︷︷ ︸
Coriolis

− ρ̂ r̂ωrωθ− ρ̂ ẑωθωz︸ ︷︷ ︸
Centrifugal

+ ρ̂ ẑω̇r − ρ̂ r̂ω̇z︸ ︷︷ ︸
Euler

(4.78)

ẑ-momentum

∂ρ̂ûz

∂t
+ ûr

∂ρ̂ûz

∂r̂
+ ûθ

r̂
∂ρ̂ûz

∂θ̂
+ ûz

∂ρ̂ûz

∂ẑ
=−∂ p̂

∂ẑ

+ ∂

∂r̂

[
µ̂
(∂ûr

∂ẑ
+ ∂ûz

∂r̂
)]+ ∂

∂θ̂

[
µ̂
(1

r̂
∂ûz

∂θ̂
+ ∂ûθ

∂ẑ
)]+ ∂

∂ẑ

[
2µ̂

∂ŵ
∂ẑ

+ λ̂∇̂ · û
]

+2ρ̂ûrωθ−2ρ̂ûθωr︸ ︷︷ ︸
Coriolis

− ρ̂ r̂ωrωz + ρ̂ ẑω2
r + ρ̂ ẑω2

θ︸ ︷︷ ︸
Centrifugal

+ ρ̂ r̂ω̇θ︸ ︷︷ ︸
Euler

(4.79)
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4.3. NON-INERTIAL NAVIER-STOKES EQUATIONS IN CYLINDRICAL COORDINATES

In fully arbitrary rotation, Chapter 3 has established that the non-inertial momentum equation in com-
pressible flow takes the form:

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î
]+2ρû∧Ω︸ ︷︷ ︸

Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+ρx̂∧Ω̇︸ ︷︷ ︸
Euler

+ ρẋ∧Ω︸ ︷︷ ︸
Unpure Rot

(4.80)
As an extension of Equations 4.77, 4.78 and 4.79 above, as well as the formulation for the fictitious

forces in Section 4.3.1.2, the Cylindrical formulation for the arbitrary rotation case becomes;

r̂-momentum

∂ρ̂ûr

∂t
+ ûr

∂ρ̂ûr

∂r̂
+ ûθ

r̂
∂ρ̂ûr

∂θ̂
− ρ̂û2

θ

r̂
+ ûz

∂ρ̂ûr

∂ẑ
=−∂p̂

∂r̂

+ ∂

∂r̂

[
2µ̂

∂ûr

∂r̂
+ λ̂∇̂ · û

]
+ ∂

∂θ̂

[
µ̂
(1

r̂
∂ûr

∂θ̂
− ûθ

r̂
+ ∂ûθ

∂r̂
)]+ ∂

∂ẑ

[
µ̂
(∂ûr

∂ẑ
+ ∂ûz

∂r̂
)]

+2ρ̂ûθωz −2ρ̂ûzωθ︸ ︷︷ ︸
Coriolis

− ρ̂ ẑωrωz + ρ̂ r̂ω2
z + ρ̂ r̂ω2

θ︸ ︷︷ ︸
Centrifugal

− ρ̂ ẑω̇θ︸ ︷︷ ︸
Euler

+ ρ̂ûθωz − ρ̂ûzωθ︸ ︷︷ ︸
Arbitrary Rotation

(4.81)

θ̂-momentum

∂ρ̂ûθ

∂t
+ ûr

∂ρ̂ûθ

∂r̂
+ ûθ

r̂
∂ûθ

∂θ̂
+ ρ̂ûθ ûr

r̂
+ ûz

∂ρ̂ûθ

∂ẑ
=−1

r̂
∂p̂
∂θ̂

+ ∂

∂r̂

[
µ̂
(1

r̂
∂ûr

∂θ̂
− ûθ

r̂
+ ∂ûθ

∂r̂
)]+ ∂

∂θ̂

[
2µ̂

(1
r̂
∂ûθ

∂θ̂
+ ûr

r̂
)+ λ̂∇̂ · û

]
+ ∂

∂ẑ

[
µ̂
(1

r̂
∂ûz

∂θ̂
+ ∂ûθ

∂ẑ
)]

+2ρ̂ûzωr −2ρ̂ûrωz︸ ︷︷ ︸
Coriolis

− ρ̂ r̂ωrωθ− ρ̂ ẑωθωz︸ ︷︷ ︸
Centrifugal

+ ρ̂ ẑω̇r − ρ̂ r̂ω̇z︸ ︷︷ ︸
Euler

+ ρ̂ûzωr − ρ̂ûrωz︸ ︷︷ ︸
Arbitrary Rotation

(4.82)

ẑ-momentum

∂ρ̂ûz

∂t
+ ûr

∂ρ̂ûz

∂r̂
+ ûθ

r̂
∂ρ̂ûz

∂θ̂
+ ûz

∂ρ̂ûz

∂ẑ
=−∂p̂

∂ẑ

+ ∂

∂r̂

[
µ̂
(∂ûr

∂ẑ
+ ∂ûz

∂r̂
)]+ ∂

∂θ̂

[
µ̂
(1

r̂
∂ûz

∂θ̂
+ ∂ûθ

∂ẑ
)]+ ∂

∂ẑ

[
2µ̂

∂ŵ
∂ẑ

+ λ̂∇̂ · û
]

+2ρ̂ûrωθ−2ρ̂ûθωr︸ ︷︷ ︸
Coriolis

− ρ̂ r̂ωrωz + ρ̂ ẑω2
r + ρ̂ ẑω2

θ︸ ︷︷ ︸
Centrifugal

+ ρ̂ r̂ω̇θ︸ ︷︷ ︸
Euler

+ ρ̂ûrωθ− ρ̂ûθωr︸ ︷︷ ︸
Arbitrary Rotation

(4.83)
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CHAPTER 4. NON-INERTIAL EQUATIONS IN COMPONENT FORM

4.3.2.3 Arbitrary Acceleration

In Chapter 3, Equation 3.227 the non-inertial momentum equation for arbitrary acceleration in com-
pressible conditions has been derived:

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂ p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î]

+2ρû∧Ω︸ ︷︷ ︸
Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

++ρx̂∧Ω̇︸ ︷︷ ︸
Euler

+ρ ˆ̇x∧Ω

︸ ︷︷ ︸
Unsteady motion

+2ρV(t)∧Ω︸ ︷︷ ︸
Magnus

− ∂

∂t
(ρV(t))︸ ︷︷ ︸

Translation

(4.84)

The stress components are determined by the compressible stress tensor inEquation 4.43 and by also
using Equations 4.69, 4.70 and 4.71 (providing the formulation for arbitrary in incompressible flow)
the component form of the compressiblemomentum equation in Cylindrical coordinates are determined;

r̂-momentum

∂ρ̂ûr

∂t
+ ûr

∂ρ̂ûr

∂r̂
+ ûθ

r̂
∂ρ̂ûr

∂θ̂
− ρ̂û2

θ

r̂
+ ûz

∂ρ̂ûr

∂ẑ
=−∂p̂

∂r̂

+ ∂

∂r̂

[
2µ̂

∂ûr

∂r̂
+ λ̂∇̂ · û

]
+ ∂

∂θ̂

[
µ̂
(1

r̂
∂ûr

∂θ̂
− ûθ

r̂
+ ∂ûθ

∂r̂
)]+ ∂

∂ẑ

[
µ̂
(∂ûr

∂ẑ
+ ∂ûz

∂r̂
)]

+2ρ̂ûθωz −2ρ̂ûzωθ︸ ︷︷ ︸
Coriolis

− ρ̂ ẑωrωz + ρ̂ r̂ω2
z + ρ̂ r̂ω2

θ︸ ︷︷ ︸
Centrifugal

− ρ̂ ẑω̇θ︸ ︷︷ ︸
Euler

+ ρ̂ûθωz − ρ̂ûzωθ︸ ︷︷ ︸
Arbitrary Rotation

+2ρ̂Vθωz −2ρ̂Vzωθ︸ ︷︷ ︸
Magnus

− ∂ρ̂Vr

∂t︸ ︷︷ ︸
Unsteady Translation

(4.85)

θ̂-momentum

∂ρ̂ûθ

∂t
+ ûr

∂ρ̂ûθ

∂r̂
+ ûθ

r̂
∂ûθ

∂θ̂
+ ρ̂ûθ ûr

r̂
+ ûz

∂ρ̂ûθ

∂ẑ
=−1

r̂
∂ p̂
∂θ̂

+ ∂

∂r̂

[
µ̂
(1

r̂
∂ûr

∂θ̂
− ûθ

r̂
+ ∂ûθ

∂r̂
)]+ ∂

∂θ̂

[
2µ̂

(1
r̂
∂ûθ

∂θ̂
+ ûr

r̂
)+ λ̂∇̂ · û

]
+ ∂

∂ẑ

[
µ̂
(1

r̂
∂ûz

∂θ̂
+ ∂ûθ

∂ẑ
)]

+2ρ̂ûzωr −2ρ̂ûrωz︸ ︷︷ ︸
Coriolis

− ρ̂ r̂ωrωθ− ρ̂ ẑωθωz︸ ︷︷ ︸
Centrifugal

+ ρ̂ ẑω̇r − ρ̂ r̂ω̇z︸ ︷︷ ︸
Euler

+ ρ̂ûzωr − ρ̂ûrωz︸ ︷︷ ︸
Arbitrary Rotation

+2ρ̂Vzωr −2ρ̂Vrωz︸ ︷︷ ︸
Magnus

− ∂ρ̂Vθ

∂t︸ ︷︷ ︸
Unsteady Translation

(4.86)
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4.3. NON-INERTIAL NAVIER-STOKES EQUATIONS IN CYLINDRICAL COORDINATES

ẑ-momentum

∂ρ̂ûz

∂t
+ ûr

∂ρ̂ûz

∂r̂
+ ûθ

r̂
∂ρ̂ûz

∂θ̂
+ ûz

∂ρ̂ûz

∂ẑ
=−∂p̂

∂ẑ

+ ∂

∂r̂

[
µ̂
(∂ûr

∂ẑ
+ ∂ûz

∂r̂
)]+ ∂

∂θ̂

[
µ̂
(1

r̂
∂ûz

∂θ̂
+ ∂ûθ

∂ẑ
)]+ ∂

∂ẑ

[
2µ̂

∂ŵ
∂ẑ

+ λ̂∇̂ · û
]

+2ρ̂ûrωθ−2ρ̂ûθωr︸ ︷︷ ︸
Coriolis

− ρ̂ r̂ωrωz + ρ̂ ẑω2
r + ρ̂ ẑω2

θ︸ ︷︷ ︸
Centrifugal

+ ρ̂ r̂ω̇θ︸ ︷︷ ︸
Euler

+ ρ̂ûrωθ− ρ̂ûθωr︸ ︷︷ ︸
Arbitrary Rotation

+2ρ̂Vrωθ−2ρ̂Vθωr︸ ︷︷ ︸
Magnus

− ∂ρ̂Vz

∂t︸ ︷︷ ︸
Unsteady Translation

(4.87)
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CHAPTER 4. NON-INERTIAL EQUATIONS IN COMPONENT FORM

4.4 Non-Inertial Equations in Curvilinear Coordinates

4.4.1 Vector Operation in Curvilinear Systems

An orthogonal curvilinear system is themost general form inwhich a set of equations can bewritten. The
Cartesian, Cylindrical and Spherical coordinate systems are special cases of the orthogonal curvilinear
system. A set of equations in the curvilinear system can be transformed to any of the above mentioned
systems by using the table below as shown in Griffiths [72] and Williams [73]:

Table 4.1: Relations between the Curvilinear Coordinate System and Other Systems

Curvilinear u1 u2 u3 x y z h1 h2 h3
Cartesian x y z x y z 1 1 1
Cylindrical r θ z rcosθ rsinθ z 1 r 1
Spherical r θ ϕ rsinθcosϕ rsinθsinϕ rcosθ 1 r rsinθ

Consider a geometry (Figure 4.5) that consists of three surfaces, f1, f2 and f3. These are defined in
the Cartesian system and is related to the coordinates surfaces in the following manner:

f1(x, y, z)= u1, f2(x, y, z)= u2, f3(x, y, z)= u3 (4.88)

Figure 4.5: Co-ordinate Surfaces and Intersection Coordinate Curve Lines at Point P

The surfaces intersect at a point P. It is from this point that the curvilinear system are described.
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4.4. NON-INERTIAL EQUATIONS IN CURVILINEAR COORDINATES

The coordinates surfaces, u1,u2 and u3, remain constant at a given time step. The surfaces intersect
each other at the intersection coordinate curves, u1 curve,u2 curve and u3 curve which form the axes
associated with point P.

u1(x, y, z)= c1, u2(x, y, z)= c2, u3(x, y, z)= c3 (4.89)

Tangential to the coordinate curves is the unit vectors e1, e2 and e3 that form the axes of the
curvilinear system at point P. These are equivalent to the i, j and k unit vectors in the Cartesian system.
In the curvilinear system the geometry is represented by scaling factors (h1,h2,h3) that are used to
characterise the surface curvatures. If the arc length between the surfaces u1 and u1 +du1 is defined
by dl1, then the scaling factor is applied so than dl1 = h1 du1. The scaling factor accounts for the
curvature in the surface of the geometry and is applied in all principle directions:

dl1 = h1 du1, dl2 = h2 du2, dl3 = h3 du3 (4.90)

These definitions pave the way for establishment of the curvilinear finite control volume fromwhich
the equation sets for fluid motion can be derived (Figure 4.6). This leads to the definition:

ds= h1 du1 e1 +h1 du1 e2 +h1 du1 e3 (4.91)

Figure 4.6: Curvilinear Finite Control Volume

The finite control volume in the Cartesian and Cylindrical system is well known, and can be related
to the Curvilinear system as shown by Griffiths [72] and using Table 4.1.

ds= dx i+dy j+dz k

ds= dr er + r dθ eθ+dz ez
(4.92)
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CHAPTER 4. NON-INERTIAL EQUATIONS IN COMPONENT FORM

The vector form of the Navier-Stokes equations is independent of the coordinates systems used
(White [9]). Therefore the equations can be written from the vector form into the component form of
any coordinate system using the appropriate definition of the operators involved. The operator that is
most generally used in computational fluid mechanics is the del-operator (also referred to as nabla) for
which the mathematical symbol is ∇. In the curvilinear system it is defined as:

∇Curvil inear =
1
h1

∂

∂u1
e1 +

1
h2

∂

∂u2
e2 +

1
h3

∂

∂u3
e3 (4.93)

The relations in Table 4.1 can be used to obtain the definition of ∇ in other coordinate systems:

∇Cartesian = ∂

∂x
i+ ∂

∂y
j+ ∂

∂z
k

∇Cylindrical =
∂

∂r
er + 1

r
∂

∂θ
eθ+ ∂

∂z
ez

∇Spherical =
∂

∂r
er + 1

r
∂

∂θ
eθ+ 1

rsinθ
∂

∂ϕ
eϕ

(4.94)

The definitions of the vector operations required in the curvilinear system are obtained from the
literature (Griffiths [72], Marskar [74], Anon [75], Williams [73]. These are used in the section below
to expand the vector form of the non-inertial equations into curvilinear components.

Gradient:

∇ f = 1
h1

∂ f
∂u1

e1 +
1
h2

∂ f
∂u2

e2 +
1
h3

∂ f
∂u3

e3 (4.95)

Divergence:

∇·A= 1
h1h2h3

[ ∂

∂u1

(
h2h3 A1

)+ ∂

∂u2

(
h1h3 A2

)+ ∂

∂u3

(
h1h2 A3

)]
(4.96)

Curl:

∇∧A= 1
h1h2h3


h1e1 h2e2 h3e3

∂
∂u1

∂
∂u2

∂
∂u3

h1 A1 h2 A2 h3 A3

 (4.97)

Laplacian:

∇2 f = 1
h1h2h3

[ ∂

∂u1

(h2h3

h1

∂ f
∂u1

)+ ∂

∂u2

(h1h3

h2

∂ f
∂u2

)+ ∂

∂u3

(h2h1

h3

∂ f
∂u3

)]
(4.98)
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4.4. NON-INERTIAL EQUATIONS IN CURVILINEAR COORDINATES

4.4.2 Incompressible Flow Conditions

The incompressible continuity equation is obtained from Schlichting [42]:

∇̂ · ρ̂û= 0 (4.99)

The definitions of the displacement and velocity in the non-inertial frame, using the curvilinear
coordinates, are described as:

x̂= û1 e1 + û2 e2 + û3 e3 (4.100)

û= V̂1 e1 + V̂2 e2 + V̂3 e3 (4.101)

Using the definition above for displacement and velocity, along with the definition of the divergence
in Equation 4.96, the curvilinear continuity equation for incompressible conditions is:

1
h1h2h3

[ ∂

∂û1

(
h2h3V̂1

)+ ∂

∂û2

(
h1h3V̂2

)+ ∂

∂û3

(
h1h2V̂3

)]= 0
(4.102)

In Chapter 3, Equation 3.239 the non-inertial momentum equation for arbitrary acceleration in incom-
pressible conditions has been derived:

∂û
∂t

+ (û · ∇̂)û=−∇̂ψ̂+ν∇̂2û+2û∧Ω︸ ︷︷ ︸
Coriolis

− x̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+ x̂∧Ω̇︸ ︷︷ ︸
Euler

+ ˆ̇x∧Ω

︸ ︷︷ ︸
Unsteady motion

+2V(t)∧Ω︸ ︷︷ ︸
Magnus

− ∂

∂t
(V(t))︸ ︷︷ ︸

Translation
(4.103)

The curvilinear stress tensor is described in Liu et al. [76] and Kee et al. [77] and is used along with
Equation 4.96 to obtain the diffusion terms in component form.

τ̂11 =−p̂+2µ̂
( 1

h1

∂V̂1

∂û1
+ V̂2

h1h2

∂h1

∂û2
+ V̂3

h1h3

∂h1

∂û3

)
+ λ̂∇̂ · û

τ̂22 =−p̂+2µ̂
( 1

h2

∂V̂2

∂û2
+ V̂3

h2h3

∂h2

∂û3
+ V̂1

h1h2

∂h2

∂û1

)
+ λ̂∇̂ · û

τ̂33 =−p̂+2µ̂
( 1

h3

∂V̂3

∂û3
+ V̂1

h1h3

∂h3

∂û1
+ V̂2

h2h3

∂h3

∂û2

)
+ λ̂∇̂ · û

τ̂12 = τ̂21 = µ̂
[h2

h1

∂

∂û1

( V̂2

h2

)
+ h1

h2

∂

∂û2

( V̂1

h1

)]
τ̂23 = τ̂32 = µ̂

[h3

h2

∂

∂û2

( V̂3

h3

)
+ h2

h3

∂

∂û3

( V̂2

h2

)]
τ̂31 = τ̂13 = µ̂

[h1

h3

∂

∂û3

( V̂1

h1

)
+ h3

h1

∂

∂u1

( V̂3

h3

)]

(4.104)
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CHAPTER 4. NON-INERTIAL EQUATIONS IN COMPONENT FORM

The non-inertial momentum equation is expanded into curvilinear components using the vector op-
erations defined in Section 4.4.1. The fictitious effect terms are expressed in curvilinear coordinates
and expanded as shown in Equation 4.4. The relative motion vectors are expressed in curvilinear coor-
dinates:

V(t)=Ve1 e1 +Ve2 e2 +Ve3 e3

Ω=ω1 e1 +ω2 e2 +ω3 e3
(4.105)

The non-inertial Navier-Stokes equations for arbitrary acceleration in curvilinear components are
shown below. The equations are the same as seen in Kee et al. [77], but with the addition of the fictitious
terms.
û1-momentum:

∂V̂1

∂t
+ V̂1

h1

∂V̂1

∂û1
+ V̂2

h2

∂V̂1

∂û2
+ V̂3

h3

∂V̂1

∂û3
− V̂2

( V̂2

h1h2

∂h2

∂û1
− V̂1

h1h2

∂h1

∂û2

)
+ V̂3

( V̂1

h1h3

∂h1

∂û3
− V̂3

h1h3

∂h3

∂û1

)
=− 1

h1

∂ψ̂

∂û1

+ 1
h1h2h3

[
∂

∂û1

{
2ν̂h2h3

( 1
h1

∂V̂1

∂û1
+ V̂2

h1h2

∂h1

∂û2
+ V̂3

h1h3

∂h1

∂û3

)}
+ ∂

∂û2

{
ν̂h3h1

[h2

h1

∂

∂û1

( V̂2

h2

)
+ h1

h2

∂

∂û2

( V̂1

h1

)]}
+ ∂

∂û3

{
ν̂h1h2

[h1

h3

∂

∂û3

( V̂1

h1

)
+ h3

h1

∂

∂u1

( V̂3

h3

)]}]
+ ν̂

h1h2

{h2

h1

∂

∂û1

( V̂2

h2

)
+ h1

h2

∂

∂û2

( V̂1

h1

)}∂h1

∂û2

+ ν̂

h1h3

{h1

h3

∂

∂û3

( V̂1

h1

)
+ h3

h1

∂

∂u1

( V̂3

h3

)}∂h1

∂û3

− 2ν̂
h1h2

{ 1
h2

∂V̂2

∂û2
+ V̂3

h2h3

∂h2

∂û3
+ V̂1

h1h2

∂h2

∂û1

}∂h2

∂û1

− 2ν̂
h1h3

{ 1
h3

∂V̂3

∂û3
+ V̂1

h1h3

∂h3

∂û1
+ V̂2

h2h3

∂h3

∂û2

}∂h3

∂û1

+2V̂2ω3 −2V̂3ω2︸ ︷︷ ︸
Coriolis

+ û1(ω3
2 +ω2

2)− û2ω1ω2 − û3ω1ω3︸ ︷︷ ︸
Centrifugal

+ û2ω̇3 − û3ω̇2︸ ︷︷ ︸
Euler

+ ˆ̇u2ω3 − ˆ̇u3ω2

︸ ︷︷ ︸
Unsteady motion

+2Ve2ω3 −2Ve3ω2︸ ︷︷ ︸
Magnus

− ∂Ve1

∂t︸ ︷︷ ︸
Translation

(4.106)
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4.4. NON-INERTIAL EQUATIONS IN CURVILINEAR COORDINATES

û2-momentum:

∂V̂2

∂t
+ V̂1

h1

∂V̂2

∂û1
+ V̂2

h2

∂V̂2

∂û2
+ V̂3

h3

∂V̂2

∂û3
− V̂3

( V̂3

h3h2

∂h3

∂û2
− V̂2

h2h3

∂h2

∂û3

)
+ V̂1

( V̂2

h1h2

∂h2

∂û1
− V̂1

h1h2

∂h1

∂û2

)
=− 1

h2

∂ψ̂

∂û2

+ 1
h1h2h3

[
∂

∂û1

{
ν̂h2h3

(h2

h1

∂

∂û1

( V̂2

h2

)
+ h1

h2

∂

∂û2

( V̂1

h1

))}
+ ∂

∂û2

{
2ν̂h3h1

[ 1
h2

∂V̂2

∂û2
+ V̂3

h2h3

∂h2

∂û3
+ V̂1

h1h2

∂h2

∂û1

]}
+ ∂

∂û3

{
ν̂h1h2

[h3

h2

∂

∂û2

( V̂3

h3

)
+ h2

h3

∂

∂û3

( V̂2

h2

)]}]
+ ν̂

h2h3

{h3

h2

∂

∂û2

( V̂3

h3

)
+ h2

h3

∂

∂û3

( V̂2

h2

)}∂h2

∂û3

+ ν̂

h2h1

{h2

h1

∂

∂û1

( V̂2

h2

)
+ h1

h2

∂

∂û2

( V̂1

h1

)}∂h2

∂û1

− 2ν̂
h2h3

{ 1
h3

∂V̂3

∂û3
+ V̂1

h1h3

∂h3

∂û1
+ V̂2

h2h3

∂h3

∂û2

}∂h3

∂û2

− 2ν̂
h2h1

{ 1
h1

∂V̂1

∂û1
+ V̂2

h1h2

∂h1

∂û2
+ V̂3

h1h3

∂h1

∂û3

}∂h1

∂û2

+2V̂3ω1 −2V̂1ω3︸ ︷︷ ︸
Coriolis

+ û2(ω3
2 +ω1

2)− û1ω1ω2 − û3ω2ω3︸ ︷︷ ︸
Centrifugal

+ û3ω̇1 − û1ω̇3︸ ︷︷ ︸
Euler

+ ˆ̇u3ω1 − ˆ̇u1ω3

︸ ︷︷ ︸
Unsteady motion

+2Ve3ω1 −2Ve1ω3︸ ︷︷ ︸
Magnus

− ∂Ve1

∂t︸ ︷︷ ︸
Translation

(4.107)
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CHAPTER 4. NON-INERTIAL EQUATIONS IN COMPONENT FORM

û3-momentum:

∂V̂3

∂t
+ V̂1

h1

∂V̂3

∂û1
+ V̂2

h2

∂V̂3

∂û2
+ V̂3

h3

∂V̂3

∂û3
− V̂1

( V̂1

h1h3

∂h1

∂û3
− V̂3

h1h3

∂h3

∂û1

)
+ V̂2

( V̂3

h2h3

∂h2

∂û1
− V̂2

h2h3

∂h2

∂û3

)
=− 1

h1

∂ψ̂

∂û3

+ 1
h1h2h3

[
∂

∂û1

{
ν̂h2h3

(h1

h3

∂

∂û3

( V̂1

h1

)
+ h3

h1

∂

∂u1

( V̂3

h3

))}
+ ∂

∂û2

{
ν̂h3h1

[h3

h2

∂

∂û2

( V̂3

h3

)
+ h2

h3

∂

∂û3

( V̂2

h2

)]}
+ ∂

∂û3

{
2ν̂h1h2

[ 1
h3

∂V̂3

∂û3
+ V̂1

h1h3

∂h3

∂û1
+ V̂2

h2h3

∂h3

∂û2

]}]
+ ν̂

h1h3

{h1

h3

∂

∂û3

( V̂1

h1

)
+ h3

h1

∂

∂u1

( V̂3

h3

)}∂h3

∂û1

+ ν̂

h2h3

{h3

h2

∂

∂û2

( V̂3

h3

)
+ h2

h3

∂

∂û3

( V̂2

h2

)}∂h3

∂û2

− 2ν̂
h1h3

{ 1
h1

∂V̂1

∂û1
+ V̂2

h1h2

∂h1

∂û2
+ V̂3

h1h3

∂h1

∂û3

}∂h1

∂û3

− 2ν̂
h2h3

{ 1
h2

∂V̂2

∂û2
+ V̂3

h2h3

∂h2

∂û3
+ V̂1

h1h2

∂h2

∂û1

}∂h2

∂û3

+2V̂1ω2 −2V̂2ω1︸ ︷︷ ︸
Coriolis

+ û3(ω2
2 +ω1

2)− û1ω1ω3 − û2ω1ω3︸ ︷︷ ︸
Centrifugal

+ û1ω̇2 − û2ω̇1︸ ︷︷ ︸
Euler

+ ˆ̇u1ω2 − ˆ̇u2ω1

︸ ︷︷ ︸
Unsteady motion

+2Ve1ω2 −2Ve2ω1︸ ︷︷ ︸
Magnus

− ∂Ve3

∂t︸ ︷︷ ︸
Translation

(4.108)

4.4.3 Compressible Flow Conditions

Equation 4.8 defines the compressible continuity equation.

∂ρ̂

∂t
+ (∇̂ · ρ̂û)= 0 (4.109)

In a similar manner as shown in the previous section, the curvilinear continuity equation in com-
pressible flow becomes:

∂ρ̂

∂t
+ V̂1

h1

∂ρ̂

∂û1
+ V̂2

h2

∂ρ̂

∂û2
+ V̂3

h3

∂ρ̂

∂û3
+ ρ̂

h1h2h3

[ ∂

∂û1

(
h2h3V̂1

)+ ∂

∂û2

(
h1h3V̂2

)+ ∂

∂û3

(
h1h2V̂3

)]= 0

(4.110)
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4.4. NON-INERTIAL EQUATIONS IN CURVILINEAR COORDINATES

The compressible conservation of momentum equation was determined in Chapter 3, Equation
3.227 :

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂ p̂+
Deviatoric stress︷ ︸︸ ︷

∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î]

+2ρû∧Ω︸ ︷︷ ︸
Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+ρx̂∧Ω̇︸ ︷︷ ︸
Euler

+ρ ˆ̇x∧Ω

︸ ︷︷ ︸
Unsteady motion

+2ρV(t)∧Ω︸ ︷︷ ︸
Magnus

− ∂

∂t
(ρV(t))︸ ︷︷ ︸

Translation

(4.111)

Using the methodology of Section 4.4.2, the curvilinear component form is obtained. This corre-
sponds with the formulations for Kee et al. [77], with the addition of the fictitious terms.
û1-momentum:

ρ̂
[∂V̂1

∂t
+ V̂1

h1

∂V̂1

∂û1
+ V̂2

h2

∂V̂1

∂û2
+ V̂3

h3

∂V̂1

∂û3
− V̂2

( V̂2

h1h2

∂h2

∂û1
− V̂1

h1h2

∂h1

∂û2

)
+ V̂3

( V̂1

h1h3

∂h1

∂û3
− V̂3

h1h3

∂h3

∂û1

)]
=− 1

h1

∂p̂
∂û1

+ 1
h1

∂

∂û1
(λ̂∇̂ · û)

+ 1
h1h2h3

[
∂

∂û1

{
2µ̂h2h3

( 1
h1

∂V̂1

∂û1
+ V̂2

h1h2

∂h1

∂û2
+ V̂3

h1h3

∂h1

∂û3

)}
+ ∂

∂û2

{
µ̂h3h1

[h2

h1

∂

∂û1

( V̂2

h2

)
+ h1

h2

∂

∂û2

( V̂1

h1

)]}
+ ∂

∂û3

{
µ̂h1h2

[h1

h3

∂

∂û3

( V̂1

h1

)
+ h3

h1

∂

∂x1

( V̂3

h3

)]}]
+ µ̂

h1h2

{h2

h1

∂

∂û1

( V̂2

h2

)
+ h1

h2

∂

∂û2

( V̂1

h1

)}∂h1

∂û2

+ µ̂

h1h3

{h1

h3

∂

∂û3

( V̂1

h1

)
+ h3

h1

∂

∂x1

( V̂3

h3

)}∂h1

∂û3

− 2µ̂
h1h2

{ 1
h2

∂V̂2

∂û2
+ V̂3

h2h3

∂h2

∂û3
+ V̂1

h1h2

∂h2

∂û1

}∂h2

∂û1

− 2µ̂
h1h3

{ 1
h3

∂V̂3

∂û3
+ V̂1

h1h3

∂h3

∂û1
+ V̂2

h2h3

∂h3

∂û2

}∂h3

∂û1

+ ρ̂
[

2V̂2ω3 −2V̂3ω2︸ ︷︷ ︸
Coriolis

+ û1(ω3
2 +ω2

2)− û2ω1ω2 − û3ω1ω3︸ ︷︷ ︸
Centrifugal

+ û2ω̇3 − û3ω̇2︸ ︷︷ ︸
Euler

+ ˆ̇u2ω3 − ˆ̇u3ω2

︸ ︷︷ ︸
Unsteady motion

+2Ve2ω3 −2Ve3ω2︸ ︷︷ ︸
Magnus

− ∂Ve1

∂t︸ ︷︷ ︸
Translation

]

(4.112)
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CHAPTER 4. NON-INERTIAL EQUATIONS IN COMPONENT FORM

û2-momentum:

ρ̂
[∂V̂2

∂t
+ V̂1

h1

∂V̂2

∂û1
+ V̂2

h2

∂V̂2

∂û2
+ V̂3

h3

∂V̂2

∂û3
− V̂3

( V̂3

h3h2

∂h3

∂û2
− V̂2

h2h3

∂h2

∂û3

)
+ V̂1

( V̂2

h1h2

∂h2

∂û1
− V̂1

h1h2

∂h1

∂û2

)]
=− 1

h2

∂p̂
∂û2

+ 1
h2

∂

∂û2
(λ̂∇̂ · û

+ 1
h1h2h3

[
∂

∂û1

{
µ̂h2h3

(h2

h1

∂

∂û1

( V̂2

h2

)
+ h1

h2

∂

∂û2

( V̂1

h1

))}
+ ∂

∂û2

{
2µ̂h3h1

[ 1
h2

∂V̂2

∂û2
+ V̂3

h2h3

∂h2

∂û3
+ V̂1

h1h2

∂h2

∂û1

]}
+ ∂

∂û3

{
µ̂h1h2

[h3

h2

∂

∂û2

( V̂3

h3

)
+ h2

h3

∂

∂û3

( V̂2

h2

)]}]
+ µ̂

h2h3

{h3

h2

∂

∂û2

( V̂3

h3

)
+ h2

h3

∂

∂û3

( V̂2

h2

)}∂h2

∂û3

+ µ̂

h2h1

{h2

h1

∂

∂û1

( V̂2

h2

)
+ h1

h2

∂

∂û2

( V̂1

h1

)}∂h2

∂û1

− 2µ̂
h2h3

{ 1
h3

∂V̂3

∂û3
+ V̂1

h1h3

∂h3

∂û1
+ V̂2

h2h3

∂h3

∂û2

}∂h3

∂û2

− 2µ̂
h2h1

{ 1
h1

∂V̂1

∂û1
+ V̂2

h1h2

∂h1

∂û2
+ V̂3

h1h3

∂h1

∂û3

}∂h1

∂û2

+ ρ̂
[

2V̂3ω1 −2V̂1ω3︸ ︷︷ ︸
Coriolis

+ û2(ω3
2 +ω1

2)− û1ω1ω2 − û3ω2ω3︸ ︷︷ ︸
Centrifugal

+ û3ω̇1 − û1ω̇3︸ ︷︷ ︸
Euler

+ ˆ̇u3ω1 − ˆ̇u1ω3

︸ ︷︷ ︸
Unsteady motion

+2Ve3ω1 −2Ve1ω3︸ ︷︷ ︸
Magnus

− ∂Ve1

∂t︸ ︷︷ ︸
Translation

]

(4.113)
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4.4. NON-INERTIAL EQUATIONS IN CURVILINEAR COORDINATES

û3-momentum:

ρ̂
[∂V̂3

∂t
+ V̂1

h1

∂V̂3

∂û1
+ V̂2

h2

∂V̂3

∂û2
+ V̂3

h3

∂V̂3

∂û3
− V̂1

( V̂1

h1h3

∂h1

∂û3
− V̂3

h1h3

∂h3

∂û1

)
+ V̂2

( V̂3

h2h3

∂h2

∂û1
− V̂2

h2h3

∂h2

∂û3

)]
=− 1

h1

∂p̂
∂û3

+ 1
h3

∂

∂û3
(λ̂∇̂ · û

+ 1
h1h2h3

[
∂

∂û1

{
µ̂h2h3

(h1

h3

∂

∂û3

( V̂1

h1

)
+ h3

h1

∂

∂x1

( V̂3

h3

))}
+ ∂

∂û2

{
µ̂h3h1

[h3

h2

∂

∂û2

( V̂3

h3

)
+ h2

h3

∂

∂û3

( V̂2

h2

)]}
+ ∂

∂û3

{
2µ̂h1h2

[ 1
h3

∂V̂3

∂û3
+ V̂1

h1h3

∂h3

∂û1
+ V̂2

h2h3

∂h3

∂û2

]}]
+ µ̂

h1h3

{h1

h3

∂

∂û3

( V̂1

h1

)
+ h3

h1

∂

∂x1

( V̂3

h3

)}∂h3

∂û1

+ µ̂

h2h3

{h3

h2

∂

∂û2

( V̂3

h3

)
+ h2

h3

∂

∂û3

( V̂2

h2

)}∂h3

∂û2

− 2µ̂
h1h3

{ 1
h1

∂V̂1

∂û1
+ V̂2

h1h2

∂h1

∂û2
+ V̂3

h1h3

∂h1

∂û3

}∂h1

∂û3

− 2µ̂
h2h3

{ 1
h2

∂V̂2

∂û2
+ V̂3

h2h3

∂h2

∂û3
+ V̂1

h1h2

∂h2

∂û1

}∂h2

∂û3

+ ρ̂
[

2V̂1ω2 −2V̂2ω1︸ ︷︷ ︸
Coriolis

+ û3(ω2
2 +ω1

2)− û1ω1ω3 − û2ω1ω3︸ ︷︷ ︸
Centrifugal

+ û1ω̇2 − û2ω̇1︸ ︷︷ ︸
Euler

+ ˆ̇u1ω2 − ˆ̇u2ω1

︸ ︷︷ ︸
Unsteady motion

+2Ve1ω2 −2Ve2ω1︸ ︷︷ ︸
Magnus

− ∂Ve3

∂t︸ ︷︷ ︸
Translation

]

(4.114)
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CHAPTER 4. NON-INERTIAL EQUATIONS IN COMPONENT FORM

4.5 Closure

It was established in this chapter that the Cylindrical and Curvilinear systems, as in the case of the
Cartesian system, have an inertial and a non-inertial form. Subsequently the component forms of the
non-inertial Navier-Stokes equations were derived in Cartesian, Cylindrical and Curvilinear coordinates
respectively. The specific contributions of that followed from the work are as follow:

• The non-inertial momentum equation in incompressible and compressible flow were derived in
for the Cartesian, Cylindrical and Curvilinear systems respectively which clearly indicated the

◦ differences in the material derivative between the various coordinates systems,

◦ forms of the diffusion terms that are dependant on compressibility,

◦ subsequent differences in the diffusion terms between coordinates system and

◦ formulations of the fictitious forces for each co-ordinate system respectively.

• The continuity equation were determined in component form for the Cartesian, Cylindrical and
Curvilinear systems respectively.

• It was shown that the non-inertial equations derived in Chapter 3 are relevant to all coordinate
systems, since the vector form of the Navier-Stokes equations are universal across coordinate
systems (White [9]),

• The Cartesian and Cylindrical systems are special cases of the Curvilinear case. The aforemen-
tioned can be obtained from the Curvilinear description using the relation shown in Table 4.1.

The compressible continuity equation, in Cartesian, Cylindrical and Curvilinear components respec-
tively, were derived and is formulated in Equations 4.9, 4.35 and 4.110. In the case of incompressible
flow the transient terms can be neglected as well as any terms associated with the change in density.

Cartesian
∂ρ

∂t
+ ∂ρu

∂x
+ ∂ρv

∂y
+ ∂ρw

∂z
= 0 (4.115)

Cylindrical
∂ρ

∂t
+ ∂ρur

∂r
+ ρur

r
+ 1

r
∂ρuθ

∂θ
+ ∂ρuz

∂z
= 0 (4.116)

Curvilinear

∂ρ̂

∂t
+ V̂1

h1

∂ρ̂

∂û1
+ V̂2

h2

∂ρ̂

∂û2
+ V̂3

h3

∂ρ̂

∂û3
+ ρ̂

h1h2h3

[ ∂

∂û1

(
h2h3V̂1

)+ ∂

∂û2

(
h1h3V̂2

)+ ∂

∂û3

(
h1h2V̂3

)]= 0

(4.117)
The Curvilinear form of the non-inertial momentum equations is the most general form; the Carte-

sian and Cylindrical formulations was derived from this using Table 4.1. The descriptions of the ficti-
tious forces in the various coordinates systems are shown below for selected directions.
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4.5. CLOSURE

Curvilinear: û1-direction

ρ̂
[∂V̂1

∂t
+ ...]=− 1

h1

∂ p̂
∂û1

+ ...+ ρ̂
[

2V̂2ω3 −2V̂3ω2︸ ︷︷ ︸
Coriolis

+ û1(ω3
2 +ω2

2)− û2ω1ω2 − û3ω1ω3︸ ︷︷ ︸
Centrifugal

+ û2ω̇3 − û3ω̇2︸ ︷︷ ︸
Euler

+ ˆ̇u2ω3 − ˆ̇u3ω2

︸ ︷︷ ︸
Arbitrary Rotation

+2Ve2ω3 −2Ve3ω2︸ ︷︷ ︸
Magnus

− ∂Ve1

∂t︸ ︷︷ ︸
Translation

] (4.118)

Cartesian: x̂-direction

∂ρ̂û
∂t

+ ...=−∂p̂
∂x̂

+ ...+2ρ̂v̂ωz −2ρ̂ŵωy︸ ︷︷ ︸
Coriolis

+ ρ̂ x̂(ωz
2 +ωy

2)− ρ̂ ŷωxωy − ρ̂ ẑωxωz︸ ︷︷ ︸
Centrifugal

+ ρ̂ ŷ ˆ̇ωz − ρ̂ ẑ ˆ̇ωy︸ ︷︷ ︸
Euler

+ρ̂ ˆ̇yωz − ρ̂ ˆ̇zωy

︸ ︷︷ ︸
Arbitrary Rotation

+2ρ̂Vyωz −2ρ̂Vzωy︸ ︷︷ ︸
Magnus

− ∂ρ̂Vx

∂t︸ ︷︷ ︸
Translation

(4.119)

Cylindrical: r̂-direction

∂ρ̂ûr

∂t
+ ...=−∂p̂

∂r̂
+ ...+2ρ̂ûθωz −2ρ̂ûzωθ︸ ︷︷ ︸

Coriolis

− ρ̂ ẑωrωz + ρ̂ r̂ω2
z + ρ̂ r̂ω2

θ︸ ︷︷ ︸
Centrifugal

− ρ̂ ẑω̇θ︸ ︷︷ ︸
Euler

+ρ̂ûθωz − ρ̂ûzωθ

︸ ︷︷ ︸
Arbitrary Rotation

+2ρ̂Vθωz −2ρ̂Vzωθ︸ ︷︷ ︸
Magnus

− ∂ρ̂Vr

∂t︸ ︷︷ ︸
Translation

(4.120)

The fictitious terms have a common form between the various coordinates systems that are depen-
dant on direction. This can be illustrated with the Coriolis terms from the equations above. The equiva-
lent terms between the coordinates systems are highlighted in the same colour. In a similar manner the
equivalence between the other fictitious terms are observed.

2ρ̂ V̂2 ω3 −2ρ̂ V̂3 ω2 −Curvil inear

2ρ̂ v̂ ωz −2ρ̂ ŵ ωy −Cartesian

2ρ̂ ûθ ωz −2ρ̂ ûz ωθ −Cylindrical

(4.121)
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5
Non-Inertial Boundary Layer Equations

In this chapter the boundary layer equations are determined in a non-inertial frame. Boundary layer
theory is well established for inertial cases (Anderson [58], Schlichting [42], White [9]) and is
expanded upon to determine the non-inertial formulations.
The boundary layer is the thin layer of viscous fluid close to the wall of a solid surface in a mov-

ing fluid. The velocity in the boundary layer approximates zero at the wall (if a no-slip condition is
assumed) and increases in a direction perpendicular to the wall to approximate the free stream velocity.
The regions associated with the boundary layer are shown in Figure 5.1. There are three properties of a
boundary layer that characterises it and a fourth that classifies the flow regime; boundary layer thickness
δ, displacement thickness δ∗, momentum thickness θ and shape factor H.

Figure 5.1: Regions Associated with the Laminar Boundary Layer

The boundary layer height, δ, is the distance from the wall were the velocity is 99% of the free
stream velocity. Within boundary layer the viscous effects are dominant during steady state conditions,
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CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

while in the outer inviscid flow the momentum effects become dominant.
The displacement thickness, δ∗, is the distance by which a surface would have to be moved in the

direction perpendicular to its normal vector away from the reference plane, in an inviscid fluid stream
of the free stream velocity, to give the same flow rate as occurs between the surface and the reference
plane in a real fluid (Schlichting [42]). This definition is mathematically described by Equation 5.1
(White [9]) and depicted in Figure 5.2.

δ∗ =
∫ y∗→∞

0

(
1− u

U∞

)
dy (5.1)

Figure 5.2: Graphical Representation of the Displacement Thickness Parameter

The momentum thickness, θ, is the distance by which a surface would have to be moved in the
direction perpendicular to its normal vector away from the reference plane, in an inviscid fluid stream,
of the free stream velocity to give the same momentum as occurs between the surface and the reference
plane in a real fluid (Schlichting [42]). This definition is mathematically described by Equation 5.2
(White [9]) and depicted in Figure 5.3.

θ =
∫ y∗→∞

0

u
U∞

(
1− u

U∞

)
dy (5.2)

The shape factor is a function of the displacement and momentum thicknesses (Equation 5.3). It
is used to characterise the flow regime; a value of 2.59 is typical for laminar flows (White [9]). A
higher shape factor is associated with a stronger adverse pressure gradient which in turn can lead to
flow separation from the solid surface (Wazzan et al. [78]).

H = δ∗

θ
(5.3)

The three dimensional boundary layer equations for inertial conditions on a flat plate are derived
using a magnitude of order approach (Schlichting [42]). The boundary layer equations for the non-
inertial conditions are derived in a similar manner as the inertial equations to determine the effects of
the fictitious terms in the near wall region. These equations, along with the boundary layer properties
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5.1. NON-INERTIAL BOUNDARY LAYER EQUATIONS FOR A FLAT PLATE - CARTESIAN
FORMULATION

Figure 5.3: Graphical Representation of the Momentum Thickness Parameter

described above, are used in subsequent chapters to enhance the understanding of the flow physics
observed in the numerical results of non-inertial flows.

5.1 Non-Inertial Boundary Layer Equations for a Flat Plate - Cartesian
Formulation

Partial differential equations are analysed by obtaining the non-dimensional form through scaling of the
characteristic properties (White [9]). This allows for analysis of the relative magnitudes of the separate
terms in the component form of the equation. The characteristic properties of a laminar boundary layer
are shown in Figure 5.4. It comprises of a reference length (L), reference velocity (free stream velocity
U), boundary layer thickness (δ) and other free stream properties such as viscosity and pressure.

Figure 5.4: Boundary Layer Parameters

Scaling (see Figure 5.5) is aimed at obtaining the relative sizes of the terms in order to identify
smaller terms that can be neglected from the equation (Patankar [79], Versteeg and Malalasekera [69]).
Elimination of the smaller terms result in a simplified equation. These equations contain the terms that
have a significant effect in the near-wall region and are responsible for the behaviour of the flow in the
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CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

boundary layer. The physical responses of the boundary layer to accelerating conditions are explained
using the simplified equations.

Figure 5.5: Boundary Layer Scaling Parameters

The analysis is based on the assumption that the boundary layer thickness, δ, is much smaller in
comparison with the body over which the flow is analysed (Schlichting [42]),

δ

L
<< 1 (5.4)

A perturbation parameter, ε is introduced. This represents a very small disturbance in the flow at
the surface that asymptotically approaches zero as indicated in Figure 5.6.

Figure 5.6: Perturbation Parameter ε on a Flat Surface

The perturbation originates from the surface of the plate continues to propagate along it. Therefore
the disturbance approaches ε in both the x̂- and ẑ- directions in the figure above. In the ŷ-direction the
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5.1. NON-INERTIAL BOUNDARY LAYER EQUATIONS FOR A FLAT PLATE - CARTESIAN
FORMULATION

disturbance approaches ε close to the wall, but it dissipates further way from the wall since the interac-
tion of the fluid with the solid surface sustains the disturbance. At the flow boundary the disturbance is
smaller that ε and of order ε2. The boundary layer height is smaller than the disturbance at the wall and
asymptotically approaches ε2. It is defined that (Rogers [80], Schlichting [42]),

ε<< 1

ε2 < ε

δ→ ε2

(5.5)

5.1.1 NON-DIMENSIONAL ANALYSIS

Significant work was done byMager [81] to characterize the laminar boundary layer in turbo-machinery
applications. The figure below (Figure 5.7) indicates the notation from Mager [81] that are used in this
derivation. The boundary layer develops along the x̂- and ẑ-directions and the rotations occur about the
x̂-, ŷ-, and ẑ-axes with magnitudes ω1,ω2 and ω3 respectively.

Figure 5.7: Flow over a Rotation Flat Surface (Mager [81])

The non-dimensional parameters selected for the spatial variables is as follow (Rogers [80], Schlicht-
ing [42], White [9]):

x⋆ = x̂
L

y⋆ = ŷ
δ

z⋆ = ẑ
L

(5.6)

L is the reference distance, the assumption is made that the plate is infinite in the x̂- and ẑ-directions.
δ is the boundary layer height in the ŷ-direction as a distance of L.
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CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

The velocity components are non-dimensionalized as follow, where U is the characteristic free-
stream velocity (Rogers [80], Schlichting [42], White [9]):

u⋆ = û
U

v⋆ = v̂
U

L
δ

w⋆ = ŵ
U

t⋆ = t
U
L

(5.7)

The angular velocity, with the units of radians per second, are non-dimensionalized as follows:

ωi
⋆ =ωi t

[ rad
s

]
[s]

(5.8)

The specific pressure and kinematic viscosity are normalized as follows (Rogers [80], Schlichting
[42], White [9]:

ψ⋆ = ψ

U2

[m2

s2

] [ s2

m2

]
ν⋆ = ν

ν∞

(5.9)

5.1.2 Continuity Equation for Boundary Layer Flows

The non-inertial continuity equation was derived in Chapter 4, Equation 4.18:
∂û
∂x̂

+ ∂v̂
∂ ŷ

+ ∂ŵ
∂ẑ

= 0 (5.10)

Applying the normalization parameters to this equation result in the non-dimensional form of the equa-
tion Section 5.1.1:

∂(u⋆U)
∂(x⋆L)

+ ∂(v⋆Uδ
L )

∂(y⋆δ)
+ ∂(w⋆U)

∂(z⋆L)
= 0 (5.11)

The equation above is multiplied by:
L
U

(5.12)

leading to the final non-dimensional form of the equation:[
1
]∂u⋆

∂x⋆
+ [

1
]∂v⋆

∂y⋆
+ [

1
]∂w⋆

∂z⋆
= 0

(5.13)

The coefficients of each term are equal to one and are therefore of the same order of magnitude. No terms
can be neglected as all are contributing equally to the flow. The boundary layer continuity equation thus
remains the same as the bulk flow equation:

∂û
∂x̂

+ ∂v̂
∂ ŷ

+ ∂ŵ
∂ẑ

= 0
(5.14)
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5.1. NON-INERTIAL BOUNDARY LAYER EQUATIONS FOR A FLAT PLATE - CARTESIAN
FORMULATION

5.1.3 Conservation of Momentum Equation for Boundary Layer Flows

The non-inertial conservation of momentum equation (Equation 3.55) for constant, pure rotation is
broken up into its direction components in order to treat the principle directions separately. The x̂-
direction is specified as the first principle directions, and the ŷ- and ẑ-direction the second and third
respectively.

∂û
∂t

+ (û · ∇̂)û=−∇̂ψ̂+ν∇̂2û+2û∧Ω︸ ︷︷ ︸
Coriolis

− x̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

(5.15)

5.1.3.1 First Principle Direction Equation

The non-inertial conservation of momentum equation in the x̂-direction is determined using Equation
4.24 (that established the component form in incompressible flow) and Equation 4.49 (that indicated
the method for determining the component form of the non-inertial components) in Section 4.3.1.1 :

∂û
∂t

+ û
∂û
∂x̂

+ v̂
∂û
∂ ŷ

+ ŵ
∂û
∂ẑ

=−∂ψ̂

∂x̂
+ν(

∂2û
∂x̂2 + ∂2û

∂ ŷ2 + ∂2û
∂ẑ2 )

+2v̂ω3 −2ŵω2 + x̂(ω3
2 +ω2

2)− ŷω1ω2 − ẑω1ω3

(5.16)

By implementing the normalization parameters as indicated in Section 5.1.1 and multiplying by,
L

U2 (5.17)

the equation takes on the non-dimensional form. This allows for order of magnitude analysis of the
separate terms:

∂u⋆

∂t⋆
+u⋆ ∂u⋆

∂x⋆
+v⋆

∂u⋆

∂y⋆
+w⋆ ∂u⋆

∂z⋆
=−∂ψ⋆

∂x⋆
+ν⋆ν∞[(

1
LU

)
∂2u⋆

∂x⋆2 + (
L

Uδ2 )
∂2u⋆

∂y⋆2 + (
1

LU
)
∂2u⋆

∂z⋆2 ]

+ (
δ

Ut
)2v⋆ω⋆

3 − (
L

Ut
)2w⋆ω⋆

2 + (
L2

U2t2 )x⋆[ω⋆
3

2 +ω⋆
2

2]

− (
δL

U2t2 )y⋆ω⋆
1 ω

⋆
2 − (

L2

U2t2 )z⋆ω⋆
1 ω

⋆
3

(5.18)

For the purposes of simplification the assumption is made that the boundary layer thickness ap-
proaches a very small number (ε2) while the characteristic length approaches a very large number
(Rogers [80], Schlichting [42]):

ε<< 1

δ→ ε2

L →∞
(5.19)

In order to keep the solution as general as possible, it is assumed that velocity and time has positive
values. It then follows that:

U ∈ [ ε, ∞ [

t ∈ [ ε, ∞ [
(5.20)
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CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

From the above relations the following simplifications are made:
1

LU
→ ε

L
δ2 →∞
δ

L
→ ε2

δL →∞

(5.21)

Implementing the above simplifications in Equation 5.16 lead to the non-dimensional momentum
equation with components in the x̂-direction. The order of magnitude factors and the corresponding
orders are indicated below:

[1]
∂u⋆

∂t⋆
+ [1]u⋆ ∂u⋆

∂x⋆
+ [1]v⋆

∂u⋆

∂y⋆
+ [1]w⋆ ∂u⋆

∂z⋆
=−[1]

∂ψ⋆

∂x⋆

+ν⋆ν∞[(
�
�
�7
ε

1
LU

)
∂2u⋆

∂x⋆2 + (
L

Uδ2︸ ︷︷ ︸
∞

)
∂2u⋆

∂y⋆2 + (
�
�
�7
ε

1
LU

)
∂2u⋆

∂z⋆2 ]

+ (
δ

Ut︸︷︷︸
[ ε, ∞ [

)2v⋆ω⋆
3 − (

L
Ut︸︷︷︸

[ ε, ∞ [

)2w⋆ω⋆
2 + (

L2

U2t2︸ ︷︷ ︸
[ ε, ∞ [

)x⋆[ω⋆
3

2 +ω⋆
2

2]

− (
δL

U2t2︸ ︷︷ ︸
[ ε, ∞ [

)y⋆ω⋆
1 ω

⋆
2 − (

L2

U2t2︸ ︷︷ ︸
[ ε, ∞ [

)z⋆ω⋆
1 ω

⋆
3

(5.22)

The coefficients of the fictitious terms have a temporal component, t, in the equation. This parameter,
t ∈ [ε, ∞[, has been defined for a general solution. The order of magnitude of the coefficients associated
with the fictitious terms is undetermined, since it is an element of [ε, ∞[. The terms can therefore not
be excluded from the equation. None of the fictitious terms could be neglected in this case and in the
general solution influences the boundary layer behaviour. The general conservation of momentum for
the non-inertial boundary layer equation in the x̂-direction becomes:

∂û
∂t

+ û
∂û
∂x̂

+ v̂
∂û
∂ ŷ

+ ŵ
∂û
∂ẑ

=−∂ψ̂

∂x̂
+ν(

∂2û
∂ ŷ2 )+2v̂ω3 −2ŵω2 + x̂(ω3

2 +ω2
2)− ŷω1ω2 − ẑω1ω3

(5.23)

5.1.3.2 Second Principle Direction Equation

The non-inertial conservation of momentum equation in the ŷ-direction follows from Section 4.3.1.1,
Equation 4.32 and the method for non-inertial component expansion in Equation 4.49:

∂v̂
∂t

+ û
∂v̂
∂x̂

+ v̂
∂v̂
∂ ŷ

+ ŵ
∂v̂
∂ẑ

=−∂ψ̂

∂ ŷ
+ν(

∂2v̂
∂x̂2 + ∂2v̂

∂ ŷ2 + ∂2v̂
∂ẑ2 )

+2ŵω1 −2ûω3 + ŷ(ω3
2 +ω1

2)− x̂ω1ω2 − ẑω2ω3

(5.24)
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5.1. NON-INERTIAL BOUNDARY LAYER EQUATIONS FOR A FLAT PLATE - CARTESIAN
FORMULATION

Implementing the non-dimensional parameters previously defined in Section 5.1.1 and multiplica-
tion by:

δ

U2 (5.25)

Leads to the non-dimensional form of the equation:

(
δ2

L2 )
∂v⋆

∂t⋆
+ (

δ2

L2 )u⋆ ∂v⋆

∂x⋆
+ (

δ2

L2 )v⋆
∂v⋆

∂y⋆
+ (

δ2

L2 )w⋆ ∂v⋆

∂z⋆
=−∂ψ⋆

∂y⋆

+ν⋆ν∞((
δ2

UL3 )
∂2v⋆

∂x⋆2 + (
1

LU
)
∂2v⋆

∂y⋆2 + (
δ2

UL3 )
∂2v⋆

∂z⋆2 )

+ (
δ

Ut
)2w⋆ω⋆

1 − (
δ

Ut
)2u⋆ω⋆

3 + y⋆((
δ2

U2t2 )ω⋆
3

2 + (
δ2

U2t2 )ω⋆
1

2)

− (
δL

U2t2 )x⋆ω⋆
1 ω

⋆
2 − (

δL
U2t2 )z⋆ω⋆

2 ω
⋆
3

(5.26)

When the same simplifications are used as in the x̂-direction case as shown inEquation 5.22, the gen-
eral conservation of momentum equation for the non-inertial boundary layer equation in the ŷ-direction
become:

0=−∂ψ̂

∂ ŷ
+2ŵω1 −2ûω3 + ŷ(ω3

2 +ω1
2)− x̂ω1ω2 − ẑω2ω3

(5.27)

5.1.3.3 Third Principle Direction Equation

The non-inertial conservation of momentum equation in the ẑ-direction is determined using Section
4.3.1.1, Equation 4.32 and Equation 4.49:

∂ŵ
∂t

+ û
∂ŵ
∂x̂

+ v̂
∂ŵ
∂ ŷ

+ ŵ
∂ŵ
∂ẑ

=−∂ψ̂

∂ẑ
+ν(

∂2ŵ
∂x̂2 + ∂2ŵ

∂ ŷ2 + ∂2ŵ
∂ẑ2 )

+2ûω2 −2v̂ω1 + ẑ(ω2
2 +ω1

2)− x̂ω1ω3 − ŷω2ω3

(5.28)

Implementing the non-dimensional parameters previously defined in Section 5.1.1 and multiplica-
tion by:

L
U2 (5.29)

lead to the non-dimensional form of the equation:

∂w⋆

∂t
+u⋆ ∂w⋆

∂x⋆
+v⋆

∂w⋆

∂y⋆
+w⋆ ∂w⋆

∂z⋆
=−∂ψ⋆

∂z⋆

+ν⋆ν∞[(
1

LU
)
∂2w⋆

∂x⋆2 + (
L
δU

)
∂2w⋆

∂y⋆2 + (
1

LU
)
∂2w⋆

∂z⋆2 ]

+2(
L

Ut
)u⋆ω2 −2(

δ

Ut
)v⋆ω1 + (

L2

U2t2 )z⋆(ω2
2 +ω1

2)

− (
L2

U2t2 )x⋆ω1ω3 − (
δL

U2t2 )y⋆ω2ω3

(5.30)
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CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

When the same simplifications are used as in the x̂-direction case (Equation 5.22), the general
conservation of momentum equation for the non-inertial boundary layer equation in the ẑ-direction
becomes:

∂ŵ
∂t

+ û
∂ŵ
∂x̂

+ v̂
∂ŵ
∂ ŷ

+ ŵ
∂ŵ
∂ẑ

=−∂ψ̂

∂ẑ
+ν(

∂2ŵ
∂ ŷ2 )+2ûω2 −2v̂ω1 + ẑ(ω2

2 +ω1
2)− x̂ω1ω3 − ŷω2ω3

(5.31)

5.1.3.4 Compressibility Effects on the Boundary Layer Equations

The differences between the compressible and incompressible formulations for the momentum equation
were discussed at length in Section 4.2.2.2. It was established that the form of the diffusion terms in
compressible and incompressible flow conditions is crucial since the complete deviatoric stress tensor
must be used in the compressible case (Equation 4.38):

τ̂(x̂, ŷ, ẑ)=


2µ̂∂û

∂x̂ + λ̂∇̂ · û µ̂
(
∂û
∂ ŷ + ∂v̂

∂x̂
)

µ̂
(
∂û
∂ẑ + ∂ŵ

∂x̂
)

µ̂
(
∂û
∂ ŷ + ∂v̂

∂x̂
)

2µ̂ ∂v̂
∂ ŷ + λ̂∇̂ · û µ̂

(
∂v̂
∂ẑ + ∂ŵ

∂ ŷ
)

µ̂
(
∂û
∂ẑ + ∂ŵ

∂x̂
)

µ̂
(
∂v̂
∂ẑ + ∂ŵ

∂ ŷ
)

2µ̂∂ŵ
∂ẑ + λ̂∇̂ · û

 (5.32)

Here it is determined which of the diffusion terms, that are relevant in the bulk flow, are relevant
in the boundary layer. This is done using the order of magnitude analysis (Patankar [79], Schlichting
[42], Versteeg and Malalasekera [69], White [9]) that was employed to determined the incompressible
boundary layer equations.

The components that pertain to the x̂-momentum equation is:

∂

∂x̂

[
2µ̂

∂û
∂x̂

+ λ̂
(∂û
∂x̂

+ ∂v̂
∂ ŷ

+ ∂ŵ
∂ẑ

)]+ ∂

∂ ŷ

[
µ̂
(∂û
∂ ŷ

+ ∂v̂
∂x̂

)]+ ∂

∂ẑ

[
µ̂
(∂û
∂ẑ

+ ∂ŵ
∂x̂

)]
(5.33)

The non-dimensional parameters of Section 5.1.1 are substituted in the terms above and multiplied
by Equation 5.17,

L
U2 (5.34)

to obtain the non-dimensional form of the terms:[ 1
LU

] ∂

∂x⋆
[
2µ

∂u⋆

∂x⋆
+λ

(∂u⋆

∂x⋆
+ ∂v⋆

∂y⋆
+ ∂w⋆

∂z⋆
)]+[ L

δ2U

] ∂

∂y⋆
[
µ
∂u⋆

∂y⋆
]
+

[ 1
LU

] ∂

∂y⋆
[
µ
∂v⋆

∂x⋆
]

+
[ 1

LU

] ∂

∂z⋆
[
µ
(∂u⋆

∂z⋆
+ ∂w⋆

∂x⋆
)] (5.35)

An order of magnitude analysis, along with the following simplifications,

1
LU

→ ε

L
δ2U

→∞
(5.36)

result in a number of the terms being neglected since the coefficients of the terms tends to ε.

114

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



5.1. NON-INERTIAL BOUNDARY LAYER EQUATIONS FOR A FLAT PLATE - CARTESIAN
FORMULATION

[
�
�
�7
ε

1
LU

] ∂

∂x⋆
[
2µ

∂u⋆

∂x⋆
+λ

(∂u⋆

∂x⋆
+ ∂v⋆

∂y⋆
+ ∂w⋆

∂z⋆
)]+[ L

δ2U︸ ︷︷ ︸
∞

] ∂

∂y⋆
[
µ
∂u⋆

∂y⋆
]
+

[
�
�
�7
ε

1
LU

] ∂

∂y⋆
[
µ
∂v⋆

∂x⋆
]

+
[
�
�
�7
ε

1
LU

] ∂

∂z⋆
[
µ
(∂u⋆

∂z⋆
+ ∂w⋆

∂x⋆
)]

(5.37)

The diffusive terms in the compressible x̂-momentum equation are similar to the terms in the in-
compressible form (Equation 5.23):

∂

∂ ŷ

[
µ̂
∂û
∂ ŷ

]
(5.38)

The compressible form of the boundary layer equation for the conservation of momentum in the
x̂-direction is similar to the incompressible form determined in Equation 5.23:

∂ρ̂û
∂t

+ û
∂ρ̂û
∂x̂

+ v̂
∂ρ̂û
∂ ŷ

+ ŵ
∂ρ̂û
∂ẑ

=−∂p̂
∂x̂

+ ∂

∂ ŷ
µ̂
∂û
∂ ŷ

+2ρ̂v̂ω3 −2ρ̂ŵω2 + ρ̂ x̂(ω3
2 +ω2

2)

− ρ̂ ŷω1ω2 − ρ̂ ẑω1ω3
(5.39)

The stress components that pertains to the ŷ-momentum equation are:

∂

∂x̂

[
µ̂
(∂û
∂ ŷ

+ ∂v̂
∂x̂

)]+ ∂

∂ ŷ

[
2µ̂

∂v̂
∂ ŷ

+ λ̂
(∂û
∂x̂

+ ∂v̂
∂ ŷ

+ ∂ŵ
∂ẑ

)]+ ∂

∂ẑ

[
µ̂
(∂v̂
∂ẑ

+ ∂ŵ
∂ ŷ

)]
(5.40)

The non-dimensional parameters of Section 5.1.1 are substituted in the terms above and multiplied
by Equation 5.25,

δ

U2 (5.41)

to obtain the non-dimensional form of the terms:

[ 1
LU

] ∂

∂x⋆
[
µ
∂u⋆

∂y⋆
]
+

[ δ2

L3U

] ∂

∂x⋆
[
µ
∂v⋆

∂x⋆
]
+

[ 1
LU

] ∂

∂y⋆
[
2µ

∂v⋆

∂y⋆
+λ

(∂u⋆

∂x⋆
+ ∂v⋆

∂y⋆
+ ∂w⋆

∂z⋆
)]

+
[ δ2

L3U

] ∂

∂z⋆
[
µ
∂v⋆

∂z⋆
]
+

[ 1
LU

] ∂

∂z⋆
[
µ
∂w⋆

∂y⋆
] (5.42)

An order of magnitude analysis, along with the following simplifications,

1
LU

→ ε2

δ2

L3U
→ ε2

(5.43)

results in all of the terms being neglected.
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CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

[
�
�
�7
ε

1
LU

] ∂

∂x⋆
[
µ
∂u⋆

∂y⋆
]
+

[
�
�
���

ε

δ2

L3U

] ∂

∂x⋆
[
µ
∂v⋆

∂x⋆
]
+

[
�
�
�7
ε

1
LU

] ∂

∂y⋆
[
2µ

∂v⋆

∂y⋆
+λ

(∂u⋆

∂x⋆
+ ∂v⋆

∂y⋆
+ ∂w⋆

∂z⋆
)]

+
[
�
�
���

ε

δ2

L3U

] ∂

∂z⋆
[
µ
∂v⋆

∂z⋆
]
+

[
�
�
�7
ε

1
LU

] ∂

∂z⋆
[
µ
∂w⋆

∂y⋆
] (5.44)

The diffusive terms in the compressible ŷ-momentum equation are similar to the terms in the in-
compressible form; all the terms can be neglected.
The compressible form of the boundary layer equation for the conservation of momentum in the ŷ-
direction is similar to the incompressible form determined in Equation 5.27:

0=−∂p̂
∂ ŷ

+2ρ̂ŵω1 −2ρ̂ûω3 + ρ̂ ŷ(ω3
2 +ω1

2)− ρ̂ x̂ω1ω2 − ρ̂ ẑω2ω3
(5.45)

The stress components that pertains to the ẑ-momentum equation are:

∂

∂x̂

[
µ̂
(∂û
∂ẑ

+ ∂ŵ
∂x̂

)]+ ∂

∂ ŷ

[
µ̂
(∂v̂
∂ẑ

+ ∂ŵ
∂ ŷ

)]+ ∂

∂ẑ

[
2µ̂

∂ŵ
∂ẑ

+λ
(∂û
∂x̂

+ ∂v̂
∂ ŷ

+ ∂ŵ
∂ẑ

)]
(5.46)

The non-dimensional parameters of Section 5.1.1 are substituted in the terms above and multiplied
by Equation 5.29,

L
U2 (5.47)

to obtain the non-dimensional form of the terms:[ 1
LU

] ∂

∂x⋆
[
µ
(∂u⋆

∂z⋆
+ ∂w⋆

∂x⋆
)]+[ 1

LU

] ∂

∂y⋆
[
µ
∂v⋆

∂z⋆
]
+

[ L
δ2U

] ∂

∂y⋆
[
µ
∂w⋆

∂y⋆
]

+
[ 1

LU

] ∂

∂z⋆
[
2µ

∂w⋆

∂z⋆
+λ

(∂u⋆

∂x⋆
+ ∂v⋆

∂y⋆
+ ∂w⋆

∂z⋆
)] (5.48)

An order of magnitude analysis, along with the following simplifications,

1
LU

→ ε

L
δ2U

→∞
(5.49)

result in a number of the terms being neglected.

[
�
�
�7
ε

1
LU

] ∂

∂x⋆
[
µ
(∂u⋆

∂z⋆
+ ∂w⋆

∂x⋆
)]+[

�
�
�7
ε

1
LU

] ∂

∂y⋆
[
µ
∂v⋆

∂z⋆
]
+

[ L
δ2U︸ ︷︷ ︸
∞

] ∂

∂y⋆
[
µ
∂w⋆

∂y⋆
]

+
[
�
�
�7
ε

1
LU

] ∂

∂z⋆
[
2µ

∂w⋆

∂z⋆
+λ

(∂u⋆

∂x⋆
+ ∂v⋆

∂y⋆
+ ∂w⋆

∂z⋆
)]

(5.50)
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5.1. NON-INERTIAL BOUNDARY LAYER EQUATIONS FOR A FLAT PLATE - CARTESIAN
FORMULATION

The diffusive terms in the compressible ẑ-momentum equation are be similar to the terms in the
incompressible form (Equation 5.31):

∂

∂ ŷ

[
µ̂
∂ŵ
∂ ŷ

]
(5.51)

The compressible form of the boundary layer equation for the conservation of momentum in the
ẑ-direction is similar to the incompressible form determined in Equation 5.31:

∂ρ̂ŵ
∂t

+ û
∂ρ̂ŵ
∂x̂

+ v̂
∂ρ̂ŵ
∂ ŷ

+ ŵ
∂ρ̂ŵ
∂ẑ

=−∂p̂
∂ẑ

+ ∂

∂ ŷ

[
µ̂
∂ŵ
∂ ŷ

]
+2ρ̂ûω2 −2ρ̂v̂ω1 + ρ̂ ẑ(ω2

2 +ω1
2)

− ρ̂ x̂ω1ω3 − ρ̂ ŷω2ω3
(5.52)

5.1.4 Validation of Equations

In Mager [81] the non-inertial boundary layer equations are defined as follow:

ux +uy +uz = 0

uux +vuy +wuz +2ω2w−ω2
r rx =−1

ρ
px +νuyy

2(ω3u−ω1w)−ω2
r r y =−1

ρ
py

uwx +vwy +wwz −2ω2u−ω2
r rz =−1

ρ
px +νwyy

(5.53)

Mager [81] however stated that the total change of pressure through out the boundary layer along a
principle direction normal to the wall is of the same order as δ and may therefore still be neglected as
both approximates ε2. The equation in the ŷ-direction can thus be simplified to:

−1
ρ

py ≃ 0 (5.54)

The mass conservation equation for the boundary layer agrees with the equation given by Mager
[81]:

∂û
∂x̂

+ ∂v̂
∂ ŷ

+ ∂ŵ
∂ẑ

= 0 (5.55)

The boundary layer equations derived in the previous section represent a general case where no
assumptions were made with regards to the order of magnitude of characteristic velocity (U) and time
(t). If it is assumed that the product of U and t is greater than one, the term δ

Ut can be neglected from
Equation 5.22. This leads to the following boundary layer equation in the x̂-direction:

∂û
∂t

+ û
∂û
∂x̂

+ v̂
∂û
∂ ŷ

+ ŵ
∂û
∂ẑ

=−∂ψ̂

∂x̂
+ν(

∂2û
∂ ŷ2 )

−2ŵω2

+ x̂(ω3
2 +ω2

2)− ŷω1ω2 − ẑω1ω3

(5.56)
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CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

This equation agrees with the equation given in Mager [81].
Under the same assumption as above, the boundary layer in the ŷ-direction becomes Equation 5.27:

0=−∂ψ̂

∂ ŷ
− x̂ω1ω2 − ẑω2ω3 (5.57)

In Mager [81] it is assumed that total change of pressure through out the boundary layer long a
principle direction normal to the wall is zero. This means that the pressure gradient is only dependant
on x̂- and ẑ-directions. The above equation subsequently becomes:

0=−∂ψ̂

∂ ŷ
(5.58)

In a similar manner as explained above for the x̂-direction, the equation in the ẑ-direction becomes
(Equation 5.31):

∂ŵ
∂t

+ û
∂ŵ
∂x̂

+ v̂
∂ŵ
∂ ŷ

+ ŵ
∂ŵ
∂ẑ

=−∂ψ̂

∂ẑ
+ν(

∂2ŵ
∂ ŷ2 )

+2ûω2

+ ẑ(ω2
2 +ω1

2)− x̂ω1ω3 − ŷω2ω3

(5.59)

This is consistent with the equation given in Mager [81].
Now consider that the rotation on the flat plate is only around the ŷ-axis. In such conditions the

values of the angular velocities become:

ω1 = 0

ω2 =Ω

ω3 = 0

(5.60)

Substituting for these values in Equations 5.56, 5.58 and 5.59 respectively results in the following
set of non-inertial boundary layer equations:

∂û
∂t

+ û
∂û
∂x̂

+ v̂
∂û
∂ ŷ

+ ŵ
∂û
∂ẑ

=−∂ψ̂

∂x̂
+ν(

∂2û
∂ ŷ2 )−2ŵΩ+ x̂Ω2

0=−∂ψ̂

∂ ŷ
∂ŵ
∂t

+ û
∂ŵ
∂x̂

+ v̂
∂ŵ
∂ ŷ

+ ŵ
∂ŵ
∂ẑ

=−∂ψ̂

∂ẑ
+ν(

∂2ŵ
∂ ŷ2 )+2ûΩ+ ẑΩ2

(5.61)

This results in the same equations as in the literature for a rotating blade as described by Bogdanova
[82] and Dwyer [83]. The equations derived in this section, provides results that are consistent with the
literature (Bogdanova [82], Dwyer [83]).
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5.1. NON-INERTIAL BOUNDARY LAYER EQUATIONS FOR A FLAT PLATE - CARTESIAN
FORMULATION

5.1.5 Non-Inertial Boundary Layer Equations for Variable Rotation

The non-inertial equation for incompressible flow in variable rotation conditions was determined in
Chapter 3, Equation 3.157:

∂û
∂t

+ (û · ∇̂)û=−∇̂ψ̂+ν∇̂2û+2û∧Ω︸ ︷︷ ︸
Coriolis

− x̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+ x̂∧Ω̇︸ ︷︷ ︸
Euler

(5.62)

The component form of the momentum equations were developed in Equations 5.23, 5.27 and 5.31.
Component forms of the fictitious forces were determined in Equation 4.49. Using the equations men-
tioned, the Cartesian component form for incompressible flow in variable rotation is expressed as:
x̂-momentum

∂û
∂t

+ û
∂û
∂x̂

+ v̂
∂û
∂ ŷ

+ ŵ
∂û
∂ẑ

=−∂ψ̂

∂x̂
+ ν̂

∂2û
∂ ŷ2 +2v̂ω3 −2ŵω2

+ x̂(ω3
2 +ω2

2)− ŷω1ω2 − ẑω1ω3 + ŷω̇3 − ẑω̇2

(5.63)

ŷ-momentum

0=−∂ψ̂

∂ ŷ
+2ŵω1 −2ûω3 + ŷ(ω3

2 +ω1
2)− x̂ω1ω2 − ẑω2ω3 + ẑω̇1 − x̂ω̇3 (5.64)

ẑ-momentum
∂ŵ
∂t

+ û
∂ŵ
∂x̂

+ v̂
∂ŵ
∂ ŷ

+ ŵ
∂ŵ
∂ẑ

=−∂ψ̂

∂ẑ
+ ν̂

∂2ŵ
∂ ŷ2 +2ûω2 −2v̂ω1

+ ẑ(ω2
2 +ω1

2)− x̂ω1ω3 − ŷω2ω3 + x̂ω̇2 − ŷω̇1
(5.65)

The non-inertial equation for compressible flow in variable rotation conditions was determined inChap-
ter 3, Equation 3.169:

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂ p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î
]+2ρû∧Ω︸ ︷︷ ︸

Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+ρx̂∧Ω̇︸ ︷︷ ︸
Euler

(5.66)

Using the expression above, along with Equations 5.39, 5.45, 5.31 and the compressible stress terms
determined in Section 5.1.3.4, lead to:
x̂-momentum

∂ρ̂û
∂t

+ û
∂ρ̂û
∂x̂

+ v̂
∂ρ̂û
∂ ŷ

+ ŵ
∂ρ̂û
∂ẑ

=−∂p̂
∂x̂

+ ∂

∂ ŷ
µ̂
∂û
∂ ŷ

+2ρ̂v̂ω3 −2ρ̂ŵω2 + ρ̂ x̂(ω3
2 +ω2

2)

− ρ̂ ŷω1ω2 − ρ̂ ẑω1ω3 + ρ̂ ŷω̇3 − ρ̂ ẑω̇2

(5.67)

ŷ-momentum

0=−∂ p̂
∂ ŷ

+2ρ̂ŵω1 −2ρ̂ûω3 + ρ̂ ŷ(ω3
2 +ω1

2)− ρ̂ x̂ω1ω2 − ρ̂ ẑω2ω3 + ρ̂ ẑω̇1 − ρ̂ x̂ω̇3 (5.68)

ẑ-momentum
∂ρ̂ŵ
∂t

+ û
∂ρ̂ŵ
∂x̂

+ v̂
∂ρ̂ŵ
∂ ŷ

+ ŵ
∂ρ̂ŵ
∂ẑ

=−∂ p̂
∂ẑ

+ ∂

∂ ŷ
µ̂
∂ŵ
∂ ŷ

+2ρ̂ûω2 −2ρ̂v̂ω1 + ρ̂ ẑ(ω2
2 +ω1

2)

− ρ̂ x̂ω1ω3 − ρ̂ ŷω2ω3 + ρ̂ x̂ω̇2 − ρ̂ ŷω̇1

(5.69)
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CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

5.1.6 Non-Inertial Boundary Layer Equations for Arbitrary Acceleration

The non-inertial equation for incompressible flow in full arbitrary acceleration conditions was deter-
mined in Chapter 3, Equation 3.239:

∂û
∂t

+ (û · ∇̂)û=−∇̂ψ̂+ν∇̂2û+2û∧Ω︸ ︷︷ ︸
Coriolis

− x̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+ x̂∧Ω̇︸ ︷︷ ︸
Euler

+ ˆ̇x∧Ω

︸ ︷︷ ︸
Unsteady motion

+2V(t)∧Ω︸ ︷︷ ︸
Magnus

− ∂

∂t
(V(t))︸ ︷︷ ︸

Translation
(5.70)

This formulation, along with Equations 5.63, 5.64, 5.65, and 4.49, result in the following boundary
layer expressions:
x̂-momentum

∂û
∂t

+ û
∂û
∂x̂

+ v̂
∂û
∂ ŷ

+ ŵ
∂û
∂ẑ

=−∂ψ̂

∂x̂
+ ν̂

∂2û
∂ ŷ2 +2v̂ω3 −2ŵω2 + x̂(ω3

2 +ω2
2)− ŷω1ω2 − ẑω1ω3

+ ŷω̇3 − ẑω̇2 + ˆ̇yω3 − ˆ̇zω2 +2Vyω3 −2Vzω2 − ∂Vx

∂t

(5.71)

ŷ-momentum

0=−∂ψ̂

∂ ŷ
+2ŵω1 −2ûω3 + ŷ(ω3

2 +ω1
2)− x̂ω1ω2 − ẑω2ω3 + ẑω̇1 − x̂ω̇3 + ˆ̇zω1 − ˆ̇xω3

+2Vzω1 −2Vxω3 −
∂Vy

∂t

(5.72)

ẑ-momentum
∂ŵ
∂t

+ û
∂ŵ
∂x̂

+ v̂
∂ŵ
∂ ŷ

+ ŵ
∂ŵ
∂ẑ

=−∂ψ̂

∂ẑ
+ ν̂

∂2ŵ
∂ ŷ2 +2ûω2 −2v̂ω1 + ẑ(ω2

2 +ω1
2)− x̂ω1ω3 − ŷω2ω3

+ x̂ω̇2 − ŷω̇1 + ˆ̇xω2 − ˆ̇yω1 +2Vxω2 −2Vyω1 − ∂Vz

∂t
(5.73)

The non-inertial equation for compressible flow in full arbitrary acceleration conditions was determined
in Chapter 3, Equation 3.227:

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î]

− ∂

∂t
(ρV(t))︸ ︷︷ ︸

Translation

+ρ ˆ̇x∧Ω+ρx̂∧Ω̇︸ ︷︷ ︸
Euler︸ ︷︷ ︸

Unsteady motion

+2ρû∧Ω︸ ︷︷ ︸
Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+2ρV(t)∧Ω︸ ︷︷ ︸
Magnus

(5.74)

Using this and Equations 5.71, 5.72, 5.73, the following boundary layer expressions is obtained for
arbitrary motion:
x̂-momentum

∂ρ̂û
∂t

+ û
∂ρ̂û
∂x̂

+ v̂
∂ρ̂û
∂ ŷ

+ ŵ
∂ρ̂û
∂ẑ

=−∂ p̂
∂x̂

+ ∂

∂ ŷ
µ̂
∂û
∂ ŷ

+2ρ̂v̂ω3 −2ρ̂ŵω2 + ρ̂ x̂(ω3
2 +ω2

2)

− ρ̂ ŷω1ω2 − ρ̂ ẑω1ω3 + ρ̂ ŷ ˆ̇ω3 − ρ̂ ẑ ˆ̇ω2 + ρ̂ ˆ̇yω3 − ρ̂ ˆ̇zω2

+2ρ̂Vyω3 −2ρ̂Vzω2 − ∂ρ̂Vx

∂t

(5.75)
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5.1. NON-INERTIAL BOUNDARY LAYER EQUATIONS FOR A FLAT PLATE - CARTESIAN
FORMULATION

ŷ-momentum

0=−∂p̂
∂ ŷ

+2ρ̂ŵω1 −2ρ̂ûω3 + ρ̂ ŷ(ω3
2 +ω1

2)− ρ̂ x̂ω1ω2 − ρ̂ ẑω2ω3 + ρ̂ ẑ ˆ̇ω1 − ρ̂ x̂ ˆ̇ω3 + ρ̂ ˆ̇zω1 − ρ̂ ˆ̇xω3

+2ρ̂Vzω1 −2ρ̂Vxω3 −
∂ρ̂Vy

∂t
(5.76)

ẑ-momentum

∂ρ̂ŵ
∂t

+ û
∂ρ̂ŵ
∂x̂

+ v̂
∂ρ̂ŵ
∂ ŷ

+ ŵ
∂ρ̂ŵ
∂ẑ

=−∂p̂
∂ẑ

+ ∂

∂ ŷ

[
µ̂
∂ŵ
∂ ŷ

]
+2ρ̂ûω2 −2ρ̂v̂ω1 + ρ̂ ẑ(ω2

2 +ω1
2)

− ρ̂ x̂ω1ω3 − ρ̂ ŷω2ω3 + ρ̂ x̂ ˆ̇ωy − ρ̂ ŷ ˆ̇ωx + ρ̂ ˆ̇xωy − ρ̂ ˆ̇yωx

+2ρ̂Vxω2 −2ρ̂Vyω1 − ∂ρ̂Vz

∂t

(5.77)
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CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

5.2 Non-Inertial Boundary Layer Equations for a Flat Plate -
Cylindrical Formulation

In some cases for aero-ballistic and aeronautical application, especially when doing asymptotic expan-
sions and similar analytical methods, it is more convenient to make use of a curvilinear formulation for
the boundary layer equations. The geometric features of aerodynamic bodies, such as rotating disks and
cones, is more efficiently described in a cylindrical system. Analytical solutions for the flow features,
specifically of a rotating disk, are available from the literature in cylindrical coordinates (Schlichting
[42]).

Consider the same plate as shown in Figure 5.7, but with the x̂- and ẑ-axis written in terms of the r̂-
and θ̂- axis cylindrical coordinates ( Figure 5.8). The ŷ-axis remains common between the two frames.

Figure 5.8: Flat Plate in Cylindrical Co-ordinates

The cylindrical formulations of the non-inertial Navier-Stokes equations were determined in Chap-
ter 4 and are used here. The same method of comparative orders that was used in Section 5.1 are used
to obtain the boundary layer equations in a cylindrical co-ordinate system.

5.2.1 Non-Dimensional Analysis

The non-dimensional parameters used in this analysis are indicated below. R is the characteristic dis-
tance where, at a characteristic angle of β, the boundary layer height in the ŷ-direction is δ. This is
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5.2. NON-INERTIAL BOUNDARY LAYER EQUATIONS FOR A FLAT PLATE - CYLINDRICAL
FORMULATION

similar to the non-dimensional parameters of Section 5.1.1.

r⋆ = r̂
R

y⋆ = ŷ
δ

θ⋆ = θ̂

β
, β ∈ ]0, 2π]

(5.78)

The normalized velocity components are a function of the characteristic velocity in the free stream
and in the case of the velocity in the ŷ-direction, R and δ.

u⋆
r = ûr

U∞

u⋆
y = ûy

U∞
R
δ

u⋆
θ = ûθ

U∞

(5.79)

The remainder of the parameters are normalized in a similar manner as in Section 5.1.1:

t⋆ = t
U∞
R

ωi
⋆ =ωi t

ψ⋆ = ψ

U2∞
ν⋆ = ν

ν∞

(5.80)

5.2.2 Continuity Equation for Boundary Layer Flows

The continuity equation in the cylindrical form was derived in Equation 4.22:

∂ûr

∂r̂
+ ûr

r̂
+ 1

r̂
∂ûθ

∂θ̂
+ ∂ûy

∂ ŷ
= 0 (5.81)

The non-dimensional form of this equation is obtained by substituting the parameters from Section
5.2.1 into the equation:

∂(u⋆
r U∞)

∂(r⋆R)
+ u⋆

r U∞
r⋆R

+ 1
r⋆R

∂(u⋆
θ

U∞)

∂(θ⋆β)
+
∂(u⋆

y
U∞δ

R )

∂(y⋆δ)
= 0 (5.82)

The equation above it then multiplied by,

R
U∞

(5.83)
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CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

This results in the non-dimensional form of the continuity equation where the order of magnitude,
shown in the square brackets, can be used to group the terms that are of comparable order:

[1]
∂u⋆

r
∂r⋆

+ [1]
u⋆

r
r⋆

+ [1]
1
β︸ ︷︷ ︸

]0, 2π]

1
r⋆

∂u⋆
θ

∂θ⋆
+ [1]

∂u⋆
y

∂y⋆
= 0 (5.84)

The parameter β is of finite value since β ∈ ]0, 2π]. The order of the term 1
β
therefore approximates

1 and can not be neglected from the equation. The boundary layer equation for continuity there remains:

∂ûr

∂r̂
+ ûr

r̂
+ 1

r̂
∂ûθ

∂θ̂
+ ∂ûy

∂ ŷ
= 0 (5.85)

5.2.3 Conservation of Momentum Equation for Boundary Layer Flows

The tensor form of non-inertial conservation of momentum equation is derived in Equation 3.55.
∂û
∂t

+ (û · ∇̂)û=−∇̂ψ̂+ν∇̂2û+2û∧Ω︸ ︷︷ ︸
Coriolis

− x̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

(5.86)

The Cylindrical form of the equations are used here to derive the boundary layer equations.

5.2.3.1 First Principle Direction Equation

The component form of the non-inertial momentum equation in the first principle direction (in this case
taken as the r̂-direction) was derived in Equation 4.55 for a coordinates system with directions (r̂, θ̂, ẑ).
This formulation is used here for a system (r̂, ŷ, θ̂) to obtain the equation:

∂ûr

∂t
+ ûr

∂ûr

∂r̂
+ ûθ

r̂
∂ûr

∂θ̂
− û2

θ

r̂
+ ûy

∂ûr

∂ ŷ
=−∂ψ̂

∂r̂

+ ν̂
[∂2ûr

∂r̂2 + 1
r̂
∂ûr

∂r̂
+ 1

r̂2
∂2ûr

∂θ̂2
− 2

r̂2
∂ûθ

∂θ̂
− ûr

r̂2 + ∂2ûr

∂ ŷ2

]
−2ûθωy +2ûyωθ︸ ︷︷ ︸

Coriolis

− ŷωrωy + r̂ω2
y + r̂ω2

θ︸ ︷︷ ︸
Centrifugal

(5.87)

Substitution of the non-dimensional parameters, as defined in Section 5.2.1, into the equation, result
in the non-dimensional form:[U2∞

R

]∂u⋆
r

∂t⋆
+

[U2∞
R

]
u⋆

r
∂u⋆

r
∂r⋆

+
[U2∞

Rβ

]u⋆
θ

r⋆
∂u⋆

r
∂θ⋆

−
[U2∞

R

]u⋆
θ

2

r⋆
+

[U2∞
R

]
u⋆

y
∂u⋆

r
∂y⋆

=

−
[U2∞

R

]∂ψ⋆

∂r⋆
+

[U∞
R2

]
ν⋆ν∞

∂2u⋆
r

∂r⋆2 +
[U∞

R2

]
ν⋆ν∞

1
r⋆

∂u⋆
r

∂r⋆

+
[ U∞

R2β2

]
ν⋆ν∞

1

r⋆2
∂2u⋆

r

∂θ⋆2 −
[ U∞

R2β

]
ν⋆ν∞

2

r⋆2

∂u⋆
θ

∂θ⋆
−

[U∞
R2

]
ν⋆ν∞

u⋆
r

r⋆2

+
[U∞
δ2

]
ν⋆ν∞

∂2u⋆
r

∂y⋆2 −
[U∞

t

]
2u⋆

θω
⋆
y +

[U∞δ

Rt

]
2u⋆

yω
⋆
θ −

[ δ

t2

]
y⋆ω⋆

r ω
⋆
y

+
[ R

t2

]
r⋆ω⋆

y
2 +

[ R
t2

]
r⋆ω⋆

θ
2

(5.88)
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5.2. NON-INERTIAL BOUNDARY LAYER EQUATIONS FOR A FLAT PLATE - CYLINDRICAL
FORMULATION

Multiplying the equation above with,
R

U2∞
(5.89)

results in a non-dimensional form where the order of magnitude of the terms can be evaluated:

∂u⋆
r

∂t⋆
+u⋆

r
∂u⋆

r
∂r⋆

+
[ 1
β

]u⋆
θ

r⋆
∂u⋆

r
∂θ⋆

− u⋆
θ

2

r⋆
+u⋆

y
∂u⋆

r
∂y⋆

=−∂ψ⋆

∂r⋆
+

[ 1
U∞R

]
ν⋆ν∞

∂2u⋆
r

∂r⋆2

+
[ 1
U∞R

]
ν⋆ν∞

1
r⋆

∂u⋆
r

∂r⋆
+

[ 1
U∞Rβ2

]
ν⋆ν∞

1

r⋆2
∂2u⋆

r

∂θ⋆2 −
[ 1
U∞Rβ

]
ν⋆ν∞

2

r⋆2

∂u⋆
θ

∂θ⋆

−
[ 1
U∞R

]
ν⋆ν∞

u⋆
r

r⋆2 +
[ R
U∞δ2

]
ν⋆ν∞

∂2u⋆
r

∂y⋆2 −
[ R
U∞t

]
2u⋆

θω
⋆
y +

[ δ

U∞t

]
2u⋆

yω
⋆
θ

−
[ δR
U2∞t2

]
y⋆ω⋆

r ω
⋆
y +

[ R2

U2∞t2

]
r⋆ω⋆

y
2 +

[ R2

U2∞t2

]
r⋆ω⋆

θ
2

(5.90)

As was done previously, in Section 5.1 for the purposes of simplification, the assumption is made
that the boundary layer thickness approaches a very small number (ε2) while the characteristic length
approaches a very large number (∞):

ε<< 1

δ→ ε2

R →∞
(5.91)

In order to keep the solution as general as possible, it is assumed that velocity, time and characteristic
angle has positive values:

U ∈ [ ε, ∞ [

t ∈ [ ε, ∞ [

β ∈ ]0, 2π]

(5.92)

From the above the following simplifications are made:

1
U∞R

→ ε

R
δ2 →∞

δR →∞

(5.93)

The most general form of the r̂-momentum boundary layer equation becomes:

∂ûr

∂t
+ ûr

∂ûr

∂r̂
+ ûθ

r̂
∂ûr

∂θ̂
− û2

θ

r̂
+ ûy

∂ûr

∂ ŷ
=−∂ψ̂

∂r̂
+ ν̂

∂2ûr

∂ ŷ2 −2ûθωy +2ûyωθ

− ŷωrωy + r̂ω2
y + r̂ω2

θ

(5.94)

None of the fictitious terms could be eliminate and are having an effect in the boundary layer.
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CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

5.2.3.2 Second Principle Direction Equation

The component form of the conservation of momentum equation in the ŷ-direction is expressed as
follow (Equation 4.57):

∂ûy

∂t
+ ûr

∂ûy

∂r̂
+ ûθ

r̂
∂ûy

∂θ̂
+ ûy

∂ûy

∂ ŷ
=− ∂ψ̂

∂ ŷ
+ν

[∂2ûy

∂r̂2 + 1
r̂
∂ûy

∂r̂
+ 1

r̂2

∂2ûy

∂θ̂2
+ ∂2ûy

∂ ŷ2

]
−2ûrωθ+2ûθωr︸ ︷︷ ︸

Coriolis

− r̂ωrωy + ŷω2
r + ŷω2

θ︸ ︷︷ ︸
Centrifugal

(5.95)

Substitution of the equations as shown in Section 5.2.1 result in the expression:

[U2∞δ

R2

]∂u⋆
y

∂t⋆
+

[U2∞δ

R2

]
u⋆

r
∂u⋆

y

∂r⋆
+

[U2∞
R2

]u⋆
θ

r⋆
∂u⋆

y

∂θ⋆
+

[U2∞δ

R2

]
u⋆

y
∂u⋆

y

∂y⋆
=−

[U2∞
δ

]∂ψ⋆

∂y⋆

+
[U∞δ

R3

]
ν⋆ν∞

∂2u⋆
y

∂r⋆2 +
[U∞δ

R3

]
ν⋆ν∞

1
r⋆

∂u⋆
y

∂r⋆
+

[ U∞δ

β2R3

]
ν⋆ν∞

1

r⋆2

∂2u⋆
y

∂θ⋆2

+
[U∞
δR

]
ν⋆ν∞

∂2u⋆
y

∂y⋆2 −
[U∞

t

]
2u⋆

r ω
⋆
θ +

[U∞
t

]
2u⋆

θω
⋆
r −

[ R
t2

]
r⋆ω⋆

r ω
⋆
y

+
[ δ

t2

]
y⋆ω⋆

r
2 +

[ δ

t2

]
y⋆ω⋆

θ
2

(5.96)

Multiply the equation above with,

δ

U2∞
(5.97)

results in the non-dimensional form of the equation:

[ δ2

R2

]∂u⋆
y

∂t⋆
+

[ δ2

R2

]
u⋆

r
∂u⋆

y

∂r⋆
+

[ δ

R2

]u⋆
θ

r⋆
∂u⋆

y

∂θ⋆
+

[ δ2

R2

]
u⋆

y
∂u⋆

y

∂y⋆
=−∂ψ⋆

∂y⋆

+
[ δ2

U∞R3

]
ν⋆ν∞

∂2u⋆
y

∂r⋆2 +
[ δ2

U∞R3

]
ν⋆ν∞

1
r⋆

∂u⋆
y

∂r⋆

+
[ δ2

U∞β2R3

]
ν⋆ν∞

1

r⋆2

∂2u⋆
y

∂θ⋆2 +
[ 1
U∞R

]
ν⋆ν∞

∂2u⋆
y

∂y⋆2 −
[ δ

U∞t

]
2u⋆

r ω
⋆
θ

+
[ δ

U∞t

]
2u⋆

θω
⋆
r −

[ Rδ

U2∞t2

]
r⋆ω⋆

r ω
⋆
y +

[ δ2

U2∞t2

]
y⋆ω⋆

r
2 +

[ δ2

U2∞t2

]
y⋆ω⋆

θ
2

(5.98)

The simplification assumptions that were made in Section 5.2.1 are used here to arrive at the bound-
ary layer equation in the ŷ-direction for cylindrical coordinates:

0=−∂ψ̂

∂ ŷ
−2ûrωθ+2ûθωr − r̂ωrωy + ŷω2

r + ŷω2
θ (5.99)
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5.2. NON-INERTIAL BOUNDARY LAYER EQUATIONS FOR A FLAT PLATE - CYLINDRICAL
FORMULATION

5.2.3.3 Third Principle Direction Equation

The component form of the momentum equation in the θ̂- direction is expressed as shown in Equation
4.56:

∂ûθ

∂t
+ ûr

∂ûθ

∂r̂
+ ûθ

r̂
∂ûθ

∂θ̂
+ ûθ ûr

r̂
+ ûy

∂ûθ

∂ ŷ
=−1

r̂
∂ψ̂

∂θ̂

+ ν̂
[∂2ûθ

∂r̂2 + 1
r̂
∂ûθ

∂r̂
+ 1

r̂2
∂2ûθ

∂θ̂2
− 2

r̂2
∂ûr

∂θ̂
− ûθ

r̂2 + ∂2ûθ

∂ ŷ2

]
−2ûyωr +2ûrωy︸ ︷︷ ︸

Coriolis

− r̂ωrωθ− ŷωθωy︸ ︷︷ ︸
Centrifugal

(5.100)

Substituting the non-dimensional parameters of Section 5.2.1 into the equation above yields:[U2∞
R

]∂u⋆
θ

∂t⋆
+

[U2∞
R

]
u⋆

r
∂u⋆

θ

∂r⋆
+

[U2∞
βR

]u⋆
θ

r⋆
∂u⋆

θ

∂θ⋆
+

[U2∞
R

]u⋆
θ

u⋆
r

r⋆
+

[U2∞
R

]
u⋆

y
∂u⋆

θ

∂y⋆
=

−
[U2∞
βR

] 1
r⋆

∂ψ⋆

∂θ⋆
+

[U∞
R2

]
ν⋆ν∞

∂2u⋆
θ

∂r⋆2 +
[U∞

R2

]
ν⋆ν∞

1
r⋆

∂u⋆
θ

∂r⋆

+
[ U∞
β2R2

]
ν⋆ν∞

1

r⋆2

∂2u⋆
θ

∂θ⋆2 −
[ U∞
β2R2

]
ν⋆ν∞

2

r⋆2
∂u⋆

r
∂θ⋆

−
[U∞

R2

]
ν⋆ν∞

u⋆
θ

r⋆2

+
[U∞
δ2

]
ν⋆ν∞

∂2u⋆
θ

∂y⋆2 −
[U∞δ

Rt

]
2u⋆

yω
⋆
r +

[U∞
t

]
2u⋆

r ω
⋆
y

−
[ R

t2

]
r⋆ω⋆

r ω
⋆
θ −

[ δ

t2

]
y⋆ω⋆

θω
⋆
y

(5.101)

Multiplying the non-dimensional expression above with,
βR
U2∞

(5.102)

Results in the non-dimensional form of the θ̂-momentum equation.

β
∂u⋆

θ

∂t⋆
+βu⋆

r
∂u⋆

θ

∂r⋆
+ u⋆

θ

r⋆
∂u⋆

θ

∂θ⋆
+β

u⋆
θ

u⋆
r

r⋆
+βu⋆

y
∂u⋆

θ

∂y⋆
=− 1

r⋆
∂ψ⋆

∂θ⋆

+
[ β

U∞R

]
ν⋆ν∞

∂2u⋆
θ

∂r⋆2 +
[ β

U∞R

]
ν⋆ν∞

1
r⋆

∂u⋆
θ

∂r⋆
+

[ 1
U∞Rβ

]
ν⋆ν∞

1

r⋆2

∂2u⋆
θ

∂θ⋆2

−
[ 1
U∞Rβ

]
ν⋆ν∞

2

r⋆2
∂u⋆

r
∂θ⋆

−
[ β

U∞R

]
ν⋆ν∞

u⋆
θ

r⋆2 +
[ βR
U∞δ2

]
ν⋆ν∞

∂2u⋆
θ

∂y⋆2

−
[ βδ

U∞t

]
2u⋆

yω
⋆
r +

[ βR
U∞t

]
2u⋆

r ω
⋆
y −

[ βR2

U2∞t2

]
r⋆ω⋆

r ω
⋆
θ −

[ βδR
U2∞t2

]
y⋆ω⋆

θω
⋆
y

(5.103)

The same simplifications that were done for the r̂-momentum equation above are employed here to
obtain the final form of θ̂-momentum boundary layer equation:

∂ûθ

∂t
+ ûr

∂ûθ

∂r̂
+ ûθ

r̂
∂ûθ

∂θ̂
+ ûθ ûr

r̂
+ ûy

∂ûθ

∂ ŷ
=−1

r̂
∂ψ̂

∂θ̂
+ ν̂

∂2ûθ

∂ ŷ2 −2ûyωr +2ûrωy

− r̂ωrωθ− ŷωθωy

(5.104)

Again, as in the case of the r̂-momentum, none of the fictitious terms could be eliminated from the
boundary layer equation.
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CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

5.2.3.4 Compressibility Effects on the Boundary Layer Equations

The stress tensor in Cylindrical coordinates is described by Equation 4.43:

τ̂(r̂, θ̂, ŷ)=


2µ̂∂ûr

∂r̂ + λ̂∇̂ · û µ̂
(1

r̂
∂ûr
∂θ̂

− ûθ

r̂ + ∂ûθ

∂r̂
)

µ̂
(∂ûr
∂ ŷ + ∂ûy

∂r̂
)

µ̂
(1

r̂
∂ûr
∂θ̂

− ûθ

r̂ + ∂ûθ

∂r̂
)

2µ̂
(1

r̂
∂ûθ

∂θ̂
+ ûr

r̂
)+ λ̂∇̂ · û µ̂

(1
r̂
∂ûy

∂θ̂
+ ∂ûθ

∂ ŷ
)

µ̂
(∂ûr
∂ ŷ + ∂ûy

∂r̂
)

µ̂
(1

r̂
∂ûy

∂θ̂
+ ∂ûθ

∂ ŷ
)

2µ̂∂ûy
∂ ŷ + λ̂∇̂ · û

 (5.105)

Here it is determined which of the diffusion terms, that are relevant in the bulk flow, are present in
the boundary layer. This is done using the order of magnitude analysis that was employed to determined
the incompressible boundary layer equations.

The components that pertain to the r̂-momentum equation is:

∂

∂r̂

[
2µ̂

∂ûr

∂r̂
+ λ̂

(∂ûr

∂r̂
+ ûr

r̂
+ 1

r̂
∂ûθ

∂θ̂
+ ∂ûy

∂ ŷ

)]
+ ∂

∂θ̂

[
µ̂
(1

r̂
∂ûr

∂θ̂
− ûθ

r̂
+ ∂ûθ

∂r̂
)]+ ∂

∂ ŷ

[
µ̂
(∂ûr

∂ ŷ
+ ∂ûy

∂r̂
)]
(5.106)

The non-dimensional parameters of Section 5.2.1 are substituted in the terms above and multiplied
by Equation 5.89,

R
U2∞

(5.107)

to obtain the non-dimensional form of the terms:[ 1
U∞R

] ∂

∂r⋆
2µ

∂u⋆
r

∂r⋆
+

[ 1
U∞R

] ∂

∂r⋆
λ
(∂u⋆

r
∂r⋆

+ u⋆
r

r⋆
)
+

[ 1
U∞βR

] ∂

∂r⋆
λ

1
r⋆

∂u⋆
θ

∂θ⋆
+

[ 1
U∞R

] ∂

∂r⋆
λ
∂u⋆

y

∂y⋆

+
[ 1
U∞β2

] ∂

∂θ⋆
µ

1
r⋆

∂u⋆
r

∂θ⋆
−

[ 1
U∞β

] ∂

∂θ⋆
µ
(u⋆

θ

r⋆
+ ∂u⋆

θ

∂r⋆
)+[ R

U∞δ2

] ∂

∂y⋆
µ
∂u⋆

r
∂y⋆

+
[ 1
U∞R

] ∂

∂y⋆
µ
∂u⋆

y

∂r⋆

(5.108)

An order of magnitude analysis results in a number of the terms being neglected. The diffusive
terms in the compressible r̂-momentum equation are similar to the terms in the incompressible form
(Equation 5.94):

∂

∂ ŷ
µ̂
∂ûr

∂ ŷ
(5.109)

The compressible form of the boundary layer equation for the conservation of momentum in the
r̂-direction is similar to the incompressible form determined in Equation 5.94:

∂ρ̂ûr

∂t
+ ûr

∂ρ̂ûr

∂r̂
+ ûθ

r̂
∂ρ̂ûr

∂θ̂
− ρ̂û2

θ

r̂
+ ûy

∂ρ̂ûr

∂ ŷ
=−∂p̂

∂r̂
+ ∂

∂ ŷ
µ̂
∂ûr

∂ ŷ
−2ρ̂ûθωy +2ρ̂ûyωθ

− ρ̂ ŷωrωy + ρ̂ r̂ω2
y + ρ̂ r̂ω2

θ

(5.110)

The components that pertain to the ŷ-momentum equation is:

∂

∂r̂

[
µ̂
(∂ûr

∂ ŷ
+ ∂ûy

∂r̂
)]+ ∂

∂θ̂

[
µ̂
(1

r̂
∂ûy

∂θ̂
+ ∂ûθ

∂ ŷ
)]+ ∂

∂ ŷ

[
2µ̂

∂ûy

∂ ŷ
+ λ̂

(∂ûr

∂r̂
+ ûr

r̂
+ 1

r̂
∂ûθ

∂θ̂
+ ∂ûy

∂ ŷ

)]
(5.111)
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5.2. NON-INERTIAL BOUNDARY LAYER EQUATIONS FOR A FLAT PLATE - CYLINDRICAL
FORMULATION

The non-dimensional parameters of Section 5.2.1 is substituted in the terms above and multiplied
by Equation 5.97,

δ

U2∞
(5.112)

to obtain the non-dimensional form of the terms:[ 1
U∞R

] ∂

∂r⋆
µ
∂u⋆

r
∂y⋆

+
[ δ2

U∞R3

] ∂

∂r⋆
µ
∂u⋆

y

∂r⋆
+

[ δ2

U∞β2R2

] ∂

∂θ⋆
µ

1
r⋆

∂u⋆
y

∂θ⋆
+

[ 1
βU∞

] ∂

∂θ⋆
µ
∂u⋆

θ

∂y⋆

+
[ 1
U∞R

] ∂

∂y⋆
2µ

∂u⋆
y

∂y⋆
+

[ 1
U∞R

] ∂

∂y⋆
λ
(∂u⋆

r
∂r⋆

+ u⋆
r

r⋆
)
+

[ 1
RβU∞

] ∂

∂y⋆
λ

1
r⋆

∂u⋆
θ

∂θ⋆
+

[ 1
U∞R

] ∂

∂y⋆
λ
∂u⋆

y

∂y⋆

(5.113)

The diffusive terms in the compressible ŷ-momentum equation are similar to the terms in the incom-
pressible form; no diffusion terms are present. The compressible form of the boundary layer equation
for the conservation of momentum in the θ̂- direction is similar to the incompressible form determined
in Equation 5.99:

0=−∂ψ̂

∂ ŷ
−2ûrωθ+2ûθωr − r̂ωrωy + ŷω2

r + ŷω2
θ (5.114)

The components that pertain to the θ̂-momentum equation is:

∂

∂r̂

[
µ̂
(1

r̂
∂ûr

∂θ̂
− ûθ

r̂
+ ∂ûθ

∂r̂
)]+ ∂

∂θ̂

[
2µ̂

(1
r̂
∂ûθ

∂θ̂
+ ûr

r̂
)+ λ̂

(∂ûr

∂r̂
+ ûr

r̂
+ 1

r̂
∂ûθ

∂θ̂
+ ∂ûy

∂ ŷ

)]
+ ∂

∂ ŷ

[
µ̂
(1

r̂
∂ûy

∂θ̂
+ ∂ûθ

∂ ŷ
)]

(5.115)

The non-dimensional parameters of Section 5.2.1 are substituted in the terms above and multiplied
by Equation 5.102,

βR
U2∞

(5.116)

to obtain the non-dimensional form of the terms:[ 1
U∞R

] ∂

∂r⋆
µ

1
r⋆

∂u⋆
r

∂θ⋆
+

[ β

U∞R

] ∂

∂r⋆
[
µ
(− u⋆

θ

r⋆
+ ∂u⋆

θ

∂r⋆
)]+[ 1

βU∞

] ∂

∂θ⋆
2µ

1
r⋆

∂u⋆
θ

∂θ⋆
+

[ 1
U∞

] ∂

∂θ⋆
2µ

u⋆
r

r⋆

+
[ 1
U∞

] ∂

∂θ⋆
λ
(∂u⋆

r
∂r⋆

+ u⋆
r

r⋆
)
+

[ 1
βU∞

] ∂

∂θ⋆
λ

1
r⋆

∂u⋆
θ

∂θ⋆
+

[ 1
U∞

] ∂

∂θ⋆
λ
∂u⋆

y

∂y⋆
+

[ 1
U∞R

] ∂

∂y⋆
µ

1
r⋆

∂u⋆
y

∂θ⋆

+
[ βR
δ2U∞

] ∂

∂y⋆
µ
∂u⋆

θ

∂y⋆

(5.117)

An order of magnitude analysis results in a number of the terms being neglected. The diffusive
terms in the compressible θ̂-momentum equation are similar to the terms in the incompressible form
(Equation 5.104):

∂

∂ ŷ
µ̂
∂ûθ

∂ ŷ
(5.118)
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CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

The compressible form of the boundary layer equation for the conservation of momentum in the θ̂-
direction is similar to the incompressible form determined in Equation 5.104:

∂ûθ

∂t
+ ûr

∂ûθ

∂r̂
+ ûθ

r̂
∂ûθ

∂θ̂
+ ûθ ûr

r̂
+ ûy

∂ûθ

∂ ŷ
=−1

r̂
∂ψ̂

∂θ̂
+ ν̂

∂2ûθ

∂ ŷ2 −2ûyωr +2ûrωy

− r̂ωrωθ− ŷωθωr

(5.119)

5.2.4 Validation of Equations

The cylindrical form of theNavier-Stokes equations are expressed, as in the Cartesian case, in the inertial
or the non-inertial form. Expressing a set of equations, that was originally in the Cartesian system, in
cylindrical coordinates do not place it in the non-inertial frame. This misconception was noted in Anon
[84] as shown in Equation 5.120 where certain cylindrical terms (as marked in the equation) where
described as the Centrifugal and Coriolis forces respectively. Those terms are merely part of the material
derivative in the cylindrical system and bears no relevance to the fictitious forces. This is shown in the
sections below.

∂ur

∂t
+ur

∂ur

∂r
+ uθ

r
∂ur

∂θ
−

((((Centrifugal︷︸︸︷
u2
θ

r
+uy

∂ur

∂y
=−∂ψ

∂r

+ν
[∂2ur

∂r2 + 1
r
∂ur

∂r
+ 1

r2
∂2ur

∂θ2 − 2
r2

∂uθ

∂θ
− ur

r2 + ∂2ur

∂y2

]

∂uθ

∂t
+ur

∂uθ

∂r
+ uθ

r
∂uθ

∂θ
+
���Coriolis︷ ︸︸ ︷
uθur

r
+uy

∂uθ

∂y
=−1

r
∂ψ

∂θ

+ν
[∂2uθ

∂r2 + 1
r
∂uθ

∂r
+ 1

r2
∂2uθ

∂θ2 − 2
r2

∂ur

∂θ
− uθ

r2 + ∂2uθ

∂y2

]

(5.120)

Analytical solutions to classic rotating flow problems, such as the von Karman rotating disk, are
done in the Cylindrical system (Schlichting [42]). The vector form of the non-inertial Navier-Stokes
equations is independent from coordinates system. The differences in the system of equations (Cartesian
and Cylindrical), only becomes apparent when written in component form.

5.2.4.1 Conversion

The Cartesian positions are related to the Cylindrical positions as shown below where it is assumed that
the ŷ-axis remains common between the coordinates systems (Equation 4.15):

x̂ = r̂cosθ̂

ŷ= ŷ

ẑ = r̂sinθ̂

(5.121)
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5.2. NON-INERTIAL BOUNDARY LAYER EQUATIONS FOR A FLAT PLATE - CYLINDRICAL
FORMULATION

The velocity components are therefore related by Equation 4.16:

û = ûr cosθ̂− ûθsinθ̂

v̂ = ûy

ŵ = ûrsinθ̂+ ûθcosθ̂

(5.122)

The derivatives of one system are converted by means of the matrix:
∂ϕ̂
∂x̂
∂ϕ̂
∂ ŷ
∂ϕ̂
∂ẑv

=


cos θ̂ − sinθ̂

r̂ 0

0 0 1

sin θ̂ cosθ̂
r̂ 0




∂ϕ̂
∂r̂
∂ϕ̂

∂θ̂
∂ϕ̂
∂ ŷ

 (5.123)

The relations above are used to convert between the coordinates systems in the section below to
obtain the non-inertial boundary layer equations.

5.2.4.2 Continuity

The continuity equation for the boundary layer was derived in Section 5.1.2 and resulted in Equation
5.14:

∂û
∂x̂

+ ∂v̂
∂ ŷ

+ ∂ŵ
∂ẑ

= 0 (5.124)

Substitution with the equations as shown in the previous section lead to the following expressions:

(
cosθ̂

∂

∂r̂
− sinθ̂

r̂
∂

∂θ̂

)
(ûr cosθ̂− ûθsinθ̂)+ (

sinθ̂
∂

∂r̂
+ cosθ̂

r̂
∂

∂θ̂

)
(ûrsinθ̂+ ûθcosθ̂)

+∂ûy

∂ ŷ
= 0

∂ûr

∂r̂
(
cos2θ̂+ sin2θ̂

)+ ûr

r̂
(
cos2θ̂+ sin2θ̂

)+ 1
r̂
∂ûθ

∂θ̂

(
cos2θ̂+ sin2θ̂

)+ ∂ûy

∂ ŷ
= 0

(5.125)

Using,
cos2θ̂+ sin2θ̂ = 1 (5.126)

the final equation becomes:
∂ûr

∂r̂
+ ûr

r̂
+ 1

r̂
∂ûθ

∂θ̂
+ ∂ûy

∂ ŷ
= 0 (5.127)

This is the equation for the boundary layer in cylindrical coordinates. This is the same as Equation
5.85 derived in Section 5.2.2.

5.2.4.3 Momentum Equations

The non-inertial x̂-momentum equation, as derived in Section 5.1.3.1, Equation 5.23 is:

∂û
∂t

+ û
∂û
∂x̂

+ v̂
∂û
∂ ŷ

+ ŵ
∂û
∂ẑ

=−∂ψ̂

∂x̂
+ν(

∂2û
∂ ŷ2 )+2v̂ω3 −2ŵω2

+ x̂(ω3
2 +ω2

2)− ŷω1ω2 − ẑω1ω3

(5.128)
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CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

This is converted to the Cylindrical coordinates system piece by piece to result in the final equation.

The transient term, with substitution of the conversions indicated in Section 5.4.1 is expanded to
the following:

∂û
∂t

→ ∂

∂t
(ûr cosθ̂− ûθsinθ̂)

∂

∂t
(ûr cosθ̂− ûθsinθ̂)= ∂ûr

∂t
cosθ̂+ ∂cosθ̂

∂t
ûr − ∂ûθ

∂t
sinθ̂− ∂sinθ̂

∂t
ûθ

(5.129)

If it is assumed that θ̂→ εwhere ε→ 0, then cosθ̂→ 1 and sinθ̂→ 0. The equation above simplifies
to:

∂û
∂t

→ ∂ûr

∂t
(5.130)

The remainder of the terms is converted in a similar manner:
Advection terms:

û
∂û
∂x̂

→ ûr
∂ûr

∂r̂

v̂
∂û
∂ ŷ

→ ûy
∂ûr

∂ ŷ

ŵ
∂û
∂ẑ

→ ûθ

r̂
∂ûr

∂θ̂
− û2

θ

r̂

(5.131)

Pressure term:

∂ψ̂

∂x̂
→ ∂ψ̂

∂r̂
(5.132)

Diffusion term:

∂2û
∂ ŷ2 → ∂2ûr

∂ ŷ2
(5.133)

Fictitious terms:

Coriolis terms,

2v̂ω̂3 −2ŵω̂2 → [2ûy(ω̂rsinθ̂+ ω̂θcosθ̂)−2(ûrsinθ̂+uθ̂cosθ̂)ω̂z]

→ 2ûyωθ−2ûθωy

Centrifugal terms,

x̂(ω̂2
3 + ω̂2

2)− ŷω̂1ω̂2 − ẑω̂1ω̂3 →− ŷω̂rω̂y + r̂ω̂2
y + r̂ω̂2

θ

(5.134)

This conversion leads to the non-inertial form of the r̂-momentum, which is the same as the derived
Equation 5.94:

∂ûr

∂t
+ ûr

∂ûr

∂r̂
+ ûθ

r̂
∂ûr

∂θ̂
− û2

θ

r̂
+ ûy

∂ûr

∂ ŷ
=− ∂ψ̂

∂r̂
+ ν̂

∂2ûr

∂ ŷ2 −2ûθωy +2ûyωθ

− ŷωrωy + r̂ω2
y + r̂ω2

θ

(5.135)
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5.2. NON-INERTIAL BOUNDARY LAYER EQUATIONS FOR A FLAT PLATE - CYLINDRICAL
FORMULATION

In a similar manner the conversion of Equations 5.27 and 5.31 lead to a set of equations that are the
same as Equations 5.99 and 5.104 respectively.

0=−∂ψ̂

∂ ŷ
−2ûrω̂θ+2ûθω̂r − r̂ω̂rω̂y + ŷω̂2

r + ŷω̂2
θ

∂ûθ

∂t
+ ûr

∂ûθ

∂r̂
+ ûθ

r̂
∂ûθ

∂θ̂
+ ûθ ûr

r̂
+ ûy

∂ûθ

∂ ŷ
=−1

r̂
∂ψ̂

∂θ̂
+ ν̂

∂2ûθ

∂ ŷ2 −2ûyω̂r

+2ûrω̂y − r̂ω̂rω̂θ− ŷω̂θω̂r

(5.136)

Implementing the same conditions as in Equation 5.60 where rotation about the ŷ-axis was consid-
ered,

ω̂r = 0

ω̂y =Ω

ω̂θ = 0
(5.137)

results in the following set of non-inertial boundary layer equations:

∂ûr

∂t
+ ûr

∂ûr

∂r̂
+ ûθ

r̂
∂ûr

∂θ̂
− û2

θ

r̂
+ ûy

∂ûr

∂ ŷ
=− ∂ψ̂

∂r̂
+ ν̂

∂2ûr

∂ ŷ2 −2ûθΩ+ r̂Ω2

0=− ∂ψ̂

∂ ŷ
∂ûθ

∂t
+ ûr

∂ûθ

∂r̂
+ ûθ

r̂
∂ûθ

∂θ̂
+ ûθ ûr

r̂
+ ûy

∂ûθ

∂ ŷ
=− 1

r̂
∂ψ̂

∂θ̂
+ ν̂

∂2ûθ

∂ ŷ2 +2ûrΩ

(5.138)

For exactly the same conditions, Dumitrescu et al. [85] made use of a set of boundary layer equations
where both the Coriolis and Centrifugal terms where present in the r̂- and θ̂-momentum equations
respectively. The work of Martinez et al. [86] on the other hand has the Centrifugal force only present
in the r̂-direction and the Coriolis force only in the θ̂- direction. The derivation above indicates that in
pure rotation about the ŷ-axis, the Coriolis force is present in both the r̂- and θ̂- directions. It was shown
in the mathematical development that the centrifugal term should only be present in the r̂-momentum
equation. This is depicted in Figure 5.9 using a satellite orbiting earth.

It is assumed that the satellite is in pure rotation about the earth. The satellite is also travelling at
a constant rotational speed. The centrifugal force points in the positive r̂-direction away from earth's
centre. There are two components for the Coriolis force. The first one is the component responsible for
the Eötvös effect pointing in the negative r̂-direction. The second one is the most general component.
It is similar to the Coriolis force responsible for deflections on the surface of the earth. This component
points in the positive θ̂-direction.
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CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

Figure 5.9: Visualization of Physical Meaning of Fictitious Forces

5.2.5 Non-Inertial Boundary Layer Equations for Variable Rotation

The non-inertial equation for incompressible flow in variable rotation conditions were determined in
Chapter 3, Equation 3.157:

∂û
∂t

+ (û · ∇̂)û=−∇̂ψ̂+ν∇̂2û+2û∧Ω︸ ︷︷ ︸
Coriolis

− x̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+ x̂∧Ω̇︸ ︷︷ ︸
Euler

(5.139)

The component form of the incompressible momentum equations were determined in Equations
5.94, 5.99 and 5.104. Additional non-inertial components related to this case are obtained from Equa-
tions 4.60, 4.62 and 4.61. Combining the relations previously obtained, lead to the component form of
the incompressible momentum equations for variable rotation:
r̂-momentum

∂ûr

∂t
+ ûr

∂ûr

∂r̂
+ ûθ

r̂
∂ûr

∂θ̂
− û2

θ

r̂
+ ûy

∂ûr

∂ ŷ
=−∂ψ̂

∂r̂
+ ν̂

∂2ûr

∂ ŷ2 −2ûθωy +2ûyωθ

− ŷωrωy + r̂ω2
y + r̂ω2

θ+ ŷω̇θ

(5.140)

ŷ-momentum

0=−∂ψ̂

∂ ŷ
−2ûrωθ+2ûθωr − r̂ωrωy + ŷω2

r + ŷω2
θ− r̂ω̇θ (5.141)

θ̂-momentum

∂ûθ

∂t
+ ûr

∂ûθ

∂r̂
+ ûθ

r̂
∂ûθ

∂θ̂
+ ûθ ûr

r̂
+ ûy

∂ûθ

∂ ŷ
=−1

r̂
∂ψ̂

∂θ̂
+ ν̂

∂2ûθ

∂ ŷ2 −2ûyωr +2ûrωy

− r̂ωrωθ− ŷωθωy − ŷω̇r + r̂ω̇y

(5.142)
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5.2. NON-INERTIAL BOUNDARY LAYER EQUATIONS FOR A FLAT PLATE - CYLINDRICAL
FORMULATION

The non-inertial equation for compressible flow in variable rotation was determined in Chapter 3,
Equation 3.169:

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î
]+2ρû∧Ω︸ ︷︷ ︸

Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+ρx̂∧Ω̇︸ ︷︷ ︸
Euler

(5.143)

Using the component forms developed in Equations 5.110, 5.114 and 5.119, and the non-inertial
terms of Equations 4.77, 4.78 and 4.79 lead to the compressible component formulations for variable,
pure rotation:
r̂-momentum

∂ρ̂ûr

∂t
+ ûr

∂ρ̂ûr

∂r̂
+ ûθ

r̂
∂ρ̂ûr

∂θ̂
− ρ̂û2

θ

r̂
+ ûy

∂ρ̂ûr

∂ ŷ
=−∂p̂

∂r̂
+ ∂

∂ ŷ
µ̂
∂ûr

∂ ŷ
−2ρ̂ûθωy +2ρ̂ûyωθ

− ρ̂ ŷωrωy + ρ̂ r̂ω2
y + ρ̂ r̂ω2

θ+ ρ̂ ŷω̇θ

(5.144)

ŷ-momentum

0=−∂ p̂
∂ ŷ

−2ρ̂ûrωθ+2ρ̂ûθωr − ρ̂ r̂ωrωy + ρ̂ ŷω2
r + ρ̂ ŷω2

θ− ρ̂ r̂ω̇θ (5.145)

θ̂-momentum
∂ρ̂ûθ

∂t
+ ûr

∂ρ̂ûθ

∂r̂
+ ûθ

r̂
∂ρ̂ûθ

∂θ̂
+ ρ̂ûθ ûr

r̂
+ ûy

∂ρ̂ûθ

∂ ŷ
=−1

r̂
∂p̂
∂θ̂

+ ∂

∂ ŷ
µ̂
∂ûθ

∂ ŷ
−2ρ̂ûyωr +2ρ̂ûrωy

− ρ̂ r̂ωrωθ− ρ̂ ŷωθωy − ρ̂ ŷω̇r + ρ̂ r̂ω̇y

(5.146)

5.2.6 Non-Inertial Boundary Layer Equations for Arbitrary Acceleration

The non-inertial equation for incompressible flow in full arbitrary acceleration conditions was deter-
mined in Chapter 3, Equation 3.239,

∂û
∂t

+ (û · ∇̂)û=−∇̂ψ̂+ν∇̂2û− ∂

∂t
(V(t))︸ ︷︷ ︸

Translation

+ ˆ̇x∧Ω+ x̂∧Ω̇︸ ︷︷ ︸
Euler︸ ︷︷ ︸

Unsteady motion

+2û∧Ω︸ ︷︷ ︸
Coriolis

− x̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+2V(t)∧Ω︸ ︷︷ ︸
Magnus (5.147)

Using Equations 4.69, 4.70, 4.71, 5.140, 5.141 and 5.142 the incompressible component form for
arbitrary acceleration can be obtained:
r̂-momentum

∂ûr

∂t
+ ûr

∂ûr

∂r̂
+ ûθ

r̂
∂ûr

∂θ̂
− û2

θ

r̂
+ ûy

∂ûr

∂ ŷ
=−∂ψ̂

∂r̂
+ ν̂

∂2ûr

∂ ŷ2 −2ûθωy +2ûyωθ

− ŷωrωy + r̂ω2
y + r̂ω2

θ+ ŷω̇θ

− ûθωy + ûyωθ−2Vθωy +2Vyωθ− ∂Vr

∂t

(5.148)

ŷ-momentum

0=−∂ψ̂

∂ ŷ
−2ûrωθ+2ûθωr − r̂ωrωy + ŷω2

r

+ ŷω2
θ− r̂ω̇θ− ûrωθ+ ûθωr −2Vrωθ+2Vθωr − ∂Vz

∂t

(5.149)
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CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

θ̂-momentum

∂ûθ

∂t
+ ûr

∂ûθ

∂r̂
+ ûθ

r̂
∂ûθ

∂θ̂
+ ûθ ûr

r̂
+ ûy

∂ûθ

∂ ŷ
=−1

r̂
∂ψ̂

∂θ̂
+ ν̂

∂2ûθ

∂ ŷ2 −2ûyωr +2ûrωy

− r̂ωrωθ− ŷωθωy − ŷω̇r + r̂ω̇y

− ûyωr + ûrωy −2Vyωr +2Vrωy − ∂Vθ

∂t

(5.150)

The non-inertial equation for compressible flow in full arbitrary acceleration conditions was deter-
mined in Chapter 3, Equation 3.227:

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂ p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î]

− ∂

∂t
(ρV(t))︸ ︷︷ ︸

Translation

+ρ ˆ̇x∧Ω+ρx̂∧Ω̇︸ ︷︷ ︸
Euler︸ ︷︷ ︸

Unsteady motion

+2ρû∧Ω︸ ︷︷ ︸
Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+2ρV(t)∧Ω︸ ︷︷ ︸
Magnus

(5.151)

The formulation above, along with Equations 5.148, 5.149, 5.150 result in the following boundary
layer expressions:
r̂-momentum

∂ρ̂ûr

∂t
+ ûr

∂ρ̂ûr

∂r̂
+ ûθ

r̂
∂ρ̂ûr

∂θ̂
− ρ̂û2

θ

r̂
+ ûy

∂ρ̂ûr

∂ ŷ
=−∂p̂

∂r̂
+ ∂

∂ ŷ
µ̂
∂ûr

∂ ŷ
−2ρ̂ûθωy +2ρ̂ûyωθ

− ρ̂ ŷωrωy + ρ̂ r̂ω2
y + ρ̂ r̂ω2

θ+ ρ̂ ŷω̇θ− ρ̂ûθωy + ρ̂ûyωθ

−2ρ̂Vθωy +2ρ̂Vyωθ− ∂ρ̂Vr

∂t

(5.152)

ŷ-momentum

0=−∂ p̂
∂ ŷ

−2ρ̂ûrωθ+2ρ̂ûθωr − ρ̂ r̂ωrωy + ρ̂ ŷω2
r + ρ̂ ŷω2

θ− ρ̂ r̂ω̇θ− ρ̂ûrωθ+ ρ̂ûθωr

−2ρ̂Vrωθ+2ρ̂Vθωr − ∂ρ̂Vz

∂t

(5.153)

θ̂-momentum

∂ρ̂ûθ

∂t
+ ûr

∂ρ̂ûθ

∂r̂
+ ûθ

r̂
∂ρ̂ûθ

∂θ̂
+ ρ̂ûθ ûr

r̂
+ ûy

∂ρ̂ûθ

∂ ŷ
=−1

r̂
∂p̂
∂θ̂

+ ∂

∂ ŷ
µ̂
∂ûθ

∂ ŷ
−2ρ̂ûyωr +2ρ̂ûrωy

− ρ̂ r̂ωrωθ− ρ̂ ŷωθωy − ρ̂ ŷω̇r + ρ̂ r̂ω̇y − ρ̂ ŷω̇r + ρ̂ r̂ω̇y − ρ̂ûyωr + ρ̂ûrωy

−2ρ̂Vyωr +2ρ̂Vrωy − ∂ρ̂Vθ

∂t

(5.154)
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5.3. NON-INERTIAL BOUNDARY LAYER EQUATIONS FOR A FLAT PLATE - CURVILINEAR
FORMULATION

5.3 Non-Inertial Boundary Layer Equations for a Flat Plate -
Curvilinear Formulation

5.3.1 Continuity Equation

The continuity equation in the boundary layer was determined in Cartesian and Cylindrical coordinates
in Equations 5.14 and 5.85 respectively. The continuity equation in curvilinear coordinates takes a form
similar to Equation 4.110:

∂ρ̂

∂t
+ 1

h1h2h3

[ ∂

∂û1

(
h2h3ρ̂V̂1

)+ ∂

∂û2

(
h1h3ρ̂V̂2

)+ ∂

∂û3

(
h1h2ρ̂V̂3

)]= 0 (5.155)

5.3.2 Conservation of Momentum Equation for Boundary Layer Flows

In Sections 5.1 and 5.2 the conservation of momentum equation was determined in the boundary layer
region for Cartesian and Cylindrical components respectively. These sections indicated that the material
derivative remains unchanged in the longitudinal and transversal direction, but is eliminated in the
direction normal to the surface. The pressure gradient terms, as well as all the terms related to fictitious
effects are present in the boundary layer equations. The diffusion terms originating from the divergence
of the stress tensor, showed that all terms are neglected except for specific terms of τ12 and τ23.

τ(1,2,3)=


τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ23 τ33

 (5.156)

The remaining diffusion terms have been identified in Equations 5.38 and 5.51 as ∂
∂ ŷ µ̂

∂û
∂ ŷ and

∂
∂ ŷ µ̂

∂ŵ
∂ ŷ

for the x̂- and ẑ-momentum equations respectively. These terms are components of τ12 and τ23 of the
Cartesian stress tensor described in Equation 4.38.

τ̂(x̂, ŷ, ẑ)=


· · · µ̂

(
∂û
∂ ŷ + ∂v̂

∂x̂
) · · ·

· · · 2µ̂ ∂v̂
∂ ŷ + ˆ̂λ∇· û · · ·

· · · µ̂
(
∂v̂
∂ẑ + ∂ŵ

∂ ŷ
) · · ·

 (5.157)

Similarly, in the Cylindrical Stress Tensor (Equation 4.43) the equivalent components of τ12 and
τ23 remain relevant in the boundary layer as indicated by Equations 5.109 and 5.118.

τ̂(r̂, ŷ, θ̂)=


· · · µ̂

(∂ûr
∂ ŷ + ∂ûy

∂r̂
) · · ·

· · · 2µ̂∂ûy
∂ ŷ + λ̂∇̂ · û · · ·

· · · µ̂
(1

r̂
∂ûy

∂θ̂
+ ∂ûθ

∂ ŷ
) · · ·

 (5.158)
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CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

The equivalent terms of τ12 and τ23 are relevant in the boundary layer when expressed in Curvilinear
coordinates. The components of the Curvilinear stress tensor were described in Equation 4.104, with
τ12 and τ32 defined as:

τ̂12 = µ̂
[h2

h1

∂

∂û1

( V̂2

h2

)
+ h1

h2

∂

∂û2

( V̂1

h1

)]
τ̂32 = µ̂

[h3

h2

∂

∂û2

( V̂3

h3

)
+ h2

h3

∂

∂û3

( V̂2

h2

)] (5.159)

Table 4.1 gave the conversion from a Curvilinear system to a Cartesian or Cylindrical system. The
table are based on the third principal direction (ẑ-direction) being normal to the surface. Here the second
principal direction ( ŷ-direction) is taken a normal to the wall. The conversion between the systems
changes as follow:

Table 5.1: Relations between the Curvilinear Coordinate System and Other Systems

Curvilinear u1 u2 u3 x y z h1 h2 h3
Cartesian x y z x y z 1 1 1
Cylindrical r y θ rcosθ z rsinθ 1 1 r

The conversion of τ12 indicates that equivalent terms to be included in the boundary layer equation.

τ̂12curvil inear = µ̂
[h2

h1

∂

∂û1

( V̂2

h2

)
+ h1

h2

∂

∂û2

( V̂1

h1

)]
τ̂12cartesian = µ̂

[1
1

∂

∂x̂

( v̂
1

)
+ 1

1
∂

∂ ŷ

( û
1

)]
τ̂12cylindrical = µ̂

[1
1

∂

∂r̂

( ûy

1

)
+ 1

1
∂

∂ ŷ

( ûr

1

)] (5.160)

Using the above relations, it is seen that the term µ̂
h1
h2

∂
∂û2

(
V̂1
h1

)
must be included in the boundary

layer equation for the first principle direction. In a similar manner the equivalent term in τ32 can be
determined as µ̂1

1
∂
∂r̂

(
ûy
1

)
.

τ̂(û1, û2, û3)=


· · · µ̂

[
h2
h1

∂
∂û1

(
V̂2
h2

)
+ h1

h2

∂
∂û2

(
V̂1
h1

) ]
· · ·

· · · 2µ̂
(

1
h2

∂V̂2
∂û2

+ V̂3
h2h3

∂h2
∂û3

+ V̂1
h1h2

∂h2
∂û1

)
+ λ̂∇̂ · V̂ · · ·

· · · µ̂
[

h3
h2

∂
∂û2

(
V̂3
h3

)
+ h2

h3

∂
∂û3

(
V̂2
h2

)]
· · ·

 (5.161)
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5.3. NON-INERTIAL BOUNDARY LAYER EQUATIONS FOR A FLAT PLATE - CURVILINEAR
FORMULATION

Using Equations 4.112, 4.113 and 4.114 the non-inertial Curvilinear set of equations for the conser-
vation of momentum in the boundary layer for compressible flow are determined:

û1-momentum:

ρ̂
[∂V̂1

∂t
+ V̂1

h1

∂V̂1

∂û1
+ V̂2

h2

∂V̂1

∂û2
+ V̂3

h3

∂V̂1

∂û3
− V̂2

( V̂2

h1h2

∂h2

∂û1
− V̂1

h1h2

∂h1

∂û2

)
+ V̂3

( V̂1

h1h3

∂h1

∂û3
− V̂3

h1h3

∂h3

∂û1

)]
=− 1

h1

∂p̂
∂û1

+ 1
h2

∂

∂û2
µ̂

h1

h2
∂û2

V̂1

h1

+ ρ̂
[

2V̂2ω3 −2V̂3ω2︸ ︷︷ ︸
Coriolis

+ û1(ω3
2 +ω2

2)− û2ω1ω2 − û3ω1ω3︸ ︷︷ ︸
Centrifugal

+ û2ω̇3 − û3ω̇2︸ ︷︷ ︸
Euler

+ ˆ̇u2ω3 − ˆ̇u3ω2

︸ ︷︷ ︸
Unsteady motion

+2Ve2ω3 −2Ve3ω2︸ ︷︷ ︸
Magnus

− ∂Ve1

∂t︸ ︷︷ ︸
Translation

]

(5.162)

û2-momentum:

0=− 1
h2

∂p̂
∂û2

+ ρ̂
[

2V̂3ω1 −2V̂1ω3︸ ︷︷ ︸
Coriolis

+ û2(ω3
2 +ω1

2)− û1ω1ω2 − û3ω2ω3︸ ︷︷ ︸
Centrifugal

+ û3ω̇1 − û1ω̇3︸ ︷︷ ︸
Euler

+ ˆ̇u3ω1 − ˆ̇u1ω3

︸ ︷︷ ︸
Unsteady motion

+2Ve3ω1 −2Ve1ω3︸ ︷︷ ︸
Magnus

− ∂Ve2

∂t︸ ︷︷ ︸
Translation

] (5.163)

û3-momentum:

ρ̂
[∂V̂3

∂t
+ V̂1

h1

∂V̂3

∂û1
+ V̂2

h2

∂V̂3

∂û2
+ V̂3

h3

∂V̂3

∂û3
− V̂1

( V̂1

h1h3

∂h1

∂û3
− V̂3

h1h3

∂h3

∂û1

)
+ V̂2

( V̂3

h2h3

∂h2

∂û1
− V̂2

h2h3

∂h2

∂û3

)]
=− 1

h1

∂p̂
∂û3

+ 1
h2

∂

∂û2
µ̂

h3

h2
∂û2

V̂3

h3

+ ρ̂
[

2V̂1ω2 −2V̂2ω1︸ ︷︷ ︸
Coriolis

+ û3(ω2
2 +ω1

2)− û1ω1ω3 − û2ω1ω3︸ ︷︷ ︸
Centrifugal

+ û1ω̇2 − û2ω̇1︸ ︷︷ ︸
Euler

+ ˆ̇u1ω2 − ˆ̇u2ω1

︸ ︷︷ ︸
Unsteady motion

+2Ve1ω2 −2Ve2ω1︸ ︷︷ ︸
Magnus

− ∂Ve3

∂t︸ ︷︷ ︸
Translation

]

(5.164)
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CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

5.3.3 Validation of Equations

The conservation of momentum equations for incompressible flow in Curvilinear coordinates are de-
rived using Equations 5.162, 5.163 and 5.164:

û1-momentum:

∂V̂1

∂t
+ V̂1

h1

∂V̂1

∂û1
+ V̂2

h2

∂V̂1

∂û2
+ V̂3

h3

∂V̂1

∂û3
− V̂2

( V̂2

h1h2

∂h2

∂û1
− V̂1

h1h2

∂h1

∂û2

)
+ V̂3

( V̂1

h1h3

∂h1

∂û3
− V̂3

h1h3

∂h3

∂û1

)
=− 1

h1

∂ψ̂

∂û1
+ 1

h2

∂

∂û2
ν̂

h1

h2
∂û2

V̂1

h1

+2V̂2ω3 −2V̂3ω2︸ ︷︷ ︸
Coriolis

+ û1(ω3
2 +ω2

2)− û2ω1ω2 − û3ω1ω3︸ ︷︷ ︸
Centrifugal

+ û2ω̇3 − û3ω̇2︸ ︷︷ ︸
Euler

+ ˆ̇u2ω3 − ˆ̇u3ω2

︸ ︷︷ ︸
Unsteady motion

+2Ve2ω3 −2Ve3ω2︸ ︷︷ ︸
Magnus

− ∂Ve1

∂t︸ ︷︷ ︸
Translation

(5.165)

û2-momentum:

0=− 1
h2

∂ψ̂

∂û2
+2V̂3ω1 −2V̂1ω3︸ ︷︷ ︸

Coriolis

+ û2(ω3
2 +ω1

2)− û1ω1ω2 − û3ω2ω3︸ ︷︷ ︸
Centrifugal

+ û3ω̇1 − û1ω̇3︸ ︷︷ ︸
Euler

+ ˆ̇u3ω1 − ˆ̇u1ω3

︸ ︷︷ ︸
Unsteady motion

+2Ve3ω1 −2Ve1ω3︸ ︷︷ ︸
Magnus

− ∂Ve2

∂t︸ ︷︷ ︸
Translation

(5.166)

û3-momentum:

∂V̂3

∂t
+ V̂1

h1

∂V̂3

∂û1
+ V̂2

h2

∂V̂3

∂û2
+ V̂3

h3

∂V̂3

∂û3
− V̂1

( V̂1

h1h3

∂h1

∂û3
− V̂3

h1h3

∂h3

∂û1

)
+ V̂2

( V̂3

h2h3

∂h2

∂û1
− V̂2

h2h3

∂h2

∂û3

)
=− 1

h3

∂ψ̂

∂û3
+ 1

h2

∂

∂û2
ν̂

h3

h2
∂û2

V̂3

h3

+2V̂1ω2 −2V̂2ω1︸ ︷︷ ︸
Coriolis

+ û3(ω2
2 +ω1

2)− û1ω1ω3 − û2ω1ω3︸ ︷︷ ︸
Centrifugal

+ û1ω̇2 − û2ω̇1︸ ︷︷ ︸
Euler

+ ˆ̇u1ω2 − ˆ̇u2ω1

︸ ︷︷ ︸
Unsteady motion

+2Ve1ω2 −2Ve2ω1︸ ︷︷ ︸
Magnus

− ∂Ve3

∂t︸ ︷︷ ︸
Translation

(5.167)
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5.3. NON-INERTIAL BOUNDARY LAYER EQUATIONS FOR A FLAT PLATE - CURVILINEAR
FORMULATION

In Equation 5.60 a set of rotation parameters were defined for rotation about the ŷ-axis in the Carte-
sian direction. The same set of equations are applied here to Equations 5.165, 5.166 and 5.167.

ω1 = 0

ω2 =Ω

ω3 = 0

(5.168)

A set of boundary layer equations for incompressible flow with no translation and steady rotation
about the second principal direction in Curvilinear coordinates are obtained:

û1-momentum:

∂V̂1

∂t
+ V̂1

h1

∂V̂1

∂û1
+ V̂2

h2

∂V̂1

∂û2
+ V̂3

h3

∂V̂1

∂û3
− V̂2

( V̂2

h1h2

∂h2

∂û1
− V̂1

h1h2

∂h1

∂û2

)
+ V̂3

( V̂1

h1h3

∂h1

∂û3
− V̂3

h1h3

∂h3

∂û1

)
=− 1

h1

∂ψ̂

∂û1
+ 1

h2

∂

∂û2
ν̂

h1

h2
∂û2

V̂1

h1
− 2V̂3Ω︸ ︷︷ ︸
Coriolis

+ û1Ω
2︸ ︷︷ ︸

Centrifugal

(5.169)

û2-momentum:

0=− 1
h2

∂ψ̂

∂û2
(5.170)

û3-momentum:

∂V̂3

∂t
+ V̂1

h1

∂V̂3

∂û1
+ V̂2

h2

∂V̂3

∂û2
+ V̂3

h3

∂V̂3

∂û3
− V̂1

( V̂1

h1h3

∂h1

∂û3
− V̂3

h1h3

∂h3

∂û1

)
+ V̂2

( V̂3

h2h3

∂h2

∂û1
− V̂2

h2h3

∂h2

∂û3

)
=− 1

h3

∂ψ̂

∂û3
+ 1

h2

∂

∂û2
ν̂

h3

h2
∂û2

V̂3

h3
+ 2V̂1Ω︸ ︷︷ ︸
Coriolis

+ û3Ω
2︸ ︷︷ ︸

Centrifugal

(5.171)

The Curvilinear geometry is a flat plate in this case. The equations above are written in the Cartesian
or Cylindrical form using Table 5.1.

The Cartesian description then becomes:

141

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

∂û
∂t

+ û
∂û
∂x̂

+ v̂
∂û
∂ ŷ

+ ŵ
∂û
∂ẑ

=−∂ψ̂

∂x̂
+ν

∂2û
∂ ŷ2 −2ŵΩ+ x̂Ω2

0=−∂ψ̂

∂ ŷ
∂ŵ
∂t

+ û
∂ŵ
∂x̂

+ v̂
∂ŵ
∂ ŷ

+ ŵ
∂ŵ
∂ẑ

=−∂ψ̂

∂ẑ
+ν

∂2ŵ
∂ ŷ2 +2ûΩ+ ẑΩ2

(5.172)

This is the same as the set of equations in Equation 5.61which were used in Section 5.1.4 to validate
the boundary layer equations in the Cartesian co-ordinate system.

In a similar manner the Cylindrical equations are obtained:

∂ûr

∂t
+ ûr

∂ûr

∂r̂
+ ûθ

r̂
∂ûr

∂θ̂
− û2

θ

r̂
+ ûy

∂ûr

∂ ŷ
=− ∂ψ̂

∂r̂
+ ν̂

∂2ûr

∂ ŷ2 −2ûθΩ+ r̂Ω2

0=− ∂ψ̂

∂ ŷ
∂ûθ

∂t
+ ûr

∂ûθ

∂r̂
+ ûθ

r̂
∂ûθ

∂θ̂
+ ûθ ûr

r̂
+ ûy

∂ûθ

∂ ŷ
=− 1

r̂
∂ψ̂

∂θ̂
+ ν̂

∂2ûθ

∂ ŷ2 +2ûrΩ

(5.173)

The equations above are similar to Equation 5.138 which were used in Section 5.2.5 to validate the
boundary layer equations in the Cylindrical co-ordinate system.
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5.4. CLOSURE

5.4 Closure

This chapter provided a framework for the analysis of the non-inertial boundary layer in Cartesian,
Cylindrical and Curvilinear coordinates respectively. The main results are:

• The continuity equations in the boundary layer for both compressible and incompressible flows
were obtained. No terms are neglected from the continuity equation. Therefore the form remains
the same as in the bulk flow.

∂ρ̂

∂t
+ 1

h1h2h3

[ ∂

∂û1

(
h2h3ρ̂V̂1

)+ ∂

∂û2

(
h1h3ρ̂V̂2

)+ ∂

∂û3

(
h1h2ρ̂V̂3

)]= 0 (5.174)

• The momentum equations in the boundary layer for compressible and incompressible flow were
determined for Cartesian, Cylindrical and Curvilinear co-ordinate systems.

x̂-momentum

∂ρ̂û
∂t

+ û
∂ρ̂û
∂x̂

+ v̂
∂ρ̂û
∂ ŷ

+ ŵ
∂ρ̂û
∂ẑ

=−∂p̂
∂x̂

+ ∂

∂ ŷ
µ̂
∂û
∂ ŷ

+2ρ̂v̂ω3 −2ρ̂ŵω2 + ρ̂ x̂(ω3
2 +ω2

2)

− ρ̂ ŷω1ω2 − ρ̂ ẑω1ω3 + ρ̂ ŷ ˆ̇ω3 − ρ̂ ẑ ˆ̇ω2 + ρ̂ ˆ̇yω3 − ρ̂ ˆ̇zω2

+2ρ̂Vyω3 −2ρ̂Vzω2 − ∂ρ̂Vx

∂t

(5.175)

ŷ-momentum

0=−∂p̂
∂ ŷ

+2ρ̂ŵω1 −2ρ̂ûω3 + ρ̂ ŷ(ω3
2 +ω1

2)− ρ̂ x̂ω1ω2 − ρ̂ ẑω2ω3 + ρ̂ ẑ ˆ̇ω1 − ρ̂ x̂ ˆ̇ω3 + ρ̂ ˆ̇zω1 − ρ̂ ˆ̇xω3

+2ρ̂Vzω1 −2ρ̂Vxω3 −
∂ρ̂Vy

∂t
(5.176)

ẑ-momentum

∂ρ̂ŵ
∂t

+ û
∂ρ̂ŵ
∂x̂

+ v̂
∂ρ̂ŵ
∂ ŷ

+ ŵ
∂ρ̂ŵ
∂ẑ

=−∂p̂
∂ẑ

+ ∂

∂ ŷ

[
µ̂
∂ŵ
∂ ŷ

]
+2ρ̂ûω2 −2ρ̂v̂ω1 + ρ̂ ẑ(ω2

2 +ω1
2)

− ρ̂ x̂ω1ω3 − ρ̂ ŷω2ω3 + ρ̂ x̂ ˆ̇ωy − ρ̂ ŷ ˆ̇ωx + ρ̂ ˆ̇xωy − ρ̂ ˆ̇yωx

+2ρ̂Vxω2 −2ρ̂Vyω1 − ∂ρ̂Vz

∂t
(5.177)

• The following similarities were observed for all co-ordinate systems:

◦ The material derivative (left hand side of the Navier-Stokes equation) are unchanged in
the longitudinal and transversal directions. However, all left hand side terms are neglected in the
direction normal to the surface.

◦ The pressure gradient terms are present in all directions.
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CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

◦ The diffusion terms in the boundary layer originate from specific components in the stress
tensor of the τ12 and τ32 terms.

τ̂12 = µ̂
[h2

h1

∂

∂û1

( V̂2

h2

)
+ h1

h2

∂
∂û2

(
V̂1
h1

) ]
τ̂32 = µ̂

[
h3
h2

∂
∂û2

(
V̂3
h3

)
+ h2

h3

∂

∂û3

( V̂2

h2

)] (5.178)

◦ The fictitious terms can not be neglected from the boundary layer equations. Therefore the
terms have an influence on the boundary layer velocity profile during acceleration and decelera-
tion of the object.

û1-momentum:

∂V̂1

∂t
+ V̂1

h1

∂V̂1

∂û1
+ V̂2

h2

∂V̂1

∂û2
+ V̂3

h3

∂V̂1

∂û3
− V̂2

( V̂2

h1h2

∂h2

∂û1
− V̂1

h1h2

∂h1

∂û2

)
+ V̂3

( V̂1

h1h3

∂h1

∂û3
− V̂3

h1h3

∂h3

∂û1

)
=− 1

h1

∂ψ̂

∂û1
+ 1

h2

∂

∂û2
ν̂

h1

h2
∂û2

V̂1

h1

+2V̂2ω3 −2V̂3ω2︸ ︷︷ ︸
Coriolis

+ û1(ω3
2 +ω2

2)− û2ω1ω2 − û3ω1ω3︸ ︷︷ ︸
Centrifugal

+ û2ω̇3 − û3ω̇2︸ ︷︷ ︸
Euler

+ ˆ̇u2ω3 − ˆ̇u3ω2

︸ ︷︷ ︸
Unsteady motion

+2Ve2ω3 −2Ve3ω2︸ ︷︷ ︸
Magnus

− ∂Ve1

∂t︸ ︷︷ ︸
Translation

(5.179)

û2-momentum:

0=− 1
h2

∂ψ̂

∂û2
+2V̂3ω1 −2V̂1ω3︸ ︷︷ ︸

Coriolis

+ û2(ω3
2 +ω1

2)− û1ω1ω2 − û3ω2ω3︸ ︷︷ ︸
Centrifugal

+ û3ω̇1 − û1ω̇3︸ ︷︷ ︸
Euler

+ ˆ̇u3ω1 − ˆ̇u1ω3

︸ ︷︷ ︸
Unsteady motion

+2Ve3ω1 −2Ve1ω3︸ ︷︷ ︸
Magnus

− ∂Ve1

∂t︸ ︷︷ ︸
Translation

(5.180)

The boundary layer equations were validated with examples from the literature (Bogdanova [82],
Dumitrescu et al. [85], Dwyer [83] and Mager [81]) for cases with zero translation and steady rotation.
The components of the fictitious forces in Cylindrical coordinates were visualized in Figure 5.9 by
indicating the direction of the Centrifugal force and the two components of the Coriolis force.

∂ûr

∂t
+ ûr

∂ûr

∂r̂
+ ûθ

r̂
∂ûr

∂θ̂
− û2

θ

r̂
+ ûy

∂ûr

∂ ŷ
=− ∂ψ̂

∂r̂
+ ν̂

∂2ûr

∂ ŷ2 −2ûθΩ+ r̂Ω2

∂ûθ

∂t
+ ûr

∂ûθ

∂r̂
+ ûθ

r̂
∂ûθ

∂θ̂
+ ûθ ûr

r̂
+ ûy

∂ûθ

∂ ŷ
=− 1

r̂
∂ψ̂

∂θ̂
+ ν̂

∂2ûθ

∂ ŷ2 +2ûrΩ

(5.181)
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5.4. CLOSURE

In a similar manner the components of the fictitious forces in Cartesian coordinates can be visualized
using the same analogy as Figure 5.9. This is shown in Figure 5.10.

∂û
∂t

+ û
∂û
∂x̂

+ v̂
∂û
∂ ŷ

+ ŵ
∂û
∂ẑ

=−∂ψ̂

∂x̂
+ν

∂2û
∂ ŷ2 −2ŵΩ+ x̂Ω2

∂ŵ
∂t

+ û
∂ŵ
∂x̂

+ v̂
∂ŵ
∂ ŷ

+ ŵ
∂ŵ
∂ẑ

=−∂ψ̂

∂ẑ
+ν

∂2ŵ
∂ ŷ2 +2ûΩ+ ẑΩ2

(5.182)

Figure 5.10: Visualization of the Fictitious Forces in Cylindrical and Cartesian Co-ordinates

In a Cylindrical system the Centrifugal force has one component in the positive r̂-direction. In a
Cartesian system it has two components. The Coriolis force consists of two components in both Cylin-
drical and Cartesian systems. The Eötvös effect and the Coriolis force tangential to the satellite motion
can be distinguished separately in the Cylindrical system. In the Cartesian system these effects cannot
be separated.
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6
Non-Inertial Solver Implementation and Validation

The open source code OpenFOAM was utilized as a platform for the non-inertial solver develop-
ment and subsequent numerical analysis. Implementation of the solver is discussed in a manner
that facilitates reproduction of the code. The theoretical formulation and numerical methods

used in the subsequent analysis are provided to add to the reproducibility of results.
Two validation cases were conducted to assess the functionality of the developed solver; a laminar

flat plate and a laminar rotating disk. Analytical results for these cases are available from the literature
(Blasius [37], Monaghan [87], von Karman [41]). This is compared with the steady state numerical
results.

The boundary layer behaviour is discussed in terms of the boundary layer height, δ, displacement
thickness, δ∗, momentum thickness, θ, and the Shape Factor, H (Figure 6.1).

Figure 6.1: Physical Interpretation of the Boundary Layer Parameters

The boundary layer height is the distance from the wall where the stream-wise velocity is 99% of
the free stream velocity. The mathematical definitions of the displacement and momentum thickness
was shown in Equations 5.1 and 5.2.
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CHAPTER 6. NON-INERTIAL SOLVER IMPLEMENTATION AND VALIDATION

δ∗ =
∫ y∗→∞

0

(
1− u

U∞

)
dy (6.1)

θ =
∫ y∗→∞

0

u
U∞

(
1− u

U∞

)
dy (6.2)

A comparison of the parameters is shown in Figure 6.2 . This indicates that the boundary layer
thickness is be higher than the displacement thickness which in turn is be higher than the momentum
thickness.

δ> δ∗ > θ (6.3)

Figure 6.2: Comparison between the Boundary Layer, Displacement and Momentum Thicknesses

The parameters above are used to obtain a numerical approximation of the displacement and mo-
mentum thicknesses. The displacement thickness is the area under the 1− u

U∞
curve. The momentum

thickness is the area under the u
U∞

(1− u
U∞

) curve. This is demonstrated in Figure 6.3.

Figure 6.3: Boundary Layer Parameters on a Flat Plate
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The Shape factor is determined from the displacement and momentum thicknesses.

H = δ∗

θ
(6.4)

The purpose of the Shape Factor is to characterize the regime of the flow. Wazzan et al. [78] deter-
mined the Shape Factor curve as a function of the critical and transition Reynolds numbers (Figure 6.4).

Figure 6.4: Correlation of Critical Reynolds Number, Transition Reynolds Number versus Shape Factor
from Wazzan et al. [78]

In Figure 6.4 it is shown that at lower Reynolds numbers, the critical Reynolds number occur at a
higher Shape Factor value. Similarly, at high Reynolds numbers the Shape Factors are much lower for
corresponding critical Reynolds number. The Shape Factor is used in steady state analyses to determine
if the flow has separated. It is also used to determine if the flow is turbulent or laminar. The critical
Reynolds number for a Blasius Flat plate is approximately 2.59 (White [9]).
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CHAPTER 6. NON-INERTIAL SOLVER IMPLEMENTATION AND VALIDATION

6.1 Code Implementation

6.1.1 Open Source Field Operation And Manipulation - OPENFOAMr

OpenFOAM (OpenFOAM [88]) is a acronym for Open Source Field operation and Manipulation. It is
a C++ toolbox that provides a platform for the development of customized numerical solvers related to
continuum mechanics problems using the finite volume method. It is released under the Open Source
Software GNU General Public License (GNU [89]).

The code was originally developed by Henry Weller at Imperial College in London. The commer-
cial Computational Fluid Dynamic (CFD) codes StarCD (CD-adapco [90]) and Fluent (ANSYS [91])
also originates from this college.

Numerical analysis of aerospace and defence applications requires a significant level of code flexi-
bility to make the desired changes to existing subroutines or to develop new routines. OpenFOAM r
consist of many solvers, utilities and libraries that provide an ideal platform of development. Its object
orientated code architecture allows for re-use of existing code blocks and objects and therefore eases
the overhead of new developments.

OpenFOAM provides a good alternative to commercial software since it has been extensively vali-
dated and there is no direct costs involved to operate it.

6.1.2 Code Architecture

The non-inertial solver is designatedARFrhoPimpleFoam. The code architecture consist of three main
code blocks and the case set-up files (Figure 6.5). The baseline of the OpenFOAM solver, rhoPimple-
Foam, were used since it already had the source terms for steady rotation implemented. Although the
solver methodology is based on the PIMPLE method (SIMPLE-PISO hybrid with pseudo-transient im-
plementation (Ferziger and Peric [92], Versteeg and Malalasekera [69])), it can be operated in the PISO
mode (Pressure Implicit with Splitting of Operator (Ferziger and Peric [92], Versteeg and Malalasekera
[69])) as was done in this analysis. The quasi-transient transient implementation of PIMPLE is not be
able to capture transient behaviour accurately as no parameter relaxation should be used in time accurate
cases. The baseline of the existing SRFModel library was used to developed the ARFModel library.
This library contains all the non-inertial source terms for an object in arbitrary acceleration but in pure
rotation.

In this architecture the case set-up defines the problem, which include the initial conditions, fluid
properties, grid domain, numerical schemes, solution methods and control measures. This information
is provided to the solver, ARFrhoPimpleFoam and the library, ARFModel. The solver contains the
compiled source code for the solution algorithm. Parameters in the solver points to the ARFModel that
calculates the non-inertial source terms and determines the frame velocity through interpolation of the
table provided in the case set-up.
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6.1. CODE IMPLEMENTATION

The case set-up can make use of specialized non-inertial boundary conditions which is obtained in the
ARFModel/derivedFvPatchFields library. It provides the non-inertial velocity boundary condition with
information obtained from the ARFModel library.

Figure 6.5: Accelerating Reference Frame (ARF) Model Code Architecture

The resulting application for solving cases in a non-inertial frame has the following attributes:

• Non-Inertial Momentum Equation Implementation. Themomentum equations implementation in
the existing SRFModel was for steady rotations only. This was modified to contain the relevant
source terms as derived in Equation 3.227. The term ρ ˆ̇x∧Ωwas not included since only pure rota-
tion are investigated here. The non-inertial momentum equation implemented in the ARFModel
is:

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂ p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î]

− ∂

∂t
(ρV(t))︸ ︷︷ ︸

Translation

+ρx̂∧Ω̇︸ ︷︷ ︸
Euler

+2ρû∧Ω︸ ︷︷ ︸
Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+2ρV(t)∧Ω︸ ︷︷ ︸
Magnus

• Non-inertial Operation. The code solves entirely in the non-inertial frame therefore the velocity
vectors are calculated in terms of the relative frame. The code calculates the absolute velocities
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CHAPTER 6. NON-INERTIAL SOLVER IMPLEMENTATION AND VALIDATION

by transformation of the relative velocities.

• Prescribed Motion. The solver requires the time dependant translational and rotational velocities
as inputs for the prescribed motion of the system.

• Stationary Mesh. The uniqueness of this implementation lies in the non-inertial nature where the
object is completely stationary and the flow is in motion. This eliminates the need for a moving
mesh or level set methods that can cause large computational overheads. The cells in the near
wall region can be made sufficiently small to capture the boundary layer response to changing
bulk flow conditions.

• Specialized Boundary Conditions. The boundary conditions are able to adapt to the changing
relative motion of the non-inertial frame when in acceleration. This is achieved by specifying the
boundary conditions in the absolute frame (of which the far field is stationary) and transforming
the conditions according to the prescribed motion to the non-inertial frame.

• Compressible. The governing equations are in the compressible form, which make is applicable
to a wider range of applications.

A detailed account of the implementation, with code examples, are given in Appendix B.
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6.2. THEORETICAL FORMULATION

6.2 Theoretical Formulation

The theoretical formulation and numerical method used to analyse the three cases in this thesis (Fig-
ure 6.6) is discussed in this section. This includes the assumptions made regarding the flow, the govern-
ing equations implemented and the closure models used. The grid independent computational domains
and boundary conditions for each case is shown. The numerical methods that was used to solve the
system of equations, as already implemented in openFOAM, is discussed.

Figure 6.6: Graphical Representation of Test Cases; Translating Plate, Rotating Disk and Translating,
Rotating Cone

6.2.1 Assumptions

The following assumptions were made with regards to the flow field:

• The flow can be completely described in the non-inertial reference frame.

• The fluid is Newtonian i.e. the viscous stresses in the fluid is linearly proportional to the strain
rate.

• The ideal gas law is an appropriate equation of state to utilize as a closure model.

• The compressible form of the governing equations accurately describes the flow.

• The flow is well within the laminar regime, no turbulence models are employed.

• Viscous dissipation terms, ϕ̂, in the energy equation can be neglected since this is a laminar case
and the dissipation term is associated with turbulent behaviour.

• The bulk viscosity is zero, as per Stoke's Law.

• Heat conduction is described by Fourier's Law.
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CHAPTER 6. NON-INERTIAL SOLVER IMPLEMENTATION AND VALIDATION

6.2.2 Governing Equations

The governing equations used in the analysis was derived in Chapter 3.

The conservation of mass, also referred to as the continuity equation, made use of the formulation
of Equation 3.192 .

∂ρ̂

∂t
+∇̂ · ρ̂û= 0 (6.5)

In the source code this equation is solved in the inclusion of the header file, rhoEqn.H (shown in Ap-
pendix B).

The non-inertial energy equation was derived in Equation 3.237 .

∂ρ̂ ê
∂t

+ (∇̂ · ρ̂ êû)=−p̂(∇̂ · û)+∇̂ · (k̂∇̂T̂)+ ϕ̂ (6.6)

The implementation of this equation in openFOAM was done using a different form. The viscous dis-
sipation term, ϕ̂, is assumed to be negligible as discussed in the assumptions. The energy equation is
expressed either in the internal energy form or the enthalpy form.

The internal energy form of the equation is described as,

∂ρ̂ ês

∂t
+ (∇̂ · ρ̂ êsû)+ ∂ρ̂K̂

∂t
+ (∇̂ · ρ̂K̂û)+ p̂(∇̂ · û)−∇̂ · (k̂∇̂T̂)= 0 (6.7)

where K represents the potential energy.
The enthalpy form of the energy equation is described as follow:

∂ρ̂ĥs

∂t
+ (∇̂ · ρ̂ĥsû)+ ∂ρ̂K̂

∂t
+ (∇̂ · ρ̂K̂û)− ∂p̂

∂t
−∇̂ · (k̂∇̂T̂)= 0 (6.8)

In the source code this equation is solved in the inclusion of the header file, EEqn.H (shown in Ap-
pendix B).

The non-inertial momentum equation for fully arbitrary flow was derived in Equation 3.227. The
equation had an additional term that represented a moving axis formulation, ρ ˆ̇x∧Ω. In this case that
term was neglected since only cases in pure rotation are considered. Therefore the equation below was
implemented:

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)−∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î]

+ ∂

∂t
(ρV(t))︸ ︷︷ ︸

Translation

−ρx̂∧Ω̇︸ ︷︷ ︸
Euler

−2ρû∧Ω︸ ︷︷ ︸
Coriolis

+ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

−2ρV(t)∧Ω︸ ︷︷ ︸
Magnus

=−∇̂ p̂ (6.9)

In the source code this equation is solved in the inclusion of the header file, UEqn.H (shown in Ap-
pendix B).
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6.2. THEORETICAL FORMULATION

6.2.3 Closure Models

The system of governing equations above requires additional equation to close the system of equations.
An equation of state, transport model and thermodynamicmodel is required to ensure that for the number
of unknowns, there are the same number of equations.

Closure models to be used are defined in the thermophysicalProperties dictionary in the openFOAM
set up files. This specifies the equation of the state, transport model and thermodynamic model.

The equation of state used in this case is the ideal gas law. This relates the pressure to the density,
gas constant and temperature of the fluid.

p = ρRT (6.10)

The transport model makes use the equation below, where the Prandtl number is expressed as a ratio
of viscous diffusion rate over the thermal diffusion rate:

Pr =
Cpµ

κ
(6.11)

In this implementation either the internal energy or enthalpy can be used to determine the tempera-
ture profile in the fluid.

The enthalpy is a function of internal energy and pressure.

hs = es + p
ρ

(6.12)

This equation can be re-written to make the internal energy the subject of the equation. The known
quantities in the flow is then used to model the internal energy.

es = hs − p
ρ

=
∫ T

T0

CpT − ruT0

Mw

(6.13)

The total enthalpy can also be expressed as the sum of the static enthalpy and the enthalpy of the
dynamic pressure (Sontagg and Borgnakke [93]).

ht = hs +0.5U ·U (6.14)

The static enthalpy is replaced with known quantities in the flow, and the equation becomes:

ht =
∫ T

T0

CpdT +0.5U ·U (6.15)
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CHAPTER 6. NON-INERTIAL SOLVER IMPLEMENTATION AND VALIDATION

6.3 Case Set-up

6.3.1 Computational Domains

The objective of the analyses is to characterise the response of the laminar boundary layer to prescribed
motion. Computational grids are required with a sufficient amount of cells in the near-wall viscous
region (Figure 6.7) .

Figure 6.7: Orientating Image of the Boundary Layer

In the near-wall region a sufficient resolution between discrete points are required to obtain a solu-
tion that is representative on the flow. At least 15 cells are required in the boundary layer region on a
steady solution to achieve this. In accelerating and decelerating flows, more cells are required. Grids
were generated with between 25 - 50 cells in the boundary layer. The first dimensionless cell node height
is in the order of y+ = 1 (Ferziger and Peric [92]). Grids were designed according to these parameters.

y+ = u∗y
ν

≈ 1 (6.16)

The computational domains for the three cases (translating plate, rotating disk and translating, ro-
tating cone) are described in Figures 6.8, 6.9 and 6.10 below.

The grids have been designed and tested to ensure grid independence. Results from the grid inde-
pendence study is shown in Figures 6.11, 6.12 and 6.13.
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6.3. CASE SET-UP

Figure 6.8: Computational Domain for Translating Plate Case

Figure 6.9: Computational Domain for Rotating Disk Case
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CHAPTER 6. NON-INERTIAL SOLVER IMPLEMENTATION AND VALIDATION

Figure 6.10: Computational Domain for Translating, Rotating Cone Case

Figure 6.11: Grid independence of the laminar flat plate
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6.3. CASE SET-UP

Figure 6.12: Grid independence of the laminar rotating disk

Figure 6.13: Grid independence of the translating, rotating cone
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CHAPTER 6. NON-INERTIAL SOLVER IMPLEMENTATION AND VALIDATION

6.3.2 Boundary Conditions

OpenFOAM has vast libraries of boundary conditions that can be used. Boundary conditions can also
be augmented from existing source codes or newly developed. Three classes of boundary conditions
are defined: basic, derived and constraint conditions.

Basic boundary conditions are independent from any other utilities and all the mathematical equa-
tion to used this library is in its root source code. Examples of this is the fixedValue condition and the
zeroGradient conditions as shown in Figure 6.14.

Figure 6.14: Boundary Condition Definition for fixedValue, zeroGradient and inletOutlet

The fixedValue condition enforces a fixed value on the boundary, while the zeroGradient condition
obtains the boundary value from the internal node.

Derived boundary conditions are dependent on either the basic boundary condition specification
or on another external library. The inletOutlet condition is an example of an outlet derived boundary
where a fixedValue condition is enforce on the boundary if the flux is into the computational domain
and a zeroGradient condition when the flux is out of the domain.

Constraint type boundary conditions allows for reduction of dimensions or computational domain
due to axis-symmetry, symmetry or two dimensionality (see examples in Figure 6.15.)

Figure 6.15: Boundary Condition Definition for empty, symmetryPlane and cyclic

The empty condition allow for the reduction of dimensions where no solution is required on the
empty patch pairs. A symmetryPlane condition is used at the mirror line of a symmetrical object to
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6.3. CASE SET-UP

reduce the size and extend of the computational domain. This condition sets all the normal components
of vectors to zero. The cyclic condition requires that a pair of boundaries be identified and treats these
patches as if it is physically connected. This allows for the reduction of the computational grid in axis-
symmetrical cases.

Two special boundary conditions were also used as shown in Figure 6.16.

Figure 6.16: Boundary Condition Definition for waveTransmissive and ARFFreeStreamVelocity

The first is the waveTransmissive condition. This conditions allows for less stringent pressure con-
ditions on the outlet boundary where the boundary value assigned is a function of the inner node and
a far-field ghost node. Interpolation between the inner node and the ghost node is used to obtain the
value for the boundary. The second is a boundary that was modified for the purposes of this work and
is designated the ARFFreeStreamVelocity condition. In this condition the value of the velocity vector
in the inertial frame is specified. The value for the non-inertial frame is calculated by subtracting the
frame velocity vector from the specified inertial velocity vector. Specifying the far-field inertial velocity
vector is simple since the flow in the inertial far-fields is stationary. In Appendix C the partial source
code for this implementation is shown.

The boundary condition locations for the flat plate, rotating disk and cone are graphically repre-
sented in Figures 6.17, 6.18 and 6.19. Tables 6.1, 6.3 and 6.5 indicate the velocity, pressure and tem-
perature boundary conditions for each case respectively.

The flow conditions was select to ensure that the fluid remains well within the laminar regime. To
this effect the Reynolds number for a flat plate in translation must be below 300 000 (Crowe et al. [94])
and a rotating disk below 500 (Imayama [43], Schmid and Henningson [44]). A rotating cone with a 15
degree half-angle separates at a Reynolds number of approximately 249.64 (Mansour and Kargar [57]).
Axial flow delays the onset of transition, therefore if the rotational Reynolds numbers are kept below
250, the flow is laminar for low axial velocities (Garret and Peake [52] Kobayashi and Kohama [95]).
Tables 6.2, 6.4 and 6.6 show the Reynolds numbers of the separate cases.
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CHAPTER 6. NON-INERTIAL SOLVER IMPLEMENTATION AND VALIDATION

Figure 6.17: Graphical Representation of Translating Plate Boundary Condition

Table 6.1: Boundary Conditions of the Translating Plate

Boundary Velocity Pressure Temperature
inlet ARFFreeStreamVeloctiy zeroGradient fixedValue
bottom symmetryPlane symmetryPlane symmetryPlane
plate no-slip wall zeroGradient zeroGradient
outletLower zeroGradient zeroGradient inletOutlet
outletUpper ARFFreeStreamVelocity zeroGradient inletOutlet
top ARFFreeStreamVelocity zeroGradient inletOutlet
front/back empty empty empty

Rex = ρUx
µ

(6.17)

Table 6.2: Minimum and Maximum Reynolds Numbers of the Translating Plate

Condition U[m/s] Rex Recrit
min 10 35 100 300 000
max 80 280 800 300 000
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6.3. CASE SET-UP

Figure 6.18: Graphical Representation of Rotating Disk Boundary Condition

Table 6.3: Boundary Conditions of the Rotating Disk

Boundary Velocity Pressure Temperature
axis symmetryPlane symmetryPlane symmetryPlane
bottomWall no-slip wall zeroGradient zeroGradient
sidesLower zeroGradient zeroGradient inletOutlet
sidesUpper ARFFreeStreamVelocity zeroGradient inletOutlet
top ARFFreeStreamVelocity zeroGradient inletOutlet
front/back cyclic cyclic cyclic

Rer = r
√

ω

ν
(6.18)

Table 6.4: Minimum and Maximum Reynolds Numbers of the Rotating Disk

Condition ω[rad/s] Rer Recrit
min 10 150 500
max 80 424.2 500
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CHAPTER 6. NON-INERTIAL SOLVER IMPLEMENTATION AND VALIDATION

Figure 6.19: Graphical Representation of Translating, Rotating Cone Boundary Condition

Table 6.5: Boundary Conditions of the Translating, Rotating Cone

Boundary Velocity Pressure Temperature
inlet ARFFreeStreamVeloctiy waveTransmissive inletOutlet
bottom symmetryPlane symmetryPlane symmetryPlane
plate no-slip wall zeroGradient zeroGradient
outletLower zeroGradient zeroGradient inletOutlet
outletUpper ARFFreeStreamVelocity waveTransmissive inletOutlet
top ARFFreeStreamVelocity waveTransmissive inletOutlet
front/back cyclic cyclic cyclic

Re4m/s =
ρUL
µ

(6.19)

Re12rad/s = r
√

ω

ν
(6.20)

Table 6.6: Maximum Reynolds Numbers of the Translating, Rotating Cone

Condition Value Rex Recrit
Plate 4m/s 4 520.412 300 000
Cone 12rad/s 9.37 249.63
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6.3. CASE SET-UP

6.3.3 Numerical Method

The solution algorithm that is used in the simulation is the Pressure Implicit Method with Splitting of
operators, referred to as the PISOmethod. The algorithm is shown in Figure 6.20. The method consist of
one predictor and two corrector steps for each local iteration andwas used in its standard implementation
in openFOAM.

Figure 6.20: Pressure Implicit with Splitting of Operator (PISO) Solution Algorithm

The openFOAM code allows for the separate discretization treatments of divergence, gradient and
laplacian terms. This is selected in the fvSchemes file in the system folder of the case set-up.

Time integration was done using the implicit Euler method (Ferziger and Peric [92], Versteeg and
Malalasekera [69]). In the steady state solutions the Courant number was kept below 0.9 and in the ac-
celerating and decelerating cases a constant time step was used since time accurate results were required.
Discretization of the divergence terms were done using Gauss's theorem (Ferziger and Peric [92], Ver-
steeg andMalalasekera [69]) with a total variate diminishing (TVD) scheme. The gradient and laplacian
term terms were both discretised with Gauss's theorem and a central differencing scheme (Ferziger and
Peric [92], Versteeg and Malalasekera [69]).
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CHAPTER 6. NON-INERTIAL SOLVER IMPLEMENTATION AND VALIDATION

6.4 Validation Results

6.4.1 Laminar Flat Plate

The first validation case utilized to test the functionality of the developed solver was the laminar flat
plate. The boundary layer on a flat plate is self-similar. It means that along the plate the shape of the
velocity distribution differs in scale but the form of the profile remains the same. The profile shape is
also similar between the non-inertial and inertial frames, with the exception of directionality. This is
elaborated on in the next chapter. A graphical representation of the boundary layer in the non-inertial
and inertial frames is shown in Figure 6.21.

Figure 6.21: Graphical Representation of the Boundary Layer on a Flat Plate

The laminar flat plate is a classic problem in Fluid Mechanics for which a similarity solution
was developed by Blasius [37]. The boundary layer equations are simplified by introduction of a non-
dimensional similarity variable η,

η= 1
2

y
x

√
Rex (6.21)

that reduces the partial differential boundary layer equation to a non-dimensional ordinary differential
equation.

2 f ′′′+ f ′′ f = 0 (6.22)

The first derivative of the non-dimensional function f (η), become the non-dimensional velocity:

f ′(η)= U
U∞

(6.23)
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6.4. VALIDATION RESULTS

The algebraic equation can numerical be solved with an integration routine, such as the Runge Kutta
method, using the initial values below.

f (0)= 0

f ′(0)= 0

f ′(∞)≈ 1

(6.24)

In a similar manner used to determine the Blasius solution to an incompressible, laminar flat plate,
Monaghan [87] derived a solution for laminar compressible boundary layer.

Numerical simulations for steady state conditions were conducted for free stream velocities of 10
m/s, 45 m/s and 80 m/s. The simulation results were compared against the solutions of Blasius [37] and
Monaghan [87]. The results of the comparisons obtained are depicted in Figures 6.22, 6.23 and 6.24.

Figure 6.22: Steady State Solution for a Laminar Flat Plate at 10 m/s
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CHAPTER 6. NON-INERTIAL SOLVER IMPLEMENTATION AND VALIDATION

Figure 6.23: Steady State Solution for a Laminar Flat Plate at 45 m/s

Figure 6.24: Steady State Solution for a Laminar Flat Plate at 80 m/s
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6.4. VALIDATION RESULTS

The simulated results compares well with the analytical results of the Blasius [37] and Monaghan
[87] solutions. The results from this test case are be used in the next chapter as steady state starting
conditions. The flow is accelerated or decelerated from these initial conditions.

The boundary layer characteristic profiles,

û
U∞

1− û
U∞

û
U∞

(1− û
U∞

)

(6.25)

are compared to the analytical results in Figures 6.25, 6.26 and 6.27. The numerical results compare
well with the analytical results.

In Table 6.7 the boundary layer parameters are compared with the analytical results. The differences
between the numerical and analytical results are within acceptable parameters as determined by:

Di f f erence%= ResultAnal ytical −ResultNumerical

ResultAnal ytical
∗100 (6.26)

Figure 6.25: Comparison of Boundary Layer Parameters at 10 m/s
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CHAPTER 6. NON-INERTIAL SOLVER IMPLEMENTATION AND VALIDATION

Figure 6.26: Comparison of Boundary Layer Parameters at 45 m/s

Figure 6.27: Comparison of Boundary Layer Parameters at 80 m/s
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6.4. VALIDATION RESULTS

Table 6.7: Boundary Layer Properties of the Translating Plate 0.2 m

δ [m] δ∗ [m] θ [m] H

10 m/s
Analytical 2.2054e−3 0.8040e−3 0.2999e−3 2.68
Numerical 2.6526e−3 0.7941e−3 0.3025e−3 2.62
Difference % -16.86 -1.22 0.85 -2.06

45 m/s
Analytical 1.0396e−3 0.3790e−3 0.1414e−3 2.68
Numerical 1.3363e−3 0.3749e−3 0.1423e−3 2.63
Difference % -22.20 -1.10 0.64 -1.73

80 m/s
Analytical 0.7797e−3 0.2843e−3 0.1060e−3 2.68
Numerical 1.0260e−3 0.2816e−3 0.1069e−3 2.63
Difference % -24.01 -0.93 0.79 -1.71

The wall shear stress is calculated during the numerical simulations. This is used to determine the
skin friction coefficient. The skin friction coefficient is directly proportional to the skin friction drag on
the translating plate. This is used to determine the effect of unsteady motion on the skin friction drag.
The skin friction coefficient and wall shear stress for steady state conditions are shown in Figure 6.28.

τwall =µ
∂u
∂y

C f =
τwall

0.5ρU2∞

(6.27)

Figure 6.28: Skin Friction Coefficients and Wall Shear Stress
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CHAPTER 6. NON-INERTIAL SOLVER IMPLEMENTATION AND VALIDATION

6.4.2 Laminar Rotating Disk

The second validation case concerns the boundary layer on a rotating disk. In Figure 6.29 a graphical
representation of the boundary layer on the rotating disk is shown for the radial and tangential directions.

Figure 6.29: Graphical Representation of the Boundary Layer on a Rotating Disk

In von Karman [41] a similarity solution is derived for the boundary layer on a rotating disk. This
solution is discussed in detail by Schlichting [42]. A solution is obtained by introducing a similarity
variable, η, to the boundary layer equations (in cylindrical coordinates).

η= y
√

ωy

ν
(6.28)

In the above equation y is the height normal to the wall, ωy is the rotational velocity (in rad/s) about
the y-axis and ν is the kinematic viscosity. Using this equation the partial differential equations (PDE) is
reduced to a set of ordinary differential equations (ODE), as shown by Schlichting [42]. This is solved
numerically to obtain the velocity profiles.

Simulations were conducted for rotational velocities of 10 rad/s, 45 rad/s and 80 rad/s to obtain the
steady state solution in the non-inertial frame (Figures 6.30 and 6.32). This solution was transformed to
the inertial frame in order to compare it with the analytical result (Schlichting [42], von Karman [41])
presented in Figures 6.31 and 6.33.
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6.4. VALIDATION RESULTS

Figure 6.30: Non-Inertial Tangential Velocity Profiles

Figure 6.31: Comparison between Numerical and Analytical Tangential Velocity Results
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CHAPTER 6. NON-INERTIAL SOLVER IMPLEMENTATION AND VALIDATION

Figure 6.32: Non-Inertial Radial Velocity Profiles

Figure 6.33: Comparison between Numerical and Analytical Radial Velocity Results
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6.4. VALIDATION RESULTS

The tangential non-dimensional velocity profile is consistent with the analytical result near the wall
region. Slight differences are observed in the far-field of the boundary layer. The non-dimensional value
is slightly higher than the analytical value. This difference is increased with decreasing rotational ve-
locity.

Similar behaviour is observed for in the radial direction. The radial non-dimensional velocity profile
is overall consistent with the profile of the analytical result. The apex of the simulated curves are in the
same order as the analytical apex. However, the simulated results are slightly higher than the analytical
result.

The von Karman equations do not account for instabilities in the flow. The differences between the
numerical and analytical results are due to the formation of laminar instabilities. Instabilities associated
with rotating disks are mostly of Type I and Type II (Chefranov [96], Zoueshtiagh et al. [48]). Type I
instabilities occur due to inviscid cross flow interactions. An example of Type I is the spiral vortices
occurring above a Reynold number of 500. These vortices facilitates flow transition. Type II is instabil-
ities that occur due to interaction between the Coriolis and viscous forces in the boundary layer. The
differences observed here are due to cyclonic vortices at the centre of rotation. Moulin and Flór [47]
investigated the sudden start of rotating disks. They experimentally observed the growth of the cyclonic
vortices due to Ekman suction. It was noted that the growth rate of the vortices diminishes over time for
steady state spin up conditions. This indicates that the cyclonic vortices are stationary in steady state
conditions. This instability is classified as Type I since it operates in the inviscid region of the flow.

An increase in rotational velocity, adds to the momentum in the inviscid regions of the flow. The ef-
fect of the cyclonic vortice on the boundary layer are reduced since the increased momentum dominates
the formation of cyclonic vortices. Therefore, with increasing rotational velocity, the cyclonic vortices
decrease and the numerical solution approximates the von Karman solution.

The boundary characteristic properties in the radial and tangential directions were determined for
the numerical and analytical results.

ûθ

U∞

1− ûθ

U∞
ûθ

U∞
(1− ûθ

U∞
)

(6.29)

ûr

U∞

1− ûr

U∞
ûr

U∞
(1− ûr

U∞
)

(6.30)

The comparison of the boundary layer properties are shown in Tables 6.8 and 6.9 for the tangential
and radial direction respectively.
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CHAPTER 6. NON-INERTIAL SOLVER IMPLEMENTATION AND VALIDATION

Table 6.8: Tangential Boundary Layer Properties of the Rotating Disk at 0.14 m radius

δθ [m] δ∗
θ
[m] θθ [m] Hθ

10 rad/s
Analytical 6.0e−3 1.283e−3 6.0102e−4 2.13
Numerical 6.2e−3 1.475e−3 7.5953e−4 1.94
Difference % 3 15.01 26.37 -8.98

45 rad/s
Analytical 2.8e−3 6.0482e−4 2.8332e−4 2.13
Numerical 2.83e−3 6.5632e−4 3.2964e−4 1.99
Difference % 1.14 8.51 16.34 -6.73

80 rad/s
Analytical 2.1e−3 4.5362e−4 2.1249e−4 2.13
Numerical 2.12e−3 4.7743e−4 2.2977e−4 2.07
Difference % 1.05 5.25 8.13 -2.66

Table 6.9: Radial Boundary Layer Properties of the Rotating Disk at 0.14 m radius

δr [m] δ∗r [m] θr [m] Hr

10 rad/s
Analytical 6.0e−3 5.5865e−3 3.6386e−4 15.35
Numerical 6.2e−3 5.7001e−3 4.2472e−4 13.42
Difference % 3 2.03 16.72 -12.58

45 rad/s
Analytical 2.8e−3 2.6335e−3 1.7152e−4 15.35
Numerical 2.83e−3 2.6184e−3 1.8724e−4 13.98
Difference % 1.14 -0.57 9.16 -8.91

80 rad/s
Analytical 2.1e−3 1.9751e−3 1.2864e−4 15.35
Numerical 2.12e−3 1.9619e−3 1.3964e−4 14.04
Difference % 1.05 -0.66 8.55 -8.49

Comparisons are graphically represented for 10 rad/s, 45 rad/s and 80 rad/s in Figures 6.34-6.39.
The effect of the cyclonic vortices on the boundary layer can be observed in the graphs. In the near
wall regions deviation from the von Karman results are small. The regions near the free-stream flow
deviated from the analytical result. The deviation is indirectly proportional to rotational velocity.
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6.4. VALIDATION RESULTS

Figure 6.34: Comparison of Tangential Boundary Layer Characteristic Profiles for 10 rad/s

Figure 6.35: Comparison of Radial Boundary Layer Characteristic Profiles for 10 rad/s
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CHAPTER 6. NON-INERTIAL SOLVER IMPLEMENTATION AND VALIDATION

Figure 6.36: Comparison of Tangential Boundary Layer Characteristic Profiles for 45 rad/s

Figure 6.37: Comparison of Radial Boundary Layer Characteristic Profiles for 45 rad/s
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6.4. VALIDATION RESULTS

Figure 6.38: Comparison of Tangential Boundary Layer Characteristic Profiles for 80 rad/s

Figure 6.39: Comparison of Radial Boundary Layer Characteristic Profiles for 80 rad/s
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CHAPTER 6. NON-INERTIAL SOLVER IMPLEMENTATION AND VALIDATION

The wall shear stress was calculated in the tangential and radial directions. This was used to de-
termine the total skin friction on the rotating plate. The effect of acceleration and deceleration on skin
friction coefficient, and subsequently the skin friction drag, is determined in Chapter 8.

τθwall =µ
∂uθ

∂y

τrwall =µ
∂ur

∂y

τwall =
√

τ2
θwall

+τ2
rwall

C f =
τwall

0.5ρU2∞

(6.31)

Figure 6.40: Wall Shear Stress in the Tangential (left) and Radial (right) Directions

Overall the simulated results compares well with the analytical results and can be used in Chapter
8 as initial conditions for subsequent analyses.
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6.4. VALIDATION RESULTS

Figure 6.41: Skin Friction Coefficients for Steady State Conditions
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CHAPTER 6. NON-INERTIAL SOLVER IMPLEMENTATION AND VALIDATION

6.5 Closure

This chapter reported on the non-inertial solver development and validation test cases related to the
solver functionality. The contributions of this chapter is:

• Development of a non-inertial solver. The non-inertial equations derived in Chapter 3 were
implemented in the open source platform OpenFOAM. The governing equations that was imple-
mented are the conservation of mass, momentum and energy equations respectively:

∂ρ̂

∂t
+∇̂ · ρ̂û= 0

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)−∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î]

+ ∂

∂t
(ρV(t))︸ ︷︷ ︸

Translation

−ρx̂∧Ω̇︸ ︷︷ ︸
Euler

−2ρû∧Ω︸ ︷︷ ︸
Coriolis

+ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

−2ρV(t)∧Ω︸ ︷︷ ︸
Magnus

=−∇̂ p̂

∂ρ̂ĥs

∂t
+ (∇̂ · ρ̂ĥsû)+ ∂ρ̂K̂

∂t
+ (∇̂ · ρ̂K̂û)− ∂ p̂

∂t
−∇̂ · (k̂∇̂T̂)= 0

The source code and case set-up are shown in Appendix B. The resulting code had the properties
of:

◦ Non-inertial momentum equation implementation,

◦ Prescribed motion definitions required,

◦ Operating on a stationary mesh,

◦ Using specialized boundary conditions and

◦ Capability of resolving compressible flow.

• Development of a non-inertial boundary condition. A special boundary condition, ARFFree-
StreamVelocity, was developed that allows for defining the free stream velocity conditions in
the inertial frame. It is a simplified manner of describing the flow boundaries where the inertial
velocity is stationary. The code transforms the boundary values to the non-inertial frame using
the prescribed motion definitions.

• Validation of the non-inertial code. Two validation cases were conducted to asses the function-
ality of the solver; a flat plate and a rotating cone. Numerical results from these analyses were
compared with analytical results from Blasius [37], Monaghan [87] and von Karman [41] respec-
tively. The simulated results compared well with the analytical results, the solver can therefore
be used in the subsequent chapter to analyses the behaviour of the boundary layer under various
accelerating conditions.
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7
Boundary Layer Response in Pure Rotation - Flat Plate Flow

The aim of this chapter is to characterise the response of the laminar boundary layer to arbitrary
translations on a flat plate. This is accomplished through a multitude of simulation results that
are interpreted using the non-inertial boundary layer equations established in previous chapters.

Acceleration of objects takes place over a variety of magnitudes. The lowest orders are represented
by accelerating trains while the highest orders are found in the Large Hadron Collider and accelera-
tions from a Wakefield plasma accelerator (Table 7.1). In this chapter the acceleration and deceleration
parameters have been varied from 70 g to 700 000 g to obtain results over a large spectrum.

Table 7.1: Examples of Accelerating Objects

Order of Magnitude Example
0-1 g Train or car acceleration
1 - 10 g F1 race cars
10 - 100 g Ejection seat of aircraft

100 - 1 000 g Missile in acceleration
1 000 - 10 000 g Artillery projectile
10 000 - 100 000 g Small calibre bullets

> 100 000 g Theoretical Space guns

Acceleration and deceleration are analysed separately. In the first instance the flow is accelerated
from a fully converged, steady state solution at 10 m/s (Re = 3.5×104) to a final velocity of 80 m/s
(Re = 2.81×105). Here this is referred to as the Acceleration Event. Acceleration from 70 g to 70000 g at
increasing orders of 10 is investigated. The second instance is analysed through deceleration from a fully
converged, steady state solution at 80 m/s (Re = 2.81×105) to a final velocity of 10 m/s (Re = 3.5×104).
This is referred to as the Deceleration Event. Decelerations from 70 g to 70000 g at increasing orders
of 10 are investigated. In Table 7.2 , the simulations conducted for an accelerating and decelerating flat
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CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

plate are respectively tabulated.

Table 7.2: Flat Plate Test Matrix
Acceleration Event Deceleration Event

Velocity [m/s] 10 to 80 80 to 10
Reynolds Number 3.5×104 to 2.81×105 2.81×105 to 3.5×104

70g 70g
700g 700g

7 000g 7 000g
70 000g 70 000g
700 000g 700 000g

The acceleration conditions were selected to represent a large operational envelope. The minimum
acceleration, 70g, is typical of ejection seats of aircraft. A lower value was not taken as the focus of
this work is applications in the aero-ballistic environment where higher accelerations are present. The
maximum value, 700 000g, was selected beyond that limit of known applications ensuring proper cov-
erage of the range of applications. The flow conditions were select to ensure that the fluid remains well
within the laminar regime. To this effect the Reynolds number of the flat plate in translation are kept
below 300 000 (Crowe et al. [94]).

7.1 Case Description

The laminar boundary layer on a flat plate in steady motion was discussed in Chapter 6 . Analytical
solutions are available from the literature (Blasius [37], Monaghan [87]) against which the non-inertial
solver was validated. The case analysed in this chapter is depicted in Figure 7.1.

Figure 7.1: Graphical Representation of the Boundary Layer on a Flat Plate
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7.1. CASE DESCRIPTION

The difference between the velocity vectors in the inertial frame and non-inertial frame can be
observed in Figure 7.1. In the inertial frame the plate is in motion with a velocity U in the negative
x-direction. In the near-wall region the boundary layer assumes an absolute velocity ofU in the negative
x-direction - the velocity at which the plate is moving. In the far field the absolute velocity approaches
zero. In the non-inertial frame the perspective of the observer has changed; the plate is stationary and
the fluid is in motion. In the near-wall region the fluid velocity approaches zero on the no-slip wall and
in the far field the fluid velocity approaches U - the relative velocity of the moving plate.

The velocity profile of the boundary layer is a function of the diffusion term in the Navier-Stokes
equations. This originates from the shear stress on the wall which is a function of the velocity gradient
on the wall (Figure 7.2).

Figure 7.2: Wall Shear Stress as a Function of Velocity Gradient

Mathematically, the diffusion term is responsible for the existence of the boundary layer. If this term
is excluded from the equation, the Navier-Stokes equations are reduced to the inviscid Euler equations.
Without viscosity in the flow, there is no boundary layer. The influence of the diffusion term is used in
later sections to explain the behaviour of the boundary layer in accelerating conditions.

∂ρu
∂t

+u
∂ρu
∂x

+v
∂ρu
∂y︸ ︷︷ ︸

Material Derivative

=−∂p
∂x

+ ∂
∂y

(
µ∂u

∂y
)

(7.1)

In order to interpret the response of the boundary layer to acceleration and deceleration, the non-
inertial equations are required. In Chapter 3 the non-inertial momentum equation was derived for arbi-
trary acceleration using the frame description in Figure 7.3.

Relationships between the inertial and orientation preserving frameswere derived inEquation 3.180,
which in turn was used to find an expression for the motion in the non-inertial frame (Equation 3.183).

u′(x′, t)=GMt
u(x, t)=u(x, t)−V(t)+x′∧Ω− [a(t)+Ω̇∧x′+Ω∧ ẋ′]∆t (7.2)
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CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

Figure 7.3: Frame Definitions for Non-Inertial Flow

û(x̂, t)= RM[u(x, t)−V(t)+x′∧Ω− [a(t)+Ω̇∧x′+Ω∧ ẋ′]∆t] (7.3)

Through elimination of terms that are not applicable in this case, the equations above can be used
to determine an expression for this specific case of arbitrary translation:

u′(x′, t)=u(x, t)−V(t) (7.4)

û(x̂, t)= RM[u(x, t)−V(t)] (7.5)

Further simplification, taken into account that no rotation is involved in this case, leads to a relation
for the absolute velocity in terms of the relative frame velocity and non-inertial velocity:

u(x, t)= û(x̂, t)+V(t) (7.6)

The momentum equation for unsteady relative translation can be obtained by eliminating the rota-
tional terms from Equation 3.246:

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)︸ ︷︷ ︸
Material Derivative

=−∇̂p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î]− ∂

∂t
(ρV(t))︸ ︷︷ ︸

Translation

(7.7)

The only fictitious term remaining in the momentum equation is the unsteady frame acceleration. It
acts as a momentum source when in the plate is in acceleration and a momentum sink in decelerating
conditions.
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7.2. RESULTS AND DISCUSSION - ACCELERATION

7.2 Results and Discussion - Acceleration

7.2.1 Velocity Profiles

The accelerating flow analysis was done for the laminar flat plate in accordance with Table 7.2. Compar-
isons were drawn between the non-dimensional velocity profiles at common free stream velocities for
different accelerations. The non-dimensional distance from the wall, η, is determined by Equation 6.21.
Results are indicated in three grouping inFigures 7.4-7.6. The three groupings were selected to represent
the results in a concise manner.

Figure 7.4: Non-Dimensional Velocity Profiles: Translating Flat Plate - Acceleration Grouping I
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CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

Figure 7.5: Non-Dimensional Velocity Profiles: Translating Flat Plate - Acceleration Grouping II

Figure 7.6: Non-Dimensional Velocity Profiles: Translating Flat Plate - Acceleration Grouping III
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7.2. RESULTS AND DISCUSSION - ACCELERATION

Sample results that are representative of the boundary layer responses are shown for explanation
purpose in Figures 7.7 and 7.8.

Figure 7.7: Sample Results and Observations for the Lower Acceleration Cases

In Figure 7.7 it is shown that the 70g acceleration case remains very close to the steady state results.
In the near-wall region the velocity gradient is maintained at steady state values. The boundary layer
thickness is the same since the free-stream velocity is reached at the same value for non-dimensional
height, η, than in the steady state case. In Figure 7.4 it is seen that the profile deviated from the steady
state conditions in the middle boundary layer region between free stream values of 17 m/s and 24 m/s,
but by 38 m/s the deviations subsided and a steady profile was resumed. The diffusion term dominates
the 70g acceleration case to maintain near steady state conditions.

The 700 g acceleration case maintains the steady state profiles in the near-wall regions, but deviates
as the flow approaches the free stream conditions in the far field (Figure 7.7). This leads to a thicker
boundary layer than the steady state where the free-stream velocity value is achieved at a higher non-
dimensional height, η, than in the steady state case. This response is a combination of the diffusion term
dominating in the near-wall region and the material derivative of momentum (all the terms on the left
hand side of the equation) dominating in the far field.

The higher acceleration cases (> 1000 g) is characterised by an increased velocity gradient in
the near wall region resulting in a higher wall shear stress (Figure 7.8). This increase in near-wall
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CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

velocity gradient is directly proportional to the acceleration - higher acceleration causes higher wall
shear stresses. The boundary layer is thicker than in the steady state conditions since the free-stream
condition (a non-dimensional velocity of 1) is reached at a higher non-dimensional distance, η, than in
the steady state case. The flow in all regions is dominated by the momentum of the acceleration.

Figure 7.8: Sample Results and Observations for the Higher Acceleration Cases

The observed behaviour was shown in the non-inertial frame. It can also be explained from the iner-
tial perspective. In the inertial frame the flat plate is initially in a fully developed steady state condition.
The plate is moving while the far field flow is standing still. The velocity profile has an identical shape
to the velocity profile in the non-inertial frame. However, the velocity at the wall has the value of the
non-inertial free stream value. The far-field velocity in the inertial frame is zero. As the plate accelerates
the velocity at the wall increases rapidly. Since the motion is unsteady, the velocity gradient near the
wall becomes steeper. The velocity in the free stream remains at zero. The thickening of the boundary
layer occurs due to the momentum effects dominating the viscous effect. Furthermore, the time scale of
the event is too high for the viscous effects to dominate the flow. Subsequently, the viscous effects are
not able to adjust the boundary layer flow to assume the steady state profile in these changing conditions.

The observed results can further be interpreted mathematically using the boundary layer equations
derived in Chapter 5. In Equations 5.75 and 5.76 the Cartesian component from the non-inertial mo-
mentum equations were derived for arbitrary accelerating conditions.
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7.2. RESULTS AND DISCUSSION - ACCELERATION

x-momentum
∂ρ̂û
∂t

+ û
∂ρ̂û
∂x̂

+ v̂
∂ρ̂û
∂ ŷ

+ ŵ
∂ρ̂û
∂ẑ︸ ︷︷ ︸

Material Derivative

=−∂ p̂
∂x̂

+ ∂

∂ ŷ
(
µ̂
∂û
∂ ŷ

)+2ρ̂v̂ω3 −2ρ̂ŵω2 + ρ̂ x̂(ω3
2 +ω2

2)

− ρ̂ ŷω1ω2 − ρ̂ ẑω1ω3 + ρ̂ ŷ ˆ̇ω3 − ρ̂ ẑ ˆ̇ω2 + ρ̂ ˆ̇yω3 − ρ̂ ˆ̇zω2

+2ρ̂Vyω3 −2ρ̂Vzω2 − ∂ρ̂Vx

∂t

(7.8)

y-momentum

0=−∂p̂
∂ ŷ

+2ρ̂ŵω1 −2ρ̂ûω3 + ρ̂ ŷ(ω3
2 +ω1

2)− ρ̂ x̂ω1ω2 − ρ̂ ẑω2ω3 + ρ̂ ẑ ˆ̇ω1 − ρ̂ x̂ ˆ̇ω3 + ρ̂ ˆ̇zω1 − ρ̂ ˆ̇xω3

+2ρ̂Vzω1 −2ρ̂Vxω3 −
∂ρ̂Vy

∂t
(7.9)

The equations above can be simplified by eliminating the terms that is not relevant to flat plate
translation in the x-direction. All terms associated with rotation and translational acceleration in the
y-direction is removed from the equation, resulting in the following set of boundary layer equations:
x-momentum

∂ρ̂û
∂t

+ û
∂ρ̂û
∂x̂

+ v̂
∂ρ̂û
∂ ŷ

=−∂p̂
∂x̂

+ ∂

∂ ŷ
(
µ̂
∂û
∂ ŷ

)− ∂ρ̂Vx

∂t
(7.10)

y-momentum
0=−∂p̂

∂ ŷ
(7.11)

The equation set above is responsible for the observed behaviour and from this a mechanism can
be devised to explain the boundary layer response (Figure 7.9).

Figure 7.9: Boundary Layer Profiles for Steady and Accelerating Conditions

In Equation 7.6 the absolute and relative velocities were related to each other for this case.

u(x, t)= û(x̂, t)+V(t) (7.12)
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CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

The meaning of this relationship become clear when the component form of the inertial and non-
inertial x-momentum equations are compared. An increase in the relative frame velocity (velocity of
the plate in the negative x-direction) results in an increase in the non-inertial velocity and subsequently
the absolute velocity.

• Absolute acceleration

∂ρu
∂t +u

∂ρu
∂x

+v
∂ρu
∂y

=−∂p
∂x

+ ∂

∂y
(
µ
∂u
∂y

)

∂ρ̂û
∂t + û

∂ρ̂û
∂x̂

+ v̂
∂ρ̂û
∂ ŷ

=−∂ p̂
∂x̂

+ ∂

∂ ŷ
(
µ̂
∂û
∂ ŷ

)− ∂ρ̂Vx
∂t

• Non-inertial acceleration

• Frame acceleration prescribed

The prescribed frame velocity, here acting in the negative x-direction, acts as a source of momentum.
An increase in this term on the right hand side of the momentum equation, results in an overall increase
in the material derivative on the left hand side of the equation.

∂ρ̂û
∂t + û ∂ρ̂û

∂x̂ + v̂ ∂ρ̂û
∂ ŷ =−∂ p̂

∂x̂
+ ∂

∂ ŷ
(
µ̂
∂û
∂ ŷ

)− ∂ρ̂Vx
∂t

An increase in the material derivative results in an increase in û, which in term results in an increase
in the wall velocity gradient (Figure 7.10)which is the observed effect in the accelerating boundary layer
profile.

∂ρ̂û
∂t + û ∂ρ̂û

∂x̂ + v̂ ∂ρ̂û
∂ ŷ =−∂ p̂

∂x̂
+ ∂

∂ ŷ
µ̂∂û

∂ ŷ − ∂ρ̂Vx

∂t

The strength of this mechanism is dependant on the magnitude of the frame acceleration. Three dis-
tinct acceleration regions are identified in the translation case; a viscous dominant, a viscous-momentum
interaction and a momentum dominant region.

• Region I - Viscous Dominant. The 70 g case falls within this region. There is almost no diver-
gence from the steady state non-dimensional result (Monaghan [87]). The viscous effects dom-
inate the boundary layer flow and any disturbances in the boundary layer is neutralized by the
much larger viscous forces. This can be seen the Grouping I (Figure 7.4) results at 20.5 m/s where
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7.2. RESULTS AND DISCUSSION - ACCELERATION

Figure 7.10: Increased Wall Velocity Gradient for Accelerating Conditions

the disturbance occurs, the upstream propagation at 24 m/s. At Grouping II (Figure 7.5) 38 m/s
the disturbance has been dissipated and the profile is on the steady state baseline again. In this
region the rate of change in velocity due to acceleration is small enough to allow the flow the
adjust to steady state conditions. The induced momentum effects, due to acceleration, is not high
enough to result in changes in the boundary layer properties.

Acceleration Response - Type I:

∂ρ̂û
∂t

+ û
∂ρ̂û
∂x̂

+ v̂
∂ρ̂û
∂ ŷ

=−∂p̂
∂x̂

+ ∂
∂ ŷ µ̂

∂û
∂ ŷ − ∂ρ̂Vx

∂t

• Region II - Viscous-Momentum Interaction. In the near wall region the viscous effects origi-
nates from the wall and dominates the flow close to the wall. This effect becomes smaller further
away from the wall. In the free-stream the viscous effects are negligible and the momentum ef-
fects dominate. In region II, the time scales of the viscous and momentum forces in the boundary
layer are approximately equal leading the two effects being of comparable order. This causes dis-
turbance of the boundary layer since neither force is dominant. The 700 g case falls within this
region. The region (for this specific case) extends from approximately 500 g - 1100 g. It is char-
acterized by unsteady disturbance propagation that originates from the wall which causes erratic
behaviour in the boundary layer.

Acceleration Response - Type II:

∂ρ̂û
∂t + û ∂ρ̂û

∂x̂ + v̂ ∂ρ̂û
∂ ŷ =−∂ p̂

∂x̂
+ ∂

∂ ŷ µ̂
∂û
∂ ŷ − ∂ρ̂Vx

∂t

193

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

• Region III - Momentum Dominant. The three higher acceleration cases falls within this region
- 7000 g, 70000 g and 700000 g. The region is characterized by a sharp increase in the near-wall
velocity gradient that is directly proportional to the acceleration. The boundary layer velocity
profile resembles that of a fully developed, turbulent profile with the steep gradient that becomes
almost parallel with the free stream in the regions close to the boundary layer edge. An increase in
boundary layer height is observed. The general form of the profiles are comparable with similar
studies in literature (Back [28], Mager [97]).

Acceleration Response - Type III:

∂ρ̂û
∂t + û ∂ρ̂û

∂x̂ + v̂ ∂ρ̂û
∂ ŷ =−∂p̂

∂x̂
+ ∂

∂ ŷ
µ̂
∂û
∂ ŷ

− ∂ρ̂Vx

∂t

The accelerating results is grouped in the three regions as shown in (Figure 7.11).

Figure 7.11: Acceleration Response Regions by Type in Simulation Results
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7.2. RESULTS AND DISCUSSION - ACCELERATION

7.2.2 Boundary Layer Parameters

The boundary layer properties that are considered here have been shown in Figure 6.1:

Figure 7.12: Physical Interpretation of the Boundary Layer Parameters

The effect of acceleration on the boundary layer thickness have been discussed in the previous
section along with the boundary layer shape. The definitions of the displacement thickness, δ∗ and
the momentum thickness, θ, follow directly from the non-dimensional boundary layer profile, û

U∞
. The

mechanism described in the previous section, that effects the boundary layer profile, therefore influences
these parameters as well.

δ∗ =
∫ y∗→∞

0

(
1− û

U∞

)
dy (7.13)

θ =
∫ y∗→∞

0

û
U∞

(
1− û

U∞

)
dy (7.14)

The displacement and momentum thicknesses are determined by integrating the area under the rel-
evant curve as shown below:

Figure 7.13: Boundary Layer Parameters on a Flat Plate
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CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

Comparisons of the displacement thickness for various accelerations are shown in Figures 7.14 - 7.17.

Figure 7.14: Displacement Thickness Comparison for the Accelerating Flat Plate

Figure 7.15: Displacement Thickness Derivatives Comparison for the Accelerating Flat Plate
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7.2. RESULTS AND DISCUSSION - ACCELERATION

Figure 7.16: Displacement Thickness Comparison at x = 0.05 m in Accelerating Conditions

Figure 7.17: Displacement Thickness Comparison at x = 0.2 m in Accelerating Conditions
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CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

Since the boundary layer properties are directly linked to the boundary layer profile, the behaviour
of the parameters can be grouped in the same three regions as identified in the previous section.
Region I - Viscous Dominant Region - has a displacement thickness that is on average monotonically
decreasing with increased free-stream velocity. A slight disturbance in the early stages of the acceler-
ation event, at approximately 20 m/s to 30 m/s free-stream velocity, is observed. It was noted in the
previous section that the velocity profile deviated from the steady state conditions between free stream
values of 17 m/s and 24 m/s. At a velocity of 38 m/s the deviations subsided and a steady profile was
resumed. This was due to viscous-momentum force interactions and is the origin of the disturbance.
The first derivative of the displacement thickness indicates that this disturbance is time related. The
local maximum and minimum values of displacement thickness, between 17 m/s and 38 m/s, occurs
consecutively in time for successive points on the plate (Figure 7.15). The disturbance dissipates after
50 m/s. The first derivative approximates zero near the completion of the event at 80 m/s. This is an
indication that the displacement thickness approaches an asymptotic value. The second derivative has
an inflection point at the start of the acceleration event. This is a response to the sudden acceleration of
flow in a steady condition, similar to the mass flow conditions of a sudden start case. Sudden accelera-
tion is here defined as the initial response of the flow in the first instance of the acceleration event. This
region showed no plate edge effects in the boundary layer.

Region II - Viscous-Momentum Interaction Region - is characterised by erratic behaviour of the
displacement thickness. Disturbances are noted in the first and second derivative. On average the first
derivative of the displacement thickness, Figures 7.16 and 7.17, approximates zero at the end of the
event. Although there are disturbances in the displacement thickness value near 80 m/s, it approximates
an averaged asymptotic value. The inflection point in the second derivative is larger than the other
acceleration case. This indicates that in this region the boundary layer is sensitive to sudden acceleration
and responds accordingly. Edge disturbances of the plate were not observed in this region.

In Region III - Momentum Dominant Region - the displacement thickness is monotonically de-
creasing with increasing free-stream velocity. There are no observed disturbances in the displacement
thickness in this region. The first derivative is monotonically increasing. It approximates zero, which
indicates that the displacement thickness approaches an asymptote during the acceleration event. An
inflection point is present in the second derivative. The value of the inflection point is equal between
the 7000g, 70000g and 700000g cases. The displacement thickness inflection point is a measure of the
response of the mass flow to sudden acceleration. Here it indicates that the mass flow response to sud-
den acceleration from a steady state condition is independent from the strength of the acceleration. No
plate edge effects are observed in this region.
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7.2. RESULTS AND DISCUSSION - ACCELERATION

The momentum thickness responds in a similar manner than the displacement thickness over the
three acceleration regions. The results are shown in Figures 7.18-7.21.

Figure 7.18: Momentum Thickness Comparison for the Accelerating Flat Plate

Figure 7.19: Momentum Thickness Derivatives Comparison for the Accelerating Flat Plate
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CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

Figure 7.20: Momentum Thickness Comparison at x = 0.05 m in Accelerating Conditions

Figure 7.21: Momentum Thickness Comparison at x = 0.2 m in Accelerating Conditions
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7.2. RESULTS AND DISCUSSION - ACCELERATION

In Region I - Viscous Dominant Region - the average momentum thickness is monotonically de-
creasing with increased free-stream velocity. The same disturbance that was noted in the displacement
thickness between 17 m/s and 38 m/s is observed here. This disturbance is also time dependant as shown
in the consecutive maxima in the first derivative Figure 7.20. The momentum thickness approaches an
asymptote as indicated by the first derivative approximating zero at the end of the event. An small inflec-
tion point is observed in the second derivative. This is an indication of the response of the momentum
in the boundary layer to sudden acceleration. Edge effects of the plate is not observed in this region.

Region II - Viscous-Momentum Interaction Region - shows erratic behaviour in the momentum
thickness. The average first and second derivative approaches zero, but with visible disturbances in
the result. This is especially seen at the end of the acceleration event. No momentum edge effects are
observed in this region.

A slight increase in the momentum thickness at the beginning of the acceleration event is present in
Region III - Momentum Dominant Region. After this increase the momentum thickness monotoni-
cally decreases without disturbances. The first derivative shows a minimum value in the early stages of
the acceleration event. After this, it monotonically increases and approximates zero near the end of the
event. This indicates that the momentum thickness approaches an asymptotic value. An inflection point
is noted in the second derivative. This point has the same value for all the Region III cases. Furthermore,
the momentum thickness in this region varies very little between all the acceleration cases that fall in
this category. The momentum in the boundary layer shows minimal response to the initial stages of
sudden acceleration from steady state conditions. In this region there are no plate edge effects on the
momentum thickness.

The shape factor is calculated from the displacement and momentum thickness parameters.

H = δ∗

θ
(7.15)

The results are shown in Figures 7.22-7.24.
The Region I - Viscous Dominant Region - starts with the steady state value of approximately

2.68 as determined in the previous chapter. In the initial stages of the acceleration event the shape
factor value decreases to a minimum. After the minimum was reached, the shape factor increases and
approximates the steady state shape factor value. The first derivative approximates zero near the end of
the event. Therefore, the shape factor approaches an asymptotic value at the end of the acceleration event.
The disturbances due to viscous-momentum interaction are present in the second derivative. These are
damped out as was seen in the displacement and momentum thickness graphs.

Region II - Viscous-Momentum Interaction Region - shape factor graphs displays similar be-
haviour as Region I. The value starts at the steady state condition and reduces to a minimum value. The
value then increases and recovers a percentage of the steady state value. The first derivative approaches
zero, indicating that the shape factor approximates an asymptotic value. The second derivative shows
disturbances near the plate edge at the end of the event. This indicates that distance from the plate edge
affects the shape factor.
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CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

Figure 7.22: Shape Factor Comparison for the Accelerating Flat Plate

Figure 7.23: Shape Factor Derivative Comparison for the Accelerating Flat Plate

In Region III - Momentum Dominant - the 7000g case shape factor responds differently to ac-
celeration than the other two cases in this category. At the location close to the plate edge, the 7000g
case has a similar response to Region I and Region II. Further away form the plate edge, the response is
similar to the higher acceleration cases. The shape factors of the 70000g and 700000g cases are mono-
tonically decreasing. There is no turning point in the result and no attempt to recover the steady state
value. The first derivative shows that an asymptotic value is approached. There are no disturbances in
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7.2. RESULTS AND DISCUSSION - ACCELERATION

the second derivative.
In Figure 7.24 a comparison between the shape factors at various points on the plate indicate that

the shape factor is dependant on position on the plate. The value at the end of the event is higher close
to the plate edge.

The results of the displacement thickness, momentum thickness and shape factor indicates that
steady acceleration flow can be equated to developing flow. The flow approaches asymptotic values
if the steady acceleration condition is maintained for a period of time. The shape factor is dependant on
both the size of the acceleration and the position on the plate.

Figure 7.24: Shape Factor Comparison at Various Plate Positions for the Accelerating Plate
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CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

7.2.3 Skin Friction Coefficients

The skin friction coefficient is a function of the wall shear stress, the fluid density and the free-steam
velocity. It is calculated from the wall shear stress results obtained from the simulation. The skin friction
drag is directly proportional to the skin friction coefficient. Skin friction plots give an indication of the
drag behaviour of the plate during acceleration. Results for the skin friction coefficient plotted against
Reynold number are shown in Figures 7.25 and 7.26.

τwall =µ
∂û
∂y

∣∣∣
wall

C f =
τwall

0.5ρU2∞

Fdrag = C f
ρU2∞

2
Awetted

(7.16)

Figure 7.25: Comparison between Skin Friction Coefficients at Various Free-StreamReynolds Numbers
for Accelerating Conditions

The behaviour of the skin friction coefficient is the same across all regions of the flow. An initial
increase is observed and a maximum value reached. The skin friction coefficient is then decreased to a
value lower then the value at commencement of the acceleration event. The first derivative approximates
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7.2. RESULTS AND DISCUSSION - ACCELERATION

zero at the end of the event, indicating that the skin friction coefficient approaches an asymptotic value
(Figure 7.27). The second derivative shows an inflection point at commencement of the event. This is a
response to the sudden acceleration of the flat plate. In accelerating flows, from steady state conditions,
the skin friction drag have a similar response as the skin friction coefficient. The response is an initial
increase in drag. A maximum value is reached early in the event. This maximum drag is dependant on
acceleration strength - stronger accelerations lead to higher drag forces. The drag force is reduced to
a value lower than the initial starting condition provided that steady acceleration is maintained for a
sufficient time duration.

Figure 7.26: Comparison between Skin Friction Coefficients at Various Plate Positions for Accelerating
Conditions

Figure 7.27: First and Second Derivatives of the Skin Friction Coefficients in Accelerating Conditions
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CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

7.3 Results and Discussion - Deceleration

7.3.1 Velocity Profiles

The decelerating flow analysis was done according to Table 7.2. Comparisons were drawn between
the non-dimensional velocity profiles at common free stream velocities for different decelerations. The
results are indicated in three grouping in Figures 7.28-7.30. The groupings were selected to be repre-
sentative of the total result and for explanation purposes.

Figure 7.28: Non-Dimensional Velocity Profiles: Translating Flat Plate - Deceleration Grouping I
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7.3. RESULTS AND DISCUSSION - DECELERATION

Figure 7.29: Non-Dimensional Velocity Profiles: Translating Flat Plate - Deceleration Grouping II

Figure 7.30: Non-Dimensional Velocity Profiles: Translating Flat Plate - Deceleration Grouping III
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CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

Sample results that are representative of the boundary layer responses are shown for explanation
purpose in Figures 7.31 and 7.32.

The 70 g deceleration case remains equal to steady state conditions for the greatest part of the
simulations Figure 7.31 . There is a slight difference in the near-wall region, but the flow is considered
to be marginally dominated by the viscosity.

Figure 7.31: Sample Results and Observations for the Lower Deceleration Cases

Separation is observed in the near-wall region of the 700 g case (Figure 7.31). In the far field the
boundary layer is slightly thinner. The non-dimensional free-stream velocity is reached at a slightly
lower non-dimensional distance, η, than in the steady state solution. This is due to momentum effects
further away from the wall.

In the higher deceleration cases separation is prevalent. The flow reversal becomes stronger with
increasing deceleration (Figure 7.32). The non-dimensional velocity approximates one at a much lower
non-dimensional distance,η. This indicates that the boundary layer is significantly thinner in deceler-
ation than in the steady state. The flow is dominated by the momentum which originates from flow
deceleration.

The result in this section are comparable with a study done by Back [28]. He obtained similar
profiles by investigating the effect of inducing pressure changes in the boundary layer. In the Navier-
Stokes equations, changes in deceleration have a similar effect on the boundary layer since it is also
located on the right hand side of Equation 7.8. The phenomenon can be explained in the inertial frame.
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7.3. RESULTS AND DISCUSSION - DECELERATION

Figure 7.32: Sample Results and Observations for the Higher Deceleration Cases

The plate wall has a certain velocity and the bulk flow is stationary. The velocity profile extends from the
high velocity to zero. Now the plate is decelerated, for instance from 80 m/s to 70 m/s. The velocity at
the wall are then 70 m/s, but due to the historic profile at 80 m/s there is a certain amount of momentum
and energy in the boundary layer. This momentum and energy is subjected to the laws of conservation
of momentum and energy. If the deceleration is low enough (in this case below 70g) the boundary layer
have time to adjust to the changing conditions and the "excess" momentum and energy diffuse into the
bulk flow. However, if the deceleration is high enough (in this case above 70g) there is not time for
diffusion to take place and the boundary layer separates. The mechanism for this is further discussed in
the paragraphs below.

Equations 5.75 and 5.76 was used to determined the boundary layer equations that pertain to flow
in arbitrary translation. The same equations are relevant here.
x-momentum

∂ρ̂û
∂t

+ û
∂ρ̂û
∂x̂

+ v̂
∂ρ̂û
∂ ŷ

=−∂p̂
∂x̂

+ ∂

∂ ŷ
(
µ̂
∂û
∂ ŷ

)− ∂ρ̂Vx

∂t
(7.17)

y-momentum
0=−∂p̂

∂ ŷ
(7.18)

In this case however, the non-inertial terms on the right hand side of the equation becomes a sink
which causes the separation of the flow (Figure 7.33).

209

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

Figure 7.33: Boundary Layer Profiles for Steady and Deceleration Conditions

• Absolute Deceleration

∂ρu
∂t +u

∂ρu
∂x

+v
∂ρu
∂y

=−∂p
∂x

+ ∂

∂y
(
µ
∂u
∂y

)

∂ρ̂û
∂t + û

∂ρ̂û
∂x̂

+ v̂
∂ρ̂û
∂ ŷ

=−∂ p̂
∂x̂

+ ∂

∂ ŷ
(
µ̂
∂û
∂ ŷ

)− ∂ρ̂Vx
∂t

• Relative Deceleration

• Frame Deceleration prescribed

The deceleration of the relative frame causes a momentum sink on the right hand side of the mo-
mentum equation. This leads to a decrease on the left hand side in the material derivative.

∂ρ̂û
∂t + û ∂ρ̂û

∂x̂ + v̂ ∂ρ̂û
∂ ŷ =−∂ p̂

∂x̂
+ ∂

∂ ŷ
(
µ̂
∂û
∂ ŷ

)− ∂ρ̂Vx
∂t

The decrease of the material derivative lead to a decrease in û, which in turn causes a decrease in
the velocity gradient at the wall.

∂ρ̂û
∂t + û ∂ρ̂û

∂x̂ + v̂ ∂ρ̂û
∂ ŷ =−∂p̂

∂x̂
+ ∂

∂ ŷ
µ̂∂û

∂ ŷ − ∂ρ̂Vx

∂t
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7.3. RESULTS AND DISCUSSION - DECELERATION

A decrease in the near-wall velocity gradient causes and increase in the pressure gradient, since the
terms have opposite signs. The pressure gradient increases to such an extent that an adverse pressure
gradient forms and the flow separates.

∂ρ̂û
∂t

+ û
∂ρ̂û
∂x̂

+ v̂
∂ρ̂û
∂ ŷ

=− ∂p̂
∂x̂ + ∂

∂ ŷ
µ̂∂û

∂ ŷ − ∂ρ̂Vx

∂t

Figure 7.34: Adverse Pressure Gradient for Decelerating Conditions

The same three distinct regions that were identified in the accelerating case, presented itself here
(Figure 7.35):

• Region I - Viscous Dominant. The 70 g case falls within this region. In comparison with the
steady state non-dimensional result, there is no observed difference in the profile. The time scale
at which the event occurs is low enough to allow time for the viscous forces in the boundary layer
to adjust to the changes and keep the steady state profile.

Deceleration Reaction - Type I:

∂ρ̂û
∂t

+ û
∂ρ̂û
∂x̂

+ v̂
∂ρ̂û
∂ ŷ

=−∂p̂
∂x̂

+ ∂
∂ ŷ µ̂

∂û
∂ ŷ − ∂ρ̂Vx

∂t

• Region II - Viscous-Momentum Interaction. The 700 g deceleration case falls within this region.
The region is characterized by disturbances in the boundary layer due to the interaction between
the viscous and momentum effects. Separation of the boundary layer occurs almost immediately
and are directly proportional to the deceleration. In the near-wall regions the momentum effects
dominates, while close to the boundary layer edge, the viscous effects dominate. In the upper
regions of the boundary layer the profile conforms to the steady state result.
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CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

Deceleration Response - Type II:

∂ρ̂û
∂t + û ∂ρ̂û

∂x̂ + v̂ ∂ρ̂û
∂ ŷ =−∂p̂

∂x̂
+ ∂

∂ ŷ µ̂
∂û
∂ ŷ − ∂ρ̂Vx

∂t

• Region III - Momentum Dominant. The three higher deceleration cases falls within this region.
The momentum effects due to deceleration dominates here. Separation occurs very early and the
boundary layer remains separated thought out the plate. The velocity gradient close to the wall is
very steep and directly proportional to the deceleration. The boundary layer height is decreased
with almost the same distance for all the cases in this region. Similarity, that depends on the time
scales involved, is present in the region.

Deceleration Response - Type III:

∂ρ̂û
∂t + û ∂ρ̂û

∂x̂ + v̂ ∂ρ̂û
∂ ŷ =−∂p̂

∂x̂
+ ∂

∂ ŷ
µ̂
∂û
∂ ŷ

− ∂ρ̂Vx

∂t

Figure 7.35: Acceleration Response Regions by Type in Simulation Results
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7.3. RESULTS AND DISCUSSION - DECELERATION

7.3.2 Boundary Layer Parameters

The boundary layer parameters were determined here in the same manner as discussed in Section 7.2.2.
The results of the displacement thickness for a decelerating plate are shown in Figures 7.36-7.39.

Figure 7.36: Displacement Thickness Comparison for the Decelerating Flat Plate

Figure 7.37: Displacement Thickness Comparison for the Decelerating Flat Plate
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CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

Figure 7.38: Displacement Thickness Comparison at x = 0.05 m in Decelerating Conditions

Figure 7.39: Displacement Thickness Comparison at x = 0.2 m in Decelerating Conditions
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7.3. RESULTS AND DISCUSSION - DECELERATION

The plots indicate that all three regions, as previously defined, react similarly to the deceleration
event. The displacement thickness increases in decreasing free-stream velocity. The displaced value is
directly proportional to deceleration strength. The fist derivative is divergent, indicating that the dis-
placement value do not approximate an asymptotic value. It continues to increase in decelerating flow.
The second derivative shows an inflection point near the end of the deceleration event. This is in con-
trast to the acceleration case where the inflection point occurred at the beginning of the acceleration
event. The inflection point here is a result of a hysteresis-like response of the boundary layer mass flow
to deceleration and is dependant on the strength of deceleration.

The momentum thickness plots are displayed in Figures 7.40-7.43. The momentum thickness for all
three regions, as previously defined, responds in a similar manner to deceleration. The momentum thick-
ness diverges with decreasing free-stream velocity. This is confirmed with the diverging first derivative.
An inflection point is shown in the second derivative. As in the displacement thickness, this is a hys-
teresis like response to deceleration of the plate.

Figure 7.40: Momentum Thickness Comparison for the Decelerating Flat Plate
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CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

Figure 7.41: Momentum Thickness Comparison for the Decelerating Flat Plate

Figure 7.42: Momentum Thickness Comparison at x = 0.05 m in Decelerating Conditions
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7.3. RESULTS AND DISCUSSION - DECELERATION

Figure 7.43: Momentum Thickness Comparison at x = 0.2 m in Decelerating Conditions

The shape factor was determined from the results above. The response of the shape factor to decel-
eration is depicted in Figures 7.44-7.46.

The shape factors of all three previously defined regions response to deceleration in the same man-
ner. At commencement of the deceleration event, the shape factor is at the steady state value. It is then
increased to a point where a discontinuity is present. The shape factor value approaches the asymptote
on the left hand side of the discontinuity. On the right hand side of the discontinuity, the shape factor
approaches the asymptote with a negative value. It continue to increase, whilst remaining negative until
the end of the event. The occurrence of the discontinuity is dependant on the strength of the decelera-
tion. In higher deceleration cases, the onset of the discontinuity is earlier than for lower decelerations.
It occurs at all positions on the flat plate. This behaviour is a result of the flow reversal. Flow reversal
takes place at shape factor values between 2.6 and 2.8 for steady state conditions. From the previous
subsection it was observed that the flow in this case separates very early in the deceleration event. The
subsequent strength of the reversal causes a negative momentum thickness, which is where the disconti-
nuity manifests. A negative shape factor value is undefined in the literature both for computational and
numerical work. This condition is not physically possible. A negative shape factor can be define here as
a flow with abnormally strong reversal to the extent that the momentum thickness is negative. Further-
more, it is a flow characterised by the resultant momentum in the boundary layer being in the reversed
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CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

flow direction. However, the occurrence of the discontinuity provides an indication of the strength of
the reversal. It subsequently also provides the point where the momentum in the reversed component
of the boundary layer, is equal to the momentum that has not yet reversed.

Figure 7.44: Shape Factor Comparison for the Decelerating Flat Plate

Figure 7.45: Comparison of Shape Factor Discontinuities and Momentum Thickness for the Decelerat-
ing Flat Plate
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7.3. RESULTS AND DISCUSSION - DECELERATION

Figure 7.46: Shape Factor Comparison at Various Plate Positions in Decelerating Conditions
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CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

7.3.3 Skin Friction Coefficients

The skin friction coefficients were determined in the same manner as for the accelerating cases.

τwall =µ
∂û
∂y

∣∣∣
wall

C f =
τwall

0.5ρU2∞

Fdrag = C f
ρU2∞

2
Awetted

(7.19)

The results are shown in Figures 7.47-7.49.

Figure 7.47: Comparison between Skin Friction Coefficients at Various Free-StreamReynolds Numbers
for Decelerating Conditions

The skin friction coefficients associated with the three respective regions, reacts in a similar manner
to decelerating conditions. At high Reynolds numbers, at commencement of the deceleration event, the
skin friction is equal to the steady state value. The value for skin friction increases rapidly as the even
progresses. The first derivative is divergent, which indicates that the skin friction coefficient continues
to increase (Figure 7.49). The value are directly proportional to deceleration strength. The stronger the
deceleration is the higher the skin friction values (and subsequently the drag force) are on the plate.
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7.3. RESULTS AND DISCUSSION - DECELERATION

Figure 7.48: Comparison between Skin Friction Coefficients at Various Plate Positions for Decelerating
Conditions

Figure 7.49: First and Second Derivatives of the Skin Friction Coefficients in Decelerating Conditions
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CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

7.4 Closure

This chapter aimed a characterising the response of the laminar boundary layer to arbitrary translation.
The most important result are as follows:

1) The definition of three type of responses to arbitrary translation for a flat plate.
2) The proposal of a mechanism proving an explanation for response types.
3) The characterisation of the response of the shape factor to arbitrary translation.
4) The characterisation of the response of the skin friction coefficient to arbitrary translation.

Three types of responses to changing conditions in the relative velocity have been identified as shown
in Figure 7.50.

Figure 7.50: Response Types for Accelerating and Decelerating Conditions on a Flat Plate

• Response Type I, which is viscous dominant. The time scale at which the event occurs is low
enough to allow time for the viscous forces in the boundary layer to adjust to the changes and
keep the steady state profile.

• Response Type II, where the time scales of the viscous and momentum forces are of the same
order. Certain regions of the boundary layer are dominated by viscosity and others by momentum.
In acceleration the viscosity dominates in the near-wall region and momentum in the far field
regions. In deceleration momentum dominates in the near-wall region and viscosity in the far
field.

• Response Type III, which is dominated by momentum. The time scale at which the event occurs
is too high for viscous forces in the boundary layer to adjust to the changes and keep the steady
state profile. In deceleration the near-wall velocity profile increases with increasing deceleration.
In deceleration separation occurs at a result of momentum changes in the flow.
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7.4. CLOSURE

The generalised behaviour of a flat plate subjected to arbitrary translation is depicted in Figure 7.51.
Accelerating velocity profiles has steeper gradients in the near wall region and a lightly thicker bound-
ary layer when compared to the steady state result. The gradient are proportional to the acceleration
parameter. Decelerating velocity profiles indicates that flow reversal takes place (which is proportional
to the deceleration) and the boundary layer are thinner than calculated in the steady state case.

Figure 7.51: Boundary Layer Profiles for Steady, Acceleration and Deceleration Conditions on a Flat
Plate

Amechanismwas proposed for the response of the boundary layer using the boundary layer equation
below. The mechanism is depicted in Figure 7.52.

Figure 7.52: Accelerating and Decelerating Mechanisms of Boundary Layer Response on a Flat Plate

∂ρ̂û
∂t

+ û
∂ρ̂û
∂x̂

+ v̂
∂ρ̂û
∂ ŷ

=− ∂p̂
∂x̂ + ∂

∂ ŷ
µ̂∂û

∂ ŷ − ∂ρ̂Vx

∂t
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CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

In acceleration the relative frame acceleration term becomes a momentum source. An increase in
momentum on the right hand side of the equation leads to an increase in the material derivative on the
left hand side of the equation. This increase results in an increase in velocity u. In turn it causes the
velocity gradient at the wall to increase. This is the effect observed in the simulation results.

The opposite occurs in deceleration where the relative frame acceleration term becomes a momen-
tum sink. A decrease in momentum on the right hand side of the equation leads to a decrease in the
material derivative on the left hand side of the equation. This decrease results in a decrease in velocity
u. In turn it causes the velocity gradient at the wall to decrease. The pressure gradient has an opposite
sign to the diffusion term and increases to such an extent that an adverse pressure gradient form. This
results in flow separation as observed in the simulation results.

Figure 7.53 is presented to depict the variability in the boundary layer profiles for different starting
and acceleration conditions. The flow history has an influence on the boundary layer behaviour and
must be considered in aerodynamic studies.

Figure 7.53: Variability in Boundary Layer Profiles for Different Starting and Acceleration Conditions
on a Flat Plate

The response of the shape factor to acceleration and decelerating conditions have been determined.
A graph that characterises the critical shape factor versus Reynolds numbers are available from the
literature (Wazzan et al. [78]). This is limited to steady flow conditions, but it still gives a good indication
of where flow separation can be expected (Figure 7.54).

For the conditions analysed here, the flow is expected to separate for shape factor between 2.6 and
2.8. The general tendency of the shape factor is to decrease in acceleration and increase in deceleration
(Figure 7.55).
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7.4. CLOSURE

Figure 7.54: Shape Factor Changes for Accelerating and Decelerating Flow Mapped on the Graph of
Wazzan et al. [78]

The responses can be further broken down according to response type, as discussed in the body
of this chapter. There exists a limit of acceleration strength that is related to the shape factor response.
Below this limit the shape factor attempts to recover the initial value as the event progresses. At acceler-
ation above the limit the shape factor decreases and approximate a low asymptotic value. In deceleration
there is a discontinuity in the deceleration event. This marks the point where the shape factor becomes
negative due to the negative value of the momentum thickness. At this point the resultant momentum
in the boundary layer points in the direction of the reverse flow.

The response of the skin friction coefficient to arbitrary translation is shown in Figure 7.56. In
acceleration the skin friction coefficient initial increases, reaches a maximum and then decrease at the
event continues. It approximates an asymptotic value near the end of the event. Deceleration increase
the skin friction coefficient significantly. The response is divergent and continues for the duration of
the event. The skin friction drag is directly proportional to the skin friction coefficient and thus have a
similar response to arbitrary translation.
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Figure 7.55: Results of the Shape Factor Response for Acceleration (left) and Deceleration (Right)
Events on a Flat Plate

Figure 7.56: Result of the Skin Friction Coefficient Response to Arbitrary Translation on a Flat Plate

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



C
h
a
p
te

r

8
Boundary Layer Response in Pure Rotation - Rotating Disk Flow

This chapter investigates the response of a laminar boundary layer on a rotating disk to changes in
angular velocity. Arbitrary angular acceleration occurs over a range of magnitudes for various
applications. Examples include spin stabilize projectiles, missiles conducting high acceleration

manoeuvres, spin up or spin down of turbo-machines, ship propellers, helicopter blades and wind tur-
bines to name a few. The highest angular acceleration is found in ultra-centrifuges where accelerations
of up to 1 000 000 g is possible. The angular acceleration and deceleration in this case is varied from
70g to 700 000g. A wide range a values is covered in the same manner as done in the previous chapter.

The accelerating cases are initialized from a steady state solution at 10 rad/s (Rerot = 150) and
accelerated to 80 rad/s (Rerot = 424.3). Five acceleration cases are done with constant acceleration
from 70g to 700 000g at increments of 10. Similarly, the deceleration cases commence from a steady
state solution or 80 rad/s (Rerot = 424.3) and decelerated to 10 rad/s (Rerot = 150) with decelerations
as shown below in Table 8.1.

Table 8.1: Rotating Disk Test Matrix

Acceleration Event Deceleration Event
Velocity [rad/s] 10 to 80 80 to 10
Reynolds Number 150 to 424.3 424.3 to 150

70g 70g
700g 700g

7 000g 7 000g
70 000g 70 000g
700 000g 700 000g
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

8.1 Case Description

The steady state solution of the rotating disk was discussed inChapter 6 . Analytical results are available
from the literature (Schlichting [42],von Karman [41]). The boundary layer the forms on the rotating
disk in steady, pure rotation is depicted in Figure 8.1.

Figure 8.1: Graphical Representation of the Boundary Layer on a Rotating Disk

Parallels can be drawn between the boundary layer on the rotating disk in the tangential direction
and the boundary layer on the laminar flat plate (Figure 8.2).

Figure 8.2: Depiction of the laminar boundary layer on the flat plate (left) and in the tangential direction
on a rotating disk (right)

At the wall, the velocity is zero since no-slip conditions is assumed. The velocity profile further
away from the wall increases monotonically to approach the free-stream value in the far field. In the
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8.1. CASE DESCRIPTION

case of the flat plate, the free-stream value is the translational velocity at which the plate is moving.
The rotating plate free-stream value is dependant on the distance from the centre of rotation and the
rotational velocity.

The wall shear stress is dependant on the velocity gradient at the wall. This term is present in the
boundary layer equation and is responsible for the shape of the boundary layer. The non-inertial form
the equation was derived in Equation 5.148 and is expressed in the inertial frame as follow:

∂ρuθ

∂t
+ur

∂ρuθ

∂r
+ uθ

r
∂ρuθ

∂θ
+ ρuθur

r
+uy

∂ρuθ

∂y
=−1

r
∂p
∂θ

+ ∂
∂y

(
µ

∂uθ

∂y
)

(8.1)

The boundary layer in the radial direction occurs as a result of secondary effects of due to tangential
rotation (Figure 8.3). In an ideal flow ur is zero through the entire domain. Viscous and secondary
flow effects results in a boundary layer that is approaches zero velocity in the near-wall and far-field
respectively. In the central regions of the boundary layer, the velocity profile is monotonically increasing
closer to the wall, and monotonically decreasing closer to the boundary layer edge.

Figure 8.3: Depiction of the laminar boundary layer on a rotating disk in the radial direction

The non-inertial boundary layer equation for a rotating disk in the radial direction was determined in
Equation 5.152. This equation can be written in the inertial frame as shown below. The term responsible
for the formation of the boundary layer is ∂

∂y
(
µ

∂ur
∂y

)
.

∂ρur

∂t
+ur

∂ρur

∂r
+ uθ

r
∂ρur

∂θ
− ρu2

θ

r
+uy

∂ρur

∂y
=−∂p

∂r
+ ∂

∂y
(
µ

∂ur
∂y

) (8.2)

The boundary layer equations are required in the non-inertial form. This is used to interpret the
results from the simulations. In Chapter 3 the non-inertial momentum equation was derived using the
frame description in Figure 8.4.
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

Figure 8.4: Frame definitions for non-inertial flow

The full momentum equation that is used to solved unsteady rotational flow was determined in
Equation 3.169:

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂ p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î
]+2ρû∧Ω︸ ︷︷ ︸

Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+ρx̂∧Ω̇︸ ︷︷ ︸
Euler

(8.3)

This equation was expanded in Equation 5.144-5.146 to obtain the formulations in cylindrical com-
ponents. The equations can be reduced to a set that applies to this specific case:
r-momentum

∂ρ̂ûr

∂t
+ ûr

∂ρ̂ûr

∂r̂
+ ûθ

r̂
∂ρ̂ûr

∂θ̂
− ρ̂û2

θ

r̂
+ ûy

∂ρ̂ûr

∂ ŷ
=−∂ p̂

∂r̂
+ ∂

∂ ŷ
(
µ̂
∂ûr

∂ ŷ
)−2ρ̂ûθωy + ρ̂ r̂ω2

y (8.4)

y-momentum

0=−∂p̂
∂ ŷ

(8.5)

θ-momentum

∂ρ̂ûθ

∂t
+ ûr

∂ρ̂ûθ

∂r̂
+ ûθ

r̂
∂ρ̂ûθ

∂θ̂
+ ρ̂ûθ ûr

r̂
+ ûy

∂ρ̂ûθ

∂ ŷ
=−1

r̂
∂ p̂
∂θ̂

+ ∂

∂ ŷ
(
µ̂
∂ûθ

∂ ŷ
)+2ρ̂ûrωy + ρ̂ r̂ω̇y (8.6)

The case description that was used to perform the numerical simulation with was described inChap-
ter 6. The results are interpreted using the boundary layer formulations above.
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8.2. RESULTS AND DISCUSSION - ACCELERATION

8.2 Results and Discussion - Acceleration

8.2.1 Velocity Profiles

The result from the acceleration simulation for the rotating disk in the tangential direction is shown
in Figures 8.5-8.7 respectively. The results are displayed in the absolute frame in order to compare
it with the von Karman solution. The non-dimensional distance from the wall, η, is determined by
Equation 6.28.

Figure 8.5: Non-Dimensional Tangential Velocity Profiles: Rotating Disk - Acceleration Grouping I
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

Figure 8.6: Non-Dimensional Tangential Velocity Profiles: Rotating Disk - Acceleration Grouping II

Figure 8.7: Non-Dimensional Tangential Velocity Profiles: Rotating Disk - Acceleration Grouping III
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8.2. RESULTS AND DISCUSSION - ACCELERATION

The result from the acceleration simulation for the rotating disk in the radial direction is shown in
Figures 8.8-8.10 respectively.

Figure 8.8: Non-Dimensional Radial Velocity Profiles: Rotating Disk - Acceleration Grouping I
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

Figure 8.9: Non-Dimensional Radial Velocity Profiles: Rotating Disk - Acceleration Grouping II

Figure 8.10: Non-Dimensional Radial Velocity Profiles: Rotating Disk - Acceleration Grouping III
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8.2. RESULTS AND DISCUSSION - ACCELERATION

The results from the acceleration simulation for the rotating disk in the tangential direction have
many similarities with the flat plate in acceleration. It can be seen that the boundary layer has an imme-
diate reaction to acceleration in the near-wall region. Initially the boundary layer thickens (Grouping
I), but reduces and becomes slightly thicker than the steady state solution as the acceleration event
progresses. In the far-field, close to the free stream values, all the acceleration cases displays similar
non-dimensional values. In the near-wall regions the velocity gradient of the boundary layer becomes
steeper with increased acceleration (Figure 8.11).

Figure 8.11: Sample results and observations for tangential flow in acceleration

The results from the acceleration simulation for the rotating disk in the radial direction showed
limited reaction to tangential acceleration. The first grouping of results indicates that the far-fields values
shows an initial thickening of the boundary layer when compared to steady state results. In the near-wall
region the apex of the profile is lower than the steady state result and decreases as the simulation progress.
All the accelerating profiles have the same values, with the exception of the 70g case that breaks away.
The second and third grouping displays similar patterns where the boundary layer becomes thinner and
the apex is reduced. The profile lines are common between the acceleration cases with the exception of
the 70g case, as before, and the 700g that also breaks away. These results are an indication that the radial
velocity profile is very slow to react to acceleration. The profiles that remain on top of each other are
an indication that the boundary layer is maintaining the initial conditions. The boundary layer profile
of the high acceleration cases (7000g, 70 000g and 700 000g) are frozen in the initial conditions of the
acceleration event. The lower acceleration cases to however show a response. The lowest acceleration
case, 70g, is first to respond. The response is initiated in the near-wall region and then propagates to the
upper areas of the boundary layer. The 700g case responds in a similar manner, but much later in the
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

acceleration event.
The boundary layer equations for unsteady rotation were shown in Section 8.1:

r-momentum

∂ρ̂ûr

∂t
+ ûr

∂ρ̂ûr

∂r̂
+ ûθ

r̂
∂ρ̂ûr

∂θ̂
− ρ̂û2

θ

r̂
+ ûy

∂ρ̂ûr

∂ ŷ
=−∂ p̂

∂r̂
+ ∂

∂ ŷ
(
µ̂
∂ûr

∂ ŷ
)−2ρ̂ûθωy + ρ̂ r̂ω2

y (8.7)

y-momentum

0=−∂p̂
∂ ŷ

(8.8)

θ-momentum

∂ρ̂ûθ

∂t
+ ûr

∂ρ̂ûθ

∂r̂
+ ûθ

r̂
∂ρ̂ûθ

∂θ̂
+ ρ̂ûθ ûr

r̂
+ ûy

∂ρ̂ûθ

∂ ŷ
=−1

r̂
∂ p̂
∂θ̂

+ ∂

∂ ŷ
(
µ̂
∂ûθ

∂ ŷ
)+2ρ̂ûrωy + ρ̂ r̂ω̇y (8.9)

These equations are responsible for the boundary layer response of the rotating disk to angular
acceleration (Figure 8.12). It is used to propose a physical mechanism for the observed behaviour.

Figure 8.12: Boundary layer profile for steady angular acceleration

In accelerating conditions, the Coriolis and Euler forces increase. These are located on the right
hand side of the equation below and therefore becomes momentum sources.

∂ρ̂ûθ

∂t
+ ûr

∂ρ̂ûθ

∂r̂
+ ûθ

r̂
∂ρ̂ûθ

∂θ̂
+ ρ̂ûθ ûr

r̂
+ ûy

∂ρ̂ûθ

∂ ŷ
=−1

r̂
∂p̂
∂θ̂

+ ∂

∂ ŷ
(
µ̂
∂ûθ

∂ ŷ
)+ 2ρ̂ûrωy︸ ︷︷ ︸

Coriolis

+ ρ̂ r̂ω̇y︸ ︷︷ ︸
Euler
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8.2. RESULTS AND DISCUSSION - ACCELERATION

The momentum sources causes an imbalance on the left hand side on the equation. To maintain
equality between the right and left hand sides, the material derivative (all the terms on the left hand
side) increases.

∂ρ̂ûθ

∂t + ûr
∂ρ̂ûθ

∂r̂ + ûθ

r̂
∂ρ̂ûθ

∂θ̂
+ ρ̂ûθ ûr

r̂ + ûy
∂ρ̂ûθ

∂ ŷ =−1
r̂
∂ p̂
∂θ̂

+ ∂

∂ ŷ
(
µ̂
∂ûθ

∂ ŷ
)+ 2ρ̂ûrωy + ρ̂ r̂ω̇y

An increase in the material derivative leads to an increase in the tangential velocity. This in turn
lead to an increase in the velocity gradient. The pressure decreases to compensate for the additional
momentum on the right hand side.

∂ρ̂ûθ

∂t + ûr
∂ρ̂ûθ

∂r̂ + ûθ

r̂
∂ρ̂ûθ

∂θ̂
+ ρ̂ûθ ûr

r̂ + ûy
∂ρ̂ûθ

∂ ŷ =−1
r̂
∂ p̂
∂θ̂

+ ∂

∂ ŷ
(
µ̂

∂ûθ

∂ ŷ
) +2ρ̂ûrωy+ρ̂ r̂ω̇y

In the flat plate accelerating case of Chapter 7 three response types were identified.

• Response Type I, which is viscous dominant.

• Response Type II, which is certain regions in the boundary layer are dominated by viscosity and
other regions by momentum.

• Response Type III, which is dominated by momentum.

The same response types are relevant here. There is no occurrence of Response Type I where the
steady state conditions are maintained for the duration of the event. The 70g case fall into the Response
Type II category, since it is dominates by viscosity in some regions and momentum in others. The
remainder of the higher acceleration cases are all of Response Type III.

An alternative explanation for the behaviour is to recognize that an increase in the angular velocity,
ωy, results in an increase in the tangential velocity, uθ.

uθ = rωy (8.10)

The increase of uθ results in an increase in both the material derivative and the viscous terms.

∂ρ̂ûθ

∂t + ûr
∂ρ̂ûθ

∂r̂ + ûθ

r̂
∂ρ̂ûθ

∂θ̂
+ ρ̂ûθ ûr

r̂ + ûy
∂ρ̂ûθ

∂ ŷ =−1
r̂
∂p̂
∂θ̂

+ ∂
∂ ŷ

(
µ̂

∂ûθ

∂ ŷ
) + 2ρ̂ûrωy + ρ̂ r̂ω̇y
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

The magnitude of the increase in the left hand side momentum terms are larger than the increase in
the viscous term. A ∂ûθ

∂ ŷ term is seen on both side of the equation. On the right hand side the gradient of
the term is taken. This value is smaller than the magnitude of all the momentum terms on the left hand
side.

∂ρ̂ûθ

∂t
+ ûr

∂ρ̂ûθ

∂r̂
+ ûθ

r̂
∂ρ̂ûθ

∂θ̂
+ ρ̂ûθ ûr

r̂
+ ûy

∂ρ̂ûθ

∂ ŷ =−1
r̂
∂ p̂
∂θ̂

+ ∂

∂ ŷ
(
µ̂

∂ûθ

∂ ŷ
) + 2ρ̂ûrωy︸ ︷︷ ︸

Coriolis

+ ρ̂ r̂ω̇y︸ ︷︷ ︸
Euler

In light of the above it is postulated that the response of the tangential boundary layer largely falls
in the Type III category (Figure 8.13). The 70g case falls within the Type II category. At accelerations
smaller than 70g it is possible that a Type I response will be observed. Smaller than 70g accelerations
are not within the scope of this study and are suggested for further work in this field.

Figure 8.13: Acceleration Response Types of the Rotating Disk
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8.2. RESULTS AND DISCUSSION - ACCELERATION

The flow in the radial direction is slow to respond to the changing condition, where the lower accel-
eration cases responds first (Figure 8.14).

Figure 8.14: Sample Results of the Radial Velocity Profiles in Acceleration

The boundary layer in the radial direction has two non-inertial terms, the Coriolis and the Centrifugal
force.

∂ρ̂ûr

∂t
+ ûr

∂ρ̂ûr

∂r̂
+ ûθ

r̂
∂ρ̂ûr

∂θ̂
− ρ̂û2

θ

r̂
+ ûy

∂ρ̂ûr

∂ ŷ
=−∂ p̂

∂r̂
+ ∂

∂ ŷ
(
µ̂
∂ûr

∂ ŷ
)− 2ρ̂ûθωy︸ ︷︷ ︸

Coriolis

+ ρ̂ r̂ω2
y︸ ︷︷ ︸

Centrifugal

The radial boundary layer forms due to secondary effects. It is not directly influenced by the tangen-
tial velocity and has no unsteady terms (i.e. Euler)in the equation. The flow remains in the initial state
for the higher acceleration cases. Changes occur first in the 70 g case in the near-wall regions. This is
an indication that the response originates from in increase of the velocity gradient.

During tangential acceleration, the tangential velocity increases. This results in an increase on the
left hand side of the equation. The increase is balanced on the right hand side by an increase in the
viscous terms.

∂ρ̂ûr

∂t
+ ûr

∂ρ̂ûr

∂r̂
+ ûθ

r̂
∂ρ̂ûr

∂θ̂
− ρ̂û2

θ

r̂ + ûy
∂ρ̂ûr

∂ ŷ
=−∂p̂

∂r̂
+ ∂

∂ ŷ
(
µ̂

∂ûr
∂ ŷ

) − 2ρ̂ûθωy + ρ̂ r̂ω2
y

The Coriolis and Centrifugal forces has opposite signs. It is postulated that the magnitude of the
terms are of the same order. This creates a feedback loop where the Centrifugal term is a momentum
source and the Coriolis is a momentum sink. The effect of these terms in the boundary layer are minimal.
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

The eventual increase of the viscous term on the right hand side of the equation leads to an increase
on left hand side. Subsequently, the radial velocity, ur, is also increase.

∂ρ̂ûr
∂t + ûr

∂ρ̂ûr
∂r̂ + ûθ

r̂
∂ρ̂ûr

∂θ̂
− ρ̂û2

θ

r̂ + ûy
∂ρ̂ûr
∂ ŷ =−∂p̂

∂r̂
+ ∂

∂ ŷ
(
µ̂

∂ûr
∂ ŷ

) − 2ρ̂ûθωy + ρ̂ r̂ω2
y

The increase of ur depends on the strength of the acceleration an is therefore time dependant. In
higher accelerations there is not sufficient time for the radial velocity profile to respond to the changing
conditions.

8.2.2 Boundary Layer Parameters

The boundary layer parameters on the rotating disk (Figure 8.15) were determined in a similar manner
as the flat plate.

Figure 8.15: Tangential Boundary Layer on a Rotating Disk

The parameters were calculated in the tangential and radial directions respectively:
Tangential Parameters

δ∗θ =
∫ y∗→∞

0

(
1− uθ

U∞

)
dy

θθ =
∫ y∗→∞

0

uθ

U∞

(
1− uθ

U∞

)
dy

Hθ =
δ∗
θ

θθ

(8.11)
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8.2. RESULTS AND DISCUSSION - ACCELERATION

Radial Parameters

δ∗r =
∫ y∗→∞

0

(
1− ur

U∞

)
dy

θr =
∫ y∗→∞

0

ur

U∞

(
1− ur

U∞

)
dy

Hr =
δ∗r
θr

(8.12)

8.2.2.1 Tangential Parameters

Displacement Thickness result in the tangential direction is shown in Figures 8.16-8.18 .

Figure 8.16: Tangential Displacement Thickness Comparison for the Accelerating Rotating Disk

The rotating disk displays behaviour similar to the flat plate. The displacement thickness is mono-
tonically decreasing. It approaches an asymptote near the end of the acceleration event that is indirectly
proportional to the acceleration strength. The approach of an asymptote is evident from the first deriva-
tive results that approximates zero. An inclination point is seen in the second derivative at the beginning
of the event. This is a response to the sudden acceleration. At 70g a disturbance is seen at the point clos-
est to the plate centre near the end of the event. The second derivative displays unsteady behaviour at
this point. This is due to the effect of a stationary vortex in the middle of the plate.
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

Figure 8.17: Tangential Displacement Thickness Derivatives Comparison for the Accelerating Rotating
Disk

Figure 8.18: Tangential Displacement Thickness Comparison at r = 0.14 m in Accelerating Conditions
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8.2. RESULTS AND DISCUSSION - ACCELERATION

The tangential momentum thickness is shown in Figures 8.19-8.21 .

Figure 8.19: Tangential Momentum Thickness Comparison for the Accelerating Rotating Disk

Figure 8.20: Tangential Momentum Thickness Derivative Comparison for the Accelerating Rotating
Disk

The behaviour is similar to a flat plat in acceleration. The momentum thickness is monotonically
decreasing. The first derivative approaches zero near the end of the acceleration event. This is an indica-
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

Figure 8.21: Tangential Momentum Thickness Comparison at r = 0.14 m in Accelerating Conditions

tion that the momentum thickness approaches an asymptotic value. The value is indirectly proportional
to acceleration strength. The rotating disk boundary layer is sensitive to sudden acceleration. The first
derivative decrease at the beginning stages of the event before it increases and approach zero. The leads
to two inflection points in the second derivative as a response to sudden acceleration. At low accelera-
tions, i.e. 70g a disturbance is seen in the final stages of the acceleration event. This is due to effects of
the centre stationary vortex.

The Shape Factor results for the tangential direction is shown in Figures 8.22 and 8.23.
Since the displacement and momentum thickness results are similar to the acceleration flat plate

results, the shape factor displays similar trends as well. At the lower accelerations, 70g and 700g, the
shape factor decrease to a minimum value. It then increases an attempt to recover the starting value. At
the plate edge, the value is not fully recovered, while further away form the edge, the value is overshot.
The first derivative indicates that an asymptotic value is approached near the end of the event. The higher
acceleration cases, 70 000g and 700 000g, is monotonically decreasing an approaches a minimum value.
While the 7000g displays behaviour is between the lower acceleration and higher acceleration cases. It
is monotonically decreasing of the first half of the event, after which it has a slight upward tendency.
All the value tend towards and asymptotic limit that is dependant on acceleration strength. The second
derivatives of all results show that the shape factor is affected by sudden acceleration. This effect is
independent on acceleration strength.
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8.2. RESULTS AND DISCUSSION - ACCELERATION

Figure 8.22: Tangential Shape Factor Comparison for the Accelerating Rotating Disk

Figure 8.23: Tangential Shape Factor Derivative Comparison for the Accelerating Rotating Disk
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

8.2.2.2 Radial Parameters

Displacement Thickness results for the radial direction is shown in Figures 8.24-8.26 .

Figure 8.24: Radial Displacement Thickness Comparison for the Accelerating Rotating Disk

Figure 8.25: Radial Displacement Thickness Derivatives Comparison for the Accelerating Rotating
Disk

The displacement thickness is monotonically increasing. The 70g acceleration case has a lower re-
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8.2. RESULTS AND DISCUSSION - ACCELERATION

Figure 8.26: Radial Displacement Thickness Comparison at r = 0.14 m in Accelerating Conditions

sults, while all the other cases have results that is almost on top of each other. The first derivative shows
that the 70g case has small disturbances near the end of the event. For this case the final result may
approximate an asymptotic value if the event is carried on for long enough. The existence of such an
asymptote can not be conclusively proved with the results here. The first derivatives of the accelerations
higher than 70g do however approximate zero indicating the existence of the asymptote. An inflection
point is present in the second derivative. This is a result of the response to sudden acceleration. It is not
dependant on acceleration strength. At the point closest to the centre, the 70g, 700g and 7 000g cases
shown unsteady behaviour. This behaviour is damped out further away from the centre. This is a result
of the interference of the station vortex at the centre of the plate.

The momentum thickness results in the radial direction are shown in Figures 8.27-8.29 .
The momentum thickness is monotonically decreasing. It show similar tendencies as the displace-

ment thickness. The 70g case result is higher than the remainder of the acceleration cases. The other case
results are of the same order and have values than are close together. The 70g case shows small distur-
bances in the first derivative. This occurs near the end of the acceleration event. The first derivatives of
the other cases approximates zero. An inflection point is noted in all cases of the second derivative. The
same unsteady behaviour that was seen in the displacement thickness is seen here. Closer to the centre
of the plate, the flow is affected by the central stationary vortex, this is evident in the low frequency
oscillations of the second derivative.
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

Figure 8.27: Radial Momentum Thickness Comparison for the Accelerating Rotating Disk

Figure 8.28: Radial Momentum Thickness Derivative Comparison for the Accelerating Rotating Disk
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8.2. RESULTS AND DISCUSSION - ACCELERATION

Figure 8.29: Radial Momentum Thickness Comparison at r = 0.14 m in Accelerating Conditions

Shape factor results for the radial direction are shown in Figures 8.30.

Figure 8.30: Radial Shape Factor Comparison for the Accelerating Rotating Disk

The shape factor response of the radial direction can be divided in three groupings; linear behaviour,
non-linear behaviour and mixed linear/non-linear behaviour. This behaviour is dependant on distance
from the centre of the plate. Close to the centre the flow is affected by the central vortex, while is has a
lesser effect further away.
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

In the regions further away from the centre the higher acceleration cases, 700 000g, 70 000g and 7
000g, displays linear behaviour in the shape factor. The values increase linearly along the trajectory of
the event. The 70g case shows non-linear behaviour and has a much lower value than the other cases.
The 700g case appears to have a mixed response. At first it has similar values to the higher acceleration
cases, but at later stages in the event, the behaviour becomes non-linear.

In the regions closer to the centre of the disk, the 700 000g shows linear behaviour, the 70g non-
linear and the remainder of the cases shows mixed behaviour.

The behaviour as described above is reflected in the first and second derivatives fo the shape factor.
In the first derivative, the linear grouping has near-steady values of the same order. The non-linear

grouping (70g), has variable result. Initially the mixed grouping has the same results as the linear group-
ing. In the later stages of the acceleration event the result tend toward the value of the non-linear.

The second derivative shows sinusoidal behaviour for the 70g case with low frequency disturbances.
The 700g case shows high frequency disturbances near the disk centre, that is damped out further away
from the centre. The same disturbance is present in the 7 000g cases, but with a lower frequency and
amplitude. The higher acceleration cases approximates zero.

The flow in the radial direction is a secondary effect of the tangential acceleration. The shape factor
therefore dependant on secondary effect. It is dependant on acceleration strength and is affected by its
position on the plate. The central stationary vortex on the plate influences the boundary layer parameters.
This effect of the influence is indirectly proportional to acceleration strength.
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8.2. RESULTS AND DISCUSSION - ACCELERATION

8.2.3 Skin Friction Coefficients

The skin friction coefficients on the rotating disk were determined in a similar manner as for the flat
plate.

τθwall =
(
µ
∂uθ

∂y
)∣∣∣

wall

τrwall =µ
∂ur

∂y

∣∣∣
wall

τwall =
√

τ2
θwall

+τ2
rwall

C f =
τwall

0.5ρU2∞

(8.13)

The results are indicated in Figures 8.31-8.32.

Figure 8.31: Comparison between Skin Friction Coefficients at Various Free-Stream Rotational
Reynolds Numbers for Accelerating Conditions

The behaviour of the skin friction coefficient is similar to the general tendencies seen for the flat
plate. There is an initial increase in the skin friction coefficient. After a maximum value is reached, the
skin friction coefficient decreases and approaches an asymptotic value. Higher accelerations result in
higher skin friction coefficients. The skin friction is lower at positions further from the centre of the
plate. The values are dependant both on position on the plate and acceleration strength.
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

Figure 8.32: Comparison between Skin Friction Coefficients at Various Disk Positions for Accelerating
Conditions

Figure 8.33: Derivatives of Skin Friction Coefficient for Accelerating Conditions
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8.3. RESULTS AND DISCUSSION - DECELERATION

8.3 Results and Discussion - Deceleration

8.3.1 Velocity Profiles

The result from the decelerating simulation for the rotating disk in the tangential direction is shown
in Figures 8.34-8.36 respectively. The non-dimensional distance from the wall, η, is determined by
Equation 6.28.

Figure 8.34: Non-Dimensional Tangential Velocity Profiles: Rotating Disk - Deceleration Grouping I
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

Figure 8.35: Non-Dimensional Tangential Velocity Profiles: Rotating Disk - Deceleration Grouping II

Figure 8.36: Non-Dimensional Tangential Velocity Profiles: Rotating Disk - Deceleration Grouping III

254

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



8.3. RESULTS AND DISCUSSION - DECELERATION

The result from the decelerating simulation for the rotating disk in the radial direction is shown in
Figures 8.37-8.39 respectively.

Figure 8.37: Non-Dimensional Radial Velocity Profiles: Rotating Disk - Deceleration Grouping I
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

Figure 8.38: Non-Dimensional Radial Velocity Profiles: Rotating Disk - Deceleration Grouping II

Figure 8.39: Non-Dimensional Radial Velocity Profiles: Rotating Disk - Deceleration Grouping III
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8.3. RESULTS AND DISCUSSION - DECELERATION

The result from the decelerating simulation for the rotating disk showed that there is a slight thick-
ening of the boundary layer in the far-field across all the cases of deceleration. The boundary layer
reverses almost immediately, accept in the 70g cases where minimal reversals is observed. The strength
of the flow reversal is directly proportional to the magnitude of the deceleration. The non-dimensional
far-field values of the simulated profiles are all equal in value.

Figure 8.40: Sample results and observations for tangential flow in deceleration

The result from the decelerating simulation for the rotating disk in the radial direction indicates an
immediate reaction to the deceleration. The boundary layer height is comparable to steady state results,
but there is an increased apex value. In the Grouping I results, all the deceleration cases are of the same
value, with the exception of the 70g result that breaks away. In the grouping II and III results further
thinning of the boundary layer is seen and the 70g as well as the 700g case breaks away from the com-
monly shared profile values. This is an indication that the radial flow, being a secondary flow effect, is
slow to respond to changing conditions in the tangential direction.

The results obtained for the rotating disk in deceleration has similarities to the decelerating flat
plat. The flow reversal is common behaviour between the cases. This flow is also mostly momentum
dominant, with the exception of the 70g deceleration analysis, as in the case of the accelerating disk.
The reaction to deceleration has immediate effects on the boundary layer profile.
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

The boundary layer equations for unsteady rotation were shown in Section 8.1:
r-momentum

∂ρ̂ûr

∂t
+ ûr

∂ρ̂ûr

∂r̂
+ ûθ

r̂
∂ρ̂ûr

∂θ̂
− ρ̂û2

θ

r̂
+ ûy

∂ρ̂ûr

∂ ŷ
=−∂p̂

∂r̂
+ ∂

∂ ŷ
(
µ̂
∂ûr

∂ ŷ
)−2ρ̂ûθωy + ρ̂ r̂ω2

y (8.14)

θ-momentum
∂ρ̂ûθ

∂t
+ ûr

∂ρ̂ûθ

∂r̂
+ ûθ

r̂
∂ρ̂ûθ

∂θ̂
+ ρ̂ûθ ûr

r̂
+ ûy

∂ρ̂ûθ

∂ ŷ
=−1

r̂
∂p̂
∂θ̂

+ ∂

∂ ŷ
(
µ̂
∂ûθ

∂ ŷ
)−2ρ̂ûrωy − ρ̂ r̂ω̇y (8.15)

y-momentum
0=−∂p̂

∂ ŷ
(8.16)

These equations are responsible for the observed behaviour of the flow in deceleration as depicted
in Figure 8.41.

Figure 8.41: Boundary layer profile for steady angular deceleration

In the tangential direction, the Coriolis and Euler forces are the only non-inertial force components
present. In the accelerating case these forces acted as momentum sources. Here, in the decelerating case
the forces act as momentum sinks.

∂ρ̂ûθ

∂t
+ ûr

∂ρ̂ûθ

∂r̂
+ ûθ

r̂
∂ρ̂ûθ

∂θ̂
+ ρ̂ûθ ûr

r̂
+ ûy

∂ρ̂ûθ

∂ ŷ
=−1

r̂
∂p̂
∂θ̂

+ ∂

∂ ŷ
(
µ̂
∂ûθ

∂ ŷ
)+ 2ρ̂ûrωy︸ ︷︷ ︸

Coriolis

+ ρ̂ r̂ω̇y︸ ︷︷ ︸
Euler

In deceleration the Euler force becomes negative since ω̇y is acting in a direction opposite to the
tangential rotation ωy of the plate. The tangential rotation decreases as a result of the deceleration. This
results in a decrease in momentum on the right hand side of the equation. To balance the left hand side
with the right, there is a decrease in momentum on the left hand side.
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8.3. RESULTS AND DISCUSSION - DECELERATION

∂ρ̂ûθ

∂t + ûr
∂ρ̂ûθ

∂r̂ + ûθ

r̂
∂ρ̂ûθ

∂θ̂
+ ρ̂ûθ ûr

r̂ + ûy
∂ρ̂ûθ

∂ ŷ =−1
r̂
∂ p̂
∂θ̂

+ ∂

∂ ŷ
(
µ̂
∂ûθ

∂ ŷ
)+ 2ρ̂ûrωy + ρ̂ r̂ω̇y

Subsequently, the tangential velocity, ûθ, decreases as it is a function of the rotational velocity:

ûθ = r̂ωy (8.17)

The velocity gradient in the near-wall region decreases.

∂ρ̂ûθ

∂t + ûr
∂ρ̂ûθ

∂r̂ + ûθ

r̂
∂ρ̂ûθ

∂θ̂
+ ρ̂ûθ ûr

r̂ + ûy
∂ρ̂ûθ

∂ ŷ =−1
r̂
∂p̂
∂θ̂

+ ∂
∂ ŷ

(
µ̂

∂ûθ

∂ ŷ
) + ρ̂ûrωy + ρ̂ r̂ω̇y

In order to balance the decrease in the near-wall region, the pressure gradient is adjusted. At a certain
point an adverse pressure gradient forms and the flow in the near-wall region separates.

∂ρ̂ûθ

∂t
+ ûr

∂ρ̂ûθ

∂r̂
+ ûθ

r̂
∂ρ̂ûθ

∂θ̂
+ ρ̂ûθ ûr

r̂
+ ûy

∂ρ̂ûθ

∂ ŷ
=− 1

r̂
∂p̂
∂θ̂

+ ∂
∂ ŷ

(
µ̂

∂ûθ

∂ ŷ
) + ρ̂ûrωy + ρ̂ r̂ω̇y

In the case of the flat plate three types of responses to decelerating flow was proposed. The regions
are similar to those of an accelerating case:

• Response Type I, which is viscous dominant.

• Response Type II, which is certain regions in the boundary layer are dominated by viscosity and
other regions by momentum.

• Response Type III, which is dominated by momentum.

The rotating disk is showing a Deceleration Response Type III for all cases of deceleration from
700g to 700 000g analysed here. This flow is momentum dominant (Figure 8.42). The 70g case fall
within the Response Type II category as it the neither dominated by viscous forces nor by momen-
tum forces. As in the accelerating disk case, it is postulated that responses mostly fall within the third
category.
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

Figure 8.42: Deceleration Response Types of the Rotating Disk

A decrease in the angular velocity,ωy, results in a decrease in the tangential velocity, uθ. This results
in decrease in both the material derivative and the viscous terms.

∂ρ̂ûθ
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∂ρ̂ûθ

∂r̂ + ûθ
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∂ ŷ =−1
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∂p̂
∂θ̂

+ ∂
∂ ŷ

(
µ̂

∂ûθ

∂ ŷ
) + 2ρ̂ûrωy + ρ̂ r̂ω̇y

The magnitude of the decrease in the left hand side momentum terms are larger than the decrease in
the viscous term. A ∂ûθ

∂ ŷ term is seen on both side of the equation. On the right hand side the gradient of
the term is taken. This value is smaller than the magnitude of all the momentum terms on the left hand
side.

∂ρ̂ûθ
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∂ρ̂ûθ
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r̂
∂ρ̂ûθ

∂θ̂
+ ρ̂ûθ ûr
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r̂
∂ p̂
∂θ̂

+ ∂

∂ ŷ
(
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∂ûθ

∂ ŷ
) + 2ρ̂ûrωy︸ ︷︷ ︸

Coriolis

+ ρ̂ r̂ω̇y︸ ︷︷ ︸
Euler

The response of the tangential boundary layer to deceleration therefore largely falls in the Type III
category. At very small deceleration it is possible that a Type I or Type II response will be observed.
Small decelerations are suggested for further work in this field.

The response the deceleration flow in the radial direction displays the same trends as in the ac-
celeration case. The flow in the higher deceleration cases remains in the initial state, while the lower
decelerations reacts has a delayed reaction (Figure 8.43).
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8.3. RESULTS AND DISCUSSION - DECELERATION

Figure 8.43: Sample Results of the Radial Velocity Profiles in Deceleration

The Coriolis and Centrifugal forces represent the non-inertial effects in the radial direction.
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θ

r̂
+ ûy
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y︸ ︷︷ ︸

Centrifugal

In the same manner as explained for the acceleration case, the Coriolis and Centrifugal forces create
a feedback loop between each other. Changes in the tangential velocity eventually lead to a reduction
in momentum in the radial velocity gradient.
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θ

r̂ + ûy
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y

The eventual decrease on the right hand side of the equation leads to a decrease in momentum on
the left hand side. The radial velocity, ur, decreases as a result. This mechanism is time dependant and
depends on the strength of the deceleration parameter.
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

8.3.2 Boundary Layer Parameters

8.3.2.1 Tangential Parameters

The tangential displacement thickness results for the decelerating disk are shown in Figures 8.44-8.46.

Figure 8.44: Tangential Displacement Thickness Comparison for the Decelerating Rotating Disk

Figure 8.45: Tangential Displacement Thickness Derivative Comparison for the Decelerating Rotating
Disk
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8.3. RESULTS AND DISCUSSION - DECELERATION

Figure 8.46: Tangential Displacement Thickness Comparison at r = 0.14 m in Decelerating Conditions

The displacement thickness on the decelerating disk is monotonically increasing. The values are
directly proportional to acceleration strength; a higher acceleration results in a higher displacement
thickness. The values are divergent. This can be seen in the first derivative. An inflection point is noted
in the second derivative near the end of the deceleration event. The is due to a hysteresis effect of the
flow response to deceleration. In the 70g case, unsteady behaviour is seen throughout the deceleration
event. This occurs at the sample locations further away from centre of the disk. The 70g case has a Type
II response to deceleration. In this type of flow the boundary layer is dominated by momentum forces in
some parts and viscous forces in other parts of the profile. The results is an unsteady flow that presents
as oscillations in the first derivative of the displacement thickness. The effect is damped out later in the
deceleration event when the viscous forces becomes more dominant and stabilizes the boundary layer
profile.

Momentum thickness in the tangential direction for deceleration is shown in Figures 8.47-8.49 .
The response of the momentum thickness to deceleration in the tangential direction can be divided

into two groups. The 70g and 700g is in the first grouping, while the cases equal to 7 000g and higher fall
in the second grouping. In the first grouping there is a very slight increase in momentum thickness up
until a free-stream rotation of 40 rad/s. In the first derivative it can be seen that the gradient is very small
in the initial stages of the deceleration event. After a maximum values is reached the results becomes
monotonically decreasing. This value is divergent as can be seen from the first derivative. The same
unsteady behaviour that was noted in to 70g case is present here. At points further away from the disk
centre the momentum thickness is oscillating. This effect is damped out further along the deceleration
event. The second grouping presents with a momentum thickness that is monotonically decreasing. The
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

Figure 8.47: Tangential Momentum Thickness Comparison for the Decelerating Rotating Disk

Figure 8.48: Tangential Momentum Thickness Derivative Comparison for the Decelerating Rotating
Disk

result is divergent and is proportional to the acceleration strength. An inflection point is again present
in the second derivative in the later stages of the acceleration event.
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8.3. RESULTS AND DISCUSSION - DECELERATION

Figure 8.49: Tangential Momentum Thickness Comparison at r = 0.14 m in Decelerating Conditions

The tangential shape factor results are shown in Figures 8.50-8.51.

Figure 8.50: Tangential Shape Factor Derivative Comparison for the Decelerating Rotating Disk

The shape factor behaviour for the decelerating disk has many parallels to the shape factor for
the decelerating plate. The discontinuity that characterized the decelerating flat plate shape factor is
present here. The shape factor in monotonically increasing as the beginning of the deceleration event.
It approaches an asymptote. After the asymptote the shape factor becomes negative and approaches
zero near the end of the acceleration event. The discontinuity is dependant on deceleration; a stronger
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

Figure 8.51: Comparison of Tangential Shape Factor Discontinuities and Momentum Thickness for the
Decelerating Disk

Figure 8.52: Tangential Shape Factor Comparison at Various Radial Positions for the Decelerating Disk

deceleration approaches its asymptote earlier in the event than a weaker deceleration. It presents when
the momentum thickness becomes negative. A negative shape factor is not achievable in the physical
world. Mathematically it is an indication that the flow regime is changing. The models applied can no
longer sufficiently describe the flow. It is postulate here that the asymptote is an indication that the flow
has become turbulent. Flow reversal leads to turbulence and a high shape factor.
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8.3. RESULTS AND DISCUSSION - DECELERATION

8.3.2.2 Radial Parameters

In Figures 8.53-8.55 the displacement thickness in the radial direction is shown.

Figure 8.53: Radial Displacement Thickness Comparison for the Decelerating Rotating Disk

Figure 8.54: Radial Displacement Thickness Derivative Comparison for the Decelerating Rotating Disk
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

Figure 8.55: Radial Displacement Thickness Comparison at r = 0.14 m in Decelerating Conditions

The displacement thickness is monotonically decreasing. It is indirectly proportional to deceleration
strength; a higher deceleration have a lower displacement thickness value. The values are divergent as
can be seen in the first derivative. The inflection point in the second derivative is present here as it was
for all cases of deceleration in the tangential direction. The 70g case displays disturbances in the first
and second derivative. This is similar to behaviour noted in the tangential direction for deceleration.
The exception here is that it occurs at all points on the disk and not just at the exterior points further
away from the centre. The disturbances is in phase with each other. Higher amplitudes is observed at
the exterior point. This typifies the Type II behaviour where neither viscous force nor momentum forces
and dominant in the boundary layer. The effect is damped out further along the deceleration event.

Momentum thickness result in the radial direction is displayed in Figures 8.56-8.58 .
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8.3. RESULTS AND DISCUSSION - DECELERATION

Figure 8.56: Radial Momentum Thickness Comparison for the Decelerating Rotating Disk

Figure 8.57: Radial Momentum Thickness Derivative Comparison for the Decelerating Rotating Disk
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

Figure 8.58: Radial Momentum Thickness Comparison at r = 0.14 m in Decelerating Conditions

The radial momentum thickness displays two groupings of behaviour for decelerating conditions.
The 70g case (Type II) responds differently to changing conditions than the remainder of the cases
(Type III). The cases all respond in a similar manner up to a free-stream rotation of 30 rad/s. At this
point the profiles are monotonically increasing. The momentum thickness is directly proportional to
deceleration strength. The 70g case continues to increase until the completion of the deceleration event.
The higher acceleration cases reach a maximum value and rapidly decrease. In all cases the results
are divergent. The first derivative of the 70g case approaches negative infinity, while the higher cases
approach positive infinity. The same disturbances that was noted in the radial displacement thickness
for the 70g case is noted here. The disturbances occur at all points on the disk. It is in phase with each
other, but with higher amplitudes at points further away from the centre of the plate.

The radial shape factor for decelerating conditions on a rotating disk is displayed in Figures 8.59
and 8.60 .

The shape factor is influenced by the behaviour of the momentum thickness and displays similar
trends. The 70g deceleration, which is of Deceleration Response Type II, has a shape factor that is mono-
tonically decreasing. It is divergent and displays the disturbances as noted in the momentum thickness.
The remainder of the deceleration cases, which are all of Deceleration Response Type III, have shape
factors the is decreasing, reaches a minimum after which it rapidly diverges.
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8.3. RESULTS AND DISCUSSION - DECELERATION

Figure 8.59: Radial Shape Factor Comparison for the Decelerating Rotating Disk

Figure 8.60: Comparison of Radial Shape Factor Values andMomentum Thickness for the Decelerating
Disk
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

8.3.3 Skin Friction Coefficients

The skin friction coefficients were determined in the same manner as for the acceleration cases.

τθwall =
(
µ
∂uθ

∂y
)∣∣∣

wall

τrwall =µ
∂ur

∂y

∣∣∣
wall

τwall =
√

τ2
θwall

+τ2
rwall

C f =
τwall

0.5ρU2∞

(8.18)

The results are displayed in Figures 8.61-8.62.

Figure 8.61: Comparison between Skin Friction Coefficients at Various Free-Stream Rotational
Reynolds Numbers for Decelerating Conditions

The decelerating disk skin friction coefficients have similar trends than the decelerating flat plate.
Skin friction coefficient values are divergent in deceleration and directly proportional to deceleration
strength. On a rotating disk it is also dependant on position, since rotational velocity is a function of
location on the disk. The values are at a maximum at the interior points (closest to the disk centre) and
becomes smaller at the exterior points (further away from the centre).
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8.3. RESULTS AND DISCUSSION - DECELERATION

Figure 8.62: Comparison between Skin Friction Coefficients at Various Disk Positions for Decelerating
Condition

Figure 8.63: Derivatives of Skin Friction Coefficient for Decelerating Conditions
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

8.4 Closure

This chapter aimed at characterising the response of the laminar boundary layer to arbitrary rotation.
The contribution of this chapter are as follows:

1) The characterisation of the boundary layer behaviour in terms of the three types of responses to
arbitrary motion as define Chapter 7.

2) The proposal of a mechanism providing an explanation for response types.
3) The characterisation of the response of the shape factor to arbitrary rotation.
4) The characterisation of the response of the skin friction coefficient to arbitrary rotation.

The same three response regions that were defined in Chapter 7 is applicable to the flow behaviour
in this chapter:

• Response Type I, which is viscous dominant.

• Response Type II, which is certain regions in the boundary layer are dominated by viscosity and
other regions by momentum.

• Response Type III, which is dominated by momentum.

The response to acceleration and deceleration in the tangential direction behaves similar to the flat
plate (Figure 8.64). However, a Type I response was not observed in the rotating disk case.

Figure 8.64: Response types for accelerating (left) and decelerating (right) conditions on a rotating disk
in the tangential direction

Boundary layer behaviour in the radial direction indicated a slow response to changing conditions.
The lower acceleration cases responds first. This was also the case in deceleration. At high accelerations
and decelerations the radial profile remains in the initial state.
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8.4. CLOSURE

Figure 8.65: Response to accelerating (left) and decelerating (right) conditions on a rotating disk in the
radial direction

The general trends in tangential velocity behaviour on the rotating disk, both in acceleration and
deceleration, are depicted in Figure 8.66.

Figure 8.66: Boundary layer profiles for steady, acceleration and deceleration conditions on a rotating
disk

Parallels can be drawn between the flat plate and rotating disk in changing conditions. In acceleration
the velocity profiles have steeper gradients in the near-wall region. This gradient is proportional to the
acceleration strength. Decelerating velocity profiles is characterized by flow reversal. The reversal is
directly proportional to the deceleration strength. A mechanism was proposed for the response of the
boundary layer using the boundary layer equations below. The mechanism is depicted in Figure 8.67.

In acceleration the fictitious forces become sources of momentum. An increase in momentum on
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

Figure 8.67: Accelerating and decelerating mechanisms of boundary layer response on a rotating disk

the right hand side of the equation leads to an increase in on the left hand side. This results in an increase
in tangential velocity, uθ, which in turn causes the velocity gradient at the wall to increase. The effect
is observed in the simulation results.

The opposite occurs in decelerationwhen the fictitious forces becomesmomentum sinks. A decrease
in momentum on the right hand side of the equation leads to a decrease on the left hand side. This results
in a decrease in tangential velocity uθ, which in turn causes the velocity gradient at the wall to decrease.
The pressure gradient has an opposite sign to the diffusion term. When it increases to such an extent
that an adverse pressure gradient form, separation is observed. This is the separation observed in the
simulation results.
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∂r̂
+ ûθ
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∂ûθ

∂ ŷ
) + 2ρ̂ûrωy + ρ̂ r̂ω̇y︸ ︷︷ ︸

Fictitious Forces

The same mechanism as described above was responsible for the behaviour of the flat plate in
arbitrary translation. Since the mechanism is the same, the tangential boundary behave like a boundary
layer on a flat plate.

∂ρ̂û
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+ û
∂ρ̂û
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∂ρ̂û
∂ ŷ

=− ∂p̂
∂x̂ + ∂

∂ ŷ µ̂
∂û
∂ ŷ − ∂ρ̂Vx

∂t

The radial mechanism of response is much simpler. The fictitious forces are of the same order,
but with difference mathematical signs. Changes in the fictitious forces creates a feedback loop where
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8.4. CLOSURE

the one component is a momentum source and the other is a momentum sink. Response in the radial
boundary layer are not caused by the fictitious components, but rather by changes in the rotational
velocity, uθ. This affects the balance between the right and left hand side of the equation. The viscous
term adjusts to counter the changes. Subsequently the value of the radial velocity increases or decreases.
This mechanism is highly dependant on the acceleration or deceleration strength. In cases where high
rates of change is present, the radial velocity profile remains in the initial state.
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∂ ŷ
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∂ûr

∂ ŷ
)− 2ρ̂ûθωy + ρ̂ r̂ω2

y

Figure 8.68 is presented here to show the variability in velocity profiles.

Figure 8.68: Variability in boundary layer profiles for different starting and acceleration conditions on
a rotating disk

The profile is dependent on the history of the flow as well as the strength of acceleration or decelera-
tion. At values of 70g the profile in unsteady velocity varies little from the steady state result. However,
this still has a major impact on the shape factor and more importantly the skin friction coefficient. The
effects of arbitrary motion should still be included in mathematical models.

The shape factor in tangential direction is shown in Figure 8.69 for accelerating and decelerating
conditions. The behaviour is similar to the flat plate results. The higher acceleration cases is monotoni-
cally decreasing and approximates a minimum value. In contract, the lower acceleration cases reach a
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

minimum value very early in the event. It then recovers the initial value and approaches an asymptotic
shape factor value. In deceleration the shape factor displays a discontinuity. The shape factor approaches
positive infinity at this point. A discontinuity in themathematics is an indication that the flow regime has
changed. It is therefore postulated that the discontinuity is the point where the flow becomes turbulent.

Figure 8.69: Results of the tangential shape factor response for acceleration (left) and deceleration (right)
events on a rotating disk

The shape factor in radial direction, as shown in Figure 8.70 is divergent in all cases. Type II flows,
such as the 70g case, responds in a different manner than the Type III flows. Type II approaches negative
infinity in deceleration while Type III approaches positive infinity. The 70g is characterized by unsteady
oscillations in the shape factor.

The skin friction coefficients (Figure 8.71) on a rotating disk reacts in the same manner as it would
on a flat plate in translation. In acceleration the value first increase. It reach a maximum after which it is
reduced. An asymptote is approximated as the acceleration event continues. The skin friction coefficient
in deceleration is divergent and continues to increase. The values in both cases are dependant on position
on the disk.
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Figure 8.70: Results of the radial shape factor response for acceleration (left) and deceleration (right)
events on a rotating disk

Figure 8.71: Result of the skin friction coefficient response to arbitrary rotation on a rotating disk
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9
Boundary Layer Response in Combined Translation and Rotation -

Arbitrary Cone Flow

The boundary layer response to acceleration and deceleration of a rotating cone in axial flow is
analysed in this chapter. The cone has a half angle of 15° and is subjected to arbitrary translating
and rotating conditions. The boundary layer profiles is depicted in terms of a curvilinear co-

ordinate system as shown in Figure 9.1.

Figure 9.1: Orientating Image of the Rotating Cone in Axial Flow

Rotating cones in axial flow are commonly found in engineering environments such as turbo-machinery,
aerial vehicles and defence systems. Applications range from missile nose cones and projectile front
ends to engine intakes and rotor configurations of wind turbines. The function of the cone is to direct
the flow and facilitate maximum pressure recovery in the system.
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

Since cones are commonly used, the theory of cone flow is well established in terms of the shock
wave angles (when applicable), streamline curvatures and pressure losses. Most studies are focussed
on predicting transition from laminar to turbulent flow (Mansour and Kargar [57], Garret and Peake
[52], Kobayashi and Kohama [95]), while few studies investigate the boundary layer (Back [28]).

A number of test conditions have been selected to investigate the behaviour of the boundary layer
in arbitrary changing flow. The test cases have been divided into several groupings that test various
aspects of the response to acceleration and deceleration in translation and rotation. The groupings are
as follow:

• Group I - Steady Translation with No Rotation. The results from this grouping is for compar-
ative purposes with other groups that include rotation. Free-stream velocities of 1 m/s, 2 m/s, 3
m/s and 4 m/s were simulated.

• Groups II & III - Variable Translation, Steady Rotation. The effect of acceleration and decel-
eration in translation on the boundary layer of the cone at two constant rotations (10 rad/s and 2
rad/s respectively) are determined, see Table 9.1.

• Group IV & V - Steady Translation, Variable Rotation/ The effect of acceleration and decel-
eration in rotation on the boundary layer of the cone at two constant translations (1 m/s and 4 m/s
respectively) are determined, see Table 9.2.

• Group VI - Mixed Acceleration and Decelerating Conditions. In Table 9.3 the conditions for
this case is shown to indicate the response of the boundary layer to a mixture of accelerating and
decelerating conditions. A number of simulation sets are defined in accordance Table 9.3. The
event of Set 2 takes place over a time frame where ∆t = 1e−02s. Similarly Set 3 corresponds to
∆t = 1e−03s up to Set 6 that takes ∆t = 1e−06s to complete.

Table 9.1: Translating, Rotating Cone Test Matrix Group II and Group III

Groups Steady Solution Acceleration Event Deceleration Event
II

1, 2, 3 & 4 m/s at 10 rad/s
10 rad/s 1 m/s - 4 m/s 4 m/s - 1 m/s

70g - 700 000g 700 000g - 70g
III

1, 2, 3 & 4 m/s at 2 rad/s
2 rad/s 1 m/s - 4 m/s 4 m/s - 1 m/s

70g - 700 000g 700 000g - 70g
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9.1. CASE DESCRIPTION

Table 9.2: Translating, Rotating Cone Test Matrix Group IV and Group V

Groups Steady Solution Acceleration Event Deceleration Event
IV

1 m/s at 2, 6, 10 & 12 rad/s
1 m/s 2 rad/s - 12 rad/s 12 rad/s - 2 rad/s

70g - 700 000g 700 000g - 70g
V

4 m/s at 2, 6, 10 & 12 rad/s
4 m/s 2 rad/s - 12 rad/s 12 rad/s - 2 rad/s

70g - 700 000g 70g - 700 000g

Table 9.3: Translating, Rotating Cone Test Matrix Group VI

Groups Steady Solution Acceleration Deceleration Mixed
VI

1.75 m/s at
4.5 & 9.5 rad/s
2 m/s 7 rad/s
3.25 m/s at

4.5 & 9.5 rad/s
a 1 m/s 2 rad/s to

4 m/s 12 rad/s
∆t : 1e−02s−1e−06s

Set2−Set6
b 1 m/s 12 rad/s to

4 m/s 2 rad/s
∆t : 1e−02s−1e−06s

Set2−Set6
c 4 m/s 12 rad/s to

1 m/s 2 rad/s
∆t : 1e−02s−1e−06s

Set2−Set6
d 4 m/s 2 rad/s to

1 m/s 12 rad/s
∆t : 1e−02s−1e−06s

Set2−Set6

9.1 Case Description

In Figure 9.2 a graphical representation of the boundary layer on a rotating cone in axial flow is given.
The rotation is about Cartesian x-axis at the centre of the cone. Translation occurs along this axis as
well.

The cone geometry and boundary layer is expressed here in curvilinear co-ordinates as discussed
in Section 4.4. The s, n and z-directions from an orthogonal set. The s-direction is on the surface on the
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

Figure 9.2: Graphical Representation of the Boundary Layer on a Rotating Cone in Axial Flow

cone parallel to the longitudinal plane. Perpendicular to this is the z-direction which is parallel to the
transverse plane. The n-direction is normal to the surface of the cone.

The boundary layer is divided into two components in the s-direction and the z-direction respectively.
The steady state boundary profile is equivalent to the laminar flat plate profile in the s-direction, while
the profile in the z-direction is similar to the rotating disk case.

The full momentum equation in the non-inertial frame, as derived in Equation 3.227 , is applicable
to this case. However, the term ρ ˆ̇x∧Ω is not applicable, since rotation is around a stationary axis.

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î]

− ∂

∂t
(ρV(t))︸ ︷︷ ︸

Translation

+ρ ˆ̇x∧Ω+ρx̂∧Ω̇︸ ︷︷ ︸
Euler︸ ︷︷ ︸

Unsteady motion

+2ρû∧Ω︸ ︷︷ ︸
Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+2ρV(t)∧Ω︸ ︷︷ ︸
Magnus

(9.1)

The theoretical formulation and numerical methods used were described in Chapter 6.
The non-dimensional distance perpendicular to the cone surface is determined in a similar manner

as for the flat plate in Equation 6.21.

η= n̂
ŝ

√
ρU∞ ŝ

µ̂
(9.2)

This parameter is used through out this chapter to obtain non-dimensional profiles for the cone.
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9.2. RESULTS AND DISCUSSION - ACCELERATION

9.2 Results and Discussion - Acceleration

9.2.1 Velocity Profiles

9.2.1.1 Accelerating Translation with Steady Rotation

In Figure 9.3, a comparison is drawn between the results of the Group 2 and Group 3 simulations. That
the acceleration groupings between the cases (e.g. 4 m/s 2 rad/s 70 g versus 4 m/s 10 rad/s 70 g) in the
s-direction has similar results. This indicates that the flow is dominated by the translational velocity for
this selection of parameters. The rotational velocity is much smaller than the translational velocity. In
the case of rotating large calibre projectiles, the translational velocity dominates as well. The translation
velocity is in the order of Mach 2.8, while the rotational speed - depending on the barrel rifling, is in
the order of 15000 rpm. The general tendencies of the velocity profiles are similar to those observed
for the flat plate (Figure 7.8). An increase in near wall velocity gradient is observed with increased
acceleration.

Figure 9.3: Comparison between Group 2 and Group 3 Simulation Results for Acceleration
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

Figures 9.4 and 9.5 show the results of the non-dimensional s-direction velocity profiles for Group
2 and Group 3 respectively.

Figure 9.4: Non-Dimensional s-Direction Velocity Profiles: Group 2 Accelerating Cone
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9.2. RESULTS AND DISCUSSION - ACCELERATION

Figure 9.5: Non-Dimensional s-Direction Velocity Profiles: Group 3 Accelerating Cone
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

Figures 9.6 and 9.7 show the results of the non-dimensional z-direction velocity profiles for Group
2 and Group 3 respectively.

Figure 9.6: Non-Dimensional z-Direction Velocity Profiles: Group 2 Accelerating Cone
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9.2. RESULTS AND DISCUSSION - ACCELERATION

Figure 9.7: Non-Dimensional z-Direction Velocity Profiles: Group 3 Accelerating Cone
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

In the longitudinal s-direction three key responses have been observed (Figure 9.8); 1) an increase
velocity gradient in the near-wall region, 2) a change in non-dimensional velocity in the far-field and 3)
the presence of a strain limit at higher accelerations typically from 7000 g upwards.

Figure 9.8: Responses of the Boundary Layer on the Cone to Acceleration in Translation

The cone in translational acceleration reacts in a similar manner than the flat plate subjected to
the same conditions. In Figure 9.9 the velocity profile along the s-direction is shown. The profile is
equivalent to the profile of the flat plate shown Figure 7.8 where an increase in translational velocity
lead to an increase in the velocity gradient in the near-wall region.

Figure 9.9: Accelerating Velocity Profile in the s-Direction on the Cone

Equation 5.162 provided a mathematical description of the boundary layer in the s-direction for
arbitrary acceleration. In this case the equation is reduced to:
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9.2. RESULTS AND DISCUSSION - ACCELERATION

ρ̂
[∂V̂1

∂t
+ V̂1

h1

∂V̂1

∂û1
+ V̂2

h2

∂V̂1

∂û2
+ V̂3

h3

∂V̂1

∂û3
− V̂2

( V̂2

h1h2

∂h2

∂û1
− V̂1

h1h2

∂h1

∂û2

)
+ V̂3

( V̂1

h1h3

∂h1

∂û3
− V̂3

h1h3

∂h3

∂û1

)]
=− 1

h1

∂p̂
∂û1

+ 1
h2

∂

∂û2
µ̂

h1

h2
∂û2

V̂1

h1
+ ρ̂

[
û1ω2

2 − û2ω1ω2︸ ︷︷ ︸
Centrifugal

− ∂Ve1

∂t︸ ︷︷ ︸
Translation

]

(9.3)

The samemechanism as described for the flat plate inChapter 7 applies. The non-inertial translation
term on the right hand side acts as amomentum source in the equations. This results in an overall increase
on the left hand side which a balanced by an increase in the near-wall velocity profile.

ρ̂
[∂V̂1

∂t
+ V̂1

h1

∂V̂1

∂û1
+ V̂2

h2

∂V̂1

∂û2
+ V̂3

h3

∂V̂1

∂û3
− V̂2

( V̂2

h1h2

∂h2

∂û1
− V̂1

h1h2

∂h1

∂û2

)
+ V̂3

( V̂1

h1h3

∂h1

∂û3
− V̂3

h1h3

∂h3

∂û1

)]
=− 1

h1

∂p̂
∂û1

+ 1
h2

∂
∂û2

µ̂
h1
h2
∂û2

V̂1
h1

+ ρ̂
[

û1ω2
2 − û2ω1ω2︸ ︷︷ ︸

Centrifugal

− ∂Ve1

∂t︸ ︷︷ ︸
Translation

]

(9.4)

The second response observed is an increase in non-dimensional velocity values with increasing
acceleration. This occurs due to the interaction between the Coriolis and Translation non-inertial terms
during acceleration.

ρ̂
[∂V̂1

∂t
+ V̂1

h1

∂V̂1

∂û1
+ V̂2

h2

∂V̂1

∂û2
+ V̂3

h3

∂V̂1

∂û3
− V̂2

( V̂2

h1h2

∂h2

∂û1
− V̂1

h1h2

∂h1

∂û2

)
+ V̂3

( V̂1

h1h3

∂h1

∂û3
− V̂3

h1h3

∂h3

∂û1

)]
=− 1

h1

∂p̂
∂û1

+ 1
h2

∂

∂û2
µ̂

h1

h2
∂û2

V̂1

h1
+ ρ̂

[
û1ω2

2 − û2ω1ω2︸ ︷︷ ︸
Centrifugal

− ∂Ve1

∂t︸ ︷︷ ︸
Translation

]

(9.5)

In steady state conditions, the effects of all the non-inertial terms are in balance Figure 9.10. The
effects all occur at the same time scale. An increase in the translational velocity, while the rotational
velocity remains constant, causes the translation non-inertial term to dominate the Centrifugal forces.
The time scale of the translation term is increased to become higher than the time scale of the centrifugal
force, leading to a higher non-dimensional velocity in the s-direction.

The final response of the boundary layer involves strain limit that a boundary layer in acceleration
can be subjected to. In the derivation of the Navier-Stokes equations for first principles, the infinites-
imal strain theory is applied to a fluid parcel to obtain the stress tensor (Schlichting [42]). In a solid
undergoing deformation, the strain is initially directly proportional to the stress. This condition only
applies in the elastic portion of deformation up to the strain value that is associated with the plastic
limit. From that point forward the material would undergo plastic deformation from which the material
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

Figure 9.10: Non-inertial Force Acting on a Cone in Arbitrary Motion

can not recover. A solid material therefore has a strain limit that separates the elastic deformation from
the plastic deformation. In the Navier-Stokes equations the analogy is made that a fluid parcel deforms
under external forces in the same manner as a solid parcel would in the elastic regime (Figure 9.11).

Figure 9.11: Strained Element

The stain limit of the fluid is the point where the fluid parcel has reached maximum deformation.
This limit manifests in the accelerating boundary layer as a conglomeration of the boundary profiles for
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9.2. RESULTS AND DISCUSSION - ACCELERATION

various acceleration strengths. At this point the velocity profile becomes independent from the current
acceleration strength. There is therefore a limit to how fast the particles can be accelerated in certain
regions of the boundary layer. The profile is bounded by the strain limit. In the inviscid part of the flow,
which is external of the boundary layer, the same limits does not apply.

The flow in the z-direction (transverse direction) reacts very similar to the rotating disk flow in
the radial direction (Figure 8.14). The accelerating profiles are all of the same value, but not equal to
the steady state result. As the simulation progresses the 70g profile separates from bundle results in
the direction of the steady state result. This shows that there is a delay in the reaction of the tangential
velocity profile to adjust to the accelerating boundary layer. The 70g profile has sufficient time to start
adjusting to the changing conditions, while the remainder of the profiles remain at values similar to
the starting condition. The general equation for boundary layer flow in the tangential direction was
determined in Equation 5.164. This equation is reduced to obtain the non-inertial forces relevant to this
case. the observed behaviour is due to an interaction between the Coriolis, Centrifugal and Magnus
forces in a similar manner as discussed in Section 8.2.1.

ρ̂
[∂V̂3

∂t
+ V̂1

h1

∂V̂3

∂û1
+ V̂2

h2

∂V̂3

∂û2
+ V̂3

h3

∂V̂3

∂û3
− V̂1

( V̂1

h1h3

∂h1

∂û3
− V̂3

h1h3

∂h3

∂û1

)
+ V̂2

( V̂3

h2h3

∂h2

∂û1
− V̂2

h2h3

∂h2

∂û3

)]
=− 1

h1

∂p̂
∂û3

+ 1
h2

∂

∂û2
µ̂

h3

h2
∂û2

V̂3

h3

+ ρ̂
[

2V̂1ω2 −2V̂2ω1︸ ︷︷ ︸
Coriolis

+ û3(ω2
2 +ω1

2)︸ ︷︷ ︸
Centrifugal

+2Ve1ω2 −2Ve2ω1︸ ︷︷ ︸
Magnus

]
(9.6)

The same acceleration response types that were definedChapter 7 and used inChapter 8 are relevant
to this case. The responses are:

• Response Type I, which is viscous dominant.

• Response Type II, which is certain regions in the boundary layer are dominated by viscosity and
other regions by momentum.

• Response Type III, which is dominated by momentum.

The flow in this case fall exclusively in theResponse Type III category. The accelerating boundary
layer deviates from the steady state profile. The two profiles do not overlap, neither in the near-wall nor
far-field regions of the boundary layer. The flow for this selection of conditions are therefore dominated
by momentum effects.
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

9.2.1.2 Steady Translation with Accelerating Rotation

InFigure 9.12 the results from the accelerating part of Table 9.2 is shown. In the s-direction the boundary
layers are divided into two regions; η< 2 and η> 2. In the region closer to the wall, η< 2, the profiles
are dominated by viscous forces. Here the 1 m/s and 4 m/s profiles are approximately equal. In the
far-field of the boundary layer, η > 2, the flow is influences by the Centrifugal acceleration. This is
a similar mechanism as discussed in the previous subsection. Translation dominates the flow and the
profiles are independent from the strength of the acceleration. The velocity profiles in the z-direction
displays similar behaviour as the rotating disk in the tangential direction. The velocity gradients become
larger closer to the wall with increasing acceleration. The strain limit that was discussed in the previous
subsection is observed here as well.

Figure 9.12: Comparison between Group 4 and Group 5 Simulation Results for Acceleration
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9.2. RESULTS AND DISCUSSION - ACCELERATION

Figures 9.13 and 9.14 show the results of the non-dimensional s-direction velocity profiles for Group
4 and Group 5 respectively.

Figure 9.13: Non-Dimensional s-Direction Velocity Profiles: Group 4 Accelerating Cone
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

Figure 9.14: Non-Dimensional s-Direction Velocity Profiles: Group 5 Accelerating Cone
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9.2. RESULTS AND DISCUSSION - ACCELERATION

Figures 9.15 and 9.16 show the results of the non-dimensional tangential velocity profiles for Group
4 and Group 5 respectively.

Figure 9.15: Non-Dimensional z-Direction Velocity Profiles: Group 4 Accelerating Cone
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

Figure 9.16: Non-Dimensional z-Direction Velocity Profiles: Group 5 Accelerating Cone

298

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



9.2. RESULTS AND DISCUSSION - ACCELERATION

The result of the cone in the z-direction is consistent with the rotating disk in the tangential direc-
tion. This is displayed in Figure 9.17 where an increased velocity gradient is observed that is directly
proportional to the acceleration strength. the presence of the strain limit, as discussed in the previous
subsection, is also present in this case. The boundary layer response to acceleration is momentum dom-
inant and therefore of Type III.

Figure 9.17: Responses of the Boundary Layer on the Cone to Acceleration in Rotation

The mechanism responsible for the increased velocity gradient in the near-wall region is similar
to the mechanism that causes the same effect on the rotating disk (Figure 9.18). The increase in the
velocity gradient near the wall is a direct result of the acceleration of the flow.

Figure 9.18: Accelerating Velocity Profile in the z-Direction on the Cone

The governing equation for the momentum in the z-direction was determined in Equation 5.164.
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

For the current case this equation is reduced to the following:

ρ̂
[∂V̂3

∂t
+ V̂1

h1

∂V̂3

∂û1
+ V̂2

h2

∂V̂3

∂û2
+ V̂3

h3

∂V̂3

∂û3
− V̂1

( V̂1

h1h3

∂h1

∂û3
− V̂3

h1h3

∂h3

∂û1

)
+ V̂2

( V̂3

h2h3

∂h2

∂û1
− V̂2

h2h3

∂h2

∂û3

)]
=− 1

h1

∂p̂
∂û3

+ 1
h2

∂

∂û2
µ̂

h3

h2
∂û2

V̂3

h3

+ ρ̂
[

2V̂1ω2 −2V̂2ω1︸ ︷︷ ︸
Coriolis

+ û3(ω2
2 +ω1

2)︸ ︷︷ ︸
Centrifugal

+ û1ω̇2 − û2ω̇1︸ ︷︷ ︸
Euler

+2Ve1ω2 −2Ve2ω1︸ ︷︷ ︸
Magnus

]
(9.7)

Rotational acceleration causes an increase in the non-inertial terms on the right hand side of the
equation. In response the momentum terms on the left hand side increase. The velocity, V3 subsequently
increases. This results in an increase in the near-wall velocity profile.

ρ̂
[∂V̂3

∂t
+ V̂1

h1

∂V̂3
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∂û1

)
+ V̂2

( V̂3

h2h3

∂h2

∂û1
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+ û1ω̇2 − û2ω̇1︸ ︷︷ ︸
Euler

+2Ve1ω2 −2Ve2ω1︸ ︷︷ ︸
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]
(9.8)

Equation 5.162 is reduced to described the flow in the s-direction for this case.
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∂û2

)
+ V̂3

( V̂1

h1h3

∂h1

∂û3
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− û3ω̇2

(9.9)

The effect of the Centrifugal force in the equation below is seen inFigure 9.13 and depicted inFigure
9.10. The flow is dominated by translation. If the translational velocity is low enough the Centrifugal
force influences the shape of the velocity profile. In the Group 4 case, with 1 m/s translational velocity
the far-field non-dimensional velocity is reduced with higher rotations. However, in the Group 5 case,
with 4 m/s translation completely dominates the flow and no differences is observed (Figure 9.14). In
both cases the flow in the s-direction is independent of the acceleration since no variation is seen in the
profiles for different accelerations.
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9.2. RESULTS AND DISCUSSION - ACCELERATION

9.2.2 Boundary Layer Parameters

The shape factor was calculated here as shown in Chapters 7 and 8 from the displacement and momen-
tum thickness parameters.

H = δ∗

θ
(9.10)

In Figure 9.19 a comparison of the results for different accelerations is shown for Group 2 in the
s-direction and Group 4 in the z-direction. Figures 9.20 -9.23 show the results for the s-direction of
Groups 2 and 3 and the z-direction of the Groups 4 and 5 respectively.

Figure 9.19: Comparison of Shape Factor for the Group 2 (left) and Group 4 (right) Cases

The results are consistent with those of the flat plate and rotating disk in acceleration. Two types
of behaviour are seen in the profiles. The first is observed in the lower accelerations. The shape factor
initially decreases to reach a minimum value, after which it is increasing and attempts to recover the
steady state value. The second type of behaviour is seen in the higher acceleration cases. Here the shape
factor decreases to approach anminimum asymptotic value. In both cases the first derivative approaches
zero, indicating that an asymptotic values is approached.
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
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Figure 9.20: Shape Factor in s-Direction for Translational Acceleration

Figure 9.21: Derivatives of Shape Factor in s-Direction for Translational Acceleration
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9.2. RESULTS AND DISCUSSION - ACCELERATION

Figure 9.22: Shape Factor in z-Direction for Rotational Acceleration

Figure 9.23: Derivatives of Shape Factor in z-Direction for Rotational Acceleration
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

9.2.3 Skin Friction Coefficients

The skin friction coefficients were determined using the equation of in Chapters 7 and 8. The results
are shown in Figures 9.24-9.28.

τwall =µ
∂û
∂y

∣∣∣
wall

C f =
τwall

0.5ρU2∞

(9.11)

Figure 9.24: Comparison of Skin Friction Coefficient for the Group 2 (left) and Group 4 (right) Cases

The Group 2 and Group 3 cases display similar responses at the flat plate in acceleration. The skin
friction coefficient has an initial increase at the start of the acceleration event. The value reaches a
maximum after which it steadily decreases to approach an asymptote. Higher accelerations leads to
higher skin friction coefficient values.

The Group 4 and Group 5 cases do not compare with any results previously observed, neither for
the flat plate nor the rotating disk. At low accelerations the change in skin friction coefficient values is
very small, with the biggest changes seen in the accelerations above 7 000g.
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9.2. RESULTS AND DISCUSSION - ACCELERATION

Figure 9.25: Skin Friction Coefficient in s-Direction for Translational Acceleration

Figure 9.26: Derivatives of Skin Friction Coefficient in s-Direction for Translational Acceleration
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

Figure 9.27: Skin Friction Coefficient in z-Direction for Rotational Acceleration

Figure 9.28: Derivatives of Skin Friction Coefficient in z-Direction for Rotational Acceleration
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9.3. RESULTS AND DISCUSSION - DECELERATION

9.3 Results and Discussion - Deceleration

9.3.1 Velocity Profiles

9.3.1.1 Decelerating Translation with Steady Rotation

The deceleration of the axial velocity for the cone was done in accordance with Table 9.1. A comparison
between the result for the Group 2 and Group 3 results are shown in Figure 9.29. The velocity profiles
in the s-direction is minimally influenced by the difference in rotational velocity. Profiles with the same
deceleration however, have similar values. Strong separation of the flow is seen. The separation strength
is directly proportional to the deceleration. The Centrifugal force lowers the non-dimensional velocity
value in the far-field of the boundary layer. The tangential velocity profile (in the z-direction) are only
slightly affected by the change in axial velocity. The flow is overall dominated by the larger translational
velocity.

Figure 9.29: Comparison between Group 2 and Group 3 Simulation Results for Deceleration
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

In Figures 9.30 and 9.31 the s-direction velocities for the Group 2 and Group 3 results are shown.

Figure 9.30: Non-Dimensional s-Direction Velocity Profiles: Group 2 Decelerating Cone
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9.3. RESULTS AND DISCUSSION - DECELERATION

Figure 9.31: Non-Dimensional s-Direction Velocity Profiles: Group 3 Decelerating Cone
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

In Figures 9.32 and 9.33 the tangential velocities for the Group 2 and Group 3 results are shown.

Figure 9.32: Non-Dimensional z-Direction Velocity Profiles: Group 2 Decelerating Cone
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9.3. RESULTS AND DISCUSSION - DECELERATION

Figure 9.33: Non-Dimensional z-Direction Velocity Profiles: Group 3 Decelerating Cone
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

The flow reacts immediately to the decelerating conditions. The deceleration response is classified
as Type III since no part of the profile remains close to the steady state result. Three profile responses
have been observed similar to the responses in acceleration; separation in the near-wall region, influence
of the centrifugal effect in the boundary far-field and the presence of a strain limit (Figure 9.34).

Figure 9.34: Responses of the Boundary Layer on the Cone to Deceleration in Translation

The mechanism responsible for the flow reversal is similar to those for the flat plate and rotating
disk where an adverse pressure gradient is the underlying cause (Figure 9.35).

Figure 9.35: Decelerating Velocity Profile in the s-Direction on the Cone

The governing equation for the boundary layer flow in the s-direction was determined in 5.162. This
equation is can be reduced to show only the terms that are relevant in this case:
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9.3. RESULTS AND DISCUSSION - DECELERATION
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In deceleration conditions the non-inertial terms on the right hand side of the equation becomes a
momentum sink. The reduction on the right hand side of the equation leads to a decrease on the left
hand side momentum terms. As a result, the velocity V̂1 decreases. In turn this leads to a decrease in
the velocity gradient in the stress tensor. The flow compensates for the reduced velocity gradient by
increasing the pressure gradient. This results in an adverse pressure gradient. In these conditions the
flow separates from the wall and flow in the opposite direction.
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In the tangential direction a delay in the reaction of the tangential velocities can be seen (Figures
9.32 and 9.33 ). However the 70g profile reacts to the changing conditions . This is a similar effect as
was seen in the radial direction of the rotating disk. Since there are no direct changes in this direction,
the flow changes due to secondary effects. The lower deceleration cases react first, while in the higher
decelerations the profile in this direction remains in it's initial state.
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

9.3.1.2 Steady Translation with Decelerating Rotation

The deceleration of the rotational velocities was done in accordance with Table 9.2. The Group 4 and
Group 5 results are indicated in Figure 9.36 below. It is shown in these graphs that the s-direction veloc-
ity profiles are independent on rotational velocity and deceleration strength. Furthermore, the rotational
velocity profiles, in the z-direction, are affected by the axial velocity. At a lower axial velocity (1 m/s),
the peak values of the separation is higher than for a compatible case (same rotational velocity and
deceleration). Furthermore, at lower axial velocities the near-wall velocity gradient is steeper than in
the case of higher axial velocities. Translation velocity dominates the flow, since it is higher than the
rotational velocity, and has a stabilizing effect on the rotational flow in deceleration.

Figure 9.36: Comparison between Group 4 and Group 5 Simulation Results for Deceleration
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9.3. RESULTS AND DISCUSSION - DECELERATION

In Figures 9.37 and 9.38 the s-direction velocities for the Group 4 and Group 5 results are shown.

Figure 9.37: Non-Dimensional s-Direction Velocity Profiles: Group 4 Decelerating Cone
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

Figure 9.38: Non-Dimensional s-Direction Velocity Profiles: Group 5 Decelerating Cone
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9.3. RESULTS AND DISCUSSION - DECELERATION

In Figures 9.39 and 9.40 the tangential velocities (itz-direction) for the Group 4 and Group 5 results
are shown.

Figure 9.39: Non-Dimensional z-Direction Velocity Profiles: Group 4 Decelerating Cone
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

Figure 9.40: Non-Dimensional z-Direction Velocity Profiles: Group 5 Decelerating Cone
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9.3. RESULTS AND DISCUSSION - DECELERATION

The decelerating rotational flow on the cone, in the tangential direction, has similarities with the
flat plate and rotating disk in deceleration (Figure 9.41). In the near-wall region the flow separates. This
separation is directly proportional to the deceleration strength. Stronger separation is associated with an
increased velocity gradient at the wall. The strain limit, as explained in Section 9.2.1 as also seen here.
The flow responses are of Type III and is momentum dominant.

Figure 9.41: Responses of the Boundary Layer on the Cone to Deceleration in Rotation

The mechanism that leads to the responses as shown above is similar to the flat plate and rotating
disk in deceleration (Figure 9.42).

Figure 9.42: Decelerating Velocity Profile in the z-Direction on the Cone

In Equation 5.164 the general equation for an object in general arbitrary acceleration was deter-
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

mined. This equation can be reduced, by exclusion on the terms that are not relevant, to obtain an
expression for the boundary layer in this case.
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∂û2

V̂3

h3

+ ρ̂
[

2V̂1ω2 −2V̂2ω1︸ ︷︷ ︸
Coriolis
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(9.15)

During deceleration, the non-inertial terms on the right hand side of the equation become a momen-
tum sink. These reduce the terms on the right hand side. In response, to keep the equation balance, the
momentum terms on the left hand side decrease. This results in a decrease of the velocity component
V̂3. Subsequently the velocity gradient in the near-wall region decreases. If the gradient is low enough,
it results in a positive pressure gradient which induces an adverse pressure gradient and flow reversal.
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(9.16)

The flow in the axial direction, s-direction is governed by the reduced form of Equation 5.162. At
lower axial velocities, i.e. Group 4, the axial velocity profiles are only slightly affected by the decelera-
tion in the tangential direction. The Group 5 results, at a higher axial velocity of 4 m/s, are unaffected by
the changes in rotational velocity - the higher axial flow dominates the effects of rotational deceleration.
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∂û2
µ̂

h1

h2
∂û2
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(9.17)
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9.3. RESULTS AND DISCUSSION - DECELERATION

9.3.2 Boundary Layer Parameters

The shape factor related to the cone in decelerating translation displays the same tendencies as for the
flat plate in deceleration. A discontinuity is approached in the shape factor that is dependant both on
position on the plate and deceleration strength (Figure 9.43). Positions further away from the cone front
end reach the discontinuity first. It is further seen that higher decelerations also reach the discontinuity
before lower decelerations.

Figure 9.43: Shape Factor in s-Direction for Translational Deceleration

Similar effects is seen for the cone in decelerating rotation (Figure 9.44) with the exception of
dependence on position. All points on the cone surface reach the discontinuity at approximately the
same time. The discontinuity position is however also dependant on deceleration strength here - higher
decelerations reach the discontinuity first.

As discussed inChapters 7 and 8 the presence of the discontinuity is a sign of regime change. Before
the discontinuity the flow can be assumed to be fully laminar. After the discontinuity the flow no longer
falls within the laminar regime. A negative shape factor is not physically possible since it means that the
momentum thickness assumes a negative value. This is not just an indication that the flow has separated
from the wall, but also indicates a change in the flow regime. The flow is most likely in transition or
turbulent after this point.
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

Figure 9.44: Shape Factor in z-Direction for Rotational Deceleration
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9.3. RESULTS AND DISCUSSION - DECELERATION

9.3.3 Skin Friction Coefficients

The skin friction values for the rotating cone in translational deceleration, as shown in Figure 9.45,
behaves in a similar manner as the flat plate in deceleration. Deceleration takes place from 4 m/s to 1
m/s. The skin friction coefficient is dependant on position and deceleration strength. The highest values
is displayed at positions closest to the tip of the cone for stronger decelerations. The values are divergent,
since the first and second derivatives are divergent (Figure 9.46). In this case the values are independent
on the rotational velocity. The axial velocity dominates and is much larger than the rotational velocity.

Figure 9.45: Skin Friction Coefficient in s-Direction for Translational Deceleration

The skin friction coefficients for the cone in axial flow with deceleration in rotation (Figure 9.47)
has a similar response as the cone in acceleration (Figure 9.27). The results are influences by the axial
velocity, as can be seen in the differences between the Group 4 and 5 results. Higher axial velocities
render lower skin friction coefficients. Results are also dependant on deceleration strength where higher
decelerations cause larger skin friction coefficients.
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

Figure 9.46: Derivatives of Skin Friction Coefficient in s-Direction for Translational Deceleration

Figure 9.47: Skin Friction Coefficient in z-Direction for Rotational Deceleration
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9.4. RESULTS AND DISCUSSION - ARBITRARY MOTION

9.4 Results and Discussion - Arbitrary Motion

9.4.1 Velocity Profiles

The cone in arbitrary motion simulations were conducted in accordance with Table 9.3.
In all the cases analysed an immediate response to the changing conditions can be observed. The

s-direction and normal profiles react similar to the flat plate under accelerating conditions, while similar-
ities can be drawn between the tangential direction (z) profiles and the rotating disk results (Figure 9.48
). The boundary layer responses is all classified as Type III.

Figure 9.48: Comparison between Group 6a,b,c and d at a Condition 2.5 m/s 7 rad/s

The s-direction and normal profiles in acceleration shown a thinning of the boundary layer in com-
parison with the steady state result. In the near-wall region the profile slope responds proportionally
to the acceleration parameter. In deceleration low reversal is observed that is also proportional to the
deceleration parameter. The flow is slightly influenced by the changes in rotation, but since the axial
flow is large that the rotational flow, it dominates the responses of the boundary layer.
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

The rotational flow profiles are affected significantly by the changes in the axial flow. This is further
shown in Figures 9.49 and 9.50.

Figure 9.49: Comparison between Group 6a and Group 6c

The tangential boundary in accelerating conditions mimics the behaviour of the rotating disk; the
profile becomes steeper in the near wall region in a manner directly proportional to the acceleration.
However, in accelerating axial flow the near-wall profile is steeper and the boundary layer thicker than
in decelerating axial flow. The decelerating axial flow retards the effect of the rotational acceleration
while accelerating axial flow enhances the effect.

In rotational deceleration the axial flow has a similar effect on the rotational boundary profile. In
axial acceleration the rotational profile displays a greater reversal and a thicker boundary layer than for
the same case but with axial deceleration. The flow is dominated by the axial flow in these cases since
the axial flow affects the rotational profiles, but the s-direction and normal profiles are only minimally
affected by the changes in rotation. A tabular summation of the general behaviour is shown in Table 9.4.

Based on the previous two sections, a summation can be derived for the mechanisms involved in the
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9.4. RESULTS AND DISCUSSION - ARBITRARY MOTION

Figure 9.50: Comparison between Group 6b and Group 6d

boundary layer flow (Figures 9.51-9.54). In general the following apply in both the s- and z-directions:

• Acceleration. The non-inertial terms becomes a momentum source. This leads to an increase in
the near-wall velocity gradient which influences the velocity profile, 1

h2

∂
∂û2

µ̂
h1
h2
∂û2

V̂1
h1
.

• Deceleration. The non-inertial terms becomes a momentum sink. This lead to a decrease in the
near-wall velocity gradient. In turn the pressure gradient becomes positive and forces an adverse
pressure gradient, − 1

h1

∂ p̂
∂û1

. The flow separates.
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9.4. RESULTS AND DISCUSSION - ARBITRARY MOTION

Figure 9.51: Mechanisms Associated with Case 6a of the Cone
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

Figure 9.52: Mechanisms Associated with Case 6a of the Cone
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9.4. RESULTS AND DISCUSSION - ARBITRARY MOTION

Figure 9.53: Mechanisms Associated with Case 6a of the Cone
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

Figure 9.54: Mechanisms Associated with Case 6a of the Cone
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9.4. RESULTS AND DISCUSSION - ARBITRARY MOTION

9.4.2 Boundary Layer Parameters

Figures 9.55 and 9.56 show the shape factor in the s-direction. In both cases the flow in translation
in accelerating. Group 6a are accelerating in rotation while Group 6b are decelerating in rotation. The
shape factor in the s-direction is affect by the rotation as can be seen in the slightly lower results of Group
6b. The general tendencies in the result are similar to the shape factors of the flat plate in accelerating
translation.

Figure 9.55: Group 6a Shape Factor in the s-Direction

Figure 9.56: Group 6b Shape Factor in the s-Direction

333

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

Figures 9.57 and 9.58 show the shape factor in the z-direction for Groups 6a and 6d respectively.
Both cases are accelerating in rotation. Deceleration in translation causes the shape factor to start at
higher values and end at lower values than if there had been acceleration in translation. This is due to
residual flow effects from starting at a higher free-stream velocity. The profiles of the shape factor are
comparable to the tangential profiles of a rotating disk in acceleration.

Figure 9.57: Group 6a Shape Factor in the z-Direction

Figure 9.58: Group 6d Shape Factor in the z-Direction
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9.4. RESULTS AND DISCUSSION - ARBITRARY MOTION

Figures 9.59 and 9.60 show the shape factor in the z-direction for Group 6b and 6c respectively. The
rotational flow is in deceleration. The profiles are similar to the tangential profiles of a rotating disk in
deceleration. The same discontinuity in the shape factor is observed. Acceleration in the axial flow has
a destabilizing effect on the boundary layer since it causes the discontinuity to occur earlier than in
the case of decelerating axial flow. Higher rotational deceleration cases are less affected by changes in
translation since Sets 5 and 6 do not indicate earlier onset of discontinuity.

Figure 9.59: Group 6b Shape Factor in the z-Direction

Figure 9.60: Group 6c Shape Factor in the z-Direction
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

Figures 9.61 and 9.62 show the shape factor in the z-direction for Group 6c and 6d respectively.
Translational velocities are in deceleration. Since the flow is dominated by the higher translation, it
dominates the shape factor behaviour. The profiles are similar to a flat plate in deceleration as indicated
by the presence of the discontinuity in the shape factor.

Figure 9.61: Group 6c Shape Factor in the s-Direction

Figure 9.62: Group 6d Shape Factor in the s-Direction
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9.4. RESULTS AND DISCUSSION - ARBITRARY MOTION

9.4.3 Skin Friction Coefficients

In Figures 9.63 and 9.64 the skin friction coefficient results for Group 6a and 6b are given respectively.
In both cases the translational flow is in acceleration and dominates the flow. The skin friction coeffi-
cients display similar patterns than the flat plate and the rotating disk in acceleration. The values are
increasing during the beginning stages of the acceleration event. It reaches a maximum after which it
decreases to approach an asymptotic value.

Figure 9.63: Group 6a Skin Friction Coefficient

Figure 9.64: Group 6b Skin Friction Coefficient
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

Figures 9.65 and 9.66 show the skin friction coefficient for the Group 6c and 6d respectively. In
both these cases the flow is in translational deceleration. Translation dominates the flow. The behaviour
of the skin friction coefficient is similar to the flat plate and rotating disk in deceleration. The values
increase with deceleration and is divergent. Stronger decelerations causes higher skin friction coefficient
values.

Figure 9.65: Group 6c Skin Friction Coefficient

Figure 9.66: Group 6d Skin Friction Coefficient
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9.5. CLOSURE

9.5 Closure

In this chapter the response of the boundary layer to arbitrary acceleration of rotating cone in axial flow
have been investigated. The specific contribution of this chapter is summarized as:

1) Characterization of the boundary layer behaviour for a cone in
i) variable translation with steady rotation,
ii) steady translation with variable rotation and
iii) variable translation with variable rotation.

2) Definition of a mechanism that explains the behaviour of the boundary layer for each case.

3) The characterisation of the response of the shape factor to arbitrary motion.

4) The characterisation of the response of the skin friction coefficient to arbitrary motion.

The rotating cone in axial flow was subjected to various cases of acceleration and deceleration.
Similarities can be drawn between the response of the cone in the s-direction and the flat plate in variable
translation. The responses in the z-direction are comparable to the rotating disk. In all cases Type III
response were observed. The cone case is therefore dominated by momentum effects in the boundary
layer.

The unsteady rotation is affected by the axial velocities as indicated inFigure 9.67 below. This figure
illustrates the importance of taking flow history into account when conducting analysis in arbitrary
motion.

Figure 9.67: Comparison of Various Profile at a Free-Stream of 2 m/s 7.5 rad/s
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

In acceleration the near-wall velocity profile becomes steeper in comparison to the steady state case,
while in deceleration flow reversal is observed. The profiles are dependant on the strength of the velocity
change rate. Higher accelerations cause greater velocity gradients in the near-wall region, while higher
decelerations result in stronger separation of the flow.

The profiles in the s-direction are influenced by the Centrifugal effects in the far-fields of the bound-
ary layer. A decrease was observed in the centrifugal effect with increasing acceleration and an increase
with increasing deceleration. The profiles are also subjected to a strain limit where the gradient of the
velocity profile is independent from the arbitrary motion.

The boundary layer responses are explained using the samemechanisms of the flat plate and rotating
disk in acceleration and deceleration. This is depicted in Figures 9.68 and 9.69 for translation and
rotation respectively.

Figure 9.68: Flow Mechanisms for Translation

Figure 9.69: Flow Mechanisms for Rotation

In acceleration the non-inertial terms becomes a momentum source. This leads to an increase in
the near-wall velocity gradient which influences the velocity profile. In deceleration the non-inertial
terms becomes a momentum sink. This lead to a decrease in the near-wall velocity gradient. In turn
the pressure gradient becomes positive and forces an adverse pressure gradient. The flow separates in
response to the adverse pressure gradient.
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9.5. CLOSURE

Shape factor results are comparable with the shape factor results of the flat plate. Since translation
dominates, the shape factor reacts according to the conditions of the axial flow as indicated in

In a similar manner where the shape factor are dependant on the conditions of the axial flow, so
does the skin friction coefficient respond to acceleration or deceleration in translation.

Figure 9.70: Skin Friction Coefficient Comparisons with respect to Arbitrary Motion in Translation

Figure 9.71: Skin Friction Coefficient Comparisons for Arbitrary Motion
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10
Conclusion

This thesis was aimed at characterizing the response of the boundary layer to arbitrary motion. The
task was approached by addressing the identified gaps in the body of knowledge. The objectives
that followed from the literature surveywere related to boundary layers of objects in unsteady six-

degree-of-freedom motion. The formalized research question, objectives and outcomes are as follow:
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CHAPTER 10. CONCLUSION

10.1 Contributions

The contributions made during the course of this research is grouped per objective below.

Derive the non-inertial Navier-Stokes bulk flow and boundary layer equations.
Objective 1

It was shown through derivation that both the continuity and conservation of energy equations re-
mains invariant under transformation - no additional terms are added to these equations:

∂ρ̂

∂t
+∇̂ · ρ̂û= 0 (10.1)

∂ρ̂ ê
∂t

+ (∇̂ · ρ̂ êû)=−p̂(∇̂ · û)+∇̂ · (k̂∇̂T̂)+ φ̂ (10.2)

The conservation of momentum equation for full arbitrary acceleration below, indicated that there
are six fictitious terms in the non-inertial equation. These are the only terms that are present during
arbitrary acceleration. The higher order terms become negligible or cancel out during the derivation.

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)=−∇̂p̂+∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î]

− ∂

∂t
(ρV(t))︸ ︷︷ ︸

Translation

+ρ ˆ̇x∧Ω+ρx̂∧Ω̇︸ ︷︷ ︸
Euler︸ ︷︷ ︸

Unsteady motion

+2ρû∧Ω︸ ︷︷ ︸
Coriolis

−ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

+2ρV(t)∧Ω︸ ︷︷ ︸
Magnus

(10.3)

Clarification were obtained on themathematical origin of the fictitious forces through the deriva-
tions. This indicated that the fictitious forces stem from the transformation of the temporal and advection
terms. The presence of fictitious forces is case dependant and is a function of the motion of the relative
frame. The diffusion terms and pressure gradient terms remain invariant under transformation.
The continuity equation in the boundary layer for both compressible and incompressible flows were
obtained. No terms are neglected from the continuity equation. Therefore, the form remains the same
as in the bulk flow. Here it is indicated in the curvilinear form.

∂ρ̂

∂t
+ 1

h1h2h3

[ ∂

∂û1

(
h2h3ρ̂V̂1

)+ ∂

∂û2

(
h1h3ρ̂V̂2

)+ ∂

∂û3

(
h1h2ρ̂V̂3

)]= 0 (10.4)

The momentum equation in the boundary layer for compressible and incompressible flow were
determined for Cartesian, Cylindrical and Curvilinear co-ordinate systems.

x-momentum

∂ρ̂û
∂t

+ û
∂ρ̂û
∂x̂

+ v̂
∂ρ̂û
∂ ŷ

+ ŵ
∂ρ̂û
∂ẑ

=−∂ p̂
∂x̂

+ ∂

∂ ŷ
µ̂
∂û
∂ ŷ

+2ρ̂v̂ω3 −2ρ̂ŵω2 + ρ̂ x̂(ω3
2 +ω2

2)

− ρ̂ ŷω1ω2 − ρ̂ ẑω1ω3 + ρ̂ ŷ ˆ̇ω3 − ρ̂ ẑ ˆ̇ω2 + ρ̂ ˆ̇yω3 − ρ̂ ˆ̇zω2 +2ρ̂Vyω3 −2ρ̂Vzω2 − ∂ρ̂Vx

∂t

(10.5)
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10.1. CONTRIBUTIONS

r-momentum

∂ρ̂ûr

∂t
+ ûr

∂ρ̂ûr

∂r̂
+ ûθ

r̂
∂ρ̂ûr

∂θ̂
− ρ̂û2

θ

r̂
+ ûy

∂ρ̂ûr

∂ ŷ
=−∂ p̂

∂r̂
+ ∂

∂ ŷ
µ̂
∂ûr

∂ ŷ
−2ρ̂ûθωy +2ρ̂ûyωθ

− ρ̂ ŷωrωy + ρ̂ r̂ω2
y + ρ̂ r̂ω2

θ+ ρ̂ ŷω̇θ− ρ̂ûθωy + ρ̂ûyωθ−2ρ̂Vθωy +2ρ̂Vyωθ− ∂ρ̂Vr

∂t

(10.6)

u1-momentum:

ρ̂
[∂V̂1

∂t
+ V̂1

h1

∂V̂1

∂û1
+ V̂2

h2

∂V̂1

∂û2
+ V̂3

h3

∂V̂1

∂û3
− V̂2

( V̂2

h1h2

∂h2

∂û1
− V̂1

h1h2

∂h1

∂û2

)
+ V̂3

( V̂1

h1h3

∂h1

∂û3
− V̂3

h1h3

∂h3

∂û1

)]
=− 1

h1

∂p̂
∂û1

+ 1
h2

∂

∂û2
µ̂

h1

h2
∂û2

V̂1

h1
+ ρ̂

[
2V̂2ω3 −2V̂3ω2 + û1(ω3

2 +ω2
2)− û2ω1ω2 − û3ω1ω3

+ û2ω̇3 − û3ω̇2 + ˆ̇u2ω3 − ˆ̇u3ω2 +2Ve2ω3 −2Ve3ω2 −
∂Ve1

∂t

]
(10.7)

It was shown that the compressible and incompressible equations have the same terms. The only
difference between the two forms is that in the incompressible case the density parameter, ρ, can be
divided through out the equation.
The following similarities in boundary layer equations were observed for all co-ordinate systems:

• The fictitious terms can not be neglected from the boundary layer equations. Therefore all the
terms have an influence on the boundary layer velocity profile during acceleration and decelera-
tion of the object.

• The material derivative (left hand side of the Navier-Stokes equation) are unchanged in the longi-
tudinal and transversal directions. However, all left hand side terms are neglected in the direction
normal to the surface.

0=−∂ψ̂

∂ ŷ
−2ûrωθ+2ûθωr − r̂ωrωy + ŷω2

r + ŷω2
θ− r̂ω̇θ (10.8)

• The pressure gradient terms are present in all directions.

• The diffusion terms in the boundary layer originate from specific components in the stress tensor
of the τ12 and τ32 terms.

τ̂12 = µ̂
[h2

h1

∂

∂û1

( V̂2

h2

)
+ h1

h2

∂
∂û2

(
V̂1
h1

) ]
& τ̂32 = µ̂

[
h3
h2

∂
∂û2

(
V̂3
h3

)
+ h2

h3

∂

∂û3

( V̂2

h2

)]
(10.9)

Mathematical formulations for the bulk flow and boundary layer equations in arbitrary motion.
Outcome 1
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CHAPTER 10. CONCLUSION

Implement the non-inertial Navier-Stokes equations in a solver in OpenFOAM.
Objective 2

The non-inertial formulations for the Navier-Stokes equations developed in addressing Obejctive 1, a
non-inertial solver was developed. The resulting code, ARFrhoPimpleFoam have the following prop-
erties:

• Non-inertial momentum equation implementation,

• Prescribed motion definitions required,

• Operating on a stationary mesh,

• Using specialized boundary conditions and

• Capability of resolving compressible flow.

The governing equations that were implemented are the conservation of mass, momentum and en-
ergy equations respectively:

∂ρ̂

∂t
+∇̂ · ρ̂û= 0

∂ρ̂û
∂t

+∇̂ · (ρ̂û⊗ û)−∇̂ · [µ̂(∇̂û+∇̂ûT )+ λ̂(∇̂ · û)Î]

+ ∂

∂t
(ρV(t))︸ ︷︷ ︸

Translation

−ρx̂∧Ω̇︸ ︷︷ ︸
Euler

−2ρû∧Ω︸ ︷︷ ︸
Coriolis

+ρx̂∧Ω∧Ω︸ ︷︷ ︸
Centrifugal

−2ρV(t)∧Ω︸ ︷︷ ︸
Magnus

=−∇̂p̂

∂ρ̂ĥs

∂t
+ (∇̂ · ρ̂ĥsû)+ ∂ρ̂K̂

∂t
+ (∇̂ · ρ̂K̂û)− ∂p̂

∂t
−∇̂ · (k̂∇̂T̂)= 0

A special boundary condition, ARFFreeStreamVelocity, was developed that allows for defining
the free stream velocity conditions in the inertial frame. It is a simplified manner of describing the flow
boundaries where the inertial velocity is stationary. The code transforms the boundary values to the
non-inertial frame using the prescribed motion definitions.

Two validation cases were conducted to asses the functionality of the solver; a flat plate and a
rotating cone. Numerical results from these analyses were compared with analytical results fromBlasius
[37], Monaghan [87] and von Karman [41] respectively. The simulated results compared well with the
analytical results. It was subsequently used to analyse the behaviour of the boundary layer under various
arbitrary flow conditions.

Solver, for prescribed, arbitrary motion in the non-inertial reference frame, implemented in Open-
FOAM.

Outcome 2
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10.1. CONTRIBUTIONS

Conduct numerical simulations to determine the response of the boundary layer to arbitrary mo-
tion.

Objective 3

The numerical simulations were done for a translating flat plate, a rotating disk and a rotating cone in
axial flow. Test matrices were constructed to obtain sample results of various accelerating and deceler-
ating conditions. In all the cases simulated, three types of behaviour to arbitrary motion were observed.
The three type were defined in this thesis as Response Types I, II and III. This is illustrated in Figure
10.1.

• Response Type I, which is viscous dominant. The time scale at which the event occurs is low
enough to allow time for the viscous forces in the boundary layer to adjust to the changes and
keep the steady state profile.

• Response Type II, where the time scales of the viscous and momentum forces are of the same
order. Certain regions of the boundary layer are dominated by viscosity and others by momentum.
In acceleration the viscosity dominates in the near-wall region and momentum in the far field
regions. In deceleration momentum dominates in the near-wall region and viscosity in the far
field.

• Response Type III, which is dominated by momentum. The time scale at which the event occurs
is too high for viscous forces in the boundary layer to adjust to the changes and keep the steady
state profile. In acceleration the near-wall velocity profile increases with increasing acceleration.
In deceleration separation occurs at a result of momentum changes in the flow.

Figure 10.1: Response Types for Accelerating and Decelerating Conditions on a Flat Plate
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CHAPTER 10. CONCLUSION

The mechanisms that cause changes in the boundary layer due to arbitrary motion were identified.
This is similar for all test cases andwas explained using the boundary layer equations previously derived.
There are similarities in behaviour of the translating plate profiles and the longitudinal velocity profiles
of the rotating cone in axial flow. More similarities are observed in the rotating cone and the tangential
velocity profile of the cone. This is depicted in Figures 10.2 and 10.3 respectively.

Figure 10.2: Comparison between the Arbitrary Flow Mechanisms for the Translating Plate (left) and
the Longitudinal Velocity Component of the Rotating Cone in Axial Flow (right)

Figure 10.3: Comparison between the Arbitrary Flow Mechanisms for the Rotating Disk (left) and the
Tangential Velocity Component of the Rotating Cone in Axial Flow (right)

In acceleration the relative frame fictitious terms become a momentum source. An increase in mo-
mentum on the right hand side of the equation leads to an increase in the material derivative on the left
hand side of the equation. This increase results in a velocity increase in the boundary layer near-wall
region. In turn it causes the velocity gradient at the wall to increase. This is the effect observed in the
simulation results for accelerating cases.

The opposite occurs in deceleration where the relative frame fictitious terms become a momentum
sink. A decrease in momentum on the right hand side of the equation leads to a decrease in the material
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10.1. CONTRIBUTIONS

derivative on the left hand side of the equation. This decrease results in a velocity decrease in the
boundary layer near wall region. In turn it causes the velocity gradient at the wall to decrease. The
pressure gradient has an opposite sign to the diffusion term and increases to such an extent that an
adverse pressure gradient form. This results in flow separation as observed in the simulation results.

These mechanisms are depicted in the equations below. It corresponds with the figures above. The
red terms cause the velocity gradient increase during acceleration. The blue terms are responsible for
flow separation during decelerating.

The equation below is the boundary layer equation for the translating plate.

∂ρ̂û
∂t

+ û
∂ρ̂û
∂x̂

+ v̂
∂ρ̂û
∂ ŷ

=− ∂p̂
∂x̂ + ∂

∂ ŷ
µ̂∂û

∂ ŷ − ∂ρ̂Vx

∂t

The equation below is the boundary layer equation for the longitudinal velocity component of the
rotating cone in axial flow. It has similarities with the equation for the translating plate.

ρ̂
[∂V̂1

∂t
+ V̂1

h1

∂V̂1

∂û1
+ V̂2

h2

∂V̂1

∂û2
+ V̂3

h3

∂V̂1

∂û3
− V̂2

( V̂2

h1h2

∂h2

∂û1
− V̂1

h1h2

∂h1

∂û2

)
+ V̂3

( V̂1

h1h3

∂h1

∂û3
− V̂3

h1h3

∂h3

∂û1

)]

=− 1
h1

∂ p̂
∂û1

+ 1
h2

∂
∂û2

µ̂
h1
h2
∂û2

V̂1
h1

+ ρ̂
[
û1ω2

2 − û2ω1ω2 −
∂Ve1

∂t

]

The equation below is the boundary layer equation for the rotating disk.

∂ρ̂ûθ

∂t
+ ûr

∂ρ̂ûθ

∂r̂
+ ûθ

r̂
∂ρ̂ûθ

∂θ̂
+ ρ̂ûθ ûr

r̂
+ ûy

∂ρ̂ûθ

∂ ŷ
=− 1

r̂
∂p̂
∂θ̂

+ ∂
∂ ŷ

(
µ̂

∂ûθ

∂ ŷ
) +2ρ̂ûrωy + ρ̂ r̂ω̇y

The equation below is the boundary layer equation for the tangential velocity component of the
rotating cone in axial flow. It has similarities with the equation for the translating plate.

ρ̂
[∂V̂3

∂t
+ V̂1

h1

∂V̂3

∂û1
+ V̂2

h2

∂V̂3

∂û2
+ V̂3

h3

∂V̂3

∂û3
− V̂1

( V̂1

h1h3

∂h1

∂û3
− V̂3

h1h3

∂h3

∂û1

)
+ V̂2

( V̂3

h2h3

∂h2

∂û1
− V̂2

h2h3

∂h2

∂û3

)]

=− 1
h1

∂ p̂
∂û3

+ 1
h2

∂
∂û2

µ̂
h3
h2
∂û2

V̂3
h3

+ ρ̂
[
2V̂1ω2 −2V̂2ω1 + û3(ω2

2 +ω1
2)+ û1ω̇2 − û2ω̇1 +2Ve1ω2 −2Ve2ω1

]
The shape factor behaves in a similar manner for all cases. An example set is shown in Figure 10.4

for accelerating and decelerating conditions.

349

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 10. CONCLUSION

Figure 10.4: Results of the tangential shape factor response for acceleration (left) and deceleration (right)
events on a rotating disk

The higher acceleration cases is monotonically decreasing and approximates a minimum value. In
contrast, the lower acceleration cases reach a minimum value very early in the event. It then recovers the
initial value and approaches an asymptotic shape factor value. In deceleration the shape factor displays
a discontinuity. The shape factor approaches positive infinity at this point. A discontinuity in the mathe-
matics is an indication that the flow regime has changed. It is therefore postulated that the discontinuity
is the point where the flow becomes turbulent.

The skin friction coefficient behaviour is the same for all cases analysed. A sample of the behaviour
is shown in (Figure 10.5). In acceleration the skin friction coefficient value first increase. It reach a
maximum after which it is reduced. An asymptote is approximated as the acceleration event continues.
Boundary layers in acceleration has a cooling effect on the wall due to a lower skin friction which results
in a lower skin drag value. The skin friction coefficient in deceleration is divergent and continues to
increase. The higher skin drag is responsible for the heating effect on the wall of objects in deceleration.
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10.2. SUGGESTED FURTHER WORK

Figure 10.5: Skin Friction Coefficient Comparisons for Arbitrary Motion on the Cone

Insight into the response of the boundary layer to arbitrary motion.
Outcome 3

10.2 Suggested Further Work

This research provides a basis for further work in the field of boundary layers of objects in arbitrary mo-
tion. Additional commended research are divided into three categories; Mathematical Research, Code
Improvements and Numerical Research.

10.2.1 Mathematical Research

Continuation of this research will greatly benefit from analysis of the boundary layer equations us-
ing asymptotic methods (Cathalifaud et al. [98], Hamouda [99], Lundgreny [100]). The aim will be to
obtain a semi-analytical solution for boundary layers in arbitrary motion against which the numerical
results can be compared. This will further assist in defining an acceleration parameter to characterize
the similarities in the flow for different response types. The acceleration limits that divide the behaviour
according to response types can hence be determined. Asymptotic analysis is also a method to study dis-
turbance propagation in the boundary layer. Examples include, transition of the boundary layer due to
Tollmien-Schlichting waves, Taylor-Görtler vortices and the Kelvin-Helmholtz instability in separated
flows (Dovgal et al. [101, 102]). Studies could not be found where the effect of arbitrary motion on
these disturbances are analytically investigated. To investigate the shock wave boundary layer interac-
tion of supersonic and hypersonic flows analytically, it is suggested that the method of characteristics
be augmented to account for arbitrary motion.
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CHAPTER 10. CONCLUSION

10.2.2 Improvements to the Code

There are a number of ways in which the current solver can be improved upon. The solver does not
make provision for flow with a moving axis. Implementing the additional term is simple. Tt involves
inclusion of the additional unsteady term in the source terms and accounting for the movable axis by
specifying a centre of gravity on the object under analysis. However, in external ballistic applications
the Magnus force acts through the centre of pressure. Implementing a movable axis might influence
the manner in which the Magnus source term is implemented. A pressure-based solver was used in this
study. Pressure-based solvers were not created for the resolution of supersonic and hypersonic flows
(Ferziger and Peric [92], Versteeg and Malalasekera [69]). Although, it has been augmented in recent
years and applied to the higher flow regime (Menter et al. [103]). It is advisable that a density based
solver be developed for the analysis of high velocity flows (Xisto et al. [104]). These types of solvers are
able to capture the shock wave propagation more accurately with fewer computational nodes than other
methods. A study with the aim to numerically investigate disturbance propagation in turbulent boundary
layers will benefit from alternative simulation techniques such a Large Eddy Simulation (LES) or Direct
Numerical Simulation (DNS) (Hattori et al. [105], Spalart et al. [106], Orellano andWengle [107]). The
Reynolds Average Navier-Stokes (RANS) methodolgy currently employed can easily be extended to
include reacting flows, two-phase flows and porous flows. These have specific application in the defence
environment for air-breathing engines and internal ballistic analysis.

10.2.3 Numerical Research

Further investigation can be done to numerically define the limits of the response types as proposed
in this research. Accelerations and decelerations of 70g to 700 000g were imposed on the flow field.
The exact limits of transition from one response to the other were not defined explicitly. Furthermore,
Response Type I was not envoked for the disk case and the cone only displayed a Type III response.
More simulations are required to predict the onset of response types.

The solver was validated in this case for laminar boundary layers. The modularity of OpenFOAM
allows for the immediate inclusion of turbulence models and the subsequent validation of low velocity
turbulent cases. One equationsmodels, such a Spalart-Almaras, and two equationsmodels, such a the κ−
ϵ-model and the κ−ω-model can be directly implemented without changes to the source code (Ferziger
and Peric [92], Versteeg and Malalasekera [69]). The parameters in these turbulence models are scalar
values and therefore invariant under transformation.

Improvements to the code suggested in the previous section will allow for more complex simula-
tions. The cases can be extended to the supersonic and hypersonic regimes. Disturbance formation and
propagation can be studied with slight alterations to the code. More complex flows, such as turbulent
combustion in air breathing engines, porous flow inside large calibre gun chambers and two-phase flow
in rocket engines can be studied using this methodology.

The graph of Wazzan et al. [78] were generated for steady conditions. The analytical and numer-
ical studies can be used to generated a similar graph for unsteady conditions. This will assist in the
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10.3. ALTERNATIVE APPLICATIONS

classification of flow regimes for arbitrary motion.

10.3 Alternative Applications

The methods used in this research, were developed to study the behaviour of the boundary layer to
arbitrary motion. There are however a number of unforeseen alternative applications where it can be
used.

The down-wash of a helicopter hovering above a ship's flight deck has been widely studied (Schau
et al. [108], Scott et al. [109]). The computational requirement of such a study is very expensive since a
movable mesh is required. Constant re-meshing of the grid does not allow for accurate resolution of the
boundary layer on the helicopter blades. The code developed in this study is capable resolving such a
domain with a stationary grid. Not only does this significantly reduce the computational time required,
but it also allows for proper resolution of the boundary layer around the blades. Similarly, studying the
effect of the helicopter blades on each other, specifically the disturbances generated by each blade, can
be done with relative ease. This can also be employed in studies where the effect of a ship's body on
the propeller is investigated (Martin et al. [110], Shin et al. [111]). In military applications the ship's
propeller must be optimized to generate as little cavitation as possible. Cavitation damages the propeller
blades and generates noise which an opposing force can use to track the ship. Again, as in the case of the
helicopter, a manoeuvring ship can be studied with a stationary grid and fine resolution of the boundary
layer on the propeller. The research methods can be used for unsteady solutions of the start-up or shut-
down of turbo-machines (Rainbird et al. [112], C.Trivedi et al. [113]). The majority of computational
studies in turbo-machines only considers steady conditions. It was seen in the body of this thesis that the
flow history plays an important part in the unsteady boundary layer of an object. The velocity profiles
for unsteady condition on turbine blades, wind turbines and other rotating machines can be determined.

Advanced boundary layer research can be conducted with the methods developed in this thesis.
Since the behaviour of the boundary layer can be predicted, it is of use in flow control studies. Stability
analysis, disturbance propagation and transition studies can also be done.

Fluid structure interaction studies requires input from the fluid flow andmore specifically the bound-
ary layer. More realistic prediction of the boundary layer flow will result in enhanced simulations for
structural response. This is applicable in flutter analysis and development of intelligent materials.
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Proof of Identities

The identities below are referred to in the main text of this thesis.

Identity 1

∇· (x∧Ω)

= ∂

∂xi
[x jΩk − xkΩ j]i

− ∂

∂x j
[xiΩk − xkΩi]j

+ ∂

∂xk
[xiΩ j − x jΩi]k

= 0

Identity 2

∇· (x∧ Ω̇)

= ∂

∂xi
[x jΩ̇k − xkΩ̇ j]i

− ∂

∂x j
[xiΩ̇k − xkΩ̇i]j

+ ∂

∂xk
[xiΩ̇ j − x jΩ̇i]k

= 0
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APPENDIX A. PROOF OF IDENTITIES

Identity 3

∇2(x∧Ω)

= (
∂2

∂x2
i
+ ∂2

∂x2
j
+ ∂2

∂x2
k

)[x jΩk − xkΩ j]i

− (
∂2

∂x2
i
+ ∂2

∂x2
j
+ ∂2

∂x2
k

)[xiΩk − xkΩi]j

+ (
∂2

∂x2
i
+ ∂2

∂x2
j
+ ∂2

∂x2
k

)[xiΩ j − x jΩi]k

= 0

Identity 4

∇2(x∧ Ω̇)

= (
∂2

∂x2
i
+ ∂2

∂x2
j
+ ∂2

∂x2
k

)[x jΩ̇k − xkΩ̇ j]i

− (
∂2

∂x2
i
+ ∂2

∂x2
j
+ ∂2

∂x2
k

)[xiΩ̇k − xkΩ̇i]j

+ (
∂2

∂x2
i
+ ∂2

∂x2
j
+ ∂2

∂x2
k

)[xiΩ̇ j − x jΩ̇i]k

= 0
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Identity 5

(c ·∇)(x∧Ω)= c∧Ω

LH = (c ·∇)(x∧Ω)

= (ci
∂

∂xi
+ c j

∂

∂x j
+ ck

∂

∂xk
)[(x jΩk − xkΩ j)i

− (xiΩk − xkΩi)j+ (xiΩ j − x jΩi)k]

= (c jΩk − ckΩ j)i− (ciΩk − ckΩi)j

+ (ciΩ j − c jΩi)k]

(c ·∇)(x∧Ω)= c∧Ω

RH = c∧Ω

= (c jΩk − ckΩ j)i− (ciΩk − ckΩi)j

+ (ciΩ j − c jΩi)k]

LH = RH

Identity 6

(c ·∇)(x∧ Ω̇)= c∧ Ω̇

LH = (c ·∇)(x∧ Ω̇)

= (ci
∂

∂xi
+ c j

∂

∂x j
+ ck

∂

∂xk
)[(x jΩ̇k − xkΩ̇ j)i

− (xiΩ̇k − xkΩ̇i)j+ (xiΩ̇ j − x jΩ̇i)k]

= (c jΩ̇k − ckΩ̇ j)i− (ciΩ̇k − ckΩ̇i)j

+ (ciΩ̇ j − c jΩ̇i)k]

RH = c∧ Ω̇

= (c jΩ̇k − ckΩ̇ j)i− (ciΩ̇k − ckΩ̇i)j

+ (ciΩ̇ j − c jΩ̇i)k]

LH = RH
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APPENDIX A. PROOF OF IDENTITIES

Identity 7

∇(x∧Ω)+∇(x∧Ω)T = 0

∇(x∧Ω)=
∂
∂xi

(x jΩk − xkΩ j) ... ∂
∂xk

(x jΩk − xkΩ j)
∂
∂xi

(−xiΩk + xkΩi) ... ∂
∂xk

(−xiΩk + xkΩi)
∂
∂xi

(xiΩ j − x jΩi) ... ∂
∂xk

(xiΩ j − x jΩi)


=


0 Ωk −Ω j

−Ωk 0 Ωi

Ω j −Ωi 0


∇(x∧Ω)+∇(x∧Ω)T = 0

0 Ωk −Ω j

−Ωk 0 Ωi

Ω j −Ωi 0

+


0 −Ωk Ω j

Ωk 0 −Ωi

−Ω j Ωi 0

= 0

Identity 8

x∧Ω=−Ω∧x

LH = x∧Ω

= (x jΩk − xkΩ j)i− (xiΩk − xkΩi)j

+ (xiΩ j − x jΩi)k

RH =−Ω∧x

=−[(xkΩ j − x jΩk)i− (xkΩi − xiΩk)j

+ (x jΩi − xiΩ j)k]

= (x jΩk − xkΩ j)i− (xiΩk − xkΩi)j

+ (xiΩ j − x jΩi)k

LH = RH
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ix B

Code Formulations for the Accelerating Reference Frame Solving Utility

In this appendix the code formulations for the Accelerating Reference Frame Solver, designated
ARFrhoPimpleFoam, are shown.

B.1 ARFrhoPimpleFoam Code Formulation

Figure B.1: ARFrhoPimpleFoam Solver Root Folder
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APPENDIX B. CODE FORMULATIONS FOR THE ACCELERATING REFERENCE FRAME SOLVING
UTILITY

Figure B.2: ARFrhoPimpleFoam Solver Make Folder

Figure B.3: ARFrhoPimpleFoam Solver Installation Location

Figure B.4: ARFrhoPimpleFoam Solver Dependent Utilities

372

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



B.1. ARFRHOPIMPLEFOAM CODE FORMULATION

Figure B.5: ARFrhoPimpleFoam C++ Main Code
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APPENDIX B. CODE FORMULATIONS FOR THE ACCELERATING REFERENCE FRAME SOLVING
UTILITY

Figure B.6: ARFrhoPimpleFoam C++ Create Fields Header File
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B.1. ARFRHOPIMPLEFOAM CODE FORMULATION

Figure B.7: ARFrhoPimpleFoam C++ rhoEqn.H Code
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APPENDIX B. CODE FORMULATIONS FOR THE ACCELERATING REFERENCE FRAME SOLVING
UTILITY

Figure B.8: ARFrhoPimpleFoam C++ EEqn.H Code
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B.1. ARFRHOPIMPLEFOAM CODE FORMULATION

Figure B.9: ARFrhoPimpleFoam C++ UEqn.H Code
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APPENDIX B. CODE FORMULATIONS FOR THE ACCELERATING REFERENCE FRAME SOLVING
UTILITY

B.2 ARFModel Code Formulation

Figure B.10: ARF Library Root Folder

Figure B.11: ARFModel Library Root Folder

Figure B.12: ARFModel Library Sources
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B.2. ARFMODEL CODE FORMULATION

Figure B.13: ARFModel C++ Source Code ARFProperties Constructors
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APPENDIX B. CODE FORMULATIONS FOR THE ACCELERATING REFERENCE FRAME SOLVING
UTILITY

Figure B.14: ARFModel C++ Source Code Vector Definitions
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B.2. ARFMODEL CODE FORMULATION

Figure B.15: ARFModel C++ Source Code - Coriolis and Centrifugal Source Calculation
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APPENDIX B. CODE FORMULATIONS FOR THE ACCELERATING REFERENCE FRAME SOLVING
UTILITY

Figure B.16: ARFModel C++ Source Code - Euler and Rotation-Translation Interaction Source Calcu-
lation
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B.2. ARFMODEL CODE FORMULATION

Figure B.17: ARFModel C++ Source Code - Frame Acceleration and Source Summation Calculations
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APPENDIX B. CODE FORMULATIONS FOR THE ACCELERATING REFERENCE FRAME SOLVING
UTILITY

Figure B.18: ARFModel C++ Source Code Velocity Calculation
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B.2. ARFMODEL CODE FORMULATION

Figure B.19: ARFModel C++ Source Code Internal Field and Boundary Layer Correction
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APPENDIX B. CODE FORMULATIONS FOR THE ACCELERATING REFERENCE FRAME SOLVING
UTILITY

Figure B.20: ARFModel Header File Returned Parameters
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B.2. ARFMODEL CODE FORMULATION

Figure B.21: tabulatedAcceleration Library Root Folder

Figure B.22: tabulatedAcceleration C++ Source Constructors
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APPENDIX B. CODE FORMULATIONS FOR THE ACCELERATING REFERENCE FRAME SOLVING
UTILITY

Figure B.23: tabulatedAcceleration C++ Source Member Functions
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B.3. ARFFREESTREAMVELOCITY BOUNDARY IMPLEMENTATION

B.3 ARFFreeStreamVelocity Boundary Implementation

Figure B.24: ARF derivedFvPatchFields Root Folder

Figure B.25: ARFVelocity Boundary Condition Description

389

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



APPENDIX B. CODE FORMULATIONS FOR THE ACCELERATING REFERENCE FRAME SOLVING
UTILITY

Figure B.26: ARFVelocity Boundary Condition Source Code
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B.3. ARFFREESTREAMVELOCITY BOUNDARY IMPLEMENTATION

Figure B.27: ARFFreestreamVelocity Boundary Condition Description
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APPENDIX B. CODE FORMULATIONS FOR THE ACCELERATING REFERENCE FRAME SOLVING
UTILITY

Figure B.28: ARFFreestreamVelocity Boundary Condition Source Code
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B.4. CASE STRUCTURE

B.4 Case Structure

Figure B.29: OpenFOAM Case Initial Set-up
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APPENDIX B. CODE FORMULATIONS FOR THE ACCELERATING REFERENCE FRAME SOLVING
UTILITY

Figure B.30: OpenFOAM Root Case Folder

Figure B.31: OpenFOAMMesh Description Files

Figure B.32: OpenFOAM Case System Folder
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B.4. CASE STRUCTURE

Figure B.33: OpenFOAM Case Initial Conditions Folder

Figure B.34: OpenFOAM Case Constant Folder
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APPENDIX B. CODE FORMULATIONS FOR THE ACCELERATING REFERENCE FRAME SOLVING
UTILITY

Figure B.35: Acceleration Reference Frame Properties File
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B.4. CASE STRUCTURE

Figure B.36: Tabulated Frame Velocity at Specified Time

Figure B.37: Turbulence Model Description
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Figure B.38: Thermo-Physical Property Specification
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