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Summary 

The establishment and maintenance of HIV reservoirs which lead to persistent viremia in 

patients on antiretroviral (ARV) drugs remains the greatest challenge of the highly active 

antiretroviral therapy (HAART) era. Cellular reservoirs include resting memory CD4+ T 

lymphocytes, these implicated as the major HIV reservoir, having a half-life of approximately 

44 months while this is less than 6 hours for HIV in plasma. In some individuals persistent 

viremia consists of invariant HIV clones not detected in circulating resting CD4+ T 

lymphocytes suggesting other possible sources of residual viremia. Some anatomical 

reservoirs that may harbour such cells include the brain and the central nervous system 

(CNS), the gastrointestinal tract (GIT) and the gut-associated lymphoid tissue (GALT) and 

other lymphoid organs and the genital tract. The presence of immune cells and other HIV 

susceptible cells, occurring in differing compositions in anatomical reservoirs, coupled with 

variable and poor drug penetration which results in suboptimal drug concentrations in some 

sites, are all likely factors that fuel the continued low level replication and persistent viremia 

during treatment. Latently HIV infected CD4+ T cells harboring replication-competent virus, 

HIV cell-to-cell spread and HIV infected T cell homeostatic proliferation due to chronic 

immune activation represent further drivers of this persistent HIV viremia during HAART. 
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Abbreviations 

 

3TC Lamivudine 

ARV Antiretroviral 

ATV/r Atazanavir 

AZT Zidovudine 

CCR5 Chemokine receptor type 5 

CD Cluster of differentiation 

CXCR4 Chemokine receptor type 4 

CVF Cervicovaginal fluid 

D4T Stavudine 

DC Dendritic cell 

DC-SIGN Cluster of differentiation - Specific intercellular adhesion molecule–grabbing 

integrin 

DDI Didanosine 

DRV Darunavir 

GALT Gut associated lymphoid tissue 

GIT Gastrointestinal tract 

HIVE HIV encephalitis 

HPC Hematopoietic progenitor cell 

IDV Indinavir 

LPV Lopinavir 

NVP Nevirapine 

RGV Raltegravir 

Tat Transactivator of HIV gene expression 

 

 

 

 

 

 

 

http://www.biology-online.org/dictionary/Cluster_of_differentiation
http://www.biology-online.org/dictionary/Cluster_of_differentiation
https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB8QFjAA&url=http%3A%2F%2Facronyms.thefreedictionary.com%2FDarunavir&ei=MwZnVbVw67GwBO60g4gL&usg=AFQjCNFawSWHw4dVWPvjHQ3gcrfPa-8PYw&sig2=GDbDuN1buRb89fB7vzBIcA&bvm=bv.93990622,d.ZGU


4 
 

Remaining a serious challenge to health and development worldwide is ongoing infection 

with the human immunodeficiency virus (HIV), which if left untreated in the individual 

results in progressive depletion of CD4+ T cells and ultimately acquired immunodeficiency 

syndrome (AIDS). The use of highly active antiretroviral therapy (HAART) and the scale up 

of provision of antiretroviral therapy (ART) has shown enormous improvements in the well-

being and survival of HIV infected persons. However, although HAART can reduce the viral 

load in plasma to levels below the limits of detection of clinical assays and can prevent 

transmission, the virus cannot be eradicated from the infected host. As current HAART 

regimens do not target latent proviral HIV, the virus continues to persist in anatomical and 

cellular reservoirs that are latent but have replication-competent HIV genomes. Anatomical 

compartments may be a source of viral rebound and circulating minority drug resistant 

variants due to continued low level independent replication and seeding from these sites. The 

virus spreads to different organs early in primary HIV infection
1
 and can form distinct viral 

populations suited to their environment and differences in selection pressures such as the local 

immune surveillance and the concentrations of antiviral drugs following HAART initiation. 

Although cellular reservoirs infected before HAART initiation are generally regarded as the 

sources of persistent viremia, the possibility of continued low level replication after HAART 

initiation in tissue anatomic sites where drug levels might be suboptimal cannot be excluded 

and warrants continued study. In this article we review the mechanisms of viral persistence in 

different anatomic and cellular compartments likely to harbor the virus during HIV therapy. 

These reservoirs together with the associated immune surveillance and HIV susceptible cells 

and drug penetration levels are summarized in Table 1. Determining the anatomic reservoirs 

responsible for persistent viremia and the types of cells involved is important in the current 

efforts for HIV eradication and identification of targets for new drugs.  
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Table 1: HIV anatomical reservoirs, associated HIV susceptible cells and penetrability of ARV drugs 

Compartment/ 

Reservoir  

Immune surveillance/ 

susceptible cells 

 

Drug  penetration/ concentrations  Comments References 

Genital tract T lymphocytes, macrophages, 

dendritic cells (DCs), mucosal 

cells, epithelial cells, stromal 
cells,  germ cells 

Concentrations vary from optimal 

to suboptimal depending on class of 

drug. A barrier to penetration of 
some ARVs into the testes has been 

suggested 

 

This site is important for the initial infection 

establishment and viral spread to different 

reservoirs 

[2-4] 

Lymphoid organs: 

Lymph nodes, 

Spleen, thymus, 
bone marrow 

1. DCs, macrophages, T 

lymphocytes, hematopoietic 

progenitor cells, thymocytes 

Concentrations of commonly used 

drugs tenofovir and emtricitabine 

may be suboptimal in lymph nodes 
 

Multiple focal points of viral replication have 

been detected in lymph nodes during planned 

treatment interruption studies. Sub optimal 
drug levels in lymph nodes and other 

lymphatic tissues may result in low level or 

persistent viremia during treatment.   
 

 

[5-8]  

Gastro- intestinal 
tract 

2. DCs, macrophages, T 
lymphocytes, mucosal cells, 

epithelial cells 

3. Suboptimal penetration in areas 
such as the ileum and rectum 

Site of the largest population of the body’s T 
cells and macrophages. Most of the T cells are 

activated and can be easily infected by HIV. 

Low level T cell homeostatic proliferation 
helps maintain the HIV reservoir during 

HAART 

 

[9-11] 

Brain/CNS Microglia, T lymphocytes,  

macrophages, astrocytes, 

neurons 

Suboptimal levels of some drugs. 

Protease inhibitors are pumped out 

by P-glycoproteins present in the 
blood brain barrier 

There is restriction of viral and immune cells 

trafficking and blockage of drugs passage. 

Neurovirulent viruses and 
development of AIDS-dementia complex and  

HIV encephalitis 

 

[12-15]  

Respiratory tract Bronchial, alveolar and 

interstitial macrophages, T 
lymphocytes, DCs, epithelial 

cells, fibroblasts 

Drugs detectable at low levels in 

bronchoalveolar lavage 

ARV treatment significantly lowers the HIV 

viral load in the broncho alveolar lavage fluid 
to undetectable levels although patients on 

HAART still have a high risk of pulmonary 

infections 
 

[16-18] 

Liver 

 

DCs, macrophages, T 

lymphocytes, Kupffer cells, 
endothelial sinusoidal cells, 

stellate cells, hepatocytes 

Liver fibrosis affects drug clearance 

by the liver leading to higher 
plasma drug concentrations in 

affected patients 

HIV infection exacerbates liver damage in 

HBV and HCV co-infected patients. Most 
antiretroviral drugs are hepatotoxic and lower 

dosages may be required for patients with 

severe hepatic insufficiency 

[19-22]  

 

Genital tract 

Subpopulations of HIV-1 from the male and female genital tracts have been shown to exhibit 

characteristics of being compartmentalized when compared to those of blood and lymphoid 

tissue.
2-5

 In the male genital tract, drug resistance has been shown to persist longer than in 

blood which may indicate local drug penetration barriers and independent selection pressures 

although antiretroviral therapy can effectively reduce HIV-1 levels in semen.
6-8

 Even with 

antiretroviral therapy, irregular seminal HIV shedding can occur.
9,10

 This may be due to the 

presence of both the HIV virus and CD4+ T lymphocytes in semen,
11

 which support and 

provide an environment for continued replication within the seminal tract, although some 

have suggested a viral source from outside the lumen which could include spill-over from 
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blood and cells lining the lumen.
12

 However, since these external sources are fully exposed to 

drugs this does not explain the persistence of drug resistance in the genital tract.  

 

In females, HIV has also been shown to be archived in the genital tract early in infection and 

has been detected in some women with undetectable levels in blood.
13, 14

 Mutation patterns 

from blood and genital tract specimens have been shown to differ.
15

 Even within the genital 

tract, viruses from the cervicovaginal lavage exhibited genetically distinct characteristics 

when compared to viruses from the endocervical secretions.
15

 Low level HIV replication in 

the male and female genital tract remains a possible cause for persistent viremia during 

HAART possibly due to poor drug penetration and suboptimal drug concentrations, and the 

presence of infected long-lived cells in these compartments.  

 

Activities in the genital tract mucosa are very important for the initial establishment of 

infection and the spread of virus to different reservoirs (Figure 1). Dendritic cells (DCs) in the 

genital tract mucosa are the main HIV targets during sexual transmission.
16, 17

 DCs express 

the HIV receptors CD4, Chemokine receptors CCR5 and CXCR4 together with CD209 

protein, also known as C-type lectin DC specific intercellular adhesion molecule–grabbing 

integrin (DC-SIGN).
18

 DC-SIGN enhances infection by having high affinity binding for the 

HIV glycoprotein gp120, aiding transmission of the virus to T lymphocytes in trans although 

in cis mechanisms have also been reported.
19

 Another DC protein known as Siglec-1 has also 

been identified and shown to contribute to HIV uptake by mature DCs.
20

 Replication within 

DCs is not necessary as DC-SIGN positive cells exposed to small amounts of HIV viruses can 

more efficiently infect activated T lymphocytes than unbound virus particles.
21

 HIV particles 

in DC-SIGN positive cells are not degraded and can remain stable and infectious for more 
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than 9 months which allows incoming virus to remain infective before target cells are 

infected. 
21, 22

  

 

Figure 1: HIV’s hiding places. After exposure at mucosal surfaces (1), the virus is carried to the local lymph 

nodes (2) by dendritic cells. Fusion of dendritic cells with CD4+ T lymphocytes results in infection of the 

lymphocytes and viral replication in these cells. Infected CD4+ T lymphocytes are released into the blood stream 

(3) and disseminated to anatomical reservoirs in other organs (4) including the brain, CNS, spleen, bone marrow, 

thymus, lungs, kidneys, lymph nodes and gut associated lymphoid tissue (GALT) with infection of associated 

cellular reservoirs in these organs.  

 

Lymphoid organs  

After initial exposure and infection of antigen presenting DC-SIGN positive DCs at mucosal 

surfaces, the virus is internalized, processed and presented to T lymphocytes initiating an 

Lymphocytes 
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adaptive immune response.
26

 HIV takes advantage of immature DCs in the genital tract which 

capture the HIV virus to gain access to lymphoid tissue compartmentalized CD4+ T cells.
21

 

HIV then replicates in CD4+ T cells in the lymph nodes before infected T cells and free 

viruses enter the thoracic duct and spread into the bloodstream, other lymphoreticular tissues 

and immune associated organs such as the thymus, bone marrow, gut associated lymphoid 

tissue and spleen and to other possible reservoirs such as the CNS. Persistent replication in 

lymph nodes and lymphatic tissues despite HAART and lower concentrations of the 

antiretroviral drugs compared to levels in peripheral blood
26-28

 provides a "hiding place" for 

HIV in this compartment. Animal model studies have demonstrated that the lymph nodes may 

harbor viral reservoirs responsible for plasma virological failure if treatment is terminated,
29

 

while some drugs such as non-nucleoside reverse transcriptase inhibitors tenofovir and 

emtricitabine, the nucleoside reverse transcriptase inhibitor drug efavirenz and atazanavir a 

protease inhibitor, have all been shown to have much lower levels in lymph nodes compared 

to peripheral blood.
27 

 

 

Spleen and bone marrow may also be important HIV reservoirs with studies showing 

increased splenic inflammatory activity in HIV infected individuals compared to non-infected 

individuals.
30

 Abnormalities in hematopoietic progenitor cells due to bone marrow infection 

and the establishment of latent HIV infection have also been reported.
31

 Not much is known 

about the importance of the thymus as an HIV reservoir but in vitro infection of thymocytes 

by HIV has been reported.
32

 In vivo studies have also shown that HIV can infect the thymus 

and is accompanied by increased activation and depletion of CD4+ T cells.
33

 Animal model 

studies using bone marrow-liver-thymus humanized mice demonstrated that ARV drugs 

adequately penetrated the human thymic organoid but did not eliminate HIV replication in 
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this tissue or other tissues including the spleen and lymph nodes,
34

 further highlighting these 

tissues as possible reservoirs and sources of persistent viremia during HAART. 

 

Gastrointestinal tract  

Just as the genital tract mucosa is important in HIV infection establishment and spread during 

heterosexual transmission, the gastrointestinal tract (GIT) mucosa plays a major role in rectal 

HIV transmission as a portal of entry and viral spread, and in mother-to-child HIV 

transmission through the intestinal mucosa of the child during breast feeding or the 

swallowing of contaminated blood and fluids during birth. It is important to note that anal 

intercourse has a significantly higher risk of an individual contracting HIV per coitus act 

when compared to vaginal intercourse, demonstrating a high infection susceptibility of this 

mucosal membrane.
35, 36

 The GIT contains a high proportion of the total lymphocytes in the 

body through the GALT which also harbors numerous innate immune cells such as 

macrophages and DCs,
37

 making this a favorable site for both HIV acquisition and 

replication. Prolonged immune activation results in depletion of GALT lymphocytes early in 

infection and levels remain depressed for the duration of the disease with incomplete 

restoration during HAART despite undetectable virus levels in blood.
38

 Early initiation of 

HAART also does not seem to completely restore and prevent CD4+ T cell activation and 

depletion in the GALT,
39

 although it may aid in maintaining homeostasis in the GALT 

mucosa.
40

  

 

HIV persistence in GALT even after 10 years of therapy has been reported with evidence of 

peripheral blood mononuclear cell infection from this reservoir.
38

 As a major site of HIV 

replication, a mechanism underlying HIV persistence in the GIT and GALT may be the 

persistent immune activation caused by antigenic stimulation of resting T and B cells 
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resulting in their proliferation and increased turnover providing HIV with a constantly 

available source of susceptible cells.
41

 In addition to the CD4+ T lymphocytes, the GIT 

macrophages and follicular dendritic cells may also significantly contribute to the reservoir 

size of the GIT. Considering the large size of the GIT-associated mucosa these cells have 

been reported as a significant source of viral RNA in this reservoir.
42

  

 

Genotypic and phenotypic differences may exist between GIT and blood viral isolates,
43, 44

 

which supports the idea of independent evolution in the GIT compartment. However more 

recent studies are reporting conflicting results with some finding less evidence of viral 

evolution and compartmentalization in the GALT over time in chronic HIV patients and in 

patients initiating HAART during acute HIV infection,
45, 46

 suggesting suppression of viral 

replication in the GALT during HAART therapy. Some however maintain that persistent HIV 

replication in the GIT may be occurring but there is dissemination of the virus to the 

peripheral blood resulting in equilibrium between these compartments.
45

 This is supported by 

a recent study which showed that viral quasispecies compartmentalization between the gut 

and peripheral blood exists early in infection, but that this compartmentalization is lost as the 

disease progresses.
47

 Interestingly, a study following the longitudinal course in patients 

administered HAART during primary infection, showed through viral sequencing that the gut 

mucosal reservoir was not the major source of rebound virus when treatment was interrupted 

and that these variants did not rapidly reseed existing GALT reservoirs.
50

   

 

Central nervous system 

Different routes have been proposed by which HIV can invade the brain and these include 

access through the blood-brain barrier, the choroid plexus and the CSF.
51, 52

 On entering the 

CNS, HIV has access to susceptible microglial cells and macrophages which express the CD4 
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primary receptor and CCR5 chemokine co-receptor.
53

 Other CNS cells not bearing the 

primary CD4 receptor such as astrocytes can also be infected by HIV,
54

 but the mechanisms 

involved are still not well understood. Although post mortem samples have demonstrated the 

presence of viral DNA in microglia,
55, 56

 it is still not known if this proviral DNA can be 

activated to produce replication-competent virus and act as a viral reservoir. 

 

Viral populations in the CSF and blood are nearly identical early in primary HIV infection,
57

 

but are substantially different at later stages
58, 59 

probably due to differences in selective 

pressures and the restricted exchange of genetic information between the blood and the CNS. 

The virus may remain detectable in the CSF ten years after initiation of therapy and there is 

strong evidence of the CNS acting as an HIV reservoir and site that supports low level 

replication.
59, 60

 Suboptimal ARV drug levels in the CNS most likely result in continued 

replication in this compartment leading to the selection for neurotrophic variants and 

development of neurological symptoms in patients with undetectable plasma virus levels.
61 - 63

 

However drugs with better CNS penetration seem to result in improved outcomes.
64, 65

 

Continuous HIV replication in the CSF as the main mechanism of viral persistence has, as for 

the GIT, been disputed because of lack of evidence of viral evolution in the CSF.
59

 In 

contrast, a recent study reported independent replication detected exclusively four months 

after infection in 20% of analyzed samples that compared paired blood and CSF HIV 

populations.
66

 The identity of the CNS cells that are infected and harbor the virus early in 

infection and the cells which later act as a reservoir, and the effect of this reservoir after 

treatment interruption require further study to obtain conclusive answers. It has been 

established that infection of the CNS and the brain results in microglial and astrocyte 

activation and is associated with various neurological syndromes such as HIV-associated 

dementia (HAD) and HIV encephalitis demonstrated at autopsy.
67

 However, as Honeycutt et 
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al. note,
68

 the challenge for more studies aimed at determining these processes is the difficulty 

associated with obtaining brain tissues leading to reliance on interpretations from post mortem 

tissues, CSF and animal models. 

 

Respiratory tract 

The respiratory tract has not received much attention as an HIV reservoir although HIV has 

been shown to infect alveolar macrophages and T lymphocytes,
70 – 72

 and the virus has long 

been demonstrated in both cell free bronchoalveolar lavage and bronchoalveolar cells.
73, 74

 

Primate studies indicate that the lungs are infected during primary infection,
75

 and have high 

viremia during HAART.
29

 The importance of HIV in the respiratory tract is perhaps best 

demonstrated by the high number of pulmonary infections including opportunistic infections 

and lung disorders that affect HIV positive individuals, an indication that HIV impairs cellular 

immunity in the lower respiratory tract.
70, 76 

Lung infections by other microorganisms may 

also act as the initial cause of HIV spread to this compartment as HIV infected lymphocytes 

from the blood stream move to the lungs in response to these infections. The lymphocytes 

would then infect alveolar macrophages through direct cell-to-cell spread in the lungs. 

Macrophages are the most common cell type in the lungs and have favorable characteristics to 

act as the major HIV reservoir in this compartment, which includes their resistance to 

apoptosis and reduced bioavailability of ARVs compared to T lymphocytes.
77, 78

 Discordance 

in drug resistance patterns in the HIV reverse transcriptase and protease genes have been 

reported between bronchoalveolar lavage fluid and plasma,
79

 and HIV evolution in the lungs 

was detected in 56% of individuals by comparing the C2- V5 region of the envelope gene in 

sequences from paired blood and lung samples.
80

 HIV evolution in the lung may be occurring 

independently as shown by these cited examples. However, there is no barrier to viral 

trafficking and leaking to the blood due to the closeness of the circulatory and 
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cardiopulmonary systems, which may limit the importance of the lungs as a strictly 

compartmentalized HIV reservoir. 

 

Liver 

There is recent evidence to classify the liver as an anatomical reservoir. Independent HIV 

replication in the liver has been supported by identification of a number of unique amino acid 

mutations in HIV variants from the liver.
84, 85

 HIV infection has also been associated with 

liver damage and has been shown to interfere with the classic Hepatitis B virus serology 

patterns in HIV-HBV co-infected individuals.
86, 87

 There also seems to be a relationship 

between HIV viral load and liver damage in patients with no hepatitis virus co-infection.
88

 

The virus can infect and replicate in several liver cell types including Kupffer cells, 

endothelial sinusoidal cells, stellate cells and hepatocytes.
89-91

 Hepatotoxicity of antiretroviral 

drugs may necessitate administration of lower dosages for patients with severe hepatic 

insufficiency which may result in persistent replication in the liver of such patients. 

 

Kidney 

HIV infection of renal tubular epithelial cells has been detected in patients on HAART,
93

 and 

infection of kidney allografts after transplantation was also detected in 13 out of 19 HIV 

positive recipients with undetectable plasma HIV RNA at transplantation.
94

 HIV DNA was 

detected in biopsies done 3 months after transplantation and was still detectable in biopsies 

done 12 months after transplantation. This could demonstrate insufficient drug levels in the 

graft and highlights the kidney cells as potential HIV reservoirs in virally suppressed 

individuals on HAART. Analysis of env sequences in paired PBMC/plasma and urine 

pellet/urine samples from viremic patients with normal kidney function showed distinct 
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compartmentalization of virus in the urine,
95

 highlighting the potential for HIV to 

independently evolve in the genitourinary tract. 

 

Cellular reservoirs 

Resting memory CD4+ T lymphocytes are the major cellular HIV reservoir and this source is 

considered a major barrier to HIV eradication during HAART.
96

 These cells harbour 

inactivated HIV proviral DNA which persist for long periods despite treatment. The latent 

CD4+ T lymphocyte reservoir contains variants which are mainly CCR5 tropic,
97

 indicating 

early establishment and lack of further evolution. This reservoir is suspected to be the source 

of persistent low level viremia in patients on HAART who otherwise seem to have suppressed 

the virus.  

 

Macrophages may also be a source of persistent HIV viremia during HAART although their 

role is still controversial. These cells can withstand the cytopathic effects of viral infection 

which gives them an extended period of existence during which they produce and release 

large numbers of viruses. Viruses produced by macrophages also seem to be different in terms 

of infectivity and response to HAART probably due to reduced ARV uptake with a 

probability of independent evolution in these cells.
77, 98

 Follicular dendritic cells are also a 

potential cellular reservoir as they can trap infectious HIV on their surfaces for months and 

lead to CD4+ T lymphocyte infection.
99 

 

 

Cellular reservoirs in the brain may include non CD4+ cells such as astrocytes and 

microglia.
56

 HIV replication in astrocytes is known to be very low and only a few astrocytes 

are infected,
100

 but since astrocytes are an abundant cell type in the brain, the infection of a 

small percentage of these cells will have significant results in terms of neurotoxicity and brain 
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cells damage. The slow turnover of glial cells also means that infected cells could potentially 

harbor the virus for up to several years.
101, 102

 In the study by Thompson et al,
56

 HIV DNA 

was detected in macrophages, astrocytes and microglia cells from treatment-naïve individuals 

who died from non-HIV related causes with no symptoms of HIV Encephalitis (HIVE) 

showing that the reservoirs are established before the onset of HIVE. It is still not clear which 

of the brain cells act as a viral reservoir but they all seem to have a part to play.  

 

HIV can also infect hematopoietic precursor cells which include mast cell progenitors, 

multipotent hematopoietic progenitor cells (HPCs), and monocytes with suggestions that 

HPCs can act as a cellular reservoir.
31, 103 - 105

 A study in which CD133+ HPCs were shown to 

harbor HIV genomes in virally suppressed individuals who had been on HAART for more  

than 8 years supports that HPCs can act as a long term viral reservoir,
106

 although other 

studies could not detect HIV infection of HPCs.
107, 108

 

 

Mechanisms of HIV persistence, immune cell trafficking and HIV spread 

Figure 2 shows how HIV spreads to various tissues and persists in anatomical reservoirs 

despite HAART. Several underlying mechanisms have been suggested to contribute towards 

ongoing low levels of HIV replication and HIV persistence during HAART. Understanding 

the contributions of different cellular reservoirs and anatomical compartments to viral 

persistence is very important for developing strategies to reduce the size or eliminate the HIV 

reservoir. Some strategies that have been used or have been considered to reduce the reservoir 

size include early therapy initiation,
110, 111

 therapy intensification,
112 - 114

 stem cell transplants 

and gene therapy,
115, 116

 and the use of latency reversing agents that target proviral HIV 

genome activation,
117

 or cytotoxic CD8+ T lymphocytes and broadly neutralizing antibodies 

that suppress HIV viral replication after the cessation of therapy,
118, 119

 but much work needs  
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Figure 2: Immune system cell trafficking and HIV spread. Suboptimal drug concentrations in 

anatomic reservoirs due to penetration barriers and efflux pump mechanisms together with chronic 

immune activation, presence of HIV latently infected and long lived cells and T cell homeostatic 

proliferation allows HIV to replicate and persist despite ART. Virus cell-to-cell spread in these tissues 

also protects the virus from the effects of drugs in the extracellular environment and allows for more 

efficient infection of new cells. Green arrows show HIV and immune cells trafficking and blue arrows 

show ARV drugs movement. (CVF: Cervicovaginal fluid, AZT: Zidovudine, d4T: Stavudine, DDI: 

Didanosine, 3TC: lamivudine, NVP: Nevirapine, IDV: Indinavir, RGV: Raltegravir, ATV/r: 

Atazanavir, DRV: Darunavir, LPV: lopinavir).  
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to be done to test and advance successful and clinically viable options that can be 

implemented on a large scale.    

 

Latency in resting CD4+ T lymphocytes 

Models that explain HIV latent infection in resting CD4+ memory T cells have been 

proposed. The pre-activation latency model proposes that subsets of resting CD4+ T 

lymphocytes can be directly infected by the HIV.
120, 121

 The post-activation latency model 

suggests that activated CD4+ memory T cells are infected but escape cell death and return to 

the resting state.
122

 After infection of CD4+ T cells, mechanisms which result in HIV latency 

include DNA hyper-methylation and modification of histone proteins and DNA in the HIV 

long terminal repeat (LTR) which arrest HIV transcription.
123

 Other mechanisms include 

suppression of host transcription factors in resting CD4+ T lymphocytes and low levels of the 

transactivator of HIV gene expression (Tat) protein in these cells.
124

 The role played by the 

site of HIV integration into the host genomic DNA in affecting transcription rates may also be 

important.
125

 The latent provirus can through mechanisms and stimuli that have not as yet 

been identified be reactivated and produce infectious virions. 

 

Cell-to-cell spread 

HIV cell-to-cell transmission as the major method of HIV dissemination was established after 

investigators realized that shaking of lymphocyte cultures in vitro slowed down HIV 

replication compared to stationery cultures.
126

 In cell-to-cell spread there is a higher chance 

for a virion to successfully attach to a new cell and cause infection as it does not have to 

diffuse through the extracellular space to infect new cells, and the virus is also shielded from 

the effects of antiviral drugs in the extracellular space.
127, 128

 Reduced cellular drug sensitivity 

has been reported in cell-to-cell virus transmission as the cause for ongoing viral replication 
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and persistence during HAART.
127

 However, using cocktails of antiretroviral drugs is more 

potent against cell-to-cell HIV transmission when compared to the same drugs used 

individually which supports the effectiveness of combined ART.
127, 129

 This also highlights 

the importance of reaching optimum drug concentrations at all replication sites in different 

anatomic and cellular reservoirs.  

 

Incomplete drug penetration 

Sub-optimal levels of some commonly used ARV drugs in different anatomical reservoirs 

may also serve to drive persistent viral replication and the development of drug resistant 

strains in patients on HAART. Compartmentalization provides an environment for 

independent viral evolution which negatively affects therapy progression and effectiveness. 

The compartment becomes a source of persistent viremia or circulating low-level minority 

drug resistant variants which can be seeded from these sites.  

 

Chronic immune activation and T cell homeostatic proliferation  

One of the challenges of HIV is the accompanying persistent immune activation characterized 

by the release of proinflammatory cytokines and this is also thought to fuel HIV replication 

and persistence.
130, 131

 Persistent inflammation and depletion of gut-associated CD4+ T cells 

breaks down the integrity of the gut mucosa leading to translocation of bacterial products and 

prolonged immune activation.
132

 Immune activation is reduced during HAART but normal 

levels are not achieved leading to continued proliferation of CD4+ T cells. The result is 

persistence of a genetically stable HIV reservoir driven by interleukin-7-mediated low level 

homeostatic proliferation of infected central memory T cells.
96
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Measuring the HIV reservoir size 

While CD4+ T cell counts and plasma viral loads have been effective in monitoring treatment 

progress, these biomarkers do not measure the magnitude of replication-competent HIV 

genomes in latently infected cellular reservoirs. An important assay has been the single copy 

assay which provides an indication that the virus is suppressed but not eradicated. However 

there is no standard assay for measuring HIV reservoirs although assays that can measure 

various reservoir markers and their sizes or the ability of the latent reservoirs to be activated 

exist.
133

 Some assays that have been used include the quantitative viral outgrowth assay (Q-

VOA),
134, 135

 which is considered to be the gold standard assay and PCR based methods that 

measure HIV DNA.
136 – 138

 The disadvantage of PCR based assays is that viral genome 

quantification using these methods includes genomes that are not replication competent and 

overestimates the HIV reservoir. RNA: DNA ratio has been used to act as an indicator of the 

number of infected cells harbouring replication competent HIV genomes.
139

 On the other 

hand Q-VOA assays, which measure the frequency of T cells carrying integrated replication 

competent HIV genomes that can be stimulated to reverse latency tend to underestimate the 

latent reservoir.
140

 Overall, available current assays are inadequate to accurately measure the 

viral reservoir and confirm curative therapy even when used in combination. This was 

demonstrated in the cases of the Mississippi baby,
141

 and in two adult patients,
116

 who all 

eventually rebounded after periods of cessation of HAART and undetectable virus levels 

confirmed using a battery of assays from different laboratories with samples obtained from 

different body tissues and compartments. The development of sensitive assays that can 

accurately measure the HIV reservoir therefore remain an important goal as they will be 

needed to evaluate the effectiveness of strategies aimed at eliminating the reservoir. 
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Discussion and Conclusions 

Anatomic reservoirs are established early in primary infection and have an important role in 

persistent viremia during HAART. The virus hides in these immune privileged anatomic sites 

which are poorly penetrated by ARV drugs. Eradicating HIV directly from the reservoir sites 

has been difficult to achieve to date but new strategies targeting activation of the resting cells 

to induce expression of the HIV genome, which can then be targeted by the immune cells or 

HIV drugs while at the same time limiting immune activation are being explored. Histone 

deacetylase inhibitors such as vorinostat and panobinostat which are able to induce viral RNA 

production in latent cells,
117, 131, 142

 and recombinase enzymes developed to identify patterns 

within the HIV Long Terminal Repeats and remove the sandwiched HIV DNA,
115, 143, 144

 are 

some of the strategies that are still being investigated. In addition there are recent reports on 

use of vaccines as treatment in combination with HAART. The HIV-1 Tat protein was used as 

an immunogen to intensify HAART efficacy by restoring the immune function to levels 

capable of reducing the viral reservoir.
145

 Another study used CD4-mimetic compounds to 

sensitize HIV infected cells,
146

 which may be important in targeting cellular reservoirs that 

then may potentially be eliminated through antibody-dependent cell-mediated cytotoxicity as 

a host mechanism.
119

  

 

Anatomic reservoirs also play a major role in viral evolution which may frustrate drug and 

vaccine development efforts. Compartmentalization leads to restrictions in genetic flow which 

may lead to distinct homogenous populations in different tissues within a host. Understanding 

intra-host HIV diversity and evolution is therefore important to understand disease 

progression, improving response to HAART, limiting drug resistance and designing of more 

efficient therapies to reduce or eliminate the HIV reservoir. The extent to which the viral 

reservoirs contribute in the persistence of HIV during ARV treatment and the contribution of 
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different reservoir sites to the reservoir size need to be determined. Possible continued viral 

replication in these sites and seeding of low level drug resistant variants into the circulation 

highlights the need to test and monitor for the presence of minority drug resistant variants 

which may be originating from these sites. In conclusion, continued studies to better 

characterize intra-host HIV-1 diversity and evolution in different tissues are necessary in 

order to characterize all possible HIV reservoirs and to facilitate the development of new 

methods and drugs for targeting these reservoirs. 
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