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Abstract

Petrochemical plants require the addition and removal of energy to and from

the process and the movement of material to, from, and within the process pip-

ing and vessels. These fundamental mass and energy transfer requirements are

typically achieved through the use of process utilities, which include electricity,

steam, fuel gas, cooling water and compressed air. Utilities are responsible for a

significant portion of the operating cost of a plant. Therefore, reduction in the

consumption of utilities is a common process optimisation area. The situation

is different when it comes to the generation and transportation of these utili-

ties, which are often overlooked with regard to optimisation. In this paper, the

potential benefits of utility optimisation are illustrated with particular focus on

the generation and transportation areas. The main objectives are reductions in

electrical energy consumption and cost and are illustrated for a dual circuit cool-

ing water system. This system is non-linear and also hybrid in the sense that it

contains both continuous and discrete input variables, which significantly com-

plicates the design and implementation of control and optimisation solutions.

This paper illustrates how the cost and energy consumption of a hybrid system

can be reduced through the implementation of Hybrid Non-linear Model Pre-

dictive Control (HNMPC) and Economic HNMPC (EHNMPC). The results are
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compared to that of a base case and an Advanced Regulatory Control (ARC)

case, showing that significant additional benefit may be achieved through the

implementation of these advanced control and optimisation techniques. The

paper further illustrates that additional capital is not necessarily required for

the implementation of these techniques.

Keywords: modelling, optimisation, energy, hybrid systems, model predictive

control, economic

1. Introduction

The movement of energy and mass associated with the operation of a petro-

chemical plant is mainly achieved through the use of process utilities which

include electricity, steam, fuel gas, cooling water and compressed air. The gen-

eration, preparation and transportation of these utilities also require energy5

(mostly in the form of electricity), though they are often overlooked as areas for

improvement and optimisation.

The potential benefits of utility optimisation have been shown to be sub-

stantial in some cases and should therefore be explored. In [1], the losses and

inefficiencies encountered in typical steam systems are analysed, revealing sig-10

nificant potential for improvement. In [2], [3], [4] and [5], the benefits of control

improvements for cooling water systems are illustrated. In [6] and [7], the opti-

misation of an industrial fuel gas system is presented resulting in a significant

reduction in operating cost. In [8], the losses encountered in compressed air

systems are shown and in [9], [10] and [11], the benefits in optimising pumping15

systems are explored.

In this paper, a dual circuit cooling water system is used to illustrate the

benefit of the application of Advanced Process Control (APC) techniques on

hybrid utility systems. A description of the process is first given followed by a

discussion on the development of two control and optimisation schemes. The20

first is a Hybrid Non-linear Model Predictive Control (HNMPC) configuration

aimed at a reduction in energy consumption while honouring process constraints.
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The next is an extension of the first where Time-of-Use (TOU) electricity rates

are used in an Economic HNMPC (or EHNMPC) solution for the dynamic

optimisation of electricity cost. The results are then discussed and the cases are25

compared to each other and to that of a base case and an Advanced Regulatory

Control (ARC) case.

2. Process Description

The system considered in this study is a dual circuit, induced draft, counter

flow cooling water system as shown in Figure 1.30

The system consists of two water circuits. The first is the tempered water

(TW) circuit which is a closed system containing treated water. The second

is the cooling water (CW) circuit which contains untreated water (apart from

standard dosing). Each of the circuits is equipped with its own bank of five

parallel centrifugal pumps. The CW circuit also contains a bank of four cooling35

towers (CTs). The TW circuit runs through the plant heat exchanger network

where it collects heat from the process. It then transfers the heat to the CW

through an interconnecting bank of plate heat exchangers. The CW circuit

then expels the heat through the cooling towers where the main mechanism for

cooling is the partial evaporation of a portion of the water. On the TW side of40

the common heat exchangers is a bypass line with a control valve, which is used

to bypass a portion of the TW to reduce total cooling. There are also control

valves on the discharges of the CW pumps initially intended to prevent pumps

from running beyond capacity. A detailed account of the system model is given

in [4], [5] and [12].45

The controlled variables for the system are the TW supply temperature,

TTWS , the TW differential temperature, ∆TTW , the total power consumption,

WT , and the total electricity cost, CT .

The manipulated variables for the system are the number of running TW

pumps, UTW , the number of running CW pumps, UCW , the number of running50

CT fans, UCT , the temperature control valve opening, OPTV , and the open-
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Figure 1: Dual circuit induced draft counter flow cooling water system [4, 5, 12].

ings of the pressure control valves, OPPV (the same valve opening is written

to all the discharge valves of the running CW pumps). The running signals are

discrete inputs whereas the valve openings are continuous handles. This combi-

nation of discrete and continuous handles classifies the cooling water system as55

a hybrid system, which complicates the formulation of control and optimisation

solutions [13]. Furthermore, the system exhibits non-linear behaviour and is

highly interactive.

The measured disturbance variables are the plant duty, QP , the ambient

temperature, Ta, and the relative humidity, RH. The resultant model consists of60

8 state equations, 14 algebraic equations, 5 inputs, and 3 measured disturbance

variables together with 29 model parameters.

3. Methods

This section describes the application of various control and optimisation

schemes to the cooling water system with the aim of reducing electricity con-65

sumption and/or cost while honouring process constraints.

4



3.1. Simulation Set-up

Two operating scenarios are analysed. The first scenario covers a period

of 7 days of artificial plant data during which step-like and ramp-like changes

are made to the plant duty and sinusoidal changes are made to the ambient70

temperature and relative humidity (both influencing the wet-bulb temperature,

Twb). The second scenario uses 6 days of real plant data during a period where

significant load disturbances occurred (the same data that was used for the

model verification in [4], [5] and [12]). Figures 2 and 3 show the plant duty

and wet-bulb temperature for the two scenarios. The wet-bulb temperature is75

calculated as proposed in [14].

Four cases are considered: the first case illustrates the current system where

no optimisation is performed in terms of equipment switching and only the tem-

perature controller is active; the second case represents an Advanced Regulatory

Control (ARC) scheme with conditional switching logic as described in [4] and80

[5]; the third is a Hybrid Non-linear Model Predictive Control (HNMPC) im-

plementation whereas the fourth is an Economic HNMPC (EHNMPC) scheme

where Time-of-Use (TOU) tariffs are included in the formulation. Each case

was simulated for both the operating scenarios mentioned above.

The system constraints are:85

• 26◦C ≤ TTWS ≤ 36◦C

• ∆TTW ≤ 6◦C

• 1 ≤ UCT ≤ 4

• 2 ≤ UCW ≤ 5

• 2 ≤ UTW ≤ 590

3.2. Base Case and Advanced Regulatory Control

The purpose of the base case is to illustrate the unoptimised operation of

the plant. One pump on each bank and one cooling tower fan are used for
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Figure 2: Disturbance data for first simulation.

spares and therefore four pumps are running on each of the circuits with three

cooling towers. The only feed-back controller that is activated in this case is95

the temperature controller on the TW side with a set-point of 26◦C (TIC-101 in

Figure 1). The pressure control valves on the discharges of the CW pumps are

fully open (PIC-201 to PIC-205 in Figure 1). The results for both simulations

are given in [4] and [5]. These results are compared to that of the solutions

described in this paper in Section 4.3.100

Advanced Regulatory Control (ARC) refers to control techniques that are

implementable on most modern control systems without the need to purchase

additional hardware or software. These techniques provide more functionality

than what is typically achievable with only Proportional Integral Derivative

(PID) control [15, 16]. For this study, the techniques that were deployed include105

override selector control, cascade control and conditional switching logic. This
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Figure 3: Disturbance data for second simulation.

provides a degree of optimisation that is not present in the base case through

switching of pumps and fans to meet cooling demand. The TW temperature

controller is active with the same set-point as in the base case. The CW pump

discharge valves are used for CW flow control as opposed to the original under-110

pressure control. Two additional temperature controllers measuring the TW

supply temperature were implemented with set-points representing the high

and low limits and are configured in a mid-of-three override selector control

strategy to the CW flow with the desired nominal flow set-point, fSP
CW , as the

third input to the override selector. This enables the temperature controllers115

to manipulate the CW flow rate when constraint violations occur on the TW

supply temperature. Figure 4 illustrates this scheme [4, 5].

The aim of the switching logic is to switch unnecessary equipment off when

more cooling is provided than what is required. The effect is a reduction in
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Figure 4: ARC scheme illustration [4, 5].

power consumption. For more detail on the switching logic and the results for120

both simulations, refer to [4] and [5]. A comparison of the results from the ARC

scheme to that of the solutions described in this paper is given in Section 4.3.

3.3. Hybrid Non-linear Model Predictive Control

Model Predictive Control (MPC) is an Advanced Process Control (APC)

technique which has gained popularity especially in the process industry. A125

model of the process is used to predict the future behaviour of the system based

on past and present data. The prediction is then used by an optimiser that

determines the best set of input vectors in order to drive the process to an

optimal operating point in an optimised fashion. The definition of optimality

is determined by the formulation of a cost function and is usually subject to130

constraints. The first set of calculated input moves are implemented where-

after the process is repeated based on the latest measurements. This is referred

to as the receding horizon approach and provides feedback to the controller

[6, 10, 15, 17, 18].

The cooling water system described in Section 2 is of a hybrid non-linear na-135

ture. This type of optimisation problem is generally referred to as mixed-integer
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non-linear programming (MINLP). Conventional approaches for dealing hybrid

systems involve segregation of the continuous and discrete optimisation into two

different layers or transforming the system, whereas the non-linearity is typically

catered for by linearising the system around certain operating points. Some ex-140

amples of techniques capable of solving MINLP problems include generalised

benders decomposition, branch and cut, outer approximation, and extended

cutting plane. It should however be noted that these are limited to convex

problems [19, 20]. Some algorithms capable of solving these problems directly

include the genetic algorithm (GA) and particle swarm optimisation which are145

stochastic in nature.

In this case, the problem is treated as a single optimisation layer using a

GA. The GA has several advantages including: Very little initial state data

is required; it is capable of handling discrete and continuous optimisation vari-

ables in the same problem formulation; it does not require gradient information;150

constraints are easily incorporated into the problem definition; it is less likely

to get stuck at local optima due to its stochastic nature; it can be very robust

if configured correctly [21, 22, 23, 24]. Due to these advantages, the GA is es-

pecially attractive to problems that are difficult to formulate mathematically,

exhibit strong non-linearities, have strong interaction between variables, contain155

discontinuities, are constrained, are of a hybrid nature, are non-convex, have ill-

defined starting points, are time-variant and/or contain randomness or noise

[5]. Therefore, the GA is a very attractive option for the cooling water problem

illustrated in this paper. The main disadvantages of the GA are high compu-

tational intensity (which is less of a concern with modern computing capacity)160

and the fact that optimality cannot be guaranteed1.

The resulting solution can be described as Hybrid Non-linear Model Predic-

1The average convergence time of the algorithm is approximately 90 seconds on a 2011

model Apple MacBook Pro with dual core 2.7 GHz Intel i7 processor and 8 GB RAM. Com-

paring this to the controller iteration time of 30 minutes shows that the solution is realistically

implementable even with modest computing power.
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tive Control (HNMPC). Figure 5 illustrates this control scheme. A population

size of 10 with a maximum number of generations of 15 were chosen for the GA

based on the average convergence rate observed per iteration. To achieve the165

required constraint handling, a penalty function is minimized as opposed to the

fitness function where the penalty function includes a term for infeasibility. It is

then combined with binary tournament selection which scrutinises selection and

pairing based on the feasibility of the individuals [25]. Specialised crossover and

mutation functions are used together with a truncation procedure for integer170

restriction to accommodate the mixed-integer problem [26].

The fitness function is a weighted sum of the squares of the deviations from

the allowable ranges on TTWS and ∆TTW with a linear cost component propor-

tional to the total power consumption, WT . In addition, a linear cost component

is added for the CW pump discharge valve openings which only becomes effec-175

tive when the valves open fully, thereby providing wind-up detection for the CW

flow control (the controller will know not to further increase the flow set-point

if the valves are already saturated).

The fitness function is given by
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J =
1

j

j∑
i=1

(QTTWS
E2

TTWS ,i + Q∆TTW
E2

∆TTW ,i (1)

+QWWT,i + QPV EOPPV ,i)

where j represents the number of samples in the prediction frame (with180

a sampling time of 30 seconds (1/120 hours) resulting in j = 720 over the 6

hour prediction time), ETTWS
, E∆TTW

and EOPPV
are the constraint violations

for TTWS , ∆TTW and OPPV (which are zero when operating within the con-

straints), and QTTWS
= 20, Q∆TTW

= 15, QW = 10 and QPV = 100 are the

weighting variables.185

Table 1 shows the specific controlled variable (CV) and manipulated variable

(MV) limits for the HNMPC case. Safety margins are used for TTWS and ∆TTW

resulting in slightly more conservative limits than mentioned in Section 3.1.

Table 1: CV and MV limits for the HNMPC case.

Variable Low limit High limit

TTWS 28 34

∆TTW 0 5.5

UCT 1 4

UCW 2 5

UTW 2 5

fSP
CW 500 4500

OPTV 0 100

The MV limits are treated as hard constraints by the optimiser and will

therefore not be violated under any circumstances. The CV limits are soft190

limits that are only used in the fitness function. Therefore, CV violations will

merely cause weak performance and will not cause infeasible solutions when

constraints cannot be met. This allows for a robust solution. The solution has

not been tested on inherently unstable processes such as levels.

The results for the HNMPC case are discussed in Section 4.1.195
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3.4. Economic Hybrid Non-linear Model Predictive Control

In the HNMPC case discussed in the previous section, the optimisation vari-

able is the total power consumption. When a constant electricity rate is applied,

this results in a minimised cost as well. However, when Time-of-Use (TOU) tar-

iffs are enforced by the electricity supplier, a different approach is required if200

the goal is to minimise cost. This leads to a trade-off between energy usage and

cost. The TOU rates used here are according to the rates applicable in South

Africa at the time of writing and are defined by:

p(t) =


po for t ∈ [0, 6) ∪ [22, 24)

ps for t ∈ [6, 7) ∪ [10, 18) ∪ [20, 22)

pp for t ∈ [7, 10) ∪ [18, 20)

(2)

where t is the time of day in hours, ps = 0.7423 R/kWh is the standard rate,

po = 0.4031 R/kWh is the off-peak rate, and pp = 2.4503 R/kWh is the peak205

rate (for the high demand season from June to August). R is the symbol for

the South African currency (Rand).

The knowledge of what the rates are at any given time of day allows the cost

to be accurately calculated at any given moment. Therefore, it allows for the

dynamic optimisation of the cost over the prediction horizon which is integrated210

into the MPC solution rather than in a separate Real-Time Optimisation (RTO)

layer performing steady-state economic optimisation. This puts the current

solution in the category of Economic MPC [27] and more specifically Economic

Hybrid Non-linear MPC (EHNMPC) for this system. Figure 5 and Table 1 are

also applicable to this case.215

The fitness function for the EHNMPC case is similar to that of the HNMPC

case with the power consumption component substituted with an electricity cost

term as follows:

J =
1

j

j∑
i=1

(QTTWS
E2

TTWS ,i + Q∆TTW
E2

∆TTW ,i (3)

+QCCT,i + QPV EOPPV ,i)
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where CT,i is the total electricity cost at sampling instant i (calculated us-

ing WT,i and p(i)) and QC = 4 is the weight for the cost component (which220

was adjusted iteratively to find a fair compromise between cost reduction and

constraint violations).

The results for the EHNMPC case are given in Section 4.2.

4. Results and Discussion

The four cases discussed in the previous sections were evaluated through225

simulation studies to determine the level of optimisation achievable for each

case in terms of power consumption/cost minimisation, while still honouring

process constraints (see Section 3.1). The detailed results for the base case and

the ARC case are given in [4] and [5] and those for the HNMPC and EHNMPC

cases are presented in this section followed by a detailed comparison of all four230

cases [5].

4.1. Hybrid Non-linear Model Predictive Control Results

The CV values for the HNMPC case are shown in Figure 6 for the first simu-

lation. The TW supply temperature is controlled within range more effectively

than both the base and ARC cases and exhibits negligible constraint violations.235

The TW differential temperature is pushed toward the upper constraint and

also has negligible constraint violations. The total power is lower than both

previous cases. The CW pump discharge valve opening is included in the for-

mulation of the fitness function to prevent wind-up on the CW flow controller.

See [4], [5] and Tables 2 to 4 for a complete comparison.240

The MV values for this simulation are given in Figure 7. Even though the

control and optimisation results are superior to that of the base and ARC cases,

these results are achieved with visibly fewer switching activities (see [4] and [5]

for comparison). Although the optimisation algorithm actively tries to minimise

the number of pumps that are running, it still allows the maximum number to245

run when required to prevent sustained constraint violations. It is also able

13
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Figure 6: Controlled variables (HNMPC case) for the first simulation.

to switch multiple pieces of equipment in the same execution cycle, which al-

lows for superior disturbance rejection compared to the ARC (which follows

a sequential switching pattern). The TW temperature control valve opening

14



and the CW flow controller set-point (the continuous control handles) are ac-250

tively manipulated. The CW flow controller set-point can only be increased

within the limitations of the valve openings as mentioned above. This serves to

dynamically adjust the upper MV limit for this variable.

Figure 8 gives the CV values for the second simulation. Once again, the

TW supply temperature is maintained within limits with negligible constraint255

violations (which was challenging for the base and ARC cases – see [4] and [5]

for comparison). The TW differential temperature is also driven towards the

upper constraint as in the first simulation allowing for the fewer TW pumps

to be running. The total power consumption is lower that the previous cases.

The CW pump discharge valve opening is again included in the formulation of260

the optimisation problem to prevent wind-up by telling the controller not to

increase the flow controller set-point when the valves are 100% open.

Figure 9 gives the MV values for the second simulation. As with the first

simulation, the pump and fan running signals (the discrete handles) are ac-

tively minimised to save energy as long as the CVs are within constraints. The265

continuous handles are also actively manipulated to honour CV limits.

The results for both simulations indicate clearly that the HNMPC solution

allows for a further reduction in power consumption while simultaneously pro-

viding better constraint control than the base and ARC cases. See [4], [5] and

Tables 2 to 4 for a complete comparison.270

4.2. Economic Hybrid Non-linear Model Predictive Control Results

The CV results for the first simulation of the Economic HNMPC case are

shown in Figure 10 and the MVs are shown in Figure 11. The results for the

second simulation are given in Figures 12 and 13. The constraint handling and

use of the MVs are similar to that of the HNMPC case with negligible constraint275

violations and effective minimisation of total power consumption. The success of

this scheme in further reducing energy cost is illustrated in the case comparison

results given in the next section which reveals superior cost control for both

simulations. Furthermore, Figures 14 and 15 illustrate the power consumption

15
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Figure 7: Manipulated variables (HNMPC case) for the first simulation.
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Figure 8: Controlled variables (HNMPC case) for the second simulation.

against the dynamic electricity price backdrop to illustrate how the controller280

attempts to minimise consumption during peak hours (within the limitations

imposed by the CV constraints). Less apparent is the expected increase in

17
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Figure 9: Manipulated variables (HNMPC case) for the second simulation.
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consumption during off-peak periods. This can be explained considering that

the off-peak periods fall predominantly during night time when the ambient

temperature drops, which results in an increased cooling efficiency. Therefore,285

the cooling demand is lower and there is no incentive for the controller to increase

flow-rates even though the price is lower.

4.3. Case Comparison

In addition to the visual illustration of the controller performances for the

different cases, the power and cost for each case are calculated and compared.290

The power consumption, total energy consumed, and energy cost for each case

for the two simulations are shown in Tables 2 and 3. The incremental differences

between cases are also shown.

The results for the first simulation indicate that the ARC can potentially

provide a reduction in energy consumption of around 30%. The HNMPC and295

EHNMPC achieve a further 4% and 6% respectively. The ARC case also pro-

vides a cost saving in the order of 30% with the HNMPC and EHNMPC adding

an additional 4% and 7% saving.

The results for the second simulation show a similar improvement for the

ARC case of around 30% on both the power consumption cost, and there is300

still the significant additional benefit of being able to control the plant within

constraints, which is not achieved in the base case. The results for the HNMPC

and EHNMPC cases are also similar to that of the first simulation (37% and

40.6% reductions in energy with 35.2% and 41.6% reductions in cost). Therefore,

the results obtained with these techniques as well as that of the ARC seem to305

be repeatable at different operating points.

In order to compare the constraint handling ability of the different con-

trol schemes, violation indices were calculated for the TW supply temperature

(eTTWS
) and TW differential temperature (e∆TTW

) for the two simulations. The

indices were calculated as the sum of violations over the simulation period di-310

vided by the number of samples in the period. The results are shown in Table

4. The constraint handling for the TW supply temperature improves as more

19
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Figure 10: Controlled variables (Economic HNMPC case) for the first simulation.

advanced control is applied. The TW differential temperature constraint vi-

olations deteriorate slightly as a shift is made from conservative operation in

exchange for energy/cost savings.315
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Figure 11: Manipulated variables (Economic HNMPC case) for the first simulation.
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Figure 12: Controlled variables (Economic HNMPC case) for the second simulation.

The ARC has superior performance to the base case overall. The HNMPC

and EHNMPC similarly outperform the ARC case. The HNMPC and EHNMPC

cases are more similar in performance though the goal of achieving a further cost
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Figure 13: Manipulated variables (Economic HNMPC case) for the second simulation.
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Figure 14: Power consumption (black line) and electricity cost (grey line) for the first simu-

lation of the EHNMPC case.
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Figure 15: Power consumption (black line) and electricity cost (grey line) for the second

simulation of the EHNMPC case.

saving is achieved by the EHNMPC and it is interesting that it achieves this

while also achieving a further reduction in consumption. It would however be320

possible to achieve lower cost at higher consumption in certain circumstances

though this would not likely be the case with the cooling water system, where

the low-cost time periods coincide with lower cooling demand.
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Table 2: Average power and energy consumption comparison.

Case Average

Power (kW)

Total energy

(kWh)

Reduction

from base

Incremental

reduction

Simulation 1

Base 3,052 512,736 - -

ARC 2,130 357,840 30.2% 30.2%

HNMPC 2,001 336,168 34.4% 6.1%

EHNMPC 1,935 325,080 36.6% 3.3%

Simulation 2

Base 3,142 452,448 - -

ARC 2,213 318,672 29.6% 29.6%

HNMPC 1,981 285,264 37.0% 10.5%

EHNMPC 1,865 268,560 40.6% 5.9%

5. Conclusion

The potential for energy/cost reduction in the generation and transmission325

of utilities can be substantial, yet these areas are often overlooked in terms of

optimisation. A prime example of such a utility is the cooling water system

discussed in this paper.

The main benefit in optimising this system is the reduction of running pumps

and fans during times of over-cooling. Advanced control and optimisation tech-330

niques can provide the means for achieving the desired optimisation of the sys-

tem and a wealth of information is available on these topics. When a system

comprises of both continuous and discrete inputs, it is referred to as a hybrid sys-

tem and there are several approaches that may be followed in optimising these

systems. The conventional approach is to treat the continuous and discrete335

components in separate layers and also separates the dynamic and economic

optimisation.
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Table 3: Electricity cost comparison.

Case Total Cost

(R)

Reduction

from base

Incremental

reduction

Simulation 1

Base 503,280 - -

ARC 354,160 29.6% 29.6%

HNMPC 330,790 34.3% 6.6%

EHNMPC 316,860 37.0% 4.2%

Simulation 2

Base 445,910 - -

ARC 317,260 28.9% 28.9%

HNMPC 288,780 35.2% 9.3%

EHNMPC 260,610 41.6% 9.8%

This approach is followed in the development of the ARC solution where the

continuous control and the discrete switching logic operate in two separate layers

and execute at different frequencies. The HNMPC scheme unifies multiple layers340

by combining the continuous and discrete elements into a single control and

optimisation solution. The EHNMPC goes one step further in also combining

the dynamic and economic optimisation into the same solution by including the

TOU data in the control formulation.

The results indicate that the HNMPC and EHNMPC achieve superior energy345

and cost reductions compare to the base and ARC cases (as seen in Tables 2

and 3.). These results show that significant savings may be achieved through

the use of modern control and optimisation techniques when applied to utility

systems. Furthermore, these techniques do not necessarily require additional

capital investment and are able to accommodate hybrid interactive non-linear350

processes without having to transform or linearise the system.
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Table 4: Constraint violation comparison.

Case eTTWS
e∆TTW

Simulation 1

Base 0.0691 0.0000

ARC 0.0207 0.0208

HNMPC 0.0014 0.0256

EHNMPC 0.0058 0.0312

Simulation 2

Base 3.5254 0.0047

ARC 0.0190 0.0244

HNMPC 0.0032 0.0242

EHNMPC 0.0013 0.0576
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