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Abstract

Little is known regarding the fungi, especially fungal pathogens, associated with
mangroves in Africa. This includes fungi in the Botryosphaeriaceae that comprise
numerous opportunistic, stress-associated pathogens often associated with trees
affected by environmental and anthropogenically generated stresses, such as those
affecting mangroves. We investigated the occurrence of endophytic
Botryosphaeriaceae along the entire distribution of mangroves in South Africa.
Asymptomatic branches were collected from 10 localities and six mangrove species.
Isolates resembling species of Botryosphaeriaceae were identified based on multi-
gene sequence data of the internal transcribed spacer regions (ITS), including the
5.8S nrRNA, the beta-tubulin (tub2), partial translation elongation factor 1-alpha
(tef1-a) and DNA-directed RNA polymerase Il second largest subunit (rpb2) gene
regions. Inoculation trials were conducted on healthy branches of Avicennia marina
and Bruguiera gymnorrhiza to evaluate the potential pathogenicity of the collected
species. Fourteen species in the Botryosphaeriaceae belonging to four genera,
Botryosphaeria, Diplodia, Lasiodiplodia and Neofusicoccum were collected, including
five new species. Neofusicoccum was the most prevalent genus followed by
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Lasiodiplodia, with species of Diplodia and Botryosphaeria being the least frequent.
The inoculation studies revealed that one of the new species, Lasiodiplodia
avicenniae is highly pathogenic to A. marina and could pose a threat to the health of

these trees.
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Lumnitzera racemosa; Rhizophora mucronata.

Introduction

Mangroves are trees adapted to grow in saline environments along estuaries and
coastal regions, providing important environmental services in the areas where they
occur (Tomlinson 1986; De Lacerda 2002; Spalding et al. 2010). Over the past few
decades, the conservation status of mangroves has received increased attention due
to their rapid deterioration globally. This is mostly attributed to industrial
development, local human activities and associated pollution of the environment
where they grow (Ellison & Farnsworth 1996; World Rainforest Movement 2002;
Ellison 2015; Richards & Friess 2016), as well as drought, erosion, sedimentation
and changes in water salinity (Ellison 1999; Kathiresan 2002; Upadhyay et al. 2002).
These factors lead to stress and weakness of trees, predisposing them to
colonization by opportunistic pathogens and subsequent disease syndromes
(Schoeneweiss 1981; Desprez-Loustau et al. 2007; Margais and Bréda 2007; Sieber
2007; Pautasso et al. 2015).

The Botryosphaeriaceae (Fungi, Ascomycota, Botryosphaeriales) include
important stress-associated pathogens infecting a wide variety of woody-plant
species globally. However, it is known that many of these fungi can also exist
naturally in healthy plant tissues as symptomless endophytes (Slippers & Wingfield
2007). The biology of fungi in the Botryosphaeriaceae can vary depending on the
degree of host stress; behaving as primary or opportunistic pathogens or saprobes
(Denman et al. 2000; Swart et al. 2000; Schoch et al. 2006; Mehl et al. 2013). These
fungi are, therefore, expected to play an increasingly important role in tree diseases
with the predicted increases in temperature and drought stress associated with

global climate change (Desprez-Loustau et al. 2006, Slippers & Wingfield 2007). It is



consequently realistic to expect that they could play a role in stress induced diseases
of mangrove species globally.

Few reports have revealed the presence of Botryosphaeriaceae species in
mangrove trees, mostly in the Americas and Asia. These studies include
Botryosphaeria ribis from Hibiscus tiliaceus, a mangrove associate, in the Hawaiian
Islands (Stevens & Shear 1929), Fusicoccum sp. from symptomatic branches and
stems of Rhizophora mangle in South Florida (Rayachhetry et al. 1996),
Botryosphaeria sp., Lasiodiplodia sp. and Neofusicoccum sp. from mangroves in
Brazil (De Souza et al. 2013) and Neofusicoccum sp. from Sonneratia ovata in China
(Xing et al. 2011).

In South Africa, six species of mangroves, namely Avicennia marina,
Bruguiera gymnorrhiza, Ceriops tagal, Lumnitzera racemosa, Rhizophora mucronata
and Xylocarpus granatum occur in estuaries along the east coast of the country
(Steinke 1995, Taylor et al. 2003) (Table 1). These trees are distributed from Kosi
Bay in the north of the KwaZulu-Natal Province (KZN), where all six species occur, to
the Nahoon estuary, near East London in the Eastern Cape Province in the south
where mostly A. marina and some individuals of B. gymnorrhiza are present (Steinke
1999). The mangrove associates, Barringtonia racemosa and Hibiscus tiliaceus,
occur along riverine and coastal areas of the KwaZulu-Natal and Eastern Cape
Provinces (Coates & Coates 2002, Lim 2012, South African National Biodiversity
Institute—SANBI 2016).

Numerous Botryosphaeriaceae species have been reported from South
Africa, either from symptomatic or asymptomatic native trees (e.g. Pavlic et al. 2007;
Mehl et al. 2011; Jami et al. 2012; Slippers et al. 2014), and from non-native trees
(e.g. Slippers et al. 2007; Bihon et al. 2011; Pillay et al. 2013). However, nothing is
known regarding Botryosphaeriaceae species on mangroves in the country (Osorio
et al. 2014). Consequently, the objective of this study was to investigate the species
composition, host range and distribution of these endophytic fungi across multiple
mangrove species in South Africa. In addition, inoculation studies were undertaken
in order to assess the possible role that these fungi might play in disease

development.



Table 1 — Mangrove species, their distribution across 10 sites of the eastern coast of South Africa and

their associated Botryosphaeriaceae species.

Sampling sites and No. of No. of No. of (%) of (%) of Endophytic

mangrove species branches isolates branches isolates branches Botryosphaeriaceae isolated

sampled at each site sampled per  obtained yielding obtained yielding from each mangrove species

host at each  per host isolates from 20 isolates including number of isolates
site species branches from each species in

parenthesis

SITE 1 Kosi Bay

Avicennia marina 20 2 1 10.0% 5.0% (1) Botryosphaeria sp. (1)
Neofusicoccum umdonicola,

Bruguiera gymnorrhiza 20 7 5 35.0% 25.0% (2) N. parvum, (5)
N. umdonicola,

Ceriops tagal 20 3 3 15.0% 15.0% (1) Lasiodiplodia
gonubiensis, (1)
N. cryptoaustrale,
(1) N. umdonicola,

Lumnitzera racemosa 20 10 9 50.0% 45.0% (2) N. cryptoaustrale, (3)
N. lumnitzerae, (1) N.
mangroviorum, (4) N.
umdonicola,

Rhizophora mucronata 20 0 0 0.0% 0.0% None

Total 100 22 18 22.0% 18.0%

SITE 2 St. Lucia

Avicennia marina 20 3 3 15.0% 15.0% (2) Diplodia estuarina, (1)
N. parvum,

Bruguiera gymnorrhiza 20 11 9 55.0% 45.0% (1) L. gonubiensis, (2)
N. cryptoaustrale,
(1) N. kwambonambiense,
(1) N. mangroviorum, (4)
N. parvum, (2) N.
umdonicola,

Total 40 14 12 35.0% 30.0%

SITE 3 Mapelane

Barringtonia racemosa 20 8 8 40.0% 40.0% (3) L. theobromae, (5)
N. parvum,

Total 20 8 8 40.0% 40.0%

SITE 4 Richards Bay

Avicennia marina 20 3 3 15.0% 15.0% (1) D. sapinea, (2)
N. mangroviorum,

Bruguiera gymnorrhiza 20 3 3 15.0% 15.0% (2) L. bruguierae, (1)
N. umdonicola,

Barringtonia racemosa 20 11 11 55.0% 55.0% (3) L. theobromae, (8)
N. parvum,

Rhizophora mucronata 20 9 9 45.0% 45.0% (1) D. estuarina, (8)
N. cryptoaustrale,

Total 80 26 26 32.5% 32.5%




SITE 5 Mtunzini
Avicennia marina

Bruguiera gymnorrhiza

Total
SITE 6 Beachwood
Avicennia marina

Bruguiera gymnorrhiza

Rhizophora mucronata

Total
SITE 7 Isipingo

Avicennia marina

Bruguiera gymnorrhiza
Rhizophora mucronata

Total

SITE 8 Mgazana
Avicennia marina
Bruguiera gymnorrhiza
Rhizophora mucronata

Total

SITE 9 Wavecrest
Avicennia marina
Bruguiera gymnorrhiza

Total
SITE 10 Nahoon
Avicennia marina

Bruguiera gymnorrhiza

Total

20
20

40

20

20

20
60

20

20
20

60

20

20
20

60

20
20

40

20

10

30

11

16

25

10

10

10

20

11

16

25

10

19

10.0%
45.0%

27.5%

45.0%

80.0%

0.0%
41.7%

10.0%

0.0%
40.0%

16.7%
35.0%

15.0%
25.0%

25.0%

0.0%
45.0%

22.5%

50.0%

100.0%

66.7%

10.0%
45.0%

27.5%

45.0%

80.0%

0.0%
41.7%

10.0%

0.0%
30.0%

13.3%
35.0%

15.0%
25.0%

25.0%

0.0%
40.0%

20.0%

50.0%

90.0%

63.3%

(2) N. cryptoaustrale,

(7) L. bruguierae, (1)
N. luteum, (1) N.

mangroviorum,

(3) L. avicenniae, (1)
N. cryptoaustrale, (1) N.
luteum, (4) N.

mangroviorum,

(2) N. cryptoaustrale, (1)
N. luteum, (12) N.

mangroviorum, (1)

N. parvum,

None

(1) L. avicenniae, (1)
N. luteum,

None

(2) N. cryptoaustrale, (1)
N. kwambonambiense, (1)

N. luteum, (2) N.
mangroviorum, (1) N.
parvum, (1) N.
umdonicola,

(7) N. cryptoaustrale,
(3) L. bruguierae,

(2) N. mangroviorum, (3)
N. parvum,

None

(5) N. cryptoaustrale, (1)
N. mangroviorum,  (3) N.
parvum,

(2) D. sapinea, (7)
N. cryptoaustrale, (1) N.
parvum,

(4) N. cryptoaustrale, (1)
N. mangroviorum,  (3) N.
parvum, (2) N.
umdonicola,




Materials and methods

Sample collection

Ten sites where mangrove forests occur were sampled to evaluate the presence,
species diversity, host range and spatial distribution of Botryosphaeriaceae fungi on
these trees in South Africa. Samples were collected from five mangrove species at
Kosi Bay (A. marina, B. gymnorrhiza, C. tagal, L. racemosa and R. mucronata), four
at Richards Bay (A. marina, B. gymnorrhiza, R. mucronata and the mangrove
associate B. racemosa), three at Beachwood and Isipingo (A. marina, B.
gymnorrhiza and R. mucronata), two from Mtunzini and St. Lucia (A. marina and B.
gymnorrhiza) and one mangrove associate from Mapelane (B. racemosa), in the
KwaZulu-Natal Province. Three mangrove species were sampled at Mgazana (A.
marina, B. gymnorrhiza and R. mucronata), and two from Nahoon and Wavecrest (A.
marina and B. gymnorrhiza) in the Eastern Cape Province (Table 1 and Fig. 1). The
sampling sites were selected to cover the entire geographic range of mangroves in
South Africa and to include all mangrove species that occur in the region. At each
site, 20 trees of each mangrove species were randomly selected for sample
collection. One healthy branch, ~ 10—12 mm in diam and ~ 15 cm in length was
collected per tree selected. Samples were placed in paper bags and taken to the
laboratories of the Forestry and Agricultural Biotechnology Institute (FABI) at the
University of Pretoria for isolation of possible endophytic Botryosphaeriaceae.

The plant material collected was firstly washed to remove traces of mud.
Then, sections (1 cm long) were cut from each branch and split into four roughly
equal pieces, with the bark maintained intact where possible. The surface
disinfection was completed with some modifications in the procedure described by
Slippers & Wingfield (2007). Small portions of branches were submerged in 70 %
ethanol for 1 min, followed by 1 min in 4 % NaOCI (Bleach) and 1 min in 95 %
ethanol and then rinsed in autoclaved distilled water for 1 min. Branch sections were
then transferred to 2 % water agar in Petri plates and incubated at 25 °C. Plates
were examined daily for the presence of mycelial growth using a Nikon SMZ 745
dissection microscope. Single hyphal-tips from expanding colonies were transferred
to 2 % MEA medium (20 g malt extract, 20 g Biolab agar in 1L distilled water)
amended with 0.4 g/l streptomycin sulfate (Sigma-Aldrich, USA) and incubated at 25



°C to obtain pure cultures. Colonies resembling species of Botryosphaeriaceae
(floccose or cottony mycelium, grey to green, turning dark green, brownish or almost

black), were separated into different morphological groups and subsequently

identified using DNA sequencing and phylogenetic analyses.
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Fig 1 — Mangrove sampling sites in South Africa, also indicating the Botryosphaeriaceae species

Site 10: Nahoon Estuary

isolated at each sampling site.
Pure cultures resembling Botryosphaeriaceae species were deposited in the
culture collection (CMW) of the Tree Protection Co-operative Programme (TPCP) at
FABI, University of Pretoria. Duplicate cultures of novel species were deposited in
the culture collection of the CBS-KNAW (Centraalbureau voor Schimmelcultures)
Fungal Biodiversity Centre, Utrecht, The Netherlands. Type specimens were
deposited in the herbarium of the National Collection of Fungi (PREM), Pretoria,

South Africa.



Identification

DNA extraction, PCR amplification and sequencing

All fungal isolates resembling species of Botryosphaeriaceae were grown on MEA
for 2 wks to produce sufficient mycelium for DNA extraction. To extract genomic
DNA, mycelium was scraped from the surface of cultures and placed into 2 ml sterile
Eppendorf tubes and freeze dried. The mycelial samples were then pulverized using
2 mm sterilized metal beads in a Mixer Mill type MM 301 Retsch® tissue lyser
(Retsch, Germany) for 3 min at a frequency of 30 cycles per second. Total genomic
DNA was extracted following the method described by Raeder and Broda (1985).
Extracted DNA was suspended in 50 pyl Sabax water (Adcock Ingram,
Johannesburg, South Africa). Five yl RNAse (5 mg/ml) was added to degrade the
RNA in the samples and to obtain a better quality of DNA. The tubes were then
incubated at 37 °C for 60 min. The quality and quantity of the extracted DNA was
determined using a NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies, USA). All DNA samples were diluted to attain a concentration of 20
ng/pl and stored at -20 °C.

A total of four partial gene regions, the Internal Transcribed spacer regions 1
and 2, including the 5.8S nrRNA gene (ITS), the beta-tubulin tub2), the translation
elongation factor 1-alpha (tef1-a) and the DNA-directed RNA polymerase |l second
largest subunit (rpb2) regions were amplified using the polymerase chain reaction
(PCR). Standard published primers were utilized for each region, including BT2a,
BT2b (Glass and Donaldson 1995), ITS1, ITS4 (White et al. 1990), EF1F, EF2R
(Jacobs et al. 2004) and/or EF1-688F, EF1-1251R (Alves et al. 2008), rpb2bot6F,
rpb2bot7R (Sakalidis 2004) and/or rpb2lasF, rpb2lasR (Cruywagen et al. 2016).

A 25 ul reaction mixture was prepared for each PCR, containing 100 ng of
DNA for the ITS (0.2 mM), 40 ng of DNA for the tub2 (0.2 mM), 30 ng for the rpb2
(0.2 mM), and 80 ng for the tef1-a (0.2 mM), reactions, 2.5 ul of PCR reaction buffer
(10 mM Tris-HCL, 1.5 mM MgCI2, 50 mM KCL), 1 pl of each primer, 2 ul dNTP (0.2
mM) and 0.5 pl of Faststart Taq DNA Polymerase (Roche Applied Science,
Germany). Sterile Sabax water was added to adjust the final reaction volumes to 25
pl. All reactions were run using the following thermal cycling conditions: initial
denaturation at 94 °C for 4 min followed by a step of ten cycles consisting of 94 °C
for 20 s, annealing at 54 “C (tub2 and the tef1-a for the primers TEF1-688f and



TEF1-1251r) and 55 °C (ITS, tef1-a and rpb2) for 48 s, and elongation at 72 °C for
45 s, followed by a further 25 cycles of 94 °C for 20 s, with an annealing step using
the temperatures as previously indicated for each gene region for 40 s with a time
increase of 5 s every cycle, and elongation for 45 s at 72 °C. This was concluded
with a final elongation step at 72 °C for 10 min. An aliquot of 5 pl of each of the PCR

products was stained with GelRed™

nucleic acid gel stain (Biotium, USA), separated
on 1 % agarose gels for 20 min at 90 Volts and viewed with a Gel Doc EZ Imager
(Bio-Rad Laboratories Inc.) to access the success of the PCR.

PCR products were cleaned using Sephadex G-50 columns following the
instructions provided by the manufacturers (Sigma Aldrich, Sweden) and the cleaned
filtrate was used in the sequencing reactions. The concentrations of the cleaned
PCR products were determined using a NanoDrop ND-1000 spectrometer
(NanoDrop Technologies, USA) and a concentration of DNA between 60 to 100 ng/pl
was added to each sequencing reaction.

Products were sequenced with a BigDye® Terminator v. 3.1 Cycle
Sequencing Kit (PE Applied Biosystems, California, USA) using the same primers
and annealing temperatures that were used in the initial PCR. The sequencing
products were cleaned in Sephadex G-50 columns. Where a 96 well PCR plate was
used, the cleaning of the products was performed with Exonuclease | - Shrimp
Alkaline Phosphatase (Exo-SAP). In this case 2 ul of the PCR product was used for
sequencing, and the product was then cleaned using ethanol precipitation. PCR
products were sequenced in both directions using a BigDye® Terminator v. 3.1
Cycle Sequencing Kit on an ABI PRISM 3100 DNA sequencer (Applied Biosystems,
USA). Sequencing results were viewed manually and consensus sequences were

assembled with CLC Main Workbench v. 7.6.1 (http://www.clcbio.com/genomics/).

Phylogenetic analyses

Sequences of the isolates obtained from the six species of mangroves were
compared to data of previously published species obtained from GenBank
(http://blast.ncbi.nih.gov/blast.cgi). The obtained ITS consensus sequences were
used to perform BLAST searches in GenBank using BLASTn (Altschul et al. 1990)
and to identify isolates to genus and closest species level. This information was used

to generate datasets for further phylogenetic analyses. The data matrices were
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aligned online using MAFFT v. 7 (Katoh & Standley 2013) and edited manually for
alignment errors with MEGA v. 5 (Tamura et al. 2011).

The ITS region was sequenced for all isolates obtained from mangroves in
this study and compared against known Botryosphaeriaceae species. Subsequently,
an extra ITS data set comprising 17 previously described genera within the
Botryosphaeriaceae and 13 representative sequences from mangroves were used in
the final phylogenetic analyses of the ITS and 5.8S regions. Melanops tulasnei, was
used as the outgroup for the analyses. To confirm species identities, additional data
sets of relevant gene regions were compiled separately for each genus: tub2 and
tef1-a for Botryosphaeria and Diplodia; tub2, rpb2 and tef1-a for Lasiodiplodia and
Neofusicoccum. These data sets included additional isolates for each unidentified
taxon, as well as extra isolates (where available) of closely related known species,
including the ex-types. The Botryosphaeria data sets were rooted to Neofusicoccum
parvum and N. luteum, the Diplodia data sets to Lasiodiplodia gonubiensis and L.
theobromae, the Lasiodiplodia data sets to Neofusicoccum cordaticola and N.
parvum, the Neofusicoccum data sets were rooted to Lasiodiplodia gonubiensis and
L. theobromae.

Phylogenetic analyses of sequence data for Maximum Parsimony (MP) were
performed using PAUP v. 4.0b10 (Swofford 2003). Maximum Parsimony genealogies
for single genes were constructed using the heuristic search option with 100 random
taxon additions and tree bisection and reconnection (TBR). Gaps were treated as
missing data and all characters were unordered and of equal weight. Statistical
support for nodes was obtained by performing 1000 bootstrap replicates. In addition,
the consistency index (Cl), homoplasy index (HI), rescaled consistency index (RC),
retention index (RI) and tree length (TL) were determined for the resulting trees.
Maximum Likelihood (ML) and Bayesian inference (Bl) analyses were performed for
each sequence data set. For both analyses, jModelTest v. 2.1.4 (Darriba et al. 2012)
was used to infer the appropriate substitution model using Akaike information criteria
(AIC) (Akaike 1974). ML analyses were performed with the program PhyML v. 3.0
(Guindon and Gascuel 2003), taking into account the proportion of invariable sites.
The confidence support values for nodes were estimated using 1000 replication
bootstrap analyses. Posterior probabilities were determined using Bl based on a
Markov Chain Monte Carlo (MCMC) algorithm performed in MrBayes v. 3.2

(Ronquist et al. 2012). Two independent runs were done simultaneously for 5 million
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generations at every 100th generations. Burn-in values were determined with Tracer
v. 1.6.0 (Rambaut et al. 2013) and the first 25 000 sampled trees that represented
the burn-in phase were discarded and the remaining trees used to construct a
majority rule consensus tree. Phylogenetic trees obtained from Bl, ML and MP
analyses were viewed in MEGA 5 (Tamura et al. 2011) or Treeview v. 1.6.6 (Page
1996).

For the description of novel species, colony morphology and microscopic
features were examined from cultures growing on 2 % MEA. To induce sporulation,
small portions of autoclaved A. marina branches of ~ 3 cm long or pine needles were
oven-dried at 65 °C and placed on the surface of water agar, after which
Botryosphaeriaceae isolates were inoculated onto each plate. Plates were then
incubated near UV-light for 1 wk, followed by two weeks in the dark at 25 °C, one
week in a cold room at 7 °C and thereafter left to grow on a laboratory bench at
approximately 25 °C until fruiting structures were evident. Microscope slides were
prepared for structures, including the pycnidia and conidia, in 85 % lactic acid, and
observations were made using a Zeiss Axioskop compound microscope (Carl Zeiss,
Germany). Photographic images were captured with an Axiocam digital camera and
the fungal structures were measured using the Axiovision 3.1 software.
Taxonomically informative characters such as the size of pycnidia, size and
pigmentation of conidia and the size of paraphyses were used to compile the
descriptions of novel species. Fifty measurements of length/width (I/w) were made
for each relevant morphological character and the mean, standard deviation (SD)
and 95 % confidence intervals were calculated, with the minimum and maximum
sizes presented in parentheses as (min—) mean + SD (—max). Morphological
descriptions and nomenclatural details were deposited in MycoBank
(www.MycoBank.orq).

Growth and colony characterization

To determine the colony growth average of newly discovered fungal species, 4 mm
diam mycelial plugs were cut from the actively growing margins of 5-d-old colonies,
placing the mycelium side down at the centers of 90-mm-diam Petri plates containing
2 % MEA. Five replicates of each isolate were incubated in the dark at temperatures
ranging from 5 °C to 35 °C at 5 °C intervals. The experiment was terminated once
the first of the test cultures covered an entire Petri plate. Diameters of the colonies

11
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(mm) were then measured along two perpendicular axes centered on the plugs. The
experiment was repeated once. Average growth was calculated for each isolate at
the different test temperatures and presented in parentheses. Colony colors (upper
surface and reverse) were assessed after 7 d of growth on 2 % (MEA) at 25 °C,
under dark conditions, using the color charts of Rayner (1970), with notation

characters presented in parentheses.

Pathogenicity tests

Two mangrove species, A. marina and B. gymnorrhiza, were inoculated in-field with
48 Botryosphaeriaceae isolates including all the species collected from the different
sampling locations and mangrove hosts. Seven-d-old isolates, grown on 2 % MEA at
24 °C, were used for inoculations. A sterile cork borer of 7 mm diam was used to
make plugs in the cultures and wounds of equal size on the branches. One branch
per tree (~10 mm diam), on 15 trees of each of the two tree species, was inoculated
for each fungal isolate. Fifteen branches were inoculated with sterile MEA plugs for
each tree species to serve as controls. Agar plugs overgrown with the mycelium of
each test isolate were placed into the wounds with the mycelium facing the
cambium. The inoculated wounds were sealed with masking tape to avoid
desiccation and contamination. The entire experiment was repeated once.

Lesion lengths on the inoculated branches were measured after 6 wks.
Portions of inoculated branches were also harvested and surface-sterilized with 70
% ethanol and rinsed with distilled water. Small (~ 2 x 2 mm) pieces of infected
tissue were cut from the lesions and placed onto 2 % MEA and incubated at 24 °C
for 7 d. Hyphal tips from the emerging colonies were sub-cultured. The re-isolated
fungi were identified using DNA sequences of the ITS and/or tef1-a gene regions to
comply with the conditions of Koch'’s postulates.

Lesion lengths were subjected to non-parametric Wilcoxon signed-rank tests
in SPSS 17. These non-parametric tests were performed because most means were
not normally distributed based on the Shapiro-Wilk test performed in SPSS. Paired
rank tests were also used since the tested individuals were from branches of one
population. Means with error plots were then constructed for each mangrove
species, with annotation as to which species were responsible for inducing the

longest lesions. Since the control lesions were 10 mm in size, we also overlaid a 20
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mm pathogenicity trend line to compare how many fungal isolates caused a 100 %

increase in lesion length between the two mangrove species.

Botryosphaeriaceae diversity and distribution

To test for possible spatial auto-correlation between fungal community assemblages
and distance between sites (whether sites closer to each other are more alike in
Botryosphaeriaceae communities), the RELATE function in PRIMER 6 (Clarke &
Gorley 2006) was used. The RELATE test is a mantel-type test that correlates two
similarity matrices with each other. For this test, the Spearman’s Rho with 9999
permutations was used. Botryosphaeriaceae response data showed high levels of
heteroscedasticity, in that there were a few abundant species and many rarely
observed species across the sampling region. To elevate the influence of the rare
species in determining community similarity, data were square root transformed, and
site similarity calculated using the Bray-Curtis measure.

To observe similarity/dissimilarity in Botryosphaeriaceae species richness and
community assemblage composition between mangrove species and between sites,
two diversity correspondence analyses (CA for sites, DCA for species) were run in
CANOCO 5 (Microcomputer Power, Ithaca, New York). For these measures, data
were square root transformed.

The sampling intensity from a regional and mangrove-species perspective
was evaluated using a species accumulation curves (Gotelli & Colwell 2001). For the
regional tally, adequate taxon representation was validated using Sobs and the
abundance-based Chao 1 estimators in PRIMER 6, using 9999 permutations.
Mangrove species populations were unevenly spread across the sampling region,
and were present in varying abundances. Sampling adequacy within each species
was thus also considered and measured using Jackknife 1 estimators with 9999
permutations (PRIMER 6).

Quantitative data for occurrence of Botryosphaeriaceae from mangrove
species was calculated based on a modified formula used by Sarma & Hyde (2001).
The probability of successful isolation was calculated as the total number of
Botryosphaeriaceae isolates/Total number of samples examined. A sample was

defined as a random branch selected from each tree species in the field. The
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frequencies were converted into percentage (percentage of occurrence indicates the
number of branches on which a Botryosphaeriaceae species was isolated), and
ranked according to a modified scoring criteria of Samén-Legra et al. (2014), as very

frequent (>10 %), frequent (>5 % and <10 %) and infrequent (<5 %)

Results

Sample collection

A total of 530 branches, from six mangrove species (A. marina = 180 branches, B.
gymnorrhiza = 170 branches, B. racemosa = 40 branches, C. tagal = 20 branches, L.
racemosa = 20 branches, R. mucronata = 100 branches), were collected for this
study. This resulted in 160 isolates of endophytic Botryosphaeriaceae. Of these,
based on the proportion of isolates recovered from an individual host species, 10
isolates were obtained from L. racemosa (50 %, isolates obtained from 20 branches
of this host species), 19 isolates from B. racemosa (47.5 %), 68 isolates from B.
gymnorrhiza (40 %), 22 isolates from R. mucronata (22 %), 38 isolates from A.
marina (21 %), and 3 isolates from C. tagal (15 %), which yielded the lowest number

of isolates.

Identification

DNA extraction, PCR amplification and sequencing

DNA was extracted from the 160 isolates resembling species of Botryosphaeriaceae
and PCR and sequence products were generated for the ITS region. Of these, 80
isolates were selected and used in smaller data sets for the ITS, tub2, tef1-a and
rpb2 to confirm their species level identities. Sequence fragments were
approximately 500—610 bp for the ITS, 390-460 bp in size for the tub2, 330-370 bp
for the tef1-a, and 560—600 for the rpb2 gene regions. Representative sequences of
all species recovered were deposited in GenBank (Table 2). Based on blast
searches in GenBank, isolates from mangroves in South Africa represented at least

four genera in the Botryosphaeriaceae.
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Table 2 - Culture numbers and Genbank accession information of representative isolates of Botryosphaeriaceae spp. obtained
from mangrove trees in South Africa.

Isolate GenBank Accession Numbers
Species CMW No.  Host Location ITS tefl-a tub?2 rpb2
Botryosphaeria sp. CMW41226 Avicennia marina Kosi Bay KP860875 KP860718 KP860795 *
Diplodia estuarina CMW41231-T A. marina Saint Lucia KP860831 KP860676 KP860754 *
D. estuarina CMW41230-P  A. marina Richards Bay KP860830 KP860675 KP860753 *
D. estuarina CMW41363-P  Rhizophora mucronata  Richards Bay KP860829 KP860674 KP860752 *
D. sapinea CMW41234 A. marina Nahoon KP860827 KP860672 KP860750 *
D. sapinea CMW41235 A. marina Nahoon KP860828 KP860673 KP860751 *
D. sapinea CMW41362 A. marina Richards Bay KP860826 KP860671 KP860749 *
Lasiodiplodia avicenniae CMW41467-T  A. marina Isipingo KP860835 KP860680 KP860758 KU587878
L. avicenniae DNA A. marina Beachwood KU587957 KUS587946 KUS587867 KU587879
L. avicenniae DNA A. marina Beachwood KU587956 KUS587947 KUS587868 KU587880
L. bruguierae CMW41470-T  Bruguiera gymnorrhiza  Mtunzini KP860832 KP860677 KP860755 KU587876
L. bruguierae CMW41614-P  B. gymnorrhiza Mtunzini KP860833 KP860678 KP860756 KU587877
L. bruguierae CMW42480-P  B. gymnorrhiza Richards Bay KP860834 KP860679 KP860757 KU587875
L. gonubiensis CMwW41227 Ceriops tagal Kosi Bay KP860838 KP860683 KP860761 KU587883
L. gonubiensis CMW41229 B. gymnorrhiza Saint Lucia KP860839 KP860684 KP860762 KU587884
L. gonubiensis CMW41236 B. gymnorrhiza Mgazana KP860840 KP860685 KP860763 KU587885
L. gonubiensis CMW43762 B. gymnorrhiza Mgazana KU587954 KUS587943 KUS587864 KU587886
L. gonubiensis CMW43763 B. gymnorrhiza Mgazana KU587955 KUS587944 KUS587865 KU587887
L. theobromae CMW41214 Barringtonia racemosa  Mapelane KP860842 KP860687 KP860765 KU587889
L. theobromae CMW41222 B. racemosa Richards Bay KP860836 KP860681 KP860759 KU587881
L. theobromae CMW41223 B. racemosa Richards Bay KP860837 KP860682 KP860760 KU587882
L. theobromae CMW42341 B. racemosa Mapelane KP860843 KU587945 KU587866 *
L. theobromae CMW41360 B. racemosa Mapelane KP860841 KP860686 KP860764 KU587888
Neofusicoccum cryptoaustrale CMW41211 A. marina Richards Bay KP860844 KP860688 KP860766 KUS587891
N. cryptoaustrale CMW41219 B. gymnorrhiza Beachwood KP860865 KP860708 KP860785 *
N. cryptoaustrale CMW41370 A. marina Mgazana KP860902 KP860745 KP860822 KU587942
N. cryptoaustrale CMW42344 R. mucronata Richards Bay KP860857 KP860701 KP860778 KU587902
N. cryptoaustrale CMW42347 R. mucronata Isipingo KP860868 KP860711 KP860788 KU587913
N. cryptoaustrale CMW42350 R. mucronata Isipingo KP860872 KP860715 KP860792 *
N. cryptoaustrale CMW42354 C. tagal Kosi Bay KP860878 KP860721 KP860798 KU587923
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Table 2 - Culture numbers and Genbank accession information of representative isolates of Botryosphaeriaceae spp. obtained from
mangrove trees in South Africa.

Isolate GenBank Accession Numbers
Species CMW No.  Host Location ITS tefl-a tub?2 rpb2

N. cryptoaustrale CMW42355 L. racemosa Kosi Bay KP860879 KP860722 KP860799 *

N. cryptoaustrale CMW42356 L. racemosa Kosi Bay KP860880 KP860723 KP860800 *

N. cryptoaustrale CMW42357 B. gymnorrhiza Saint Lucia KP860884 KP860727 KP860804 KU587928
N. cryptoaustrale CMW42362 B. gymnorrhiza Nahoon KP860892 KP860735 KP860812 KU587934
N. cryptoaustrale CMW42365 B. gymnorrhiza Wavecrest KP860899 KP860742 KP860819 KU587939
N. cryptoaustrale CMW42483 B. gymnorrhiza Beachwood KP860866 KP860709 KP860786 KU587911
N. cryptoaustrale CMwW42485 A. marina Nahoon KP860896 KP860739 KP860816 KU587936
N. kwambonambiense CMW42349 R. mucronata Isipingo KP860870 KP860713 KP860790 KU587915
N. kwambonambiense CMW41369 B. gymnorrhiza Saint Lucia KP860886 KP860729 KP860806 KU587930
N. lumnitzerae CMW41469-T  Lumnitzera racemosa Kosi Bay KP860881 KP860724 KP860801 KU587925
N. lumnitzerae CMW41228-P L. racemosa Kosi Bay KP860882 KP860725 KP860802 KU587926
N. lumnitzerae CMW41613-P L. racemosa Kosi Bay KU587958 KU587948 KU587869 KU587924
N. luteum CMW41218 B. gymnorrhiza Beachwood KP860863 KP860706 KP860783 KU587909
N. luteum CMW41220 A. marina Isipingo KP860867 KP860710 KP860787 KU587912
N. luteum CMW42348 R. mucronata Isipingo KP860869 KP860712 KP860789 KU587914
N. luteum CMW41359 B. gymnorrhiza Mtunzini KP860846 KP860690 KP860768 KU587893
N. luteum CMW42482 A. marina Beachwood KP860862 KP860705 KP860782 KU587908
N. mangroviorum CMW41365-T A. marina Beachwood KP860859 KP860702 KP860779 KU587905
N. mangroviorum CMW42481-P  B. gymnorrhiza Mtunzini KP860848 KP860692 KP860770 KU587895
N. mangroviorum CMW42487-P  R. mucronata Mgazana KP860900 KP860743 KP860820 KU587940
N. mangroviorum CMW41216 A. marina Richards Bay KP860854 KP860698 KP860775 KU587901
N. mangroviorum CMW42340 A. marina Richards Bay KP860845 KP860689 KP860767 KU587892
N. mangroviorum CMW41615 B. gymnorrhiza Mtunzini KP860847 KP860691 KP860769 KU587894
N. mangroviorum CMW41466 A. marina Beachwood KP860860 KP860703 KP860780 KU587906
N. mangroviorum CMW41217 A. marina Beachwood KP860861 KP860704 KP860781 KU587907
N. mangroviorum CMW42346 B. gymnorrhiza Beachwood KP860864 KP860707 KP860784 KU587910
N. mangroviorum CMW41221 R. mucronata Isipingo KP860871 KP860714 KP860791 KU587916
N. mangroviorum CMW42351 R. mucronata Isipingo KP860873 KP860716 KP860793 KU587917
N. mangroviorum CMW42359 B. gymnorrhiza Nahoon KP860887 KP860730 KP860807 *

N. mangroviorum CMW42486 B. gymnorrhiza Wavecrest KP860898 KP860741 KP860818 KU587938

16



Table 2 - Culture numbers and Genbank accession information of representative isolates of Botryosphaeriaceae spp. obtained from
mangrove trees in South Africa.

Isolate GenBank Accession Numbers
Species CMW No.  Host Location ITS tefl-a tub2 rpb2

N. mangroviorum CMW41364 A. marina Beachwood KU587959 KUS587949 KUS87870 KU587904
N. parvum CMW41213 B. racemosa Mapelane KP860849 KP860693 KP860771 KU587896
N. parvum CMW41215 B. racemosa Mapelane KP860851 KP860695 KP860773 KU587898
N. parvum CMW41224 B. racemosa Richards Bay KP860874 KP860717 KP860794 KU587919
N. parvum CMW41225 B. racemosa Richards Bay KP860852 KP860696 KP860774 KUS587899
N. parvum CMW41233 A. marina Nahoon KP860895 KP860738 KP860815 KU587935
N. parvum CMW41361 B. racemosa Mapelane KP860850 KP860694 KP860772 KU587897
N. parvum CMW41368 A. marina Saint Lucia KP860853 KP860697 KP860774 KU587900
N. parvum CMW42352 B. gymnorrhiza Kosi Bay KP860876 KP860719 KP860796 KU587921
N. parvum CMW42358 B. gymnorrhiza Saint Lucia KP860885 KP860728 KP860805 KU587929
N. parvum CMW42361 B. gymnorrhiza Nahoon KP860891 KP860734 KP860811 KU587933
N. parvum CMW42364 B. gymnorrhiza Wavecrest KP860897 KP860740 KP860817 KU587937
N. parvum CMW42366 R. mucronata Mgazana KP860901 KP860744 KP860821 KU587941
N. parvum CMW43755 B. racemosa Richards Bay KU587960 KU587950 KU587871 KU587918
N. umdonicola CMW41265 B. gymnorrhiza Nahoon KP860889 KP860732 KP860809 KU587932
N. umdonicola CMW41367 L. racemosa Kosi Bay KP860883 KP860726 KP860803 KU587927
N. umdonicola CMwW42345 B. gymnorrhiza Richards Bay KP860858 KU587951 KU587872 *

N. umdonicola CMW42353 B. gymnorrhiza Kosi Bay KP860877 KP860720 KP860797 KU587922
N. umdonicola CMW43757 A. marina Kosi Bay KU587961 KU587952 KU587873 KU587920
N. umdonicola CMW43760 B. gymnorrhiza Saint Lucia KU587962 KUS587953 KUS87874 KU587931

Legend: * = |solate not included in the phylogenetic analyses for the RPB2 gene region. CMW: Culture Collection of the Forestry and
Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa.

T = ex-holotype; P = ex-paratype
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Fig 2 — Phylogram obtained from Bl, ML and MP analyses of the ITS data set. Isolates from
mangroves group into the genera Botryosphaeria, Diplodia, Lasiodiplodia and Neofusicoccum.
(Isolates obtained in this study are printed in bold and the equivalent genera inside the box). Bl
posterior probabilities 295 % are represented by thick branches. Bootstrap support values >70 % are
indicated near the nodes as MP/ML. * = bootstrap support values <70 %. Colors of pie charts indicate
the host from where Botryosphaeriaceae species were isolated (five true mangroves and the

mangrove associate B. racemosa).
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Fig 3 — Phylograms of species in the genus Botryosphaeria obtained from Bl, ML and MP analyses of
the ITS, TEF-1a and BT gene regions. The isolate obtained from mangroves (in bold font) groups with
different species of Botryosphaeria and do not provide strong support to clarify its placement. Bl
posterior probabilities =295 % are represented by thick branches. Bootstrap support values >70 % are

indicated near the nodes as MP/ML. * = bootstrap support values <70 %.
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Fig 4 — Phylograms of species in the genus Diplodia obtained from Bl, ML and MP analyses of the
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Diplodia sapinea and a new taxon, D. estuarina sp. nov. Bl posterior probabilities =295 % are

represented by thick branches. Bootstrap support values >70 % are indicated near the nodes as

MP/ML. * = bootstrap support values <70 %.
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Fig 5 — Phylograms of species in the genus Lasiodiplodia obtained from Bl, ML and MP analyses of
the ITS and tef1-a genes. The isolates obtained from mangroves (in bold font) form four species in
the Lasiodiplodia, including two new taxa (Species names are near to brackets). Bl posterior
probabilities 295 % are represented by thick branches. Bootstrap support values >70 % are indicated

near the nodes as MP/ML. * = bootstrap support values <70 %.

Phylogenetic analyses
Alignment of ITS sequence data for the 160 isolates of Botryosphaeriaceae identified
the presence of four clades. These represented the genera Botryosphaeria (one
isolate from one tree), Diplodia (six isolates from six trees), Lasiodiplodia (24 isolates
from 24 trees) and Neofusicoccum (129 isolates from 123 trees) (Fig. 2). Based on
these results, all isolates were further analyzed within genera. The numbers of
characters, substitution models used, as well as other statistical results generated
from the phylogenetic analyses of all data sets are presented in Table 3.

Only one isolate (CMW41226) of Botryosphaeria was obtained and this was
from A. marina. The placement of this isolate could not be fully resolved. The ITS
sequence was identical to that of B. dothidea, B. fabicerciana and B. fusispora (Fig.

3). The tef1-a tree showed a close relationship with B. fabicerciana, while based on
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Table 3 — Information on the sequence dataset, maximum parsimony (MP) and Maximum Likelihood
(ML) trees for each gene region.

Gene Region

Botryosphaeria Diplodia Lasiodiplodia Neofusicoccum Genera
ITS tef1-a tub2 ITS tef-1a tub2 ITS tub2 tef-1a  rpb2 ITS tef1-a tub2 rpb2 ITS
No.AC 509 365 448 610 328 461 508 423 328 565 507 353 394 602 590
No.EC 470 307 413 556 253 421 460 375 222 431 447 274 341 498 404
No.IC 39 58 35 54 75 40 48 48 106 134 60 79 53 104 186
No.MPT 15 2 2 10000 1 36 6 12 100 6 18 1000 58 84 1000
MP | 1L 48 76 38 76 109 57 61 60 241 181 83 116 66 129 683
(¢))) 0917 0.868 0974 | 0882  0.826 0.789 0.836 0.817 0643 0.807 | 0.819 0.845 0.879  0.891 0.470
(RI) 0926 0911 0979 | 0939  0.912 0.91 0932 0.934 0.897 0.922 | 0.983 0.980 0.983  0.984 0.871
(RC) 0.850 0791 0.953 | 0828  0.753 0.719 0.780 0.763 0577 0.744 | 0.805 0.828 0.864  0.878 0.409
(HI) 0.083 0132 0.026 | 0.118  0.174 0.211 0.164 0.183 0357 0.193 | 0.181 0.155 0.121  0.109 0.530
SM TIM1  TPM3uf  HKY | HKY+l  TrN+l  TrN+G | SYM+l TIM3  TiN+G  TIM1 | TIMlef TPM3uf+ TIM3+ TIM3+ | TrN++G
+G +G +G +G +G + G G G
ML 1'as 0.149 0419  0.232 - - 0.013 - 0251 0416 0.384 - 0.439 0.552  0.296 0.720
(nst) 6 6 2 2 6 6 6 6 6 6 6 6 6 6 6
No.T 1000 1000 1000 | 1000 1000 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000

MP = Maximum Parsimony, (No. AC) = Number of aligned characters, (No.EC) = Number of excluded characters, (No. IC) =
Number of informative characters (No. MPT) = Number of most parsimonious trees, (TL) = Tree length, (Cl) Consistency index, (RI)
= Retention index (RC) = Rescaled consistency index, (HI) = Homoplasy index.

ML = Maximum Likelihood, (SM) = Substitution model, (GS) = Gamma shape, (nst) = No. of substitution sites, (No. T) = Number of

trees.
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the tub2 locus it grouped with B. fusispora. No rpb2 analysis was performed for this
genus since limited DNA sequence data are available in public databases for this
gene region. Based on these results, and because only one isolate was available, it
is treated as Botryosphaeria sp.

Six isolates were identified as species of Diplodia based on ITS sequence
data. These isolates represented two groups and the six isolates were used in
subsequent analyses. Eleven species previously described for this genus were
included in the phylogenetic analyses. The tree topologies for the ITS, tef1-a and
tub2 reconstructed using MP, ML and Bl were similar (Fig. 4) and the isolates from
mangroves consistently separated into two distinct species, Diplodia sapinea and an
undescribed taxon, closely related to, but distinct from D. allocellula.

Twenty-four isolates of Lasiodiplodia were recovered from asymptomatic
branches. The phylogenetic analysis of this genus included 30 previously described
species for the ITS gene region, the tef1-a included nine previously described taxa,
while the phylogenetic analyses (MP, ML and Bl) of the tub2 and the rpb2 gene
regions included eight previously described species (Figs. 5, 6). These isolates were
identified as L. gonubiensis, L. theobromae and two undescribed taxa. The
topologies of the phylogenetic trees for the ITS, tef1-a, tub2 and rpb2 gene regions
were similar showing a consistency in the clades in which the mangrove isolates
grouped.

One hundred and twenty nine isolates were identified as belonging to the
genus Neofusicoccum. Phylogenetic analyses included 15 previously described
species and 57 isolates selected from mangroves, which were separated into six
taxa including N. luteum, N. kwambonambiense, N. parvum, N. umdonicola, and two

undescribed species (Figs. 6, 7).
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Fig 6 — Phylograms of species in the genus Lasiodiplodia obtained from Bl, ML and MP analyses of
the tub2 and rpb2 genes. The isolates obtained from mangroves (in bold font) group with four species
in the Lasiodiplodia, including two new taxa, where the most pathogenic fungus found in this study is
L. avicenniae (Species names are near to brackets). Bl posterior probabilities 295 % are represented

by thick branches. Bootstrap support values >70 % are indicated near the nodes as MP/ML. * =
bootstrap support values <70 %.
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Fig 7 — Phylograms of species in the genus Neofusicoccum obtained from Bl, ML and MP analyses of
the ITS and tef1-a gene regions. The isolates obtained from mangroves (in bold font) group with
seven species in the Neofusicoccum, including three new taxa (Species names are near to brackets).
Bl posterior probabilities 295 % are represented by thick branches. Bootstrap support values >70 %

are indicated near the nodes as MP/ML. * = bootstrap support.
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Fig 8 — Phylograms of species in the genus Neofusicoccum obtained from Bl, ML and MP analyses of
the tub2 and rpb2 gene regions. The isolates obtained from mangroves (in bold font) group with
seven species in the Neofusicoccum, including three new taxa (Species names are near to brackets).
Bl posterior probabilities 295 % are represented by thick branches. Bootstrap support values >70 %

are indicated near the nodes as MP/ML. * = bootstrap support.

Taxonomy

Five novel taxa in the Botryosphaeriaceae were obtained from asymptomatic
branches of mangrove species sampled in this study and these are described here
as new taxa. No sexual morphs were found in culture and descriptions are based on

morphological characteristics of the asexual morphs.

Diplodia estuarina sp. nov. J.A Osorio, Jol. Roux & Z.W. de Beer (Fig. 9)
MycoBank MB812009
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Fig 9 — Diplodia estuarina sp. nov. ex-holotype (CMW41231) (A) Erumpent conidiomata on pine

needles. (B) Immersed conidiomata in pine needle tissue. (C) Conidia with variable shapes and
showing rough contents (arrow). (D) Conidia attached to conidiogenous cell (arrow) and showing

annellation (arrow). Bars: A=500 ym, B=100 pm, C=20 ym, D=10 ym, D=5 pym.

Etymology: Epithet refers to the ecosystem (estuary) where mangroves occur.
Sexual morph unknown. Conidiomata pycnidial, produced most often in cultures
older than 4 wks, solitary or aggregated, unilocular, globose, non-papillate, wall
composed of dark brown textura angularis (167—-)331-387(-585) um wide, immersed
in media to erumpent at maturity on pine needles, sometimes fruiting structures
agglomerate, forming clumps on water agar (WA). Conidiogenous cells hyaline,
holoblastic, lageniform to cylindrical, (11-)12-16(-20) x (1.2-)1.5-2.5(=3) ym.
Paraphyses hyaline, septate, unbranched, rounded tips, (2—-)2.7 x 3.6(—4) um.

Conidia hyaline becoming pale brown to dark brown with age, rarely forming 1
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septum, guttulate, both ends broadly rounded, variable in shape, oblong, ellipsoid to
ovoid, internally roughened, thick walled, (20-)25-26(-29) x (9-)11-11.5(=15) pm.

Culture characteristics: Colonies on MEA at 25 °C in darkness for 7 d, mycelium
white at first, becoming grayish olive (21""), darkest around the plug and white on the
outer areas of colonies, olivaceous (21"m) on the reverse side, floccose mycelium.
Cardinal temperatures for growth: minimum < 10 °C, maximum = 30 °C, optimum 25
°C. Colonies reaching an average of 11 mm at 10 °C, 26 mm at 15 °C, 41 mm at 20
°C, 54 mm at 25 °C, 22 mm at 30 °C after 4 days. No growth at 5 °C and 35 °C.

Specimens examined: SOUTH AFRICA, KWAZULU-NATAL PROVINCE: St. Lucia
and Richards Bay, from asymptomatic branches of Avicennia marina and
Rhizophora mucronata. Collectors J.A. Osorio & Jol. Roux. Holotype (PREM 61247,
ex-holotype CMW41231 = CBS 139666); Paratype (ex-paratype cultures
CMW41230 = CBS 139667, CMW41363 = CBS 139668).

Habitat: Asymptomatic branches of A. marina and R. mucronata.
Known distribution: St. Lucia estuary and Richards Bay (KwaZulu-Natal Province,
South Africa).

Notes: Diplodia estuarina is phylogenetically closely related to D. allocellula, differing
in 11 bases in the tef1-a sequence and five bases in tub2 sequence. Pycnidia in D.
estuarina are arranged solitary or aggregated, and are considerably wider (387 um)
compared to those of D. allocellula that are solitary and 100 um wide. Conidiogenous
cells in D. estuarina are smaller, (12-16 x 1.5-2.5 uym), than those of D. allocellula,
(13.4-23.6 x 4.2-5).

Lasiodiplodia avicenniae sp. nov. J.A. Osorio, Jol. Roux & Z.W. de Beer (Fig. 10)
MycoBank MB812010
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Fig 10 — Lasiodiplodia avicenniae sp. nov. ex-holotype (CMW41467) (A) Globose pycnidium covered
with aerial mycelia on sticks of A. marina on water agar. (B) Immersed conidiomata. (C) Hyaline and
light brown aseptate conidia (D) hyaline conidia attached to the conidiogenesis cells. (E) Brown
conidium with septum and rough content. (F) Septate-brown conidium showing striated content. Bars:
A-B=100 pm, C,E,F=20 pm, D=10 pm.

Etymology: Epithet refers to the host genus, Avicennia marina, from which the
fungus was isolated.

Sexual morph unknown. Conidiomata pycnidial, dark brown to black, covered with
dense mycelium on A. marina branches on water agar (WA), solitary, globose to
pyriform, wall composed of layers of textura angularis (238-)317—-485(—560) um
wide, immersed in the tissue, oozing conidia after 3 wks. Paraphyses, hyaline, thin-
walled, septate, apex rounded, sometimes very long reaching up to 170 um long, 2—
4 um wide. Conidiogenous cells holoblastic, hyaline, cylindrical, smooth, proliferating
percurrently to form 1-2 annellations, (6—-)9-11(-15) x (3-)3.5—4.2(— 6) um. Conidia,
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shape variable, obpyriform, thick walled, mostly ellipsoid sometimes constricted in
the middle, apex and base rounded, granular contents when hyaline, becoming
brown, 1-septate with longitudinal striations when mature, (19-) 24-26(-30) x (9—
)12-12.5(=15) ym.

Culture characteristics: Colonies on MEA at 25 °C in darkness for 7 d, initially white,
becoming grayish olive (21"") on the surface; mycelium floccose except around the
inoculum plug where the mycelium is flattened, outer area of colony white on the
surface and reverse; Cardinal temperatures for growth: min < 10 °C, max = 35 °C,
optimum between 25-30 °C. Colonies reaching an average of 7 mm at 10 °C, 32 mm
at 15 °C, 58 mm at 20 °C, 86 mm at 25 °C, 86 mm at 30 °C, 38 mm at 35 °C after 4
days. No growth at 5 °C.

Specimens examined: SOUTH AFRICA, KWAZULU-NATAL PROVINCE:
Beachwood and Isipingo, from asymptomatic branches of Avicennia marina.
Collectors J.A Osorio & Jol. Roux. Holotype (PREM 61249, ex-holotype cultures
CMW41467 = CBS 139670).

Habitat: Asymptomatic branches of A. marina.

Known distribution: Beachwood and Isipingo in Durban (KwaZulu-Natal Province,
South Africa).

Notes: Lasiodiplodia avicenniae is phylogenetically closely related to L. iraniensis, L.
jatrophicola that have recently been considered as synonyms by Rodriguez et al.
2016 and L. pseudotheobromae in the ITS region, differing in seven bases compared
with L. iraniensis = L. jatrophicola, and eight bases with L. pseudotheobromae.
Based on the tef1-a sequence, only L. pseudotheobromae is the closest related
species, differing in 18 bases, and an insertion of four bases in L. avicenniae.
Furthermore, the phylogenetic analyses of the tub2 and rpb2 gene regions showed
that L. avicenniae forms a clade independent from the species in this genus. The
paraphyses of L. avicenniae are septate, and significantly longer (170 ym) than
those of L. pseudotheobromae (58 um). Conidial shape is variable in L. avicenniae,
obpyriform, ellipsoid and sometimes constricted in the middle and smaller (24—-26 x
12—12.5 ym) compared with those of L. pseudotheobromae, which are ellipsoid and
widest at the middle (23.5-32 x 14—-18 ym).
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Fig 11 — Lasiodiplodia bruguierae sp. nov. (CMW41470) (A) Conidiomata covered with aerial mycelia
on sticks of A. marina on water agar. (B) Subglobose pycnidium oozing conidia. (C) Hyaline aseptate
and dark brown septate conidia. (D) Longitudinal striations on mature conidia. Bars: A-B=500 um,
C=20 ym, F=10 um.

Lasiodiplodia bruguierae sp. nov. J.A. Osorio, Jol. Roux & Z.W. de Beer (Fig. 11)
MycoBank MB812011

Etymology: Epithet refers to the host, Bruguiera gymnorrhiza, from which the fungus
was isolated.

Sexual morph unknown. Conidiomata pycnidial, produced on A. marina sticks on WA
within 1-2 wks, solitary or aggregated, conical to subglobose, papillate, dark-brown
to black, covered with dense aerial mycelium, (352—)382—622(-754) um, oozing
conidia within 3 wks. Paraphyses not observed. Conidiogenous cells hyaline,
subcylindrical, holoblastic, (13)11-21(-23) x (2.7-)3-5 um. Conidia observed in
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culture, originally hyaline with granulose content and aseptate, becoming dark
brown, 1-septate with longitudinal striations, thick walled, mostly ellipsoid to ovoid,
(19-) 25-26(-32) x (11-)12—13(=15) ym.

Culture characteristics: Colonies on MEA at 25 °C in darkness for 7 d, spreading
rapidly with flattened mycelium at the center and abundant floccose mycelium in the
outer areas, reaching the lid of Petri dish , gradually becoming olivaceous buff (21"d)
to smoke grey (21""d) on the surface, reverse olivaceous (21""), darker around the
plug. Cardinal temperatures for growth: minimum < 15 °C, maximum = 35 °C
optimum 25 °C. Colonies reaching an average of 23 mm at 15 °C, 54 mm at 20 °C,
71 mm at 25 °C, 65 mm at 30 °C, 25 mm at 35 °C after 4 days. No growth at 5 °C
and 10 °C.

Specimens examined: SOUTH AFRICA, KWAZULU-NATAL PROVINCE: Mlalazi
Nature Reserve, Mtunzini, from asymptomatic branches of Bruguiera gymnorrhiza.
Collectors J.A Osorio & Jol. Roux. Holotype (PREM 61248, ex-holotype cultures
CMW41470 = CBS 139669); Paratype (ex-paratype cultures CMW41614 = CBS
139638, CMW 42480 = CBS 141453).

Habitat: Asymptomatic branches of B. gymnorrhiza.

Known distribution: Mtunzini and Richards Bay (KwaZulu-Natal Province, South
Africa).

Notes: Lasiodiplodia bruguierae is phylogenetically closely related to L. brasiliense,
L. hormozganensis and L. theobromae in the ITS region, differing in one base.
However, based on the tef1-a gene region, the closest related species is L.
mahajangana, but differing in six bases and an insertion of one base in L.
bruguierae. In addition, the phylogenetic analyses of the tub2 and rpb2 gene regions
show that L. bruguierae forms an independent clade from other Lasiodiplodia
species. The pycnidia of L. bruguierae are solitary or aggregated and considerably
wider (622 ym) than those of L. mahajangana, which are solitary and 200 ym wide.
Conidiogenous cells are longer (11-21 ym) than those of L. mahajangana (10.5-18
um). Moreover, the conidia are considerably longer on L. bruguierae (25-26 ym)
compared to those of L. mahajangana (15.5-19 ym). The colony growth in culture

differs between these species with L. mahajangana growing faster, covering a 90
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mm Petri plate in 3 d, with an optimum temperature at 25-30 °C, while L. bruguierae

grows and average of 65 mm in 4 d, with an optimum temperature at 25 °C.

Fig 12 — Neofusicoccum lumnitzerae sp. nov. (CMW41469) (A) Pycnidium covered with aerial
mycelia. (B) Immersed pycnidium in pine needle tissue. (C) Conidia attached to conidiogenous cells,
showing annellation (arrow). (D) Conidia with granulose content. Bars: A=500 ym, B=100 um, C,D=10

pm.

Neofusicoccum lumnitzerae sp. nov. J.A. Osorio, Jol. Roux & Z.W. de Beer (Fig.
12)

MycoBank MB812012

Etymology: Epithet refers to the host, Lumnitzera racemosa, from which the fungus
was isolated.

Sexual morph unknown. Conidiomata pycnidial, produced on sterilized pine needles
on WA within 3—4 wks, dark brown to black, superficial or immersed in the plant
tissue becoming erumpent, solitary or gregarious, globose, rarely papillate, covered

with gray aerial mycelium, wall composed of outer layers of dark brown textura
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angularis, (101-)136—-170(—264) um. Paraphyses not observed. Conidiogenous cells
hyaline, smooth, cylindrical, (5—)7-9(-10) x (1.2—)2-2.3 (-3) ym. Conidia hyaline,
thin-walled, aseptate, rarely 1-septate when mature, ellipsoidal to obclavate, with
granular contents, (13-)17-18 (-21) x (5-)6.5—7(—8.5) ym.

Culture characteristics: Colonies on MEA at 25 °C in darkness for 7 d, initially white,
gradually becoming smoke-grey (21""d) on the surface, reverse side becoming
olivaceous (21""), floccose at the center, growing denser and cottony towards the
edges. Cardinal temperatures for growth: min < 10 °C, max = 35 °C, optimum
between 25-30 °C. Colonies reaching an average of 6 mm at 10 °C, 21 mm at 15 °C,
54 mm at 20 °C, 86 mm at 25 °C, 86 mm at 30 °C, 3 mm at 35 °C after 4 days. No
growth at 5 °C.

Specimens examined: SOUTH AFRICA, KWAZULU-NATAL PROVINCE: Kosi Bay,
from asymptomatic branches of Lumnitzera racemosa. Collectors J.A Osorio & Jol.
Roux. Holotype (PREM 61251, ex-holotype cultures CMW41469 = CBS 139674),
Paratype (ex-paratype cultures CMW41228 = CBS 139675, CMW41613 = CBS
139676).

Habitat: Asymptomatic branches of L. racemosa

Known distribution in South Africa: Kosi Bay, KwaZulu-Natal Province, South Africa.

Notes: Neofusicoccum lumnitzerae is phylogenetically closely related to N. australe
and N. cryptoaustrale, differing with eight bases in the tef1-a sequence, five bases in
the tub2 sequence and six in the rpb2 when compared with N. australe. It differs with
six bases in the tef-1a and three in the tub2 when compared with N. cryptoaustrale.
Morphologically, N. lumnitzerae can be discriminated from both species by its shorter
conidiogenous cells (7—9 ym) than those of N. australe (10-14 ym) and N.
cryptoaustrale (11.5-12.5 ym). The conidia of N. lumnitzerae are rarely septate to
maximum 1-septate with age, ellipsoidal to obclavate and significantly shorter (17-18
pum) than the fusiform conidia of N. australe (23—-26 x 5-6 ym) and larger than the
Dichomera synasexual conidia (10.5-14.5 x 9—11 ym) produced by the same
species. Additionally, the conidia in N. cryptoaustrale are fusiform, 1-2-septate with

age and longer (20.5-21 x 5-6 pm) than those of N. lumnitzerae. Colony growth
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differs between species, for instance, colonies of N. lumnitzerae grow faster (86 mm
in 4 d), with an optimum temperature at 25-30 °C, compared with N. australe which
reaches an average of 48 mm in 4 d, with an optimum temperature at 25 °C.
Neofusicoccum lumnitzerae colonies grow more slowly in culture than N.

cryptoaustrale, which reaches 90 mm in 3 d, with an optimum temperature at 25 °C.

Fig 13 — Neofusicoccum mangroviorum sp. nov. (CMW41365) (A) Superficial and (B) immersed
pycnidium. (C) Conidiogenous cells with annellations (arrow). (D) Hyaline conidia. Bars: A=500 um,
B=50 ym, C,D=10 um.

Neofusicoccum mangroviorum sp. nov. J.A. Osorio, Jol. Roux & Z.W. de Beer
(Fig. 13).

MycoBank MB814641

Etymology: Epithet refers to the type of trees (mangroves) from which the fungus
was isolated.

Sexual morph unknown. Conidiomata produced on sterilized pine needles on WA
within 4 wks, covered by dense, pale olive aerial mycelia, walls light brown to dark

brown, semi-immersed to immersed, becoming erumpent, solitary or becoming
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gregarious, papillate or not, internal structures start forming after ~ 8 wks (136-)186—
224(-300) ym wide. Conidiogenous cells holoblastic, hyaline, cylindrical, smooth,
proliferating percurrently with 1-2 annellations, lining inner wall of pycnidium, (4.7—
)5-8.5(—11) % (2-)2.1-3(-3.7) ym. Conidia ellipsoid, hyaline, thin walled, aseptate,
smooth, both ends sub-obtuse, (15-)17-18(-20) x (6—)6.5—7(7.5) um.

Culture characteristics: Colonies on MEA at 25 °C in darkness for 7 d, initially white,
gradually becoming smoke grey (21""d), producing yellow pigments diffusing into the
agar, cottony mycelia, growing more densely at the center. Cardinal temperatures for
growth: min < 15 °C, max = 30 °C, optimum 25 °C. Colonies reaching an average of
11 mm at 15 °C, 31 mm at 20 °C, 53 mm at 25 °C, 44 mm at 30 °C after 4 days. No
growth at 5 °C and 35 °C.

Specimens examined: SOUTH AFRICA, KWAZULU-NATAL PROVINCE:
Beachwood, Kosi Bay, Mtunzini, Mgazana, from asymptomatic branches of A.
marina, B. gymnorrhiza, L. racemosa, R. mucronata. Collectors J.A Osorio & Jol.
Roux. Holotype (PREM 61305, ex-holotype cultures CMW41365 = CBS 140738),
Paratypes (ex-paratype cultures CMW42481 = CBS 140740, CMW42487 = CBS
140740).

Habitat: Asymptomatic branches of A. marina, B. gymnorrhiza, L. racemosa and R.

mucronata

Known distribution in South Africa: Beachwood, Isipingo, Kosi Bay, Mtunzini, St.
Lucia, Richards Bay (KwaZulu-Natal Province, South Africa), Mgazana, Nahoon and

Wavecrest (Eastern Cape Province, South Africa).

Notes: Neofusicoccum mangroviorum is phylogenetically closely related to N.
luteum, but differing in three bases in the ITS, four bases in the tef1-a, two bases in
the tub2 and three bases in the rpb2 sequences. In addition, there is an insertion of
one base on the ITS and tef1-a sequences in N. mangroviorum. Morphologically,
conidiomata in N. mangroviorum are considerably larger (up to 300 um) compared to
those of N. luteum (up to 150 ym). Conidiogenous cells (5-8.5 pm) and conidia (17—
18 um) are shorter in N. mangroviorum than the conidiogenous cells (8—16 ym) and

conidia (16.5-22.5 ym) formed in N. luteum.
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Fig 14 — Mean lesion lengths (millimeters +1SE) from field-based inoculated branches of A. marina
(panel A) and B. racemosa (panel B) after six weeks with 47 A. marina and B. gymnorrhiza
associated Botryosphaeriaceae species, each line on the X-axis represents a different isolate of Bt:
Botryosphaeria sp., DE: Diplodia estuarina, DS: D. sapinea, LA: Lasiodiplodia avicenniae, LB: L.
bruguierae, NC: Neofusicoccum cryptoaustrale, NK: N. kwambonambiense, NL: N. lumnitzerae, NLU:

N. luteum, NM: N. mangroviorum, NP: N. parvum,: NU: N. umdonicola. Within each treatment (n=15).
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Pathogenicity tests

Most isolates produced larger lesions on branches of both A. marina and B.
gymnorrhiza than the controls (Fig. 14). Furthermore, between the two mangrove
species, A. marina appeared to be more susceptible to infection and branch damage
by the inoculated Botryosphaeriaceae species than B. gymnorrhiza.

On branches of A. marina, the majority of fungal isolates produced lesions
that were 100 % longer than those of the controls (20-mm trend line, Fig. 14). In
contrast, on B. gymnorrhiza the majority of inoculated isolates showed low levels of
aggressiveness. Lesion sizes on A. marina ranged between 11 and 223 mm and on
B. gymnorrhiza between 9 and 98 mm. One isolate (CMW41467 = Lasiodiplodia
avicenniae sp. nov.) was highly aggressive on A. marina, but had little effect on B.
gymnorrhiza. The paired Wilcoxon signed-rank tests showed that three isolates of D.
sapinea (CMW41234, CMW41235, CMW41362) produced lesions that were not
significantly different to the controls on either of the tested mangrove species. For B.
gymnorrhiza, the greatest average lesion lengths were associated with two isolates
of L. bruguierae sp. nov. (CMW41470, CMW41614) and three isolates of N.
mangroviorum sp. nov. (CMW41217, CMW41365, CMW42481). All inoculated fungi
were successfully re-isolated from the lesions and their identities confirmed based on

sequence data, thus fulfilling Koch’s postulates.

Botryosphaeriaceae diversity and distribution

A total of 14 species of Botryosphaeriaceae were recovered in this study.
Neofusicoccum was the most common genus (129 isolates from 123 trees), followed
by Lasiodiplodia (23 isolates from 23 trees) and the least common genera were
Diplodia (six isolates from six trees) and Botryosphaeria (one isolate from one tree)
(Table 1). The species-accumulation curves (Fig. 15) reached an asymptote around
14 species, indicating that the sampling effort had been sufficient to obtain most of
the Botryosphaeriaceae community associated with the mangrove species across
the sampling region. However, the species accumulation-curves constructed for
each of the six mangrove species (Fig. 16) did not reach an asymptote for C. tagal

and R. mucronata.
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from asymptomatic branches of six mangroves species along the eastern coast of South Africa.
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Fig 16 — Sample-based species accumulation curves for each of the six mangrove species sampled

for endophytic Botryosphaeriaceae in South Africa.

Botryosphaeriaceae species richness ranged from two at Mapelane, where

only the mangrove associate B. racemosa was sampled, to eight at Richards Bay

where A. marina, B. gymnorrhiza, B. racemosa and R. mucronata were sampled

(Fig. 17). Correspondence analysis suggested low species turnover (low gradient
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lengths of both axes) between sites (Fig. 17). However, there was no spatial
autocorrelation concerning the distance between sites and endophytic
Botryosphaeriaceae assemblage composition (Spearman's Rho = -0.127; P =
0.733).
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Fig 17 — Correspondence analysis (CA) depicting A) the Botryosphaeriaceae endophyte community
associated with each sampled site, and B) the species richness of these endophytes at a site.

Botryosphaeriaceae species names as per Table 1.

Endophytic Botryosphaeriaceae species richness ranged from two in the
freshwater mangrove-associate B. racemosa, to nine in the true mangrove, A.
marina (Fig. 18). From the 14 species of Botryosphaeriaceae isolated from the five
true mangroves and one associate mangrove, D. sapinea, L. avicenniae and the
Botryosphaeria sp. were isolated only from A. marina. Lasiodiplodia bruguierae was
isolated only from B. gymnorrhiza, and although L. theobromae has been isolated
from different plant species in other countries, in this study it was obtained only from
B. racemosa. The remaining species are considered as generalists since they were
found on multiple hosts (Fig. 18). Although there was high species turnover between
the studied mangrove species (Axis 1 gradient length = 3.98, Ter Braak & Smilauer
2012; Fig. 18), this pattern was particularly driven by the tight host-specificity of
Botryosphaeriaceae species on the two mangrove species at the polar end of axis 1,
B. racemosa and L. racemosa. In turn, the specificity of D. sapinea, L. avicenniae

and Botryosphaeria sp. in A. marina also contributed to species turnover, especially
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considering the low diversity in C. tagal. The presence or absence of certain
mangrove species within a landscape would, thus, affect endophytic

Botryosphaeriaceae biodiversity.

Based on percentage of occurrence, N. cryptoaustrale (8.1 %), N.
mangroviorum (5.1 %) and N. parvum (6.04 %) were categorized as being frequent
(>5 % and <10 %). The remaining species were ranked as infrequent based on the
scoring criteria by Samon-Legra et al. (2014). Overall, Botryosphaeriaceae species
were isolated from 30.19 % of the total branches sampled across 10 sampling sites

(Supplementary data, Table 1A).

Discussion

Nothing was known regarding the diversity of endophytic Botryosphaeriaceae on
mangroves in South Africa prior to this study. We identified 14 taxa belonging to four
genera based on the DNA sequence data sets for four gene regions. All these
species, including five new taxa (Diplodia estuarina sp. nov., Lasiodiplodia
avicenniae sp. nov., L. bruguierae sp. nov., Neofusicoccum lumnitzerae sp. nov., N.
mangroviorum sp. nov.), eight known species (D. sapinea, L. theobromae, L.
gonubiensis, N. cryptoaustrale, N. kwambonambiense, N. luteum, N. parvum, N.
umdonicola) and a Botryosphaeria sp., of which the identity could not be confirmed,
are reported for the first time from mangroves globally.

Botryosphaeriaceae species on mangroves in South Africa vary in their
abundance, distribution and host association. Neofusicoccum was the most
commonly isolated genus in the Botryosphaeriaceae and was isolated from all
mangrove species at all sampling sites. This inference is consistent with several
previous reports (e.g. Slippers et al. 2005; Pavlic et al. 2007; Taylor et al. 2009;
Sakalidis et al. 2011, 2013) that have shown the ability of species in this genus to
inhabit a wide variety of plant species and geographic areas worldwide.
Lasiodiplodia species were isolated at eight of the 10 sampling sites, but were not
recovered from the two southern most mangrove locations. This is not surprising
since earlier reports (e.g. Punithalingam 1976, 1980, Burgess et al. 2006) have
indicated the occurrence of Lasiodiplodia species mostly in tropical and subtropical

regions. Consistent with previous studies that indicate the cosmopolitan nature of
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Diplodia species (Taylor et al. 2005; Phillips et al. 2007), we found species in this
genus inhabiting trees in the north (St. Lucia) and the most southern range (Nahoon)
of mangrove occurrence in South Africa. This study also revealed some host
association patterns. Lasiodiplodia avicenniae, L. bruguierae and N. lumnitzerae
appeared to be relatively host specific while D. estuarina and N. mangroviorum were
shown to be generalists.

Five previously undescribed Botryosphaeriaceae were isolated as endophytes
from six species of mangroves. The identification of these new species was
supported by multi gene sequence data and morphological characteristics. The gene
regions commonly used to infer phylogenetic relationships within species in the
Botryosphaeriaceae (ITS, tef1-a, tub2 and rpb2) made it possible to identify species
with confidence. In general, taxonomic characters, such as conidial shape, color and
size, are more useful to distinguish between genera than between species within
genera. However, a combination between shape, color and dimension structures
supported the phylogenetic separation of the new species from those previously
described.

Several studies have been conducted to explore the fungal diversity of
mangroves (Sarma & Hyde 2001; Sarma et al. 2001; Nambiar & Raveendran 2009;
Alias et al. 2010), including the endophytic community associated with these trees, in
countries such as Brazil, China, India (Suryanarayanan et al. 1998; Kumaresan &
Suryanarayanan 2001; Ananda & Sridhar 2002; Xing et al. 2011; de Souza et at.
2013). Despite the fact these countries are larger and have more geographically
diverse species of mangroves than South Africa, only two species in the
Botryosphaeriaceae (one Lasiodiplodia sp. and one Neofusicoccum sp.) were
reported from those studies. Likewise, Stevens & Shear (1929) reported
Botryosphaeria ribis var. chromogena (= Neofusicoccum ribis) from the mangrove
associate Hibiscus tiliaceus in Hawaii. It is not clear why those studies resulted in
such low numbers of Botryosphaeriaceae when our study yielded different species
from every mangrove species sampled. Several of the previous studies on
mangroves, however, focused on dead and decomposing wood, while in the present
study, living and asymptomatic branch material was collected. Furthermore,
Kumaresan and Suryanarayanan (2001), for example, isolated endophytes from

leaves and litter and Ananda and Sridhar (2002) isolated from roots, while de Souza
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et al. (2013) studied the endophytic fungi of mangrove species different to those
occurring in South Africa.

The majority of isolates inoculated on A. marina and B. gymnorrhiza,
produced significantly longer lesions than the control inoculations after six weeks.
However, significant differences in aggressiveness were found among the fungal
species and in the susceptibility of the host species. Of all fungal species examined,
L. avicenniae (CMW41467) was the most aggressive, and of the two host species, A.
marina was the most susceptible to most of the Botryosphaeriaceae isolates. Of the
14 different fungal taxa identified, eight are recognized as pathogens of other plant
families. Among these, for example, D. sapinea is a well-known pathogen of Pinus
species worldwide (Swart & Wingfield 1991; Smith et al. 1996). Although this fungus
has mostly been associated with conifers, this study confirms that angiosperms can
be part of the D. sapinea host range, as shown in previous studies (Damm et al.
2007; Lazzizera et al. 2008). However, results of the pathogenicity tests showed that
D. sapinea is not pathogenic to A. marina and B. gymnorrhiza. Interestingly, all new
species when inoculated were shown to be capable of causing lesions on the
branches of either A. marina or B. gymnorrhiza or both host trees. This indicates that
these fungi are potential pathogens of the test tree species.

The species richness (i.e. total number of species) of Botryosphaeriaceae
was higher on A. marina and B. gymnorrhiza than on other mangrove species. This
may be a function of the number of trees sampled from these hosts, compared to the
number of trees sampled from the remaining tree species. For instance, a similar
number of endophytic Botryosphaeriaceae was recovered from A. marina (nine
species from nine sampling sites) and B. gymnorrhiza (eight species from nine
sampling sites), while R. mucronata (sampled at five sites) harbored seven fungal
species, B. racemosa (sampled at two sites) harbored two species, and C. tagal and
L. racemosa (sampled only in Kosi Bay) harbored three and four species
respectively.

Of the six mangrove species included in the study, sampling intensity to
obtain Botryosphaeriaceae was insufficient for C. tagal. This was due to the fact that
this tree is rare in the areas sampled. Although to a lesser extent, sampling of R.
mucronata was also insuffient. This could be seen from the species accumulation
curve that did not reach an asymptote for R. mucronata, despite the 100 branches

sampled and seven Botryosphaeriaceae species isolated. Factors other than
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sampling size, such as differences in plant chemical composition (Lim 2012; Naskar
& Palit 2015) or the physiological adaptations and mechanisms used by mangroves
for salt exclusion (Gilbert et al. 2002), could also have influenced fungal species
richness in the various hosts.

There was no spatial autocorrelation concerning the distance between sites
and endophytic Botryosphaeriaceae assemblage composition. This suggests that,
from a regional distribution perspective, the proximity of sampling sites to one
another did not determine the similarity of Botryosphaeriaceae communities. In turn,
we found that mangrove diversity is linked to Botryosphaeriaceae diversity. Thus, the
presence of certain mangrove species would influence the diversity patterns of
Botryosphaeriaceae endophytes in the landscape. Specifically, B. racemosa and L.
racemosa had small but rather host-specific Botryosphaeriaceae communities. Thus,
protecting mangrove diversity in South Africa should be prioritized, since the local
loss of any mangrove species could negatively affect endophytic

Botryosphaeriaceae diversity in space and time.
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Supplementary data

Table A — Number of successful isolations out of 530 samples collected in this study

Host species

Fungus Species Avicennia Bruguiera Barringtonia Ceriops Rhizophora Lumnitzera Total % out
marina gymnorrhiza  racemosa tagal mucronata racemosa of 530
branches
Botryosphaeria sp. 1 - - - - - 1 0.19
D. estuarina 2 - - - 1 - 3 0.57
D. sapinea 3 - - - - - 3 0.57
L. avicenniae 4 - - - - - 4 0.75
L. bruguierae - 9 - - - - 9 1.70
L. gonubiensis - 4 - 1 - - 5 0.94
L. theobromae - - 6 - - - 6 1.13
N. cryptoaustrale 17 13 - 1 10 2 43 8.11
N. kwambonambiense - 1 - - 1 - 2 0.38
N. lumnitzerae - - - - - 3 0.57
N. luteum 2 2 - - 1 - 5 0.94
N. mangroviorum 6 16 - - 4 1 27 5.09
N. parvum 2 13 13 - 4 - 32 6.04
N. umdonicola 1 10 - 1 1 4 17 3.21
Total No. isolates 38 68 19 3 22 10 160 30.19
per host
Total No. species 9 8 2 3 7 4
per host
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