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Abstract

In this dissertation, boundary stabilization of a linear hyperbolic system of balance laws is

considered. Of particular interest is the numerical boundary stabilization of such systems. An

analytical stability analysis of the system will be presented as a preamble. A discussion of

the application of the analysis on specific examples: telegrapher equations, isentropic Euler

equations, Saint-Venant equations and Saint-Venant-Exner equations is also presented. The

first order explicit upwind scheme is applied for the spatial discretization. For the temporal

discretization a splitting technique is applied. A discrete L2−Lyapunov function is employed

to investigate conditions for the stability of the system. A numerical analysis is undertaken and

convergence of the solution to its equilibrium is proved. Further a numerical implementation

is presented. The numerical computations also demonstrate the stability of the numerical

scheme with parameters chosen to satisfy the stability requirements.
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Chapter 1

Introduction

We consider hyperbolic systems of conservation laws with source terms (also called hyperbolic

systems of balance laws) in one-space dimension. If the system involves k hyperbolic balance

laws, then it can be written in the form

∂tU + ∂xF (U) +G (U) = 0, (1.1)

where U (x, t), F (U) and G (U) represent vectors of k physical quantities, vector of flux

functions associated with physical quantities and source terms that balance the system of

conservation laws, respectively. The balance laws are complemented by initial condition and

for finite spatial domain boundary conditions need to be defined. The notations ∂t and ∂x

denote partial differentiation with respect to t and x, respectively. In the case where there are

no source terms involved (i.e. G (U) ≡ 0, ∀U), a hyperbolic system of conservation laws in

one-space dimension can be described as a set of k conservation laws in the following form

∂tU + ∂xF (U) = 0. (1.2)

Hyperbolic systems of balance laws are useful in describing the transport of a set of physical

quantities that have a mathematical physics and an engineering interest. Therefore, these

kinds of systems have a large number of applications in the physical modeling of different

phenomena. Some of the relevant examples include the telegrapher equation that describes

the propagation of an electric signal along an electric line [31], the isentropic gas dynamics that
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CHAPTER 1. INTRODUCTION 2

describes the flow of gas through a medium [35], the Aw-Rascle and Greenberg equation that

describes the dynamics of road traffic flow [45], the Saint-Venant equation that describes the

dynamics of shallow water flow along an open channel [8], the Saint-Venant Exner equation

that describes the dynamics of shallow water flow with sediment transportation along an open

channel [22] and the Euler equations for gas dynamics that describes the behavior of gas flow

in pipelines [13]. In addition, hyperbolic systems of balance laws are used to model networked

flow in which case the flow through the edge of the network is governed by the balance law.

The flow through the node (or vertex) of the network, outgoing or ingoing to an edge, is

coupled by algebraic conditions motivated by physical considerations.

The mathematical analysis of balance laws has been an active field of research for more

than fifty years [18]. For more details of the mathematical properties of balance laws, the

reader is referred to Introduction part in [18]. In particular, in the recent past the boundary

control problem of hyperbolic systems of balance laws has been a very active area of research

[6, 17, 16, 46, 22, 21, 25, 27, 34, 39, 42]. In a nutshell, this is the problem of finding boundary

control action that will be used at the boundary points (or at the nodes of the network in

networked flow) to stabilize the solution of hyperbolic systems of balance laws to a preferred

equilibrium state.

In such cases, researchers have focused on well-posedness (i.e. existence, uniqueness and sta-

bility) of a hyperbolic system of balance laws [15, 28]. Besides the existences and uniqueness, a

stability analysis for boundary control of a hyperbolic system of balance laws has been studied

for different categories such as for a linear hyperbolic system of conservation laws in [34], a

linear hyperbolic system of balance laws in [42], non-linear hyperbolic systems of conservation

laws in [39] and networks of such in [20]. More details of the Lyapunov stability analysis of a

linear hyperbolic system of balance laws are discussed in Chapter 3.

For the stability analysis of a boundary control of a hyperbolic system of balance laws, there

exists a candidate Lyapunov function which is in a positive quadratic form. According to the

Lyapunov stability analysis theorem, the time derivative of the Lyapunov function needs to be

in negative quadratic form to show the stability of the system. This technique was introduced

for a linear hyperbolic system of conservation laws in [17, 25], a linear hyperbolic system of
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CHAPTER 1. INTRODUCTION 3

balance laws in [9] and later for networks of hyperbolic 2 × 2 systems of balance laws in [8].

This approach is briefly analyzed for a linear hyperbolic system of balance laws in [22]. Using

the discussion of the linear case, this approach is further extended to a non-linear hyperbolic

system of conservation laws in [16] and remarks have been given to extend it further [16].

For practical purposes numerical aspects of a hyperbolic system of balance laws have also

seen tremendous development [40, 41]. For instance, in the above mentioned literature and in

general, numerical results for the stability analysis of a hyperbolic systems of balance laws have

been given to support the theoretical stability analysis. This stability analysis has been applied

to some important examples such as shallow water flow along an open channel [17, 8, 22, 19]

and gas dynamics [4]. However, there is limited literature on the boundary stability analysis

of hyperbolic systems of balance laws. Recently, researchers have investigated conditions

for the numerical stability of a discretized linear hyperbolic system of conservation laws by

considering a single flow domain [3] and networked flow domain[24]. Beside these, numerical

boundary stabilization for a linear hyperbolic system of balance laws with constant coefficients

was considered in [26]. In these studies, a discrete Lyapunov function was introduced and the

decay rate of the time derivative was shown.

The purpose of this work is to consider a numerical boundary stabilization of a linear hyperbolic

system of balance laws with a varying flux function. The analysis of a numerical discretization

of stabilization problems with boundary controls for a linear hyperbolic system of balance

laws will be undertaken. In particular, an investigation of conditions for the decay of discrete

solutions of linear hyperbolic systems of balance laws will be presented. For details of numerical

analysis the reader is referred to Chapter 5. The numerical stability analysis technique used

in this work is similar to that used in [3]. A discrete Lyapunov function will be applied in the

investigation of conditions for decay rates depending on numerical schemes that have been

employed. Numerical results for this study will be presented in Section 5.2.

In summary the dissertation is organized as follows: Chapter 2 gives a brief introduction to

hyperbolic systems of balance laws, explains some relevant topics for the discussion of this

dissertation and provides applications into physical modeling including telegrapher’s equations,

isentropic Euler equations, Saint-Venant equations and Saint-Venant-Exner equations.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 1. INTRODUCTION 4

In Chapter 3, the analytical stability analysis of the systems in general and particular form are

presented. Beside this, the analytical stability analysis for examples discussed in Chapter 2

is presented. In particular, details in the investigation of conditions for the stability of such

systems are shown.

In Chapter 4, the numerical methods for linear hyperbolic systems of balance laws are presented

and the numerical discretization of the above mentioned examples are discussed.

Chapter 5 is the main part of this dissertation. The numerical stability of the linear system

in general and particular form is analyzed. In particular, conditions for the numerical stability

analysis are investigated. Furthermore, the numerical stability analysis and simulations are

performed on the above mentioned examples. The main purpose of the computation is to test

the validity of the numerical stability analysis and to compare the implications of the analytical

results.

Finally, the main conclusions are presented and possible topics for further work are also men-

tioned.
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Chapter 2

Hyperbolic Systems of Balance Laws

The focus of this chapter is to introduce a hyperbolic systems of balance laws in one space

dimension. We restrict ourselves to linear (or linearized) hyperbolic systems of balance laws,

which have wide application to some physical problems such as shallow water flow with and

without transportation of sediment along a channel and current flow along an electrical trans-

mission line. In particular, we discuss the general, quasilinear, linearly coupled and decoupled

representations of hyperbolic systems of balance laws. Furthermore, we deal with the general

initial and boundary conditions for the hyperbolic systems of balance laws. Finally, shallow

water flow along a channel with and without transportation of sediment, current flow along

an electrical transmission line and isentropic gas dynamics are presented and they are among

relevant examples of hyperbolic systems of balance laws, which will be discussed in this dis-

sertation.

2.1 Balance Laws in One-Space Dimension

Consider a system of k first-order partial differential equations in one-space dimension of the

form

∂tui + ∂xfi(u1, . . . , uk) + gi(u1, . . . , uk) = 0, i = 1, . . . , k, (2.1)

5
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CHAPTER 2. HYPERBOLIC SYSTEMS OF BALANCE LAWS 6

where the unknowns ui depend on space, x, and time, t. Equations in (2.1) can be expressed

in the form

∂tU + ∂xF (U) +G(U) = 0, x ∈ R and t ≥ 0, (2.2)

where U := [u1, . . . , uk]
T : R × [0,+∞) → Ω, with Ω ⊂ Rk being a non-empty, open and

connected set, is a vector of k physical quantities, F (U) := [f1(U), . . . , fk(U)]T : Ω → Rk

is a vector of k flux functions which depend on the components of U only and G(U) :=

[g1(U), . . . , gk(U)]T : Ω→ Rk is a vector of source terms also depending on the components

of U only. The system (2.2) is called a system of balance laws. If the source terms are

neglected (or G ≡ 0 ), the system is written in the form

∂tU + ∂xF (U) = 0. (2.3)

The system (2.3) is called a system of conservation laws.

2.2 Hyperbolicity and Strict Hyperbolicity

In order to study hyperbolicity for the system (2.2), we assume a smooth solution vector U

with smooth flux function F (U). By applying the chain rule, the system (2.2) can be expressed

in a quasilinear form

∂tU + A(U)∂xU +G(U) = 0, x ∈ R and t ≥ 0, (2.4)

with a Jacobian matrix

A(U) := ∇UF (U) =


∂u1f1(U) . . . ∂ukf1(U)

... . . .
...

∂u1fk(U) . . . ∂ukfk(U)

 .
Definition 1 (Hyperbolicity, [18]). The system (2.4) is called hyperbolic if for every U ∈ Ω,

the k × k Jacobian matrix A(U) has real eigenvalues λ1(U) ≤ · · · ≤ λk(U) and k linearly

independent right eigenvectors r1(U), . . . , rk(U).
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CHAPTER 2. HYPERBOLIC SYSTEMS OF BALANCE LAWS 7

Let us recall that the right eigenvectors of A(U) satisfy

A(U)ri(U) = λi(U)ri(U), i = 1, . . . , k.

Similarly, left eigenvectors, l1(U), . . . , lk(U) associated with the eigenvalues, λ1(U), . . . , λk(U)

satisfy

li(U)A(U) = λi(U)li(U), i = 1, . . . , k. (2.5)

Moreover, if eigenvalues are distinct, then left and right eigenvectors are orthogonal and can

be normalized [38]. In this case, the normalized right and left eigenvectors associated with

distinct eigenvalues satisfy

li(U)rj(U) =

0 if i 6= j,

1 if i = j.

Definition 2 (Strict Hyperbolicity, [18]). The system (2.4) is called strictly hyperbolic if for

every U ∈ Ω, the k × k Jacobian matrix A(U) has real and distinct eigenvalues λ1(U) <

· · · < λk(U).

2.3 Characteristic Curves and Variables

In the system (2.4), each equation can contain the relation of a temporal derivative of a

physical quantity with spatial derivatives of one or more physical quantities. Therefore, the

system (2.4) is known as a strongly coupled one [5]. However, the system (2.4) can be

expressed in characteristic form [7]. This can be done by applying a coordinate transformation.

Let us define a coordinate curve by V := φ(U) under a transformation φ : Ω→ Γ ⊂ Rk such

that the pre-image is defined by U := φ−1(V ) and

H(U)A(U) = D(U)H(U), (2.6)

with H(U) := ∇Uφ(U) and D(U) := diag{λi(U) : i = 1, . . . , k}. Therefore, pre-multiplying

both sides of the system (2.4) by H(U) and using (2.6), we transform the system (2.4) into

the following form

∂tV + J (V )∂xV +M(V ) = 0, x ∈ R, t ≥ 0, (2.7)
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CHAPTER 2. HYPERBOLIC SYSTEMS OF BALANCE LAWS 8

with

J (V ) := D(φ−1(V )) and M(V ) := H(φ−1(V ))G(φ−1(V )).

Remark 1. In condition (2.6), the matrix of left eigenvectors of the Jacobian matrix, LE(U),

such that LE(U)A(U) = D(U)LE(U), can be taken to complete the transformation of the

system (2.4) into the system (2.7), which is commonly referred to as decoupled or weakly

coupled [5], since each equation does not involve spatial derivatives of other characteristic

variables.

Remark 2. In linear systems case, if the Jacobian matrix is diagonalizable, has distinct eigen-

values, then there exist coordinate curves that satisfy (2.6) [7]. Otherwise (i.e. in the nonlinear

case), we can only obtain coordinate curves that satisfy the condition in (2.6) when k = 2.

For further detail, the reader is referred to literature [18, 32].

2.4 Steady State and Linearization of Hyperbolic Sys-

tems of Balance Laws

For the reason that we are interested in linear or linearized hyperbolic systems of balance laws,

a review of some concepts about a linear hyperbolic system of balance laws is useful. Using the

discussion in [12], the system (2.7) is said to be linear with constant coefficients if all diagonal

entries of J (V ) and components of M(V ) are constant. If all diagonal entries of J (V ) and

components of M(V ) depend on the independent variables x and t, then the system (2.7) is

said to be linear with variable coefficients. The system (2.7) is still linear if components of

M(V ) depend linearly on the characteristic variables.

In case we have a nonlinear system, we deal with linearization about a steady state. We

introduce below the definition of a steady state.

Definition 3 (Steady state [7]). A steady state (or equilibrium ) is a time-invariant solution

U(x, t) = U∗(x) for all t ∈ [0,+∞) of the system (2.2), that is U∗ satisfies

∂xF (U∗(x)) +G(U∗(x)) = 0, x ∈ R. (2.8)
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CHAPTER 2. HYPERBOLIC SYSTEMS OF BALANCE LAWS 9

We use now Taylor’s approximation in order to linearize the vector valued function F (U) and

G(U), which are assumed to be at least twice continuously differentiable, about the equilibrium

point U∗(x). We obtain

F (U) = F (U∗(x)) +∇UF (U)|U=U∗(x)(U − U∗(x)) +RF , (2.9a)

and

G(U) = G(U∗(x)) +∇UG(U)|U=U∗(x)(U − U∗(x)) +RG, (2.9b)

with remainder in Lagrange form

RF :=
1

2!
∇2
UF (U)|U=Uc(x)(U − U∗(x))2, and

RG :=
1

2!
∇2
UG(U)|U=Uc(x)(U − U∗(x))2,

for some Uc(x) component-wise between U∗(x) and U . Thus, substituting the linearized form

(2.9) of F (U) and G(U), by neglecting the remainder RF and RG, into the system (2.2) and

using (2.8), we obtain

∂t(U − U∗(x)) +
(
∇UF (U)|U=U∗(x)

)
∂x(U − U∗(x)) + ∂xF (U∗(x)) +G(U∗(x))

+
[
∂x
(
∇UF (U)|U=U∗(x)

)
+∇UG(U)|U=U∗(x)

]
(U − U∗(x)) = 0, x ∈ R t ≥ 0. (2.10)

By the discussion in [7], one sees the system (2.10) is the linearization of the system (2.2)

about the steady state, which can be rewritten as

∂tZ +B(x)∂xZ + C(x)Z = 0, x ∈ R, t ≥ 0, (2.11)

with

Z := U − U∗(x), B(x) := ∇UF (U)|U=U∗(x) and

C(x) := ∂x
(
∇UF (U)|U=U∗(x)

)
+∇UG(U)|U=U∗(x).

(2.12)

If the Jacobian matrix B(x) is diagonalizable, then there are real eigenvalues λi(x) :=

λi(U
∗(x)), i = 1, . . . , k.

In order to decouple the linearized system (2.11), let us define a coordinate curve by W :=

ψ(Z) under a transformation ψ : Ω → Γ ⊂ Rk such that the pre-image is defined by
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Z = ψ−1(W ) and by definition of coordinate transformation for each steady state we have

W ∗(x) = ψ(Z∗(x)) ≡ 0. In addition, the transformation satisfies

N(Z)B(x) = Λ(x)N(Z), (2.13)

where

N(Z) := ∇Zψ(Z) and Λ(x) := diag{λi(x) : i = 1, . . . , k}. (2.14)

Thus, pre-multiplying both sides of the system (2.11) by N(Z) and using (2.13), we transform

the system (2.11) into the following form

∂tW + Λ(x)∂xW + Π(x)W = 0, x ∈ R, t ≥ 0, (2.15)

where

Π(x)W := N(ψ−1(W ))C(x)ψ−1(W ). (2.16)

Remark 3. We observe now the nonlinear system (2.2) is linearized about a steady state

solution, U∗(x), and is expressed as a decoupled system (2.15). Furthermore, at steady state

of the system (2.2), the decoupled system (2.15) has a steady state solution W ∗(x) ≡ 0.

Remark 4. If G(U∗(x)) = 0, then the system (2.2) has a constant steady state [7], which is

both time and space invariant, and the linearized decoupled system (2.15) can be written as

∂tW + Λ∂xW + ΠW = 0, x ∈ R t ≥ 0, (2.17)

where Λ and Π are constant matrices.

In the case the system (2.2) can be transformed into the decoupled system (2.7), the system

(2.7) can be expressed using the total time derivative [7, 37] of the following form

dvi
dt

:= ∂tvi +
dx

dt
∂xvi, i = 1, . . . , k, (2.18)

with

dx

dt
= λi(V ) +

Mi(V )

∂xvi
, i = 1, . . . , k, (2.19)
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where λi(V ) := λi(φ
−1(U)), Mi(V ) are the components of M(V ) and vi are also the compo-

nents of V or characteristic variables, which are constant along the corresponding characteristic

curves defined by the differential equations (2.19).

Due to strict hyperbolicity of the decoupled system (2.7), the non-zero eigenvalues, which

are also called characteristic speeds, can be separated into positive and negative. Therefore,

depending on the sign of the characteristic speeds, the characteristic curves are illustrated in

Figure 2.1 below.

x0

t

λi(U) > 0

λi(U) < 0

Figure 2.1: Characteristic curves.

Similarly, the decoupled linearized system (2.15) can be written in terms of the total time

derivative in the form

dwi
dt

:= ∂twi +
dx

dt
∂xwi, i = 1, . . . , k, (2.20)

with

dx

dt
= λi(W (x, t)) +

Πi(x)W (x, t)

∂xwi
, i = 1, . . . , k, (2.21)

where Πi(x) are the rows of the matrix Π(x) and wi are the components of W or characteristic

variables, which are constant along the corresponding characteristic curves defined by the

differential equations (2.21).
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From both equations (2.18) and (2.20), one obtains
dvi
dt

= 0 and
dwi
dt

= 0 for each i =

1, . . . , k, respectively. Therefore, these characteristic variables are called Riemann invariants

[7].

2.5 Initial and Boundary Conditions

In order to formulate a Cauchy problem with the system (2.2), which has a unique solution,

we need to specify initial and boundary conditions. Therefore, the spatial domain can be

restricted to a finite interval [0, l].

The initial condition for each physical quantity can be specified in the following form

U(x, 0) = U0(x), x ∈ [0, l], (2.22)

where U0 : R→ Ω is a vector function depending on x. Since we are interested in the linear

system (2.15), the transformation given by (2.12) and (2.13) can be used to express the initial

condition (2.22) in terms of the characteristic variables

W (x, 0) = ψ(Z(x, 0)) = W0(x), x ∈ [0, l], (2.23)

with

Z(x, 0) = U(x, 0)− U∗(x) = U0(x)− U∗(x), (2.24)

where W0 : [0, l]→ Ω is a vector function depending on x.

The boundary conditions for the system (2.2) at the boundary points of [0, l] are required

to include information about the incoming and outgoing signals [7]. It is described by the

following form

Υ(U(0, t), U(l, t)) = 0, t ≥ 0, (2.25)

with Υ : Ω×Ω→ Rk. Then, the incoming wave should be determined by the outgoing wave

at the boundary points.
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In the interest of expressing boundary conditions for the linear system (2.15) in terms of

characteristic variables, the system can be assumed to be strictly hyperbolic. Therefore, there

are non-zero distinct eigenvalues or characteristic speeds. Without loss of generality, the

characteristic speeds can be arranged in the following order

λk(x) < · · · < λm+1(x) < 0 < λm(x) < · · · < λ1(x), ∀x ∈ [0, l]. (2.26)

Thus, the diagonal matrix Λ(x) in the system (2.15) can be expressed in the following form

Λ(x) := diag{Λ+(x),−Λ−(x)}, ∀x ∈ [0, l],

with Λ+(x) := diag{λ1(x), . . . , λm(x)} and Λ− := diag{|λm+1(x)|, . . . , |λk(x)|}.

Since the characteristic variables represent travelling waves along rightward and leftward direc-

tions corresponding to m positive and k−m negative characteristic speeds, which is illustrated

in Figure 2.2 below, the number of boundary conditions specified in terms of the characteristic

variables at x = 0 and x = l should be equal to the number of positive and negative charac-

teristic speeds, respectively [5, 7]. Therefore, the characteristic variables can be categorized

in the following form

W :=
[
W+,W−]T , (2.27)

with

W+ := [w1, . . . , wm]T and W− := [wm+1, . . . , wk]
T . (2.28)

t

t0

t1

l

W+

W−

W+ W−

0 x

Figure 2.2: The moving waves to the leftward and rightward directions.
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Then, using the transformation given by (2.12) and (2.13), the incoming and outgoing infor-

mation can be expressed in terms of the characteristic variables in the following form [7]

Win(t) :=
[
W+(0, t),W−(l, t)

]T
and Wout(t) :=

[
W+(l, t),W−(0, t)

]T
, t ≥ 0.

(2.29)

The linear boundary condition for the system (2.15) is defined by

Win(t) = KWout(t), (2.30)

with

K =

K11 K12

K21 K22

 ,
where K11, K12, K21 and K22 are real matrices of dimensions m×m, m×(k−m), (k−m)×m

and (k −m) × (k −m), respectively and the coefficients are determined from the boundary

conditions (2.25) using the transformation given by (2.12) and (2.13) [5, 7, 22].

The Cauchy problem in terms of the characteristic variables is formulated as follows

∂tW + Λ(x)∂xW + Π(x)W = 0, x ∈ [0, l], t ≥ 0, (2.31a)W+(0, t)

W−(l, t)

 = K

W+(l, t)

W−(0, t)

 , t ≥ 0, (2.31b)

W (x, 0) = W0(x), x ∈ [0, l]. (2.31c)

The Cauchy problem under the special case of the linear system with constant coefficients is

formulated as follows:

∂tW + Λ∂xW + ΠW = 0, x ∈ [0, l], t ≥ 0, (2.32a)W+(0, t)

W−(l, t)

 = K

W+(l, t)

W−(0, t)

 , t ≥ 0, (2.32b)

W (x, 0) = W0(x), x ∈ [0, l]. (2.32c)

Remark 5. The condition for the initial condition (2.23) compatible with the boundary condi-

tions (2.30) may be required in the well-posedness of the Cauchy problems (2.31) and (2.32),

which will be discussed in the next section.
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2.6 Well-posedness of The Cauchy Problem for Linear

Hyperbolic Systems of Balance Laws

Consider the Cauchy problem (2.31) associated with the linear hyperbolic systems of balance

laws (2.15), the boundary conditions (2.30) and the initial condition (2.23). In case, the initial

condition, W0 ∈ H1((0, l);Rk), satisfies the compatibility conditionW+
0 (0)

W−
0 (l)

 = K

W+
0 (l)

W−
0 (0)

 , (2.33)

then, we have the following theorem.

Theorem 1 ([7]). For every W0 ∈ H1((0, l);Rk) satisfying the compatibility condition (2.33),

there exists a unique solution

W ∈ C1(L2((0, l);Rk); [0,+∞)) ∩ C0(H1((0, l);Rk); [0,+∞))

of the Cauchy problem (2.31). Moreover, there exists C0 > 0 such that, for every W0 ∈

H1((0, l);Rk) satisfying the compatibility condition (2.33), this unique solution W satisfies

‖W (·, t)‖H1((0,l);Rk) + ‖W (·, t)‖L2((0,l);Rk) ≤ C0e
C0t‖W0‖H1((0,l);Rk), ∀t ∈ [0,+∞),

‖W (·, t)‖L2((0,l);Rk) ≤ C0e
C0t‖W0‖L2((0,l);Rk), ∀t ∈ [0,+∞).

In case the compatibility condition is not satisfied, we deal with the weak solutions of the

Cauchy problem (2.31), which is defined as follows:

Definition 4 (Weak solution [7]). Let W0 ∈ L2((0, l);Rk). An L2-solution W : (0, l) ×

(0,+∞)→ Rk of the Cauchy problem (2.31) is a map W ∈ C0(L2((0, l);Rk), [0,+∞)) such

that, for every T > 0 and every ϕT = [ϕ+, ϕ−] ∈ C1([0, l]× [0, T ];Rk) satisfyingϕ+(l, t)

ϕ−(0, t)

 =

Λ+(l)−1KT
11Λ+(0) Λ+(l)−1KT

21Λ−(l)

Λ−(0)−1KT
12Λ+(0) Λ−(0)−1KT

22Λ−(l)

ϕ+(0, t)

ϕ−(l, t)

 , ∀t ∈ [0, T ],

we have∫ T

0

∫ l

0

(
∂tϕ

T (x, t) + ∂xϕ
T (x, t)Λ(x) + ϕT (x, t) (∂xΛ(x)− Π(x))

)
Wdxdt =∫ l

0

ϕT (x, T )W (x, T )dx−
∫ l

0

ϕT (x, 0)W0(x)dx.
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Theorem 2 ([7]). For every W0 ∈ L2((0, l);Rk), the Cauchy problem (2.31) has a unique

L2-solution. Moreover, there exists C1 > 0 such that, for every W0 ∈ L2((0, l);Rk), the

solution W to the Cauchy problem (2.31) satisfies

‖W (·, t)‖L2((0,l);Rk) ≤ C1e
C1t‖W0‖L2((0,l);Rk), ∀t ∈ [0,+∞).

Consider the Cauchy problem associated with the linear system with constant coefficients

(2.17), the boundary conditions (2.30) and the initial condition (2.23). Then, we have the

following definition of a weak solution:

Definition 5 (Weak solution [22]). Let W0 ∈ L2((0, l);Rk). A map W : (0, l)× [0,+∞)→

Rk is a solution of a Cauchy problem (2.32) if W ∈ C0(L2((0, l);Rk), [0,+∞)) is such that,

for every ϕT = [ϕ+, ϕ−] ∈ C1([0, l]× [0,+∞);Rk) with compact support and satisfyingϕ+(l, t)

ϕ−(0, t)

 =

(Λ+)−1KT
11Λ+ (Λ+)−1KT

21Λ−

(Λ−)−1KT
12Λ+ (Λ−)−1KT

22Λ−

ϕ+(0, t)

ϕ−(L, t)

 ,
we have∫ +∞

0

∫ l

0

[
∂tϕ

T (x, t) + ∂xϕ
T (x, t)Λ− ϕT (x, t)Π

]
Wdxdt+

∫ l

0

ϕT (x, 0)W0(x)dx = 0.

With this definition, we have the following proposition.

Proposition 1 ([22]). For every W0 ∈ L2((0, l);Rk), the Cauchy problem (2.32) has a

unique solution. Moreover, for every T > 0, there exists C(T ) > 0 such that, for every

W0 ∈ L2((0, l);Rk), the solution to the Cauchy problem (2.32) satisfies

‖W (·, t)‖L2((0,l);Rk) ≤ C(T )‖W0‖L2((0,l);Rk), ∀t ∈ [0, T ].

Finally, consider a Cauchy problem associated with a linear system of conservation laws

∂tW + Λ(x)∂xW = 0, x ∈ [0, l], t ≥ 0,W+(0, t)

W−(l, t)

 = K

W+(l, t)

W−(0, t)

 , t ≥ 0,

W (x, 0) = W0(x), x ∈ [0, l],

(2.34a)
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and a Cauchy problem associated with the source term

∂tW + Π(x)W = 0, x ∈ [0, l], t ≥ 0,W+(0, t)

W−(l, t)

 = K

W+(l, t)

W−(0, t)

 , t ≥ 0,

W (x, 0) = W0(x), x ∈ [0, l],

(2.34b)

separately. Then, the well-posedness of the Cauchy problem (2.31) makes the system (2.34)

well-posed [14].

2.7 Examples of Hyperbolic Systems of Balance Laws

In this section, we deal with hyperbolicity, characteristic decomposition and linearization of

some examples of hyperbolic systems of balance laws.

2.7.1 The Telegrapher Equations

Consider a piece of wire that connects a power supply and a resistive load, which can be used

in modeling the propagation of current and voltage along this wire (or transmission line). This

physical phenomena is modeled by the following system of balance laws [31]

L∂tI(x, t) + ∂xV (x, t) +RI(x, t) = 0, (2.35a)

C∂tV (x, t) + ∂xI(x, t) +GV (x, t) = 0, x ∈ [0, l], t ≥ 0, (2.35b)

where I and V represent the current density and the voltage along the transmission line at

any time, respectively. The parameters L, C, R and G (all per unit length) represent the line

self-inductance, the line capacitance, the resistance of the two conductors and the admittance

of the dielectric material separating the conductors, respectively (see Figure 2.3 below).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 2. HYPERBOLIC SYSTEMS OF BALANCE LAWS 18

R L

G C

Figure 2.3: Example of a transmission line

In order to define a Cauchy problem associated with the telegrapher equations (2.35), the

following initial and boundary conditions are specified I(x, 0)

V (x, 0)

 =

I0(x)

V0(x)

 , x ∈ [0, l], (2.36)

and

V (0, t) = −R0I(0, t) and V (l, t) = RlI(l, t), t ≥ 0, (2.37)

where R0 and Rl represent the internal resistance of the power and the load, respectively.

Assuming non-zero value of the constants L, C, R and G, the system (2.35) can be expressed

in a linear system with constant coefficients as given by

∂tY + A∂xY +BY = 0, (2.38)

with

Y :=

 I
V

 , A :=

 0 L−1

C−1 0

 and B :=

L−1R 0

0 C−1G

 .
Remark 6 ([31]). One obtains an equation

a∂2
t V − ∂2

xV + b∂tV + cV = 0, (2.39)

with

a := LC, b := RC + LG and c := RG,

by eliminating I from the system (2.35). This can be done by differentiating equations (2.35a)

and (2.35b) with respect to x and t, respectively and substituting one into the other. If

b = c = 0, then equation (2.39) has a wave equation form.
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With steady state solution I∗(x), V ∗(x) such that

∂xV
∗(x) +RI∗(x) = 0 and ∂xI

∗(x) +GV ∗(x) = 0, (2.40)

the system (2.38) can be written as a linear system about a steady state as follows:

∂tZ + A∂xZ +BZ = 0, (2.41)

with

Z :=

z1

z2

 :=

 I − I∗(x)

V − V ∗(x)

 .
The system (2.41) has two distinct eigenvalues, which have opposite signs

λ2 := − 1√
LC

< 0 <
1√
LC

=: λ1.

Thus, the system (2.41) is strictly hyperbolic, which can be transformed into characteristic

form. Therefore, each characteristic variable is defined using left eigenvectors of A correspond-

ing to eigenvalues or characteristic speedsw1

w2

 :=

 √L
C

1

−
√

L
C

1

z1

z2

 =

z2 + z1

√
L
C

z2 − z1

√
L
C

 .
and the inverse transformation gives

z1 =
1

2
(w1 − w2)

√
C

L
and z2 =

1

2
(w1 + w2) .

Hence, by using the characteristic variables the system (2.41) is expressed as a decoupled

linear system with constant coefficients

∂tW + Λ∂xW + ΠW = 0, x ∈ [0, l], t ≥ 0, (2.42)

with

W :=

w1

w2

 , Λ :=

λ1 0

0 λ2

 and Π :=

γ1 γ2

γ2 γ1

 ,
where

γ1 :=
1

2

(
G

C
+
R

L

)
and γ2 :=

1

2

(
G

C
− R

L

)
.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 2. HYPERBOLIC SYSTEMS OF BALANCE LAWS 20

The initial and boundary conditions can be expressed in terms of the characteristic variables

by using the characteristic variables and inverse transformation into the initial condition (2.36)

and the boundary conditions (2.37). i.e.w1(x, 0)

w2(x, 0)

 :=

(V0(x)− V ∗(x)) + (I0(x)− I∗(x))
√

L
C

(V0(x)− V ∗(x))− (I0(x)− I∗(x))
√

L
C

 , (2.43)

and w1(0, t)

w2(l, t)

 =

 0 k12

k21 0

w1(l, t)

w2(0, t)

 , (2.44)

with

k12 :=
R0

√
C −
√
L

R0

√
C +
√
L

and k21 :=
Rl

√
C −
√
L

Rl

√
C +
√
L
.

2.7.2 The Isentropic Euler Equations

Consider an inviscid ideal gas flowing in a rigid cylindrical pipe with l unit cross-section (see

Figure 2.4) with no heat transfer through the pipe (called isentropic flow). This model is gov-

erned by isentropic Euler equations, which are derived from Euler equations for gas dynamics

by neglecting the enthalpy [7, 35]. The simplified isentropic Euler equations in the form of a

system of balance laws are given by

∂tρ+ ∂x (ρV ) = 0,

∂tV + ∂x

(
V 2

2

)
+

1

ρ
∂xP (ρ) + CV |V | = 0,

x ∈ [0, l], t ≥ 0, (2.45)

where ρ, V and P (ρ) (with P ′(ρ) > 0) denote the density, velocity and pressure of gas and

C|V | corresponds to a friction term.

A
in out

0 l

Figure 2.4: An example of a pipe.
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Initial and boundary conditions for the system (2.45) can be specified in the following formρ(x, 0)

V (x, 0)

 =

ρ0(x)

V0(x)

 , x ∈ [0, l], (2.46)

and

V (0, t) = −k0ρ(0, t) and V (l, t) = klρ(l, t), t ≥ 0, (2.47)

where k0 and kl are arbitrary constants.

In quasilinear form, the system (2.45) can be written as follows

∂tY + A(Y )∂xY +G(Y ) = 0, (2.48)

with

Y :=

ρ
V

 , A(Y ) :=

 V ρ

P ′(ρ)/ρ V

 and G(Y ) :=

 0

CV |V |

 ,
where

√
P ′(ρ) is the sound velocity.

The system (2.45) about a steady state solution Y ∗(x) := [ρ∗(x), V ∗(x)]T such that

∂x (ρ∗(x)V ∗(x)) = 0,

∂x

(
V ∗2(x)

2

)
+

1

ρ∗(x)
∂xP (ρ∗(x)) + CV ∗(x)|V ∗|(x) = 0,

(2.49)

can be linearized in the following form

∂tZ + A(x)∂xZ +B(x)Z = 0, (2.50)

with

Z :=

z1

z2

 :=

 ρ− ρ∗(x)

V − V ∗(x)

 , A(x) := A(Y ∗(x)) and

B(x) :=

 ∂xV
∗(x) ∂xρ

∗(x)(
P ′′(ρ∗(x))
ρ∗(x)

− P ′(ρ∗(x))
ρ∗2(x)

)
∂xρ

∗(x) ∂xV
∗(x) + 2C|V ∗(x)|

 .
The linearized system (2.50) under subsonic conditions (i.e. V 2 < P ′(ρ)) has two distinct

eigenvalues, which are opposite in sign

λ2(Y ∗(x)) := V ∗(x)−
√
P ′(ρ∗(x)) < 0 < V ∗(x) +

√
P ′(ρ∗(x)) =: λ1(Y ∗(x)).
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In order to decouple the linearized system (2.50), the matrix of left eigenvectors of A(x) can

be used and then the characteristic variables arew1

w2

 :=

 √P ′(ρ∗(x))

ρ∗(x)
1

−
√
P ′(ρ∗(x))

ρ∗(x)
1

z1

z2

 =

z2 + z1

√
P ′(ρ∗(x))

ρ∗(x)

z2 − z1

√
P ′(ρ∗(x))

ρ∗(x)

 ,
and the inverse transformation gives

z1 =
ρ∗(x)

2
√
P ′(ρ∗(x))

(w1 − w2) and z2 =
1

2
(w1 + w2) .

The linearized system (2.50) can be written in characteristic variables, which is a decoupled

linear system with variable coefficients, as follows

∂tW + Λ(x)∂xW + Π(x)W = 0, x ∈ [0, l], t ≥ 0, (2.51)

with

W :=

w1

w2

 , Λ(x) :=

λ1(x) 0

0 λ2(x)

 and Π(x) :=

γ11(x) γ12(x)

γ21(x) γ22(x)

 ,
where the characteristic speeds λ1(x) := λ1(Y ∗(x)) and λ2(x) := λ2(Y ∗(x)) and the coeffi-

cients

γ11(x) :=
CV ∗(x)|V ∗(x)|

V ∗2(x)− P ′(ρ∗(x))

(
ρ∗(x)P ′′(ρ∗)

2
√
P ′(ρ∗(x))

− ρ∗(x)P ′′(ρ∗)

4P ′(ρ∗(x))
− V ∗(x) +

1

2

)
+ C|V ∗(x)|,

γ12(x) :=
CV ∗(x)|V ∗(x)|

V ∗2(x)− P ′(ρ∗(x))

(√
P ′(ρ∗(x)) +

ρ∗(x)P ′′(ρ∗)

4P ′(ρ∗(x))
− ρ∗(x)P ′′(ρ∗)

2
√
P ′(ρ∗(x))

− 1

2

)
+ C|V ∗(x)|,

γ21(x) := − CV ∗(x)|V ∗(x)|
V ∗2(x)− P ′(ρ∗(x))

(
ρ∗(x)P ′′(ρ∗)

4P ′(ρ∗(x))
−
√
P ′(ρ∗(x)) +

ρ∗(x)P ′′(ρ∗)

2
√
P ′(ρ∗(x))

− 1

2

)
+ C|V ∗(x)| and

γ22(x) := − CV ∗(x)|V ∗(x)|
V ∗2(x)− P ′(ρ∗(x))

(
1

2
− ρ∗(x)P ′′(ρ∗)

4P ′(ρ∗(x))
− ρ∗(x)P ′′(ρ∗)

2
√
P ′(ρ∗(x))

− V ∗(x)

)
+ C|V ∗(x)|.

The initial condition (2.46) and the boundary conditions (2.47) in the new coordinates can be

expressed in the following formw1(x, 0)

w2(x, 0)

 :=

(V0(x)− V ∗(x)) + (ρ0(x)− ρ∗(x))

√
P ′(ρ∗(x))

ρ∗(x)

(V0(x)− V ∗(x))− (ρ0(x)− ρ∗(x))

√
P ′(ρ∗(x))

ρ∗(x)

 , x ∈ [0, l], (2.52)
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and w1(0, t)

w2(l, t)

 =

 0 k12

k21 0

w1(l, t)

w2(0, t)

 , t ≥ 0, (2.53)

with

k12 :=
k0ρ
∗(0)−

√
P ′(ρ∗(0))

k0ρ∗(0) +
√
P ′(ρ∗(0))

and k21 :=
klρ
∗(l)−

√
P ′(ρ∗(l))

klρ∗(l) +
√
P ′(ρ∗(l))

.

2.7.3 The Saint-Venant Equations with Source Terms

Consider water flow along a prismatic channel with rectangular cross-section, a width of l unit

and constant bottom slope (see Figure 2.5). In this case, the Saint-Venant Equations [8] is

given by

∂tH + ∂x(HV ) = 0,

∂tV + ∂x

(
1

2
V 2 + gH

)
+ (Cf

V 2

H
− gSb) = 0,

x ∈ [0, l], t ≥ 0, (2.54)

where the physical quantities H and V represent the depth and velocity of the water, re-

spectively and the source terms g, Cf and Sb represent a gravitational constant, a friction

parameter and the constant bottom slope of the channel, respectively.

x0 l

H(x, t) V (x, t)

Figure 2.5: Lateral view of a prismatic channel with rectangular cross-section, width of l unit

and constant bottom slope.

The initial and boundary conditions for the system (2.54) are specified as followsH(x, 0)

V (x, 0)

 =

H0(x)

V0(x)

 , x ∈ [0, l], (2.55)
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and

V (0, t) = −k0H(0, t) and V (l, t) = klH(l, t), t ≥ 0, (2.56)

where k0 and kl are parameters.

The system (2.54) can be written in quasilinear form

∂tY + A(Y )∂xY +G(Y ) = 0, (2.57)

with

Y :=

H
V

 , A(Y ) :=

V H

g V

 and G(Y ) :=

 0

g(Cf
V 2

H
− S)

 .
The Jacobian matrix A(Y ) has the following eigenvalues

λ1 := V +
√
gH and λ2 := V −

√
gH.

Under the sub-critical flow condition i.e. V <
√
gH, we have λ2 < 0 < λ1. Therefore, the

system (2.57) is strictly hyperbolic, which can be transformed into characteristic form. Since

we are dealing with a linear system, a linearized system about steady state is considered.

Let Y ∗(x) := [H∗(x), V ∗(x)]T be a steady state solution for the system (2.57) such that

∂x(H
∗V ∗(x)) = 0,

∂x

(
1

2
V ∗2(x) + gH∗(x)

)
+ (Cf

V ∗2(x)

H∗(x)
− gSb) = 0,

x ∈ [0, l]. (2.58)

The linearization of the system (2.54) about the steady state is given by

∂tZ + A(x)∂xZ +B(x)Z = 0, (2.59)

with

Z :=

z1

z2

 :=

H −H∗(x)

V − V ∗(x)

 , A(x) :=

V ∗(x) H∗(x)

g V ∗(x)

 and

B(x) :=

 ∂xV
∗(x) ∂xH

∗(x)

−Cf
(
V ∗(x)
H∗(x)

)2

∂xV
∗(x) + 2Cf

(
V ∗(x)
H∗(x)

)
 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 2. HYPERBOLIC SYSTEMS OF BALANCE LAWS 25

The characteristic variables for the system (2.59) are defined using left eigenvectors of A(x)

in the following formw1

w2

 :=


√

g
H∗(x)

1

−
√

g
H∗(x)

1


z1

z2

 =

z2 + z1

√
g

H∗(x)

z2 − z1

√
g

H∗(x)

 .
and the inverse transformation gives

z1 =
1

2
(w1 − w2)

√
H∗(x)

g
and z2 =

1

2
(w1 + w2) .

Using the steady state condition (2.58), the characteristic variables and the inverse transfor-

mation, the system (2.59) can be written in the following characteristic form

∂t

w1

w2

+

λ1(x) 0

0 λ2(x)

 ∂x
w1

w2

+

γ11(x) γ12(x)

γ21(x) γ22(x)

w1

w2

 = 0, (2.60)

with the characteristic speeds λ1(x) := V ∗(x) +
√
gH∗(x) and λ2(x) := V ∗(x)−

√
gH∗(x)

and the coefficients

γ11(x) :=
CfV

∗2(x)

H∗(x)

[
4V ∗(x)− 2

√
gH∗(x)− 1

4(gH∗(x)− V ∗2(x))
+

1

V ∗(x)
− 1

2
√
gH∗(x)

]

+
gSb

gH∗(x)− V ∗2(x)

[
1 + 2

√
gH∗(x)− 4V ∗(x)

4

]
,

γ12(x) :=
CfV

∗2(x)

H∗(x)

[
1− 2

√
gH∗(x)

4(gH∗(x)− V ∗2(x))
+

1

V ∗(x)
+

1

2
√
gH∗(x)

]

− gSb

gH∗(x)− V ∗2(x)

[
1− 2

√
gH∗(x)

4

]
,

γ21(x) :=
CfV

∗2(x)

H∗(x)

[
1 + 2

√
gH∗(x)

4(gH∗(x)− V ∗2(x))
+

1

V ∗(x)
− 1

2
√
gH∗(x)

]

− gSb

gH∗(x)− V ∗2(x)

[
1 + 2

√
gH∗(x)

4

]
, and

γ22(x) :=
CfV

∗2(x)

H∗(x)

[
1

V ∗(x)
+

1

2
√
gH∗(x)

−
1− 2

√
gH∗(x)− 4V ∗(x)

4(gH∗(x)− V ∗2(x))

]

+
gSb

gH∗(x)− V ∗2(x)

[
1− 2

√
gH∗(x)− 4V ∗(x)

4

]
.
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The initial condition (2.55) and the boundary conditions (2.56) in characteristic variables can

be expressed in the following formw1(x, 0)

w2(x, 0)

 :=

(V0(x)− V ∗(x)) + (H0(x)−H∗(x))
√

g
H∗(x)

(V0(x)− V ∗(x))− (H0(x)−H∗(x))
√

g
H∗(x)

 , x ∈ [0, l], (2.61)

and w1(0, t)

w2(l, t)

 =

 0 k12

k21 0

w1(l, t)

w2(0, t)

 , t ≥ 0, (2.62)

with

k12 :=
k0 −

√
g

H∗(0)

k0 +
√

g
H∗(0)

and k21 :=
kl −

√
g

H∗(l)

kl +
√

g
H∗(l)

.

2.7.4 The Saint-Venant-Exner Equations with Source Terms

Consider the transport of sediments in a water flow along the prismatic channel with rectangular

cross-section and constant bottom slope where the sediment moves predominantly as bed load

(see Figure 2.6). In this case, the Saint-Venant-Exner equations [22] is achieved by coupling

of the Exner equation to the Saint-Venant equations, which is given by

∂tH + ∂x (HV ) = 0,

∂tV + ∂x

(
1

2
V 2 + g (H +B)

)
+

(
Cf
V 2

H
− gSb

)
= 0,

∂tB + ∂x

(
1

3
aV 3

)
= 0,

x ∈ [0, l], t ≥ 0, (2.63)

where the physical quantities H, V and B represent the depth of the water and the velocity

of the water, the bathymetry, respectively and the source terms g, Sb and Cf represent a

gravitational constant, the bottom slope of the channel and a friction coefficient, respectively

with a parameter a, that encompasses porosity and viscosity effects on the sediment dynamics.
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x0 l

H(x, t)
V (x, t)

B(x, t)

Figure 2.6: Lateral view of a prismatic channel with rectangular cross-section, constant bottom

slope and a sediment bed.

Initial and boundary conditions for the system (2.63) can be specified in the following form
H(x, 0)

V (x, 0)

B(x, 0)

 =


H0(x)

V0(x)

B0(x)

 , x ∈ [0, l], (2.64)

and

V (0, t) = −k0H(0, t), V (l, t) = −kl (H(l, t) +B(l, t)) and B(0, t) = 0, t ≥ 0,

(2.65)

where k0 and kl are parameters.

The system (2.63) in quasilinear form can be written as follows

∂tY + A(Y )∂xY +G(Y ) = 0, (2.66)

with

Y :=


H

V

B

 , A(Y ) :=


V H 0

g V g

0 aV 2 0

 and G(Y ) :=


0

Cf
V 2

H
− gSb
0

 .
The eigenvalues of the Jacobian matrix, A(Y ) can be obtained by Cardano-Vieta method,

which is discussed in Appendix B. To this end, we consider the characteristic equation of

A(Y ), which is a cubic equation

λ3 − 2V λ2 +
(
V 2 − g

(
H + V 2a

))
λ+ V 3ag = 0.

Let

Q = −1

9

[
3gH + (1 + 3ag)V 2

]
and R = − 1

54

[
(2 + 9ag)V 3 − 18gHV

]
.
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Then we obtain distinct real eigenvalues (or characteristic speeds) if

D = Q3 +R2,

= − 1

108
(4ag + 1) a2g2V 6 − 1

27

(
3a2g2 + 5ag + 1

)
HgV 4

− 1

27

(
3ag2 − 2

)
H2g2V 2 − 1

27
H3g3 < 0.

This is satisfied if

8H2gV 2 < (4ag + 1) a2gV 6 + 4
(
3a2g2 + 5ag + 1

)
HV 4 + 12H2ag2V 2 + 8H3g2,

which is always satisfied since H > 0 and 8H2gV 2 ≤ 4HV 4 + 4H3g2. To determine the signs

of the characteristic speeds, we consider a positive flow (or V > 0). Since |A| = −V 3ag,

the characteristic speeds either all are negative or one of them is negative. However, since

two of them, say λ1 and λ3, which are characteristic speeds of the water flow, have opposite

signs from Saint-Venant equations and the water flow is much faster than the motion of the

sediment, one can write the signs of the characteristic speeds in the following order,

λ3 < 0 < λ2 < λ1,

where λ2 is characteristic speed of sediment.

The left eigenvectors of the A(Y ) can be computed by using the corresponding eigenvalues

as suggested in [22]. For simplicity, we adopt as it is described there by

Li =
1

(λi − λj) (λi − λk)


(V − λj) (V − λk) + gH∗

Hλi

gH


T

, i 6= j 6= k ∈ {1, 2, 3}. (2.67)

Since we are interested in a linear system, we move now into the linearization of the system

(2.66). Thus, let Y ∗ = [H∗, V ∗, B∗]T be an equilibrium solution of the system (2.66) such

that Cf (V
∗)2 = gSbH

∗. Then, the linearization of the system (2.66) around the equilibrium

can be computed as discussed above and is given by

∂tZ + A∂xZ + EZ = 0, (2.68)
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with

Z :=


z1

z2

z3

 :=


H −H∗

V − V ∗

B −B∗

 , A := A(Y ∗) and

E :=


0 0 0

−Cf V
∗2

H∗2
2Cf

V ∗

H∗
0

0 0 0

 .

The characteristic variables of the linearized system (2.68) can be obtained in the following

form 
ξ1

ξ2

ξ3

 :=


L1

L2

L3



z1

z2

z3

 ,
where Li := Li(Y

∗), i = 1, 2, 3 and the inverse transformation gives

z1 :=ξ1 + ξ2 + ξ3, (2.69a)

z2 :=
1

H∗
[(λ1 − V ∗) ξ1 + (λ2 − V ∗) ξ2 + (λ3 − V ∗) ξ3] , (2.69b)

z3 :=
1

gH∗
[(

(λ1 − V ∗)2 − gH∗
)
ξ1 +

(
(λ2 − V ∗)2 − gH∗

)
ξ2 +

(
(λ3 − V ∗)2 − gH∗

)
ξ3

]
.

(2.69c)

The linearized system (2.68) in characteristic variables can be expressed as follows

∂tξi + λi∂xξi + LiEZ = 0, i = 1, 2, 3. (2.70)

Substituting (2.69) into (2.70), we have

∂tξi + λi∂xξi +

(
Cf

V ∗

H∗

)(
λi

(λi − λj) (λi − λk)

) 3∑
l=1

(2λl − 3V ∗) ξl = 0,

i 6= j 6= k ∈ {1, 2, 3}. (2.71)

To simplify the expressions in the equation (2.71), we let

δi :=

(
Cf

V ∗

H∗

)(
λi

(λi − λj) (λi − λk)

)
, i 6= j 6= k ∈ {1, 2, 3}.
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In that case, equation (2.71) can be written as

∂twi + λi∂xwi +
3∑
l=1

(2λl − 3V ∗) δlξl = 0, i = 1, 2, 3, (2.72)

where wi := 1
δi
ξi. Therefore, equations in (2.66) can be written in the following characteristic

form

∂tW + Λ∂xW + ΠW = 0, (2.73)

with

W :=


w1

w2

w3

 , Λ :=


λ1 0 0

0 λ2 0

0 0 λ3

 and Π :=


γ1 γ2 γ3

γ1 γ2 γ3

γ1 γ2 γ3

 ,
where γi := (2λi − 3V ∗) δi.

One can determine the signs of coefficients, δi, i = 1, 2, 3, from the signs of eigenvalues [7].

These are going to be determined as follows: for

γ1 =
λ1 (2λ1 − 3V ∗)

(λ1 − λ2) (λ1 − λ3)

(
Cf

V ∗

H∗

)
.

Since λ1 > 0, λ1 − λ2 > 0 and λ1 − λ3 > 0, γ1 has the same sign as 2λ1 − 3V ∗. From trace

of the Jacobian matrix, we have

2λ1 − 3V ∗ = V ∗ − 2λ2 − 2λ3 > 0,

since λ3 < 0 and λ2 is small.

Similarly, for

γ2 =
λ2 (2λ2 − 3V ∗)

(λ2 − λ1) (λ2 − λ3)

(
Cf

V ∗

H∗

)
.

Since λ2 > 0, λ2 − λ1 < 0, λ2 − λ3 > 0 and the speed of water flow is greater than the

motion of the sediment, γ2 has the opposite sign of 2λ2 − 3V ∗ < 0.

Finally, for

γ3 =
λ3 (2λ3 − 3V ∗)

(λ3 − λ1) (λ3 − λ2)

(
Cf

V ∗

H∗

)
.

Since λ3 < 0, λ3 − λ1 < 0 and λ3 − λ2 < 0, γ3 has the opposite sign of 2λ3 − 3V ∗ < 0.

Therefore, all the coefficients are strictly positive.
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The initial condition (2.64) and the boundary conditions (2.65) in characteristic variables can

be expressed in the following form
w1(x, 0)

w2(x, 0)

w3(x, 0)

 =


1
δ1
L1

1
δ2
L2

1
δ3
L3



H(x, 0)−H∗

V (x, 0)− V ∗

B(x, 0)−B∗

 , x ∈ [0, l], (2.74)

and 
w1(0, t)

w2(0, t)

w3(l, t)

 =


0 0 k13

0 0 k23

k31 kk2 0



w1(l, t)

w2(l, t)

w3(0, t)

 , t ≥ 0, (2.75)

with

k13 :=
δ3L1ζ1

δ1L3ζ1

, k23 :=
δ3L2ζ1

δ2L3ζ1

, k31 :=
δ1 (L2ζ2L3ζ3 − L3ζ2L2ζ3)

δ3 (L2ζ2L1ζ3 − L1ζ2L2ζ3)
and

k32 :=
−δ2 (L1ζ2L3ζ3 − L3ζ2L1ζ3)

δ3 (L2ζ2L1ζ3 − L1ζ2L2ζ3)
,

where

ζ1 :=


1

−k0

0

 , ζ2 :=


0

−kl
1

 and ζ3 :=


1

−kl
0

 .

2.8 Summary

In this chapter, the hyperbolic systems of balance laws in one space dimension has been

summarized. Some well-known definitions and fluid dynamics models have been included in

the discussion of this chapter.

In the next chapter, we will discuss boundary stabilization of a linear hyperbolic system of

balance laws and apply it to examples presented in this chapter.
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Chapter 3

Boundary Stabilization of Linear

Hyperbolic Systems of Balance Laws

The main purpose of this chapter is to discuss a stability analysis of linear hyperbolic systems

of balance laws in one spatial dimension. For this reason, we use a Lyapunov function to

investigate conditions for exponential stability of a Cauchy problem associated with a linear

system.

3.1 Lyapunov Exponential Stability Analysis

In this section, we investigate conditions for exponential stability of the Cauchy problem (2.31)

under steady state solution W ≡ 0. For this reason, the definition of exponential stability

follows.

Definition 6 (Exponentially stable [7]). The system (2.31a) (or (2.32a)) with boundary

condition (2.31b) (or (2.32b)) is exponentially stable for the L2−norm if there exist η > 0

and C > 0 such that, for every initial condition W0(x) ∈ L2((0, l);Rk), the L2 solution to

the Cauchy problem (2.31) (or (2.32)) satisfies

‖W (·, t)‖L2((0,l);Rk) ≤ Ce−ηt‖W0‖L2((0,l);Rk), t ≥ 0.
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CHAPTER 3. BOUNDARY STABILIZATION OF LINEAR HSBL 33

In order to investigate conditions for exponential stability in sense of the Definition 6, we need

to define the following candidate L2 Lyapunov function

L(t) :=

∫ l

0

W T (x, t)Φ(x)W (x, t)dx, t ≥ 0, (3.1)

where Φ(x) := diag{P+e−µx, P−eµx}, with P+ := diag{p1, . . . , pm}, P− := diag{pm+1, . . . , pk}

and pi > 0, i = 1, . . . , k.

Theorem 3 ([7]). The system (2.31a) with boundary condition (2.31b) is exponentially stable

for the L2−norm if there exists µ > 0 and pi > 0, i = 1, . . . , k, such that the following matricesΛ+(l) 0

0 Λ−(0)

P+e−µl 0

0 P−

−KT

Λ+(0) 0

0 Λ−(l)

P+ 0

0 P−eµl

K (3.2)

and

µ|Λ(x)|Φ(x)− Λ′(x)Φ(x) + ΠT (x)Φ(x) + Φ(x)Π(x), x ∈ [0, l] (3.3)

are positive definite.

Proof. The time derivative of the Lyapunov function (3.1) by using the Cauchy problem (2.31)

is obtained as follows

L′(t) =

∫ l

0

∂t
(
W TΦ(x)W

)
dx,

=

∫ l

0

[
(∂tW )T Φ(x)W +W TΦ(x) (∂tW )

]
dx,

=

∫ l

0

[
(−Λ(x)∂xW − Π(x)W )T Φ(x)W +W TΦ(x) (−Λ(x)∂xW − Π(x)W )

]
dx,

=−
∫ l

0

[
(∂xW )T Λ(x)Φ(x)W +W TΦ(x)Λ(x)∂xW

]
dx

−
∫ l

0

[
W TΠT (x)Φ(x)W +W TΦ(x)Π(x)W

]
dx.

Since

(∂xW )T Λ(x)Φ(x)W +W TΦ(x)Λ(x)∂xW = ∂x
(
W TΛ(x)Φ(x)W

)
−W TΛ′(x)Φ(x)W

−W TΛ(x)Φ′(x)W
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and

Λ(x)Φ′(x) = −µ|Λ(x)|Φ(x),

we have the following

L′(t) =−
∫ l

0

∂x
(
W TΛ(x)Φ(x)W

)
dx

−
∫ l

0

W T
[
µ|Λ(x)|Φ(x)− Λ′(x)Φ(x) + ΠT (x)Φ(x) + Φ(x)Π(x)

]
Wdx,

=−
[
W TΛ(x)Φ(x)W

]l
0

−
∫ l

0

W T
[
µ|Λ(x)|Φ(x)− Λ′(x)Φ(x) + ΠT (x)Φ(x) + Φ(x)Π(x)

]
Wdx,

=−
[
W T (l, t)Λ(l)Φ(l)W (l, t)−W T (0, t)Λ(0)Φ(0)W (0, t)

]
−
∫ l

0

W T
[
µ|Λ(x)|Φ(x)− Λ′(x)Φ(x) + ΠT (x)Φ(x) + Φ(x)Π(x)

]
Wdx,

=−

W+(l, t)

W−(l, t)

T Λ+(l) 0

0 Λ−(l)

P+e−µl 0

0 P−eµl

W+(l, t)

W−(l, t)


+

W+(0, t)

W−(0, t)

T Λ+(0) 0

0 Λ−(0)

P+ 0

0 P−

W+(0, t)

W−(0, t)


−
∫ l

0

W T
[
µ|Λ(x)|Φ(x)− Λ′(x)Φ(x) + ΠT (x)Φ(x) + Φ(x)Π(x)

]
Wdx,

=−

W+(l, t)

W−(0, t)

T Λ+(l) 0

0 Λ−(0)

P+e−µl 0

0 P−

W+(l, t)

W−(0, t)


+

W+(0, t)

W−(l, t)

T Λ+(0) 0

0 Λ−(l)

P+ 0

0 P−eµl

W+(0, t)

W−(l, t)


−
∫ l

0

W T
[
µ|Λ(x)|Φ(x)− Λ′(x)Φ(x) + ΠT (x)Φ(x) + Φ(x)Π(x)

]
Wdx,

=−

W+(l, t)

W−(0, t)

T Λ+(l) 0

0 Λ−(0)

P+e−µl 0

0 P−

W+(l, t)

W−(0, t)


+

W+(l, t)

W−(0, t)

T KT

Λ+(0) 0

0 Λ−(l)

P+ 0

0 P−eµl

K
W+(l, t)

W−(0, t)


−
∫ l

0

W T
[
µ|Λ(x)|Φ(x)− Λ′(x)Φ(x) + ΠT (x)Φ(x) + Φ(x)Π(x)

]
Wdx < 0,
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CHAPTER 3. BOUNDARY STABILIZATION OF LINEAR HSBL 35

by using the assumptions made for the matrices (3.2) and (3.3).

Since the matrices (3.3) and µ|Λ(x)|Φ(x),∀x are positive definite, for any vector W ∈ Rk it

implies that

W T [µ|Λ(x)|Φ(x)− Λ′(x)Φ(x) + ΠT (x)Φ(x) + Φ(x)Π(x)]W > µW T |Λ(x)|Φ(x)W

> µαW TΦ(x)W,

with α := min1≤i≤k
0≤x≤l

|λi(x)|. Therefore, we have

L′(t) < −µα
∫ l

0

W TΦ(x)Wdx = −ηL(t), η := µα. (3.4)

Hence, the Cauchy problem (2.31) is exponentially stable for the L2−norm.

In the special case, we deal with the Cauchy problem (2.32) under the steady state solution

W ≡ 0. Here, the candidate L2 Lyapunov function (3.1) can be used to investigate conditions

for exponential stability in the sense of Definition 6.

Corollary 1 ([22]). The system (2.32a) with boundary condition (2.32b) is exponentially

stable for the L2−norm if there exist µ > 0 and pi > 0, i = 1, 2, . . . , k, such that the

following matricesΛ+ 0

0 Λ−

P+e−µl 0

0 P−

−KT

Λ+ 0

0 Λ−

P+ 0

0 P−eµl

K (3.5)

and

µ|Λ|Φ(x) + ΠTΦ(x) + Φ(x)Π, x ∈ [0, l] (3.6)

are positive definite.

Proof. The time derivative of the Lyapunov function (3.1) by using the Cauchy problem (2.32)

is obtained as follows

L′(t) =

∫ l

0

∂t
(
W TΦ(x)W

)
dx,

=

∫ l

0

[
(∂tW )T Φ(x)W +W TΦ(x) (∂tW )

]
dx,
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=

∫ l

0

[
(−Λ∂xW − ΠW )T Φ(x)W +W TΦ(x) (−Λ∂xW − ΠW )

]
dx,

=−
∫ l

0

[
(∂xW )T ΛΦ(x)W +W TΦ(x)Λ∂xW

]
dx

−
∫ l

0

[
W TΠTΦ(x)W +W TΦ(x)ΠW

]
dx.

Since

(∂xW )T ΛΦ(x)W +W TΦ(x)Λ∂xW = ∂x
(
W TΛΦ(x)W

)
−W TΛΦ′(x)W

and

Λ(x)Φ′(x) = −µ|Λ|Φ(x),

we have the following

L′(t) =−
∫ l

0

∂x
(
W TΛΦ(x)W

)
dx

−
∫ l

0

W T
[
µ|Λ|Φ(x) + ΠTΦ(x) + Φ(x)Π

]
Wdx,

=−
[
W TΛΦ(x)W

]l
0

−
∫ l

0

W T
[
µ|Λ|Φ(x) + ΠTΦ(x) + Φ(x)Π

]
Wdx,

=−
[
W T (l, t)ΛΦ(l)W (l, t)−W T (0, t)ΛΦ(0)W (0, t)

]
−
∫ l

0

W T
[
µ|Λ|Φ(x) + ΠTΦ(x) + Φ(x)Π

]
Wdx,

=−

W+(l, t)

W−(l, t)

T Λ+ 0

0 Λ−

P+e−µl 0

0 P−eµl

W+(l, t)

W−(l, t)


+

W+(0, t)

W−(0, t)

T Λ+ 0

0 Λ−

P+ 0

0 P−

W+(0, t)

W−(0, t)


−
∫ l

0

W T
[
µ|Λ|Φ(x) + ΠTΦ(x) + Φ(x)Π

]
Wdx,

=−

W+(l, t)

W−(0, t)

T Λ+ 0

0 Λ−

P+e−µl 0

0 P−

W+(l, t)

W−(0, t)


+

W+(0, t)

W−(l, t)

T Λ+ 0

0 Λ−

P+ 0

0 P−eµl

W+(0, t)

W−(l, t)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 3. BOUNDARY STABILIZATION OF LINEAR HSBL 37

−
∫ l

0

W T
[
µ|Λ|Φ(x) + ΠTΦ(x) + Φ(x)Π

]
Wdx,

=−

W+(l, t)

W−(0, t)

T Λ+ 0

0 Λ−

P+e−µl 0

0 P−

W+(l, t)

W−(0, t)


+

W+(l, t)

W−(0, t)

T KT

Λ+ 0

0 Λ−

P+ 0

0 P−eµl

K
W+(l, t)

W−(0, t)


−
∫ l

0

W T
[
µ|Λ|Φ(x) + ΠTΦ(x) + Φ(x)Π

]
Wdx < 0, (3.7)

by using the assumptions for matrices (3.5) and (3.6). Since the matrices (3.6) and µ|Λ|Φ(x), ∀x,

are positive definite, we have the following implication for any W ∈ Rk,

W T [µ|Λ|Φ(x) + ΠTΦ(x) + Φ(x)Π]W > µW T |Λ|Φ(x)W > µαW TΦ(x)W,

with α := min1≤i≤k |λi|. Therefore, we have

L′(t) < −µα
∫ l

0

W TΦ(x)Wdx = −ηL(t), η := µα. (3.8)

Hence, the Cauchy problem (2.32) is exponentially stable for the L2−norm.

Remark 7. Boundary conditions that satisfy conditions (3.2) (or (3.5)) are called Dissipative

Boundary Conditions [22]. In order to show that conditions (3.2)(or (3.5)) and (3.3)(or

(3.6)) are positive definite, it suffices to show that the determinant of every principal sub-

matrix is positive (see Appendix A).

One of the conditions in the Corollary 1 is to show that the matrix (3.5) is positive definite,

which alternatively is expressed in the following corollary.

Corollary 2 ([7]). If there exists µ > 0 and pi > 0, i = 1, . . . , k such that

µ|Λ|Φ(x) + ΠTΦ(x) + Φ(x)Π, x ∈ [0, l], (3.9)

is positive definite and

‖∆K∆−1‖ < 1,

with ∆ :=
√
P |Λ|, where P := diag{P+, P−}, then the system (2.32a) with boundary

condition (2.32b) is exponentially stable for the L2−norm.
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Proof. From equation (3.7), the time derivative of the Lyapunov function (3.1) can be ex-

pressed as follows

L′(t) = L′1(t) + L′2(t), (3.10)

with

L′1(t) :=−

W+(l, t)

W−(0, t)

T Λ+P+e−µl 0

0 Λ−P−

W+(l, t)

W−(0, t)


+

W+(l, t)

W−(0, t)

T KT

Λ+P+ 0

0 Λ−P−eµl

K
W+(l, t)

W−(0, t)

 ,
and

L′2(t) := −
∫ l

0

W T
[
µΦ(x)|Λ|+ ΠTΦ(x) + Φ(x)Π

]
Wdx.

By using the assumption for the matrix (3.9), for any µ > 0, we have

L′2(t) < 0,∀t ≥ 0.

Then, positive definiteness of the matrix(3.9) implies that for any vector W ∈ Rk,

W [µΦ(x)|Λ|+ ΠTΦ(x) + Φ(x)Π]W > αµW TΦ(x)W, ∀x ∈ [0, l], α := min
1≤i≤k

|λi|.

Therefore,

L′2(t) < −ηL(t), t ≥ 0, η := αµ.

Consider the following quadratic form, which is a special case (L′1(t) at µ ≡ 0)

−

W+(l, t)

W−(0, t)

T Λ+P+ 0

0 Λ−P−

W+(l, t)

W−(0, t)


+

W+(l, t)

W−(0, t)

T KT

Λ+P+ 0

0 Λ−P−

K
W+(l, t)

W−(0, t)

 ,
=−

W+(l, t)

W−(0, t)

T Λ+P+ 0

0 Λ−P−

W+(l, t)

W−(0, t)


+

W+(l, t)

W−(0, t)

T KT
(√
|Λ|P

)T (√
|Λ|P

)
K

W+(l, t)

W−(0, t)

 ,
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=−

W+(l, t)

W−(0, t)

T Λ+P+ 0

0 Λ−P−

W+(l, t)

W−(0, t)


+

√|Λ|PK
W+(l, t)

W−(0, t)

T √|Λ|PK
W+(l, t)

W−(0, t)

 ,

=−

W+(l, t)

W−(0, t)

T Λ+P+ 0

0 Λ−P−

W+(l, t)

W−(0, t)

+

∥∥∥∥∥∥√|Λ|PK
W+(l, t)

W−(0, t)

∥∥∥∥∥∥
2

,

=−

W+(l, t)

W−(0, t)

T Λ+P+ 0

0 Λ−P−

W+(l, t)

W−(0, t)


+

∥∥∥∥∥∥
(√
|Λ|P

)
K
(√
|Λ|P

)−1 (√
|Λ|P

)W+(l, t)

W−(0, t)

∥∥∥∥∥∥
2

,

≤−

W+(l, t)

W−(0, t)

T Λ+P+ 0

0 Λ−P−

W+(l, t)

W−(0, t)


+

∥∥∥∥(√|Λ|P)K (√|Λ|P)−1
∥∥∥∥2

∥∥∥∥∥∥
(√
|Λ|P

)W+(l, t)

W−(0, t)

∥∥∥∥∥∥
2

,

where in the last line, the parameters pi > 0, i = 1, . . . , k, can be selected such that∥∥∥∥∥∥
(√
|Λ|P

)W+(l, t)

W−(0, t)

∥∥∥∥∥∥ = 1 and

W+(l, t)

W−(0, t)

 6= 0, t ≥ 0.

If ∥∥∥∥(√|Λ|P)K (√|Λ|P)−1
∥∥∥∥ < 1,

then

−

W+(l, t)

W−(0, t)

T Λ+P+ 0

0 Λ−P−

W+(l, t)

W−(0, t)


+

W+(l, t)

W−(0, t)

T KT

Λ+P+ 0

0 Λ−P−

K
W+(l, t)

W−(0, t)

 ,
<−

W+(l, t)

W−(0, t)

T |Λ|P
W+(l, t)

W−(0, t)

+

∥∥∥∥∥∥√|Λ|P
W+(l, t)

W−(0, t)

∥∥∥∥∥∥
2

,
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=−

W+(l, t)

W−(0, t)

T |Λ|P
W+(l, t)

W−(0, t)

+

W+(l, t)

W−(0, t)

T |Λ|P
W+(l, t)

W−(0, t)

 = 0.

Therefore, by assumption ‖∆K∆−1‖ < 1, a sufficiently small µ > 0 can be chosen such that

L′1(t) < 0 and then

L′(t) < −ηL(t), t ≥ 0.

Hence, the Cauchy problem (2.32) is exponentially stable for the L2−norm.

3.2 Analytical Results

In this section, we look at the application of the Lyapunov exponential stability analysis to

some examples of linear (or linearized) hyperbolic systems of balance laws, such as the teleg-

rapher equations, isentropic Euler equations, Saint-Venant equations and Saint-Venant-Exner

equations. For each of these physical problems, we investigate conditions for the stability

analysis.

3.2.1 Application to Telegrapher Equations

The Lyapunov function for the telegrapher equations (2.35) in decoupled characteristic form

(2.42) can be defined by (3.1) with

W :=

w1

w2

 and Φ(x) :=

p1e
−µx 0

0 p2e
µx

 , µ > 0, p1 > 0, p2 > 0.

The time derivative of the Lyapunov function (3.1) is obtained by (3.10) with

L′1(t) :=−

w1(l, t)

w2(0, t)

T |λ1|p1e
−µl 0

0 |λ2|p2

−KT

|λ1|p1 0

0 |λ2|p2e
µl

K
w1(l, t)

w2(0, t)

 ,
and

L′2(t) := −
∫ L

0

W T
[
µΦ(x)|Λ|+ ΠTΦ(x) + Φ(x)Π

]
Wdx.
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In order to show that the time derivative of the Lyapunov function, (3.10), is negative, it

suffices to show that the determinant of every principal sub-matrix of the matrices|λ1|p1e
−µl − k2

21|λ2|p2e
µl 0

0 |λ2|p2 − k2
12|λ1|p1

 , (3.11)

and µ|λ1|p1e
−µx + 2γ1p1e

−µx γ2p2e
µx + γ2p1e

−µx

γ2p2e
µx + γ2p1e

−µx µ|λ2|p2e
µx + 2γ1p2e

µx

 , (3.12)

is positive.

The determinant of the sub-matrices of the matrix (3.12) are

µ|λ1|p1e
−µx + 2γ1p1e

−µx = (µ|λ1|+ 2γ1) p1e
−µx, (3.13)

and

p1p2µ
2|λ1λ2|+ 2|λ2|µγ1p1p2 + 2|λ1|µγ1p1p2 + 4γ2

1p1p2

− e2µxγ2
2p

2
2 − 2γ2

2p1p2 − e−2µxγ2
2p

2
1,

=p1p2µ
2|λ1λ2|+ 2|λ2|µγ1p1p2 + 2|λ1|µγ1p1p2 + 4γ2

1p1p2 − 4γ2
2p1p2

− e2µxγ2
2p

2
2 + 2γ2

2p1p2 − e−2µxγ2
2p

2
1,

=
(
µ2|λ1λ2|+ 2µγ1 (|λ1|+ |λ2|) + 4

(
γ2

1 − γ2
2

))
p1p2 −

(
γ2p2e

µx − γ2p1e
−µx)2

,

=
[
(µ|λ1|+ 2γ1) (µ|λ2|+ 2γ1)− 4γ2

2

]
p1p2 −

(
γ2p2e

µx − γ2p1e
−µx)2

. (3.14)

If µ|λ1|+2γ1 > 0, µ|λ2|+2γ1 > 0, γ2
1 > γ2

2 and if p1 and p2 can be chosen such that p1 = p2,

then for sufficiently small µ > 0,

max
0≤x≤l

{γ2p2e
µx − γ2p1e

−µx} ≈ 0,

and both determinants (3.13) and (3.14) are positive.

Therefore, with the choice of p1 and p2, the matrix (3.11) is positive definite if k12 and k21

satisfy

|k12| <

√∣∣∣∣λ2

λ1

∣∣∣∣ and |k21| <

√∣∣∣∣λ1

λ2

∣∣∣∣e−µl,
respectively.
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3.2.2 Application to Isentropic Euler Equations

The Lyapunov function for the isentropic Euler equations (2.45) in decoupled characteristic

form (2.51) is defined by (3.1) with

W :=

w1

w2

 and Φ(x) :=

p1e
−µx 0

0 p2e
µx

 , µ > 0, p1 > 0, p2 > 0.

The time derivative of the Lyapunov function (3.1) is obtained by (3.10) with

L′1(t) := −

w1(l, t)

w2(0, t)

T |λ1(l)|p1e
−µl 0

0 |λ2(0)|p2


−KT

|λ1(0)|p1 0

0 |λ2(l)|p2e
µl

K
w1(l, t)

w2(0, t)

 ,
and

L′2(t) := −
∫ L

0

W T
[
µ|Λ(x)|Φ(x)− Λ′(x)Φ(x) + Π(x)TΦ(x) + Φ(x)Π(x)

]
Wdx.

In order to show that the time derivative of the Lyapunov function, (3.10), is negative, it

suffices to show that the determinant of every principal sub-matrix of the matrices|λ1(l)|p1e
−µl − k2

21|λ2(l)|p2e
µl 0

0 |λ2(0)|p2 − k2
12|λ1(0)|p1

 , (3.15)

andµ|λ1(x)|p1e
−µx − λ′1(x)p1e

−µx + 2γ11(x)p1e
−µx γ21(x)p2e

µx + γ12(x)p1e
−µx

γ21(x)p2e
µx + γ12(x)p1e

−µx µ|λ2(x)|p2e
µx − λ′2(x)p2e

µx + 2γ22(x)p2e
µx

 ,
(3.16)

is positive.

The determinant of the sub-matrices of the matrix (3.16) are

µ|λ1(x)|p1e
−µx − λ′1(x)p1e

−µx + 2γ11(x)p1e
−µx = (µ|λ1(x)| − λ′1(x) + 2γ11(x)) p1e

−µx,

(3.17)
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and

p1p2µ
2|λ1(x)λ2(x)| − |λ1(x)|µλ′2(x)p1p2 − |λ2(x)|µλ′1(x)p1p2

+ 2|λ1(x)|µγ22(x)p1p2 + 2|λ2(x)|µγ11(x)p1p2 + λ′1(x)λ′2(x)p1p2

− 2λ′1(x)γ22(x)p1p2 − 2λ′2(x)γ11(x)p1p2

− e2µxγ2
21(x)p2

2 + 2γ12(x)γ21(x)p1p2 − e−2µxγ12(x)p2
1,

=
(
µ2|λ1(x)λ2(x)|+ λ′1(x)λ′2(x)− µ|λ1(x)|λ′2(x)− µ|λ2(x)|λ′1(x)

)
p1p2

+ 2 ((µ|λ1(x)| − λ′1(x)) γ22(x) + (µ|λ2(x)| − λ′2(x)) γ11(x)) p1p2

−
(
γ21(x)p2e

µx − γ12(x)p1e
−µx)2

,

= (µ|λ1(x)| − λ′1(x)) (µ|λ2(x)| − λ′2(x)) p1p2

+ 2 ((µ|λ1(x)| − λ′1(x)) γ22(x) + (µ|λ2(x)| − λ′2(x)) γ11(x)) p1p2

−
(
γ21(x)p2e

µx − γ12(x)p1e
−µx)2

. (3.18)

If the following holds for all x ∈ [0, l] and µ > 0,

µ|λ1(x)| − λ′1(x) > 0, µ|λ2(x)| − λ′2(x) > 0,

µ|λ1(x)| − λ′1(x) + 2γ11(x) > 0,

µ|λ2(x)| − λ′2(x) + 2γ22(x) > 0,

and if p1 and p2 can be chosen such that

p1

p2

= max
0≤x≤l

γ21(x)

γ12(x)
,

then for sufficiently small µ > 0,

max
0≤x≤l

{γ21(x)p2e
µx − γ12(x)p1e

−µx} ≈ 0,

and both (3.17) and (3.18) are positive.

With the choice of p1 and p2, the matrix (3.15) is positive definite if k12 and k21 satisfy

|k12| <

√∣∣∣∣λ2(0)

λ1(0)

∣∣∣∣ 1

p1/p2

and |k21| <

√∣∣∣∣λ1(l)

λ2(l)

∣∣∣∣ p1

p2

e−µl,

respectively.
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3.2.3 Application to Saint-Venant Equations

The Lyapunov function for the Saint-Venant Equations (2.54) in decoupled characteristic form

(2.60) is defined by (3.1) with

W :=

w1

w2

 and Φ(x) :=

p1e
−µx 0

0 p2e
µx

 , µ > 0, p1 > 0, p2 > 0.

The time derivative of the Lyapunov function (3.1) is obtained by (3.10) with

L′1(t) := −

w1(l, t)

w2(0, t)

T |λ1(l)|p1e
−µl 0

0 |λ2(0)|p2


−KT

|λ1(0)|p1 0

0 |λ2(l)|p2e
µl

K
w1(l, t)

w2(0, t)

 ,
and

L′2(t) := −
∫ l

0

W T
[
µ|Λ(x)|Φ(x)− Λ′(x)Φ(x) + Π(x)TΦ(x) + Φ(x)Π(x)

]
Wdx.

In order to show that the time derivative of the Lyapunov function, (3.10), is negative, it

suffices to show that the determinant of every principal sub-matrix of the matrices|λ1(l)|p1e
−µl − k2

21|λ2(l)|p2e
µl 0

0 |λ2(0)|p2 − k2
12|λ1(0)|p1

 , (3.19)

andµ|λ1(x)|p1e
−µx − λ′1(x)p1e

−µx + 2γ11(x)p1e
−µx γ21(x)p2e

µx + γ12(x)p1e
−µx

γ21(x)p2e
µx + γ12(x)p1e

−µx µ|λ2(x)|p2e
µx − λ′2(x)p2e

µx + 2γ22(x)p2e
µx

 ,
(3.20)

is positive.

The determinant of the sub-matrices of the matrix (3.20) are

µ|λ1(x)|p1e
−µx − λ′1(x)p1e

−µx + 2γ11(x)p1e
−µx = (µ|λ1(x)| − λ′1(x) + 2γ11(x)) p1e

−µx,

(3.21)
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and

p1p2µ
2|λ1(x)λ2(x)| − |λ1(x)|µλ′2(x)p1p2 − |λ2(x)|µλ′1(x)p1p2

+ 2|λ1(x)|µγ22(x)p1p2 + 2|λ2(x)|µγ11(x)p1p2 + λ′1(x)λ′2(x)p1p2

− 2λ′1(x)γ22(x)p1p2 − 2λ′2(x)γ11(x)p1p2

− e2µxγ2
21(x)p2

2 + 2γ12(x)γ21(x)p1p2 − e−2µxγ12(x)p2
1,

=
(
µ2|λ1(x)λ2(x)|+ λ′1(x)λ′2(x)− µ|λ1(x)|λ′2(x)− µ|λ2(x)|λ′1(x)

)
p1p2

+ 2 ((µ|λ1(x)| − λ′1(x)) γ22(x) + (µ|λ2(x)| − λ′2(x)) γ11(x)) p1p2

−
(
γ21(x)p2e

µx − γ12(x)p1e
−µx)2

,

= (µ|λ1(x)| − λ′1(x)) (µ|λ2(x)| − λ′2(x)) p1p2

+ 2 ((µ|λ1(x)| − λ′1(x)) γ22(x) + (µ|λ2(x)| − λ′2(x)) γ11(x)) p1p2

−
(
γ21(x)p2e

µx − γ12(x)p1e
−µx)2

. (3.22)

If the following holds for all x ∈ [0, l] and µ > 0,

µ|λ1(x)| − λ′1(x) > 0, µ|λ2(x)| − λ′2(x) > 0,

µ|λ1(x)| − λ′1(x) + 2γ11(x) > 0,

µ|λ2(x)| − λ′2(x) + 2γ22(x) > 0,

and if p1 and p2 can be chosen such that

p1

p2

= max
0≤x≤l

γ21(x)

γ12(x)
,

then for sufficiently small µ > 0,

max
0≤x≤l

{γ21(x)p2e
µx − γ12(x)p1e

−µx} ≈ 0,

and both (3.21) and (3.22) are positive.

With the choice of p1 and p2, the matrix (3.19) is positive definite if k12 and k21 satisfy

|k12| <

√∣∣∣∣λ2(0)

λ1(0)

∣∣∣∣ 1

p1/p2

and |k21| <

√∣∣∣∣λ1(l)

λ2(l)

∣∣∣∣ p1

p2

e−µl,

respectively.
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3.2.4 Application to Saint-Venant-Exner Equations

The Lyapunov function for the Saint-Venant-Exner equations (2.63) in decoupled characteristic

form (2.73) is defined by (3.1) with

W :=


w1

w2

w3

 and Φ(x) :=


p1e
−µx 0 0

0 p2e
−µx 0

0 0 p3e
µx

 , µ > 0, p1 > 0, p2 > 0, p3 > 0.

The time derivative of the Lyapunov function (3.1) is obtained by (3.10) with

L′1(t) := −


w1(l, t)

w2(l, t)

w3(0, t)


T 


|λ1|p1e

−µl 0 0

0 |λ2|p2e
−µl 0

0 0 |λ3|p3



−KT


|λ1|p1 0 0

0 |λ2|p2 0

0 0 |λ3|p3e
µl

K


w1(l, t)

w2(l, t)

w3(0, t)

 ,
and

L′2(t) := −
∫ l

0

W T
[
µΦ(x)|Λ|+ ΠTΦ(x) + Φ(x)Π

]
Wdx.

In order to show that the time derivative of the Lyapunov function, (3.10), is negative, it

suffices to show that the determinant of every principal sub-matrix of the matrices
|λ1|p1e

−µl − k2
31|λ3|p3e

µl −k31k32|λ3|p3e
µl 0

−k31k32|λ3|p3e
µl |λ2|p2e

−µl − k2
32|λ3|p3e

µl 0

0 0 |λ3|p3 − k2
13|λ1|p1 − k2

23|λ2|p2

 ,
(3.23)

and
µ|λ1|p1e

−µx + 2γ1p1e
−µx γ2p1e

−µx + γ1p2e
−µx γ3p1e

−µx + γ1p3e
µx

γ2p1e
−µx + γ1p2e

−µx µ|λ2|p2e
−µx + 2γ2p2e

−µx γ3p2e
−µx + γ2p3e

µx

γ3p1e
−µx + γ1p3e

µx γ3p2e
−µx + γ2p3e

µx µ|λ3|p3e
µx + 2γ3p3e

µx

 , (3.24)

is positive.
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The determinants of every sub-matrix of the matrix (3.24) are

µ|λ1|p1e
−µx + 2γ1p1e

−µx = (µ|λ1|+ 2γ1) p1e
−µx, (3.25)

(
2 |λ1|µγ2p1p2 + 2 |λ2|µγ1p1p2 + |λ1λ2|µ2p1p2 − γ1

2p2
2 + 2γ1γ2p1p2 − γ2

2p1
2
)
e−2µx

=
(
2 |λ1|µγ2p1p2 + 2 |λ2|µγ1p1p2 + |λ1λ2|µ2p1p2 − (γ1p2 − γ2p1)2) e−2µx, (3.26)

and

µ3|λ1λ2λ3|p1p2p3e
−µx + 2µ2|λ2λ3|γ1p1p2p3e

−µx + 2µ2|λ1λ3|γ2p1p2p3e
−µx

+ 2µ2|λ1λ2|γ3p1p2p3e
−µx + 2µ|λ3|γ1γ2p1p2p3e

−µx + 2µ|λ2|γ1γ3p1p2p3e
−µx

+ 2µ|λ1|γ2γ3p1p2p3e
−µx − µ|λ3|γ2

1p
2
2p3e

−µx − µ|λ3|γ2
2p

2
1p3e

−µx

− µ|λ2|γ2
1p2p

2
3e
µx − µ|λ2|γ2

3p
2
1p2e

−3µx − µ|λ1|γ2
2p1p

2
3e
µx − µ|λ1|γ2

3p1p
2
2e
−3µx,

= µ2p1p2p3 (µ|λ1λ2λ3|+ 2|λ2λ3|γ1 + 2|λ1λ3|γ2 + 2|λ1λ2|γ3) e−µx

+ 2µ|λ3|γ1γ2p1p2p3e
−µx + 2µ|λ2|γ1γ3p1p2p3e

−µx + 2µ|λ1|γ2γ3p1p2p3e
−µx

− µ|λ3|p3

(
γ2

1p
2
2 + γ2

2p
2
1

)
e−µx − µ|λ2|p2

(
γ2

1p
2
3e

2µx + γ2
3p

2
1e
−2µx

)
e−µx

− µ|λ1|p1

(
γ2

2p
2
3e

2µx + γ2
3p

2
2e
−2µx

)
e−µx,

= µ2p1p2p3 (µ|λ1λ2λ3|+ 2|λ2λ3|γ1 + 2|λ1λ3|γ2 + 2|λ1λ2|γ3) e−µx

− µ|λ3|p3

(
γ2

1p
2
2 − 2γ1γ2p1p2 + γ2

2p
2
1

)
e−µx

− µ|λ2|p2

(
γ2

1p
2
3e

2µx − 2γ1γ3p1p3 + γ2
3p

2
1e
−2µx

)
e−µx

− µ|λ1|p1

(
γ2

2p
2
3e

2µx − 2|λ1|γ2γ3p2p3 + γ2
3p

2
2e
−2µx

)
e−µx,

= µ2p1p2p3 (µ|λ1λ2λ3|+ 2|λ2λ3|γ1 + 2|λ1λ3|γ2 + 2|λ1λ2|γ3) e−µx

− µ|λ3|p3 (γ1p2 − γ2p1)2 e−µx − µ|λ2|p2

(
γ1p3e

µx − γ3p1e
−µx)2

e−µx

− µ|λ1|p1

(
γ2p3e

µx − γ3p2e
−µx)2

e−µx. (3.27)

Since γ1 > 0, γ2 > 0, γ3 > 0, λ1 > 0, λ2 > 0 and |λ3| > 0, if one can choose p1, p2 and p3

such that p1 = γ1, p2 = γ2 and p3 = γ3, then for sufficiently small µ > 0,

max
0≤x≤l

{γ1p3e
µx − γ3p1e

−µx} ≈ 0, max
0≤x≤l

{γ2p3e
µx − γ3p2e

−µx} ≈ 0,

and the determinants (3.25), (3.26) and (3.27) are positive.
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Therefore, with the choice of p1, p2 and p3, the matrix (3.23) is positive definite if k13, k23,

k31 and k32 satisfy

|k13| <

√∣∣∣∣λ3

λ1

∣∣∣∣ γ3

γ1

, |k23| <

√∣∣∣∣λ3

λ2

∣∣∣∣ γ3

γ2

, |k31| <

√∣∣∣∣λ1

λ3

∣∣∣∣ γ1

γ3

e−µl and |k32| <

√∣∣∣∣λ2

λ3

∣∣∣∣ γ2

γ3

e−µl.

3.3 Summary

In this chapter, we have discussed the exponential stability analysis of linear hyperbolic systems

of balance laws in general and particular cases. Furthermore, it has been applied into some

relevant examples of linear or linearized hyperbolic systems of balance laws.
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Chapter 4

Numerical Methods for Linear

Hyperbolic Systems of Balance Laws

In this chapter, we mainly focus on first-order numerical schemes for the solution of linear

hyperbolic systems of balance laws in one-space dimension, in particular upwind scheme for

conservation part and centered discretization for source terms by considering two main ap-

proaches; direct and splitting methods. For this reason, we study finite volume methods under

a uniform grid and then we give a first-order discrete linear hyperbolic systems of balance laws.

4.1 Finite volume methods in one space dimension

Consider the Cauchy problem (2.31) associated with a linear hyperbolic system of balance laws

in one-space dimension and the independent variables x and t are defined on finite intervals

[0, l] and [0, T ], respectively for l > 0 and T > 0. In order to obtain numerical solution for

this system, the finite volume methods (FVM) will be used [33]. Therefore, the spatial and

temporal interval will be discretized into subintervals (also called grid cells). For simplicity, we

use a uniform grid illustrated by Figure 4.1 below with grid sizes for the temporal and spatial

intervals denoted by ∆t and ∆x, respectively. Hence, there are a finite number of grid points

49
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along the time and the space directions, which are denoted by

tn := n∆t, n = 0, . . . , N, and xj− 1
2

= j∆x, j = 0, . . . , J,

with N∆t = T and J∆x = l, respectively. Moreover, the left and right boundary points are

denoted by x− 1
2

and xJ− 1
2
, respectively. Let xj = (j + 1

2
)∆x for j = 0, . . . , J − 1 denote cell

centers.

xj−1 xj xj+1

tn

tn+1

∆t

∆x

Figure 4.1: Example for a uniform grid

The next step in FVM here is approximating the integral of W over each grid cell (xj− 1
2
, xj+ 1

2
).

Therefore, the value W n
j approximates the jth cell average at time tn, n = 0, . . . , N and it

can be expressed as

W n
j =

1

∆x

∫ x
j+1

2

x
j− 1

2

W (x, tn)dx, j = 0, . . . , J − 1. (4.1)

Since W is a smooth function, an approximate value W n
j can be obtained by the midpoint

value of W at each midpoint of the cells and then the integral of W over the spatial domain

[0, l] is approximated by
∑J−1

j=0 W
n
j ∆x at each time step tn, n = 0, . . . , N.

In order to obtain a numerical solution for the Cauchy problem (2.31), we use the integral

equation form of an equivalent expression for the system (2.31a). Since

∂x (Λ(x)W ) = Λ(x)∂xW + Λ′(x)W,
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the system (2.31a) can written in the following form

∂tW + ∂x (Λ(x)W ) + (Π(x)− Λ′(x))W = 0.

Therefore, the integral form is expressed as follows

∂t

∫ x
j+1

2

x
j− 1

2

W (x, t)dx = Λ(xj− 1
2
)W (xj− 1

2
, t)− Λ(xj+ 1

2
)W (xj+ 1

2
, t)

− 1

∆x

∫ x
j+1

2

x
j− 1

2

(Π(x)− Λ′(x))W (x, t)dx, j = 0, . . . , J − 1.

(4.2)

We integrate now the semi-discrete integral equation (4.2) over [tn, tn+1], n = 0, . . . , N − 1

to obtain∫ x
j+1

2

x
j− 1

2

W (x, tn+1)dx−
∫ x

j+1
2

x
j− 1

2

W (x, tn)dx =

∫ tn+1

tn
Λ(xj− 1

2
)W (xj− 1

2
, t)dt

−
∫ tn+1

tn
Λ(xj+ 1

2
)W (xj+ 1

2
, t)dt

− 1

∆x

∫ tn+1

tn

∫ x
j+1

2

x
j− 1

2

(Π(x)− Λ′(x))W (x, t)dxdt,

j = 0, . . . , J − 1.

(4.3)

Dividing the fully discrete integral equation (4.3) by ∆x and using equation (4.1), we obtain

W n+1
j = W n

j −
∆t

∆x

(
Oj+ 1

2
−Oj− 1

2

)
−∆tSj, j = 0, . . . , J − 1, n = 0, . . . , N − 1,

(4.4)

with

Oj− 1
2

:=
1

∆t

∫ tn+1

tn
Λ(xj− 1

2
)W (xj− 1

2
, t)dt and

Sj :=
1

∆t∆x

∫ tn+1

tn

∫ x
j+1

2

x
j− 1

2

(Π(x)− Λ′(x))W (x, t)dxdt.

Since the system (2.31a) is strictly hyperbolic this fully discrete system (4.4) can be obtained

by means of a numerical flux O and a numerical source function S [10, 33]. It was shown in

Chapter 2 that the characteristic variables wi, i = 1, . . . , k are constant along the characteristic
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curves and represent the propagation of information with positive and negative characteristic

speeds λi,j. With this, for positive λi,j, i = 1, . . . ,m, j = 0, . . . , J − 1, the corresponding

values wi(xj, t
n+1), i = 1, . . . ,m depend only on the values of wi, i = 1, . . . ,m at time tn to

the left of xj and wn+1
i,j depends only on wni,j. Similarly, for negative λi,j, i = m+1, . . . , k, j =

0, . . . , J −1, the corresponding values wi(xj, t
n+1), i = m+ 1, . . . , k depend only on the right

of xj and wn+1
i,j , i = m + 1, . . . , k depends only on wni,j. In that case, the flux Oj− 1

2
and the

source term Sj can be written in the following form

Oj− 1
2

:=
[
O+
j− 1

2

, O−
j− 1

2

]T
and Sj := S+

j + S−j ,

with

O±
j− 1

2

:= ± 1

∆t

∫ tn+1

tn
Λ±(xj− 1

2
)W±(xj− 1

2
, t)dt and

S±j :=
1

∆t∆x

∫ tn+1

tn

∫ x
j+1

2

x
j− 1

2

G±(x)W±(x, t)dxdt,

with

G+(x) = Π+(x)−

Λ+′(x)

0

 and G−(x) = Π−(x)−

 0

−Λ−
′
(x)

 ,
where matrices Π+(x) ∈ Rk×m and Π−(x) ∈ Rk×(k−m). Therefore, the flux O±

j− 1
2

depends

only on the values xj−1, xj, W
±n
j−1 and W±n

j and the source term S+
j and S−j depend only

on the values xj−1, xj, W
+n
j−1 and W+n

j and xj, xj+1, , W−n
j and W−n

j+1, respectively and

then for each j = 0, . . . , J − 1 and n = 0, . . . , N − 1, we have

O±
n
j− 1

2
:= O±(xj−1, xj,W

±n
j−1,W

±n
j ),

S+n
j := S+

(
xj−1, xj,W

+n
j−1,W

+n
j

)
and

S−
n
j := S−

(
xj, xj+1,W

−n
j ,W

−n
j+1

)
.

Hence, the discretization of the system (2.31a) can now be expressed as followsW+n+1
j

W−n+1
j

 =

W+n
j

W−n
j

− ∆t

∆x

O+(xj, xj+1,W
+n
j ,W

+n
j+1)−O+(xj−1, xj,W

+n
j−1,W

+n
j )

O−(xj, xj+1,W
−n
j ,W

−n
j+1)−O−(xj−1, xj,W

−n
j−1,W

−n
j )


−∆t

[
S+
(
xj−1, xj,W

+n
j−1,W

+n
j

)
+ S−

(
xj, xj+1,W

−n
j ,W

−n
j+1

)]
,

j = 0, . . . , J − 1, n = 0, . . . , N − 1. (4.5)
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In order to obtain a numerical solution for the system (2.31a), we should use a convergent,

consistent and stable numerical scheme for the discretized system (4.5) as ∆x,∆t→ 0 [33].

For this reason, we choose the first-order upwind method and then the numerical flux can be

expressed in the following form

O+(xj−1, xj,W
+n
j−1,W

+n
j ) := Λ+(xj−1)W+n

j−1 and

O−(xj−1, xj,W
−n
j−1,W

−n
j ) := Λ−(xj)W

−n
j .

The numerical source term by using two possible approximation methods, which are called

centered discretization and upwinded approximation [36], can be expressed as follows

S+
(
xj−1, xj,W

+n
j−1,W

+n
j

)
:= G+(xj)W

+n
j and

S−
(
xj, xj+1,W

−n
j ,W

−n
j+1

)
:= G−(xj)W

−n
j ,

and

S+
(
xj−1, xj,W

+n
j−1,W

+n
j

)
:=

1

2

(
G+(xj−1)W+n

j−1 + G+(xj)W
+n
j

)
and

S−
(
xj, xj+1,W

−n
j ,W

−n
j+1

)
:=

1

2

(
G−(xj)W

−n
j + G−(xj+1)W−n

j+1

)
,

respectively. It must be noted that the stability holds under CFL condition

∆t

∆x
max
1≤i≤k

1≤j≤J−1

|λi,j| ≤ 1.

Hence, the first-order discretization of the system (2.31a) with centered discretization can be

written in the following formW+n+1
j

W−n+1
j

 =

W+n
j

W−n
j

− ∆t

∆x

Λ+
j W

+n
j − Λ+

j−1W
+n
j−1

Λ−j W
−n
j − Λ−j+1W

−n
j+1

−∆t
(
Πj − Λ′j

)W+n
j

W−n
j

 ,
j = 0, . . . , J − 1, n = 0, . . . , N − 1, (4.6)

with

Λ+
j− 1

2

:= Λ+(xj− 1
2
), Λ−

j− 1
2

:= Λ−(xj− 1
2
) and Πj − Λ′j := Π(xj)− Λ′(xj).

However, since

1

∆x

Λ+
j W

+n
j − Λ+

j−1W
+n
j−1

Λ−j W
−n
j − Λ−j+1W

−n
j+1

 =
1

∆x

Λ+
j−1 0

0 Λ−j+1

W+n
j −W+n

j−1

W−n
j −W−n

j+1


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+
1

∆x

Λ+
j − Λ+

j−1 0

0 −
(
Λ−j+1 − Λ−j

)
W n

j ,

=
1

∆x

Λ+
j−1 0

0 Λ−j+1

W+n
j −W+n

j−1

W−n
j −W−n

j+1

+ Λ′jW
n
j ,

the fully discretized system (4.6) can be expressed as followsW+n+1
j

W−n+1
j

 =

W+n
j

W−n
j

− ∆t

∆x

Λ+
j−1 0

0 Λ−j+1

W+n
j −W+n

j−1

W−n
j −W−n

j+1

−∆tΠj

W+n
j

W−n
j

 ,
j = 0, . . . , J − 1, n = 0, . . . , N − 1. (4.7)

The discretized system (4.7) is an explicit discretization. Then an explicit with implicit source

terms discretization can be expressed in the following formW+n+1
j

W−n+1
j

 =

W+n
j

W−n
j

− ∆t

∆x

Λ+
j W

+n
j − Λ+

j−1W
+n
j−1

Λ−j W
−n
j − Λ−j+1W

−n
j+1

−∆t
(
Πj − Λ′j

)W+n+1
j

W−n+1
j

 ,
j = 0, . . . , J − 1, n = 0, . . . , N − 1. (4.8)

In the special case, the linear system with constant coefficients (2.32a) can be discretized

using similar method of discretization for the system (4.7). Therefore, it is obtained as followsW+n+1
j

W−n+1
j

 =

W+n
j

W−n
j

− ∆t

∆x

Λ+ 0

0 Λ−

W+n
j −W+n

j−1

W−n
j −W−n

j+1

−∆tΠ

W+n
j

W−n
j

 ,
j = 0, . . . , J − 1, n = 0, . . . , N − 1. (4.9)

The explicit with implicit source terms discretization for the linear system with constant coef-

ficients can be expressed in the following formW+n+1
j

W−n+1
j

 =

W+n
j

W−n
j

− ∆t

∆x

Λ+ 0

0 Λ−

W+n
j −W+n

j−1

W−n
j −W−n

j+1

−∆tΠ

W+n+1
j

W−n+1
j

 ,
j = 0, . . . , J − 1, n = 0, . . . , N − 1. (4.10)

In general, the direct method approach, which has been used to discretize the systems (2.31a)

and (2.32a) might have some problems in the analysis of convergence and stability. For
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instance, in [44] the direct method of discretization fails in the analysis of convergence. For

this reason and to obtain better results, we prefer to use the splitting method approach

discretization. Therefore, by using this method the following discretized linear systems with

variable coefficientsW̃+
n

j

W̃−
n

j

 =

W+n
j

W−n
j

− ∆t

∆x

Λ+
j−1 0

0 Λ−j+1

W+n
j −W+n

j−1

W−n
j −W−n

j+1

 , (4.11a)

W+n+1
j

W−n+1
j

 =

W̃+
n

j

W̃−
n

j

−∆tΠj

W̃+
n

j

W̃−
n

j

 , (4.11b)

n = 0, . . . , N − 1, j = 0, . . . , J − 1,

and with constant coefficientsW̃+
n

j

W̃−
n

j

 =

W+n
j

W−n
j

− ∆t

∆x

Λ+ 0

0 Λ−

W+n
j −W+n

j−1

W−n
j −W−n

j+1

 , (4.12a)

W+n+1
j

W−n+1
j

 =

W̃+
n

j

W̃−
n

j

−∆tΠ

W̃+
n

j

W̃−
n

j

 , (4.12b)

n = 0, . . . , N − 1, j = 0, . . . , J − 1,

are obtained.

4.2 The discrete Cauchy problem

The discretized initial condition for the discretized system (4.7) can be specified by using

equation (4.1) and (2.31c) as follows

W 0
j =

1

∆x

∫ x
j+1

2

x
j− 1

2

W0(x)dx, j = 0, . . . , J − 1. (4.13)

In order to discretize the boundary condition (2.31b), there must be extra cells (also called

ghost cells) to approximate the cell average at cell center. Since we are interested in first-

order accurate approximation, we need only one extra cell to specify boundary values for

each characteristic variable. Therefore, for each characteristic variable traveling to the right
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direction, we set boundary condition at the left boundary point and for each characteristic

variables traveling to the left direction, we set boundary condition at the right boundary point.

Hence, the boundary values at boundary points x− 1
2

and xJ− 1
2

can be approximated by W+n
−1

and W−n
J , respectively and then by using the algebraic relation of boundary values (2.31b),

we have W+n+1
−1

W−n+1
J

 =

K11 K12

K21 K22

W+n+1
J−1

W−n+1
0

 , n = 0, . . . , N − 1. (4.14)

We have now the discrete Cauchy problem associated with the discretized system (4.7), initial

(4.13) and boundary (4.14) conditions.

In general, the numerical solution, W n
j , for the discretized system (4.7) is now used to approx-

imate the smooth solution for the Cauchy problem (2.31), which is expressed in the following

form

W (x, t) =
N−1∑
n=0

J−1∑
j=0

W n
j χ[x

j− 1
2
,x

j+1
2

)×[tn,tn+1], (4.15)

where χ[x
j− 1

2
,x

j+1
2

)×[tn,tn+1] is a step function over [xj− 1
2
, xj+ 1

2
)× [tn, tn+1].

4.3 Application to some hyperbolic systems of balance

laws

4.3.1 The Telegrapher Equations

The telegrapher equations in the decoupled linear system with constant coefficients form (2.42)

can be discretized by considering the splitting method approach and then it can be expressed

as followsw̃1
n
j

w̃2
n
j

 =

w1
n
j

w2
n
j

− ∆t

∆x

λ1 0

0 |λ2|

w1
n
j − w1

n
j−1

w2
n
j − w2

n
j+1

 , n = 0, . . . , N − 1, (4.16a)

w1
n+1
j

w2
n+1
j

 =

w̃1
n
j

w̃2
n
j

−∆t

γ1 γ2

γ2 γ1

w̃1
n
j

w̃2
n
j

 , j = 0, . . . , J − 1. (4.16b)
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The discretization of the initial condition (2.43) and the boundary conditions (2.44) can be

obtained by using (4.13) and (4.14), respectively and then it can be expressed as follows

W 0
j =

1

∆x

∫ x
j+1

2

x
j− 1

2

W0(x)dx, j = 0, . . . , J − 1 (4.17)

and w1
n+1
−1

w2
n+1
J

 =

 0 k12

k21 0

w1
n+1
J−1

w2
n+1
0

 , n = 0, . . . , N − 1. (4.18)

4.3.2 The Isentropic Euler Equations

The isentropic Euler equations in the decoupled linear system with variable coefficients form

(2.51) can be discretized by considering the splitting method approach and then it can be

expressed as followsw̃1
n
j

w̃2
n
j

 =

w1
n
j

w2
n
j

− ∆t

∆x

λ1,j−1 0

0 |λ2,j+1|

w1
n
j − w1

n
j−1

w2
n
j − w2

n
j+1

 , n = 0, . . . , N − 1, (4.19a)

w1
n+1
j

w2
n+1
j

 =

w̃1
n
j

w̃2
n
j

−∆t

γ11,j γ12,j

γ21,j γ22,j

w̃1
n
j

w̃2
n
j

 , j = 0, . . . , J − 1. (4.19b)

The discretization of the initial condition (2.52) and the boundary conditions (2.53) can be

obtained by using (4.13) and (4.14), respectively and then it can be expressed as follows

W 0
j =

1

∆x

∫ x
j+1

2

x
j− 1

2

W0(x)dx, j = 0, . . . , J − 1 (4.20)

and w1
n+1
−1

w2
n+1
J

 =

 0 k12

k21 0

w1
n+1
J−1

w2
n+1
0

 , n = 0, . . . , N − 1. (4.21)

4.3.3 The Saint-Venant Equations

The Saint-Venant equations in the decoupled linear system with variable coefficients form

(2.60) can be discretized by considering the splitting method approach and then it can be
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expressed as followsw̃1
n
j

w̃2
n
j

 =

w1
n
j

w2
n
j

− ∆t

∆x

λ1,j−1 0

0 |λ2,j+1|

w1
n
j − w1

n
j−1

w2
n
j − w2

n
j+1

 , n = 0, . . . , N − 1, (4.22a)

w1
n+1
j

w2
n+1
j

 =

w̃1
n
j

w̃2
n
j

−∆t

γ11,j γ12,j

γ21,j γ22,j

w̃1
n
j

w̃2
n
j

 , j = 0, . . . , J − 1. (4.22b)

The discretization of the initial condition (2.61) and the boundary conditions (2.62) can be

obtained by using (4.13) and (4.14), respectively and then it can be expressed as follows

W 0
j =

1

∆x

∫ x
j+1

2

x
j− 1

2

W0(x)dx, j = 0, . . . , J − 1 (4.23)

and w1
n+1
−1

w2
n+1
J

 =

 0 k12

k21 0

w1
n+1
J−1

w2
n+1
0

 , n = 0, . . . , N − 1. (4.24)

4.3.4 The Saint-Venant-Exner Equations

The Saint-Venant-Exner equations in the decoupled linear system with constant coefficients

form (2.73) can be discretized by considering the splitting method approach and then it can

be expressed as follows
w̃1

n
j

w̃2
n
j

w̃3
n
j

 =


w1

n
j

w2
n
j

w3
n
j

− ∆t

∆x


λ1 0 0

0 λ2 0

0 0 |λ3|



w1

n
j − w1

n
j−1

w2
n
j − w2

n
j−1

w3
n
j − w3

n
j+1

 , n = 0, . . . , N − 1, (4.25a)


w1

n+1
j

w2
n+1
j

w3
n+1
j

 =


w̃1

n
j

w̃2
n
j

w̃3
n
j

−∆t


γ1 γ2 γ3

γ1 γ2 γ3

γ1 γ2 γ3



w̃1

n
j

w̃2
n
j

w̃3
n
j

 , j = 0, . . . , J − 1. (4.25b)

The discretization of the initial condition (2.74) and the boundary conditions (2.75) can be

obtained by using (4.13) and (4.14), respectively and then it can be expressed as follows

W 0
j =

1

∆x

∫ x
j+1

2

x
j− 1

2

W0(x)dx, j = 0, . . . , J − 1 (4.26)
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and 
w1

n+1
−1

w2
n+1
−1

w3
n+1
J

 =


0 0 k13

0 0 k23

k31 k32 0



w1

n+1
J−1

w2
n+1
J−1

w3
n+1
0

 , n = 0, . . . , N − 1. (4.27)

4.4 Summary

In this chapter, the numerical methods for a linear hyperbolic system of balance laws has

been discussed and used to discretize the Cauchy problem of examples of hyperbolic system

of balance laws presented in Chapter 2.

In the next chapter, numerical boundary stabilization for a linear hyperbolic system of balance

laws will be presented.
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Chapter 5

Numerical Boundary Stabilization of

Linear Hyperbolic Systems of Balance

Laws

In this chapter, we investigate conditions for a numerical exponential stability analysis of

discretized Cauchy problem associated with discretized linear hyperbolic systems of balance

laws (4.7) and (4.9) by considering the time splitting method with the discretized initial (4.13)

and boundary (4.14) conditions under steady state solution W n
j ≡ 0,∀j = 0, . . . , J − 1,∀

n = 0, . . . , N−1. For this reason, we introduce a discrete version of the L2 Lyapunov function

(3.1) and exponential stability definition for L2−norm.

5.1 Discrete Lyapunov Exponential Stability Analysis

In this section, our aim is to investigate conditions for the exponential decay of the numerical

solution W n
j . First, we define exponential stability as follows.

Definition 7. The discretized linear hyperbolic system (4.11) (or (4.12)) with the discretized

boundary conditions (4.14) is exponentially stable if there exist η > 0 and C > 0 such that,

for every W 0
j ∈ L2((xj− 1

2
, xj+ 1

2
);Rk), j = 0, . . . , J−1, the solution to the discretized Cauchy

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 5. NUMERICAL BOUNDARY STABILIZATION OF LINEAR HSBL 61

problem (4.11) (or (4.12)), (4.13), (4.14) satisfies

∆x
J−1∑
j=0

[
W n
j

]T [
W n
j

]
≤ Ce−ηt

n

∆x
J−1∑
j=0

[
W 0
j

]T [
W 0
j

]
, n = 0, . . . , N.

Consider a Cauchy problem defined by the discretized system (4.11) with the discretized

initial (4.13) and boundary (4.14) conditions under steady state solution W n
j ≡ 0,∀j =

0, . . . , J − 1,∀ n = 0, . . . , N − 1.

In order to obtain conditions for the stability of the Cauchy problem, we define the following

discrete candidate Lyapunov function

Ln = ∆x
J−1∑
j=0

(
W n
j

)T
ΦjW

n
j , n = 0, . . . , N, (5.1)

where Φj := diag{P+e−µxj , P−eµxj}, with

P+(x) := diag{p1, . . . , pm}, P−(x) := diag{pm+1, . . . , pk} and pi > 0, i = 1, . . . , k.

Theorem 4. Let T > 0 be fixed and for each j = 0, . . . , J − 1 assume λi,j > 0, i = 1, . . . ,m

and λi,j < 0, i = m + 1, . . . , k. Let the discrete Lyapunov function be defined by (5.1). If

the CFL condition ∆t
∆x

max 1≤i≤k

0≤j≤J−1
|λi,j| ≤ 1 holds and there exists a real number µ > 0,

pi > 0, i = 1, . . . , k, such that 0 < µαe−µ∆x − β < 1, where

α = min
1≤i≤k

0≤j≤J−1

|λi,j| and β = max
1≤i≤k

0≤j≤J−1

λ′i,j,

ΠT
j Φj + ΦjΠj −∆tΠT

j ΦjΠj, j = 0, . . . , J − 1, is positive semi-definite (5.2)

and P+e−µxJ Λ+
J−1 0

0 P−eµx−1Λ−0

−KT

P+e−µx0Λ+
−1 0

0 P−eµxJ−1Λ−J

K, (5.3)

is positive definite, then the numerical solution W n
j of the Cauchy problem (4.11), (4.13),

(4.14) converges to a steady-state solution W ∗
j = 0 for the L2−norm.
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Proof. The time derivative of the Lyapunov function (3.1) is approximated by using the

discrete Lyapunov function (5.1), which is obtained in the following form

Ln+1 − Ln

∆t
=
Ln+1 − L̃n

∆t
+
L̃n − Ln

∆t
, (5.4)

with

L̃n := ∆x
J−1∑
j=0

(
W̃ n
j

)T
ΦjW̃

n
j , n = 0, . . . , N.

In order to show that the time derivative (5.4) is a negative definite quadratic form, it suffices

to show that both approximation of the time derivatives

Ln+1 − L̃n

∆t
=

∆x

∆t

J−1∑
j=0

[(
W n+1
j

)T
ΦjW

n+1
j −

(
W̃ n
j

)T
ΦjW̃

n
j

]
, (5.5)

and

L̃n − Ln

∆t
=

∆x

∆t

J−1∑
j=0

[(
W̃ n
j

)T
ΦjW̃

n
j −

(
W n
j

)T
ΦjW

n
j

]
(5.6)

are negative definite quadratic forms.

We use now the discretized system (4.11) with boundary condition (4.14) to obtain the fol-

lowing

Ln+1 − L̃n

∆t
=

∆x

∆t

J−1∑
j=0

[(
W̃ n
j −∆tΠjW̃

n
j

)T
Φj

(
W̃ n
j −∆tΠjW̃

n
j

)
−
(
W̃ n
j

)T
Φj

(
W̃ n
j

)]
,

=
∆x

∆t

J−1∑
j=0

[(
W̃ n
j

)T
Φj

(
W̃ n
j

)
−
(
W̃ n
j

)T
Φj

(
W̃ n
j

)]

−∆x
J−1∑
j=0

[(
W̃ n
j

)T
ΠT
j Φj

(
W̃ n
j

)
+
(
W̃ n
j

)T
ΦjΠj

(
W̃ n
j

)
−∆t

(
W̃ n
j

)T
ΠT
j ΦjΠj

(
W̃ n
j

)]
,

=−∆x
J−1∑
j=0

(
W̃ n
j

)T [
ΠT
j Φj + ΦjΠj −∆tΠT

j ΦjΠj

] (
W̃ n
j

)
,

and

L̃n − Ln

∆t
=

∆x

∆t

J−1∑
j=0


W n

j −
∆t

∆x

Λ+
j−1 0

0 Λ−j+1

W+n
j −W+n

j−1

W−n
j −W−n

j+1

T

Φj

W n
j −

∆t

∆x

Λ+
j−1 0

0 Λ−j+1

W+n
j −W+n

j−1

W−n
j −W−n

j+1

− (W n
j

)T
Φj

(
W n
j

) ,
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=
∆x

∆t

J−1∑
j=0

[(
W n
j −Dj

(
W n
j − Ξn

j

))T
Φj

(
W n
j −Dj

(
W n
j − Ξn

j

))
−
(
W n
j

)T
Φj

(
W n
j

)]
,

with

Dj :=

D+
j−1 0

0 D−j+1

 and Ξn
j :=

W+n
j−1

W−n
j+1

 ,
where D+

j−1 := ∆t
∆x

Λ+
j−1 and D−j+1 := ∆t

∆x
Λ−j+1. Then,

L̃n − Ln

∆t
=

∆x

∆t

J−1∑
j=0

[(
W n
j

)T
Φj

(
W n
j

)
− 2

(
W n
j

)T
ΦjDj

(
W n
j

)
+ 2

(
W n
j

)T
ΦjDj

(
Ξn
j

)
+
(
W n
j

)T
DjΦjDj

(
W n
j

)
+
(
Ξn
j

)T
DjΦjDj

(
Ξn
j

)
−2
(
W n
j

)T
DjΦjDj

(
Ξn
j

)
−
(
W n
j

)T
Φj

(
W n
j

)]
,

=
∆x

∆t

J−1∑
j=0

[
−2
(
W n
j

)T
ΦjDj

(
W n
j

)
+ 2

(
W n
j

)T
(I −Dj) ΦjDj

(
Ξn
j

)
+
(
W n
j

)T
DjΦjDj

(
W n
j

)
+
(
Ξn
j

)T
DjΦjDj

(
Ξn
j

)]
.

By the CFL condition and since (I −Dj) ΦjDj is a positive definite diagonal matrix, we have

I −Dj ≥ 0 and

2
(
W n
j

)T
(I −Dj) ΦjDj

(
Ξn
j

)
≤
(
W n
j

)T
(I −Dj) ΦjDj

(
W n
j

)
+
(
Ξn
j

)T
(I −Dj) ΦjDj

(
Ξn
j

)
,

=
(
W n
j

)T
ΦjDj

(
W n
j

)
−
(
W n
j

)T
DjΦjDj

(
W n
j

)
+
(
Ξn
j

)T
ΦjDj

(
Ξn
j

)
−
(
Ξn
j

)T
DjΦjDj

(
Ξn
j

)
.

Therefore,

L̃n − Ln

∆t
≤∆x

∆t

J−1∑
j=0

[
−
(
W n
j

)T
ΦjDj

(
W n
j

)
+
(
Ξn
j

)T
ΦjDj

(
Ξn
j

)]
,

=−
J−1∑
j=0

W+n
j

W−n
j

T Φj

Λ+
j−1 0

0 Λ−j+1

W+n
j

W−n
j


+

J−1∑
j=0

W+n
j−1

W−n
j+1

T Φj

Λ+
j−1 0

0 Λ−j+1

W+n
j−1

W−n
j+1

 .
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Consider the second term on the right hand side of the above equation

J−1∑
j=0

W+n
j−1

W−n
j+1

T Φj

Λ+
j−1 0

0 Λ−j+1

W+n
j−1

W−n
j+1


=

J−1∑
j=0

W+n
j−1

W−n
j+1

T P+e−µxjΛ+
j−1 0

0 P−eµxjΛ−j+1

W+n
j−1

W−n
j+1

 ,
=

J−1∑
j=0

W+n
j−1

W−n
j+1

T e−µ∆xP+e−µxj−1Λ+
j−1 0

0 e−µ∆xP−eµxj+1Λ−j+1

W+n
j−1

W−n
j+1

 ,
= e−µ∆x

J−1∑
j=0

W+n
j−1

W−n
j+1

T P+e−µxj−1Λ+
j−1 0

0 P−eµxj+1Λ−j+1

W+n
j−1

W−n
j+1

 ,
= e−µ∆x

J−1∑
j=0

(
W+n

j−1

)T
P+e−µxj−1Λ+

j−1

(
W+n

j−1

)
+ e−µ∆x

J−1∑
j=0

(
W−n

j+1

)T
P−eµxj+1Λ−j+1

(
W−n

j+1

)
,

= e−µ∆x

J−1∑
j=0

(
W+n

j

)T
P+e−µxjΛ+

j

(
W+n

j

)
+ e−µ∆x

J−1∑
j=0

(
W−n

j

)T
P−eµxjΛ−j

(
W−n

j

)
+ e−µ∆x

(
W+n

−1

)T
P+e−µx−1Λ+

−1

(
W+n

−1

)
− e−µ∆x

(
W+n

J−1

)T
P+e−µxJ−1Λ+

J−1

(
W+n

J−1

)
− e−µ∆x

(
W−n

0

)T
P−eµx0Λ−0

(
W−n

0

)
+ e−µ∆x

(
W−n

J

)T
P−eµxJ Λ−J

(
W−n

J

)
,

= e−µ∆x

J−1∑
j=0

W+n
j

W−n
j

T P+e−µxjΛ+
j 0

0 P−eµxjΛ−j

W+n
j

W−n
j


+
(
W+n

−1

)T
P+e−µx0Λ+

−1

(
W+n

−1

)
−
(
W+n

J−1

)T
P+e−µxJ Λ+

J−1

(
W+n

J−1

)
−
(
W−n

0

)T
P−eµx−1Λ−0

(
W−n

0

)
+
(
W−n

J

)T
P−eµxJ−1Λ−J

(
W−n

J

)
,

= e−µ∆x

J−1∑
j=0

W+n
j

W−n
j

T Φj

Λ+
j 0

0 Λ−j

W+n
j

W−n
j


+

W+n
−1

W−n
J

T P+e−µx0Λ+
−1 0

0 P−eµxJ−1Λ−J

W+n
−1

W−n
J


−

W+n
J−1

W−n
0

T P+e−µxJ Λ+
J−1 0

0 P−eµx−1Λ−0

W+n
J−1

W−n
0

 ,
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= e−µ∆x

J−1∑
j=0

W+n
j

W−n
j

T Φj

Λ+
j 0

0 Λ−j

W+n
j

W−n
j


+

W+n
J−1

W−n
0

T KT

P+e−µx0Λ+
−1 0

0 P−eµxJ−1Λ−J

K
W+n

J−1

W−n
0


−

W+n
J−1

W−n
0

T P+e−µxJ Λ+
J−1 0

0 P−eµx−1Λ−0

W+n
J−1

W−n
0

 .
By using assumption (5.3), we have

J−1∑
j=0

W+n
j−1

W−n
j+1

TΦj

Λ+
j−1 0

0 Λ−j+1

W+n
j−1

W−n
j+1


≤ e−µ∆x

J−1∑
j=0

W+n
j

W−n
j

T Φj

Λ+
j 0

0 Λ−j

W+n
j

W−n
j

 .
Therefore,

L̃n − Ln

∆t
≤−

J−1∑
j=0

W+n
j

W−n
j

T Φj

Λ+
j−1 0

0 Λ−j+1

W+n
j

W−n
j


+ e−µ∆x

J−1∑
j=0

W+n
j

W−n
j

T Φj

Λ+
j 0

0 Λ−j

W+n
j

W−n
j

 ,
=

J−1∑
j=0

W+n
j

W−n
j

T Φj

−Λ+
j−1 + e−µ∆xΛ+

j 0

0 −Λ−j+1 + e−µ∆xΛ−j

W+n
j

W−n
j

 ,
=

J−1∑
j=0

W+n
j

W−n
j

T Φj

e−µ∆xΛ+
j − Λ+

j 0

0 e−µ∆xΛ−j − Λ−j

W+n
j

W−n
j


+

J−1∑
j=0

W+n
j

W−n
j

T Φj

−Λ+
j−1 + Λ+

j 0

0 −Λ−j+1 + Λ−j

W+n
j

W−n
j

 ,
= −µe−µ∆x∆x

J−1∑
j=0

(
W n
j

)T
Φj|Λj|

(
W n
j

)
+ ∆x

J−1∑
j=0

(
W n
j

)T
ΦjΛ

′
j

(
W n
j

)
.

Since

ΠT
j Φj + ΦjΠj −∆tΠT

j ΦjΠj, j = 0, . . . , J − 1,
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is positive semi-definite and there are constants

α = min
1≤i≤k

0≤j≤J−1

|λi,j| and β = max
1≤i≤k

0≤j≤J−1

λ′i,j,

such that 0 < µαe−µ∆x − β < 1, we have

Ln+1 − L̃n

∆t
≤ 0 and

L̃n − Ln

∆t
< −ηLn,

with η := µαe−µ∆x − β. Thus,

Ln+1 − Ln

∆t
< −ηLn. (5.7)

Recursively applying inequality (5.7) yields

Ln+1 < (1−∆tη)n+1L0 ≤ e−η∆t(n+1)L0 = e−ηt
n+1

L0, n = 0, . . . , N − 1. (5.8)

We use now the inequality (5.8) to conclude the proof. To this end, let

C1 := min
1≤i≤k

0≤j≤J−1

{σi,j : |Φj − σi,jI| = 0} and C2 := max
1≤i≤k

0≤j≤J−1

{σi,j : |Φj − σi,jI| = 0}.

Then,

C1I ≤ Φj ≤ C2I, j = 0, . . . , J − 1. (5.9)

From inequalities (5.8) and (5.9), one obtains

C1∆x
J−1∑
j=0

[
W n
j

]T[
W n
j

]
≤ Ln ≤ C2e

−ηtn∆x
J−1∑
j=0

[
W 0
j

]T[
W 0
j

]
, n = 0, . . . , N.

It follows that

∆x
J−1∑
j=0

[
W n
j

]T[
W n
j

]
≤ Ln ≤ Ce−ηt

n

∆x
J−1∑
j=0

[
W 0
j

]T[
W 0
j

]
, n = 0, . . . , N

where C := C2/C1. Hence, the numerical solution W n
j of the Cauchy problem (4.11), (4.13),

(4.14) is exponentially stable for the L2−norm.

Remark 8. Stability conditions in the above Theorem 4 for linear hyperbolic system with

variable coefficients are analyzed for examples, which will be presented in the next section.
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In special cases, we consider the Cauchy problem (4.12), (4.13), (4.14) under the steady state

solution, W n
j ≡ 0,∀j = 0, . . . , J − 1,∀n = 0, . . . , N − 1. The discrete Lyapunov function

(5.1) can be used to investigate conditions for stability of this Cauchy problem.

Corollary 3 ([26]). Let T > 0 and assume that λi > 0, i = 1, . . . ,m and λi < 0,

i = m + 1, . . . , k. Let the Lyapunov function be given by (5.1). If the CFL condition

∆t
∆x

max1≤i≤k |λi| ≤ 1 holds and if there exists µ > 0 such that

ΦjΠ + ΠTΦj −∆tΠTΦjΠ is positive semi-definite (5.10)

and P+e−µxJ Λ+ 0

0 P−eµx−1Λ−

−KT

P+e−µx0Λ+ 0

0 P−eµxJ−1Λ−

K, (5.11)

is positive definite for each j = 0, . . . , J − 1, then the numerical solution W n
j of the Cauchy

problem (4.12), (4.13), (4.14) satisfies

Ln ≤ e−ηt
n

L0, (5.12)

for some η > 0. Moreover, W n
j is exponentially stable for the L2− norm.

Proof. The time derivative of the Lyapunov funtion (3.1) is approximated by using the discrete

Lyapunov function (5.1), which is given by

Ln+1 − Ln

∆t
=
Ln+1 − L̃n

∆t
+
L̃n − Ln

∆t
, (5.13)

with

Ln+1 − L̃n

∆t
=

∆x

∆t

J−1∑
j=0

([
W n+1
j

]T
Φj

[
W n+1
j

]
−
[
W̃ n
j

]T
Φj

[
W̃ n
j

])
, (5.14)

and

L̃n − Ln

∆t
=

∆x

∆t

J−1∑
j=0

([
W̃ n
j

]T
Φj

[
W̃ n
j

]
−
[
W n
j

]T
Φj

[
W n
j

])
. (5.15)

We need now to show that both equations (5.14) and (5.15) are negative. It suffices to show

that

Ln+1 − L̃n

∆t
≤ 0, and

L̃n − Ln

∆t
< −ηLn, η > 0. (5.16)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 5. NUMERICAL BOUNDARY STABILIZATION OF LINEAR HSBL 68

By using the discretized system (4.12) and assumption (5.10), we have

Ln+1 − L̃n

∆t
=

∆x

∆t

J−1∑
j=0

([
W̃ n
j −∆tΠW̃ n

j

]T
Φj

[
W̃ n
j −∆tΠW̃ n

j

]
−
[
W̃ n
j

]T
Φj

[
W̃ n
j

])
,

=
∆x

∆t

J−1∑
j=0

([
W̃ n
j

]T
Φj

[
W̃ n
j

]
−
[
W̃ n
j

]T
Φj

[
W̃ n
j

])

−∆x
J−1∑
j=0

([
W̃ n
j

]T [
ΦjΠ + ΠTΦj −∆tΠTΦjΠ

] [
W̃ n
j

])
≤ 0.

The discretized system (4.12) with the discretized boundary condition (4.14) can be used into

equation (5.15) to obtain the following

L̃n − Ln

∆t
=

∆x

∆t

J−1∑
j=0

([
W n
j −D

(
W n
j − Ξn

j

)]T
Φj

[
W n
j −D

(
W n
j − Ξn

j

)]
−
[
W n
j

]
Φj

[
W n
j

])
,

with

D := diag{D+, D−} and Ξn
j :=

[
W+n

j−1 W−n
j+1

]T
,

where D+ := ∆t
∆x

Λ+ and D− := ∆t
∆x

Λ−. Then,

L̃n − Ln

∆t
=

∆x

∆t

J−1∑
j=0

([
W n
j

]T
Φj

[
W n
j

]
− 2

[
W n
j

]T
ΦjD

[
W n
j

]
+ 2

[
W n
j

]T
ΦjD

[
Ξn
j

]
+
[
W n
j

]T
DΦjD

[
W n
j

]
+
[
Ξn
j

]T
DΦjD

[
Ξn
j

]
−2
[
W n
j

]T
DΦjD

[
Ξn
j

]
−
[
W n
j

]T
Φj

[
W n
j

])
,

=
∆x

∆t

J−1∑
j=0

(
−2
[
W n
j

]T
ΦjD

[
W n
j

]
+ 2

[
W n
j

]T
(I −D) ΦjD

[
Ξn
j

]
+
[
W n
j

]T
DΦjD

[
W n
j

]
+
[
Ξn
j

]T
DΦjD

[
Ξn
j

])
.

Since a diagonal matrix (I −D) ΦjD is positive definite and I−D ≥ 0 by the CFL condition,

we have the following matrix inequality

2
[
W n
j

]T
(I −D) ΦjD

[
Ξn
j

]
≤
[
W n
j

]T
(I −D) ΦjD

[
W n
j

]
+
[
Ξn
j

]T
(I −D) ΦjD

[
Ξn
j

]
,

=
[
W n
j

]T
ΦjD

[
W n
j

]
−
[
W n
j

]T
DΦjD

[
W n
j

]
+
[
Ξn
j

]T
ΦjD

[
Ξn
j

]
−
[
Ξn
j

]T
DΦjD

[
Ξn
j

]
.
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Therefore,

L̃n − Ln

∆t
≤ ∆x

∆t

J−1∑
j=0

(
−
[
W n
j

]T
ΦjD

[
W n
j

]
+
[
Ξn
j

]T
ΦjD

[
Ξn
j

])
,

=
J−1∑
j=0

(
−
[
W n
j

]T
Φj|Λ|

[
W n
j

]
+
[
Ξn
j

]T
Φj|Λ|

[
Ξn
j

])

Consider the second term on the right hand side of the above inequality

J−1∑
j=0

[
Ξn
j

]T
Φj|Λ|

[
Ξn
j

]
=

J−1∑
j=0

W+n
j−1

W−n
j+1

T P+e−µxjΛ+ 0

0 P−eµxjΛ−

W+n
j−1

W−n
j+1

 ,
=

J−1∑
j=0

[
W+n

j−1

]T
P+e−µxjΛ+

[
W+n

j−1

]
+

J−1∑
j=0

[
W−n

j+1

]T
P−eµxjΛ−

[
W−n

j+1

]
,

= e−µ∆x

J−1∑
j=0

[
W+n

j−1

]T
P+e−µxj−1Λ+

[
W+n

j−1

]
+ e−µ∆x

J−1∑
j=0

[
W−n

j+1

]T
P−eµxj+1Λ−

[
W−n

j+1

]
,

= e−µ∆x

J−1∑
j=0

[
W+n

j

]T
P+e−µxjΛ+

[
W+n

j

]
+ e−µ∆x

J−1∑
j=0

[
W−n

j

]T
P−eµxjΛ−

[
W−n

j

]
+ e−µ∆x

[
W+n

−1

]T
P+e−µx−1Λ+

[
W+n

−1

]
− e−µ∆x

[
W+n

J−1

]T
P+e−µxJ−1Λ+

[
W+n

J−1

]
+ e−µ∆x

[
W−n

J

]T
P−eµxJ Λ−

[
W−n

J

]
− e−µ∆x

[
W−n

0

]T
P−eµx0Λ−

[
W−n

0

]
,

= e−µ∆x

J−1∑
j=0

[
W n
j

]T
Φ+
j |Λ|

[
W n
j

]
+
[
W+n

−1

]T
P+e−µx0Λ+

[
W+n

−1

]
−
[
W+n

J−1

]T
P+e−µxJ Λ+

[
W+n

J−1

]
+
[
W−n

J

]T
P−eµxJ−1Λ−

[
W−n

J

]
−
[
W−n

0

]T
P−eµx−1Λ−

[
W−n

0

]
,

= e−µ∆x

J−1∑
j=0

[
W n
j

]T
Φ+
j |Λ|

[
W n
j

]

+

W+n
−1

W−n
J

T P+e−µx0Λ+ 0

0 P−eµxJ−1Λ−

W+n
−1

W−n
J


−

W+n
J−1

W−n
0

T P+e−µxJ Λ+ 0

0 P−eµx−1Λ−

W+n
J−1

W−n
0

 ,
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= e−µ∆x

J−1∑
j=0

[
W n
j

]T
Φ+
j |Λ|

[
W n
j

]

+

W+n
J−1

W−n
0

T KT

P+e−µx0Λ+ 0

0 P−eµxJ−1Λ−

K
W+n

J−1

W−n
0


−

W+n
J−1

W−n
0

T P+e−µxJ Λ+ 0

0 P−eµx−1Λ−

W+n
J−1

W−n
0

 .
We use now assumption (5.11) to obtain

J−1∑
j=0

[
Ξn
j

]T
ΦjD

[
Ξn
j

]
≤ e−µ∆x

J−1∑
j=0

[
W n
j

]T
Φ+
j |Λ|

[
W n
j

]
.

Then,

L̃n − Ln

∆t
≤
(
−1 + e−µ∆x

) J−1∑
j=0

[
W n
j

]T
Φj|Λ|

[
W n
j

]
,

= −µe−µ∆x∆x
J−1∑
j=0

[
W n
j

]T
Φj|Λ|

[
W n
j

]
,

< −µαe−µ∆x∆x
J−1∑
j=0

[
W n
j

]T
Φj

[
W n
j

]
= −ηLn,

where α := min1≤i≤k |λi| and η := µαe−µ∆x. Therefore,

Ln+1 − Ln

∆t
< −ηLn. (5.17)

It follows that

Ln+1 < (1−∆tη)Ln (5.18)

Since 0 < η < 1, recursively applying inequality (5.18) yields

Ln+1 < (1−∆tη)n+1L0 ≤ e−η∆t(n+1)L0 = e−ηt
n+1

L0, n = 0, . . . , N − 1. (5.19)

We use now the inequality (5.19) to conclude the proof. To this end, let

C1 := min
1≤i≤k

0≤j≤J−1

{σi,j : |Φj − σi,jI| = 0} and C2 := max
1≤i≤k

0≤j≤J−1

{σi,j : |Φj − σi,jI| = 0}.
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Then,

C1I ≤ Φj ≤ C2I, j = 0, . . . , J − 1. (5.20)

From inequalities (5.19) and (5.20), one obtains

C1∆x
J−1∑
j=0

[
W n
j

]T[
W n
j

]
≤ Ln ≤ C2e

−ηtn∆x
J−1∑
j=0

[
W 0
j

]T[
W 0
j

]
, n = 0, . . . , N.

It follows that

∆x
J−1∑
j=0

[
W n
j

]T[
W n
j

]
≤ Ln ≤ Ce−ηt

n

∆x
J−1∑
j=0

[
W 0
j

]T[
W 0
j

]
, n = 0, . . . , N,

where C := C2/C1. Hence, W n
j is exponentially stable for the L2− norm.

One of the conditions in the Corollary 3 is to show that the matrix (5.11) is positive definite.

However, it has an alternative condition to show, which is described in the following corollary.

Corollary 4. Let T > 0 and assume that λi > 0, i = 1, . . . ,m and λi < 0, i = m+ 1, . . . , k.

Let the Lyapunov function be given by (5.1). If the CFL condition ∆t
∆x

max1≤i≤k |λi| ≤ 1 holds

and if there exists µ > 0 such that

ΦjΠ + ΠTΦj −∆tΠTΦjΠ, j = 0, . . . , J − 1, is positive semi-definite (5.21)

and

‖∆K∆−1‖ < 1, (5.22)

with ∆ :=
√
P |Λ|, where P := diag{P+, P−}, then the numerical solution W n

j of the Cauchy

problem (4.12),(4.13),(4.14) satisfies

Ln ≤ e−ηt
n

L0,

for some η > 0. Moreover, W n
j is exponentially stable for the L2−norm.

Proof. The approximation of the time derivative of the Lyapunov function (3.1) under the

CFL condition ∆t
∆x

max1≤i≤k |λi| ≤ 1 is given by

Ln+1 − Ln

∆t
=
Ln+1 − L̃n

∆t
+
L̃n − Ln

∆t
, (5.23)
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with

Ln+1 − L̃n

∆t
= −∆x

J−1∑
j=0

([
W̃ n
j

]T [
ΦjΠ + ΠTΦj −∆tΠTΦjΠ

] [
W̃ n
j

])
, (5.24)

and

L̃n − Ln

∆t
< −µαe−µ∆xLn

+

W+n
J−1

W−n
0

T KT

P+e−µx0Λ+ 0

0 P−eµxJ−1Λ−

K
W+n

J−1

W−n
0


−

W+n
J−1

W−n
0

T P+e−µxJ Λ+ 0

0 P−eµx−1Λ−

W+n
J−1

W−n
0

 , (5.25)

where α := min1≤i≤k |λi|.

Since ΦjΠ + ΠTΦj −∆tΠTΦjΠ,∀j is positive semi-definite by assumption (5.21), we have

Ln+1 − L̃n

∆t
≤ 0.

In order to show that the remaining approximation of the time derivative is negative, consider

the following quadratic form

−

W+n
J−1

W−n
0

T Λ+P+ 0

0 Λ−P−

W+n
J−1

W−n
0


+

W+n
J−1

W−n
0

T KT

Λ+P+ 0

0 Λ−P−

K
W+n

J−1

W−n
0

 ,
=−

W+n
J−1

W−n
0

T Λ+P+ 0

0 Λ−P−

W+n
J−1

W−n
0


+

W+n
J−1

W−n
0

T KT
(√
|Λ|P

)T (√
|Λ|P

)
K

W+n
J−1

W−n
0

 ,
=−

W+n
J−1

W−n
0

T Λ+P+ 0

0 Λ−P−

W+n
J−1

W−n
0


+

√|Λ|PK
W+n

J−1

W−n
0

T √|Λ|PK
W+n

J−1

W−n
0

 ,
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=−

W+n
J−1

W−n
0

T Λ+P+ 0

0 Λ−P−

W+n
J−1

W−n
0

+

∥∥∥∥∥∥√|Λ|PK
W+n

J−1

W−n
0

∥∥∥∥∥∥
2

,

=−

W+n
J−1

W−n
0

T Λ+P+ 0

0 Λ−P−

W+n
J−1

W−n
0


+

∥∥∥∥∥∥
(√
|Λ|P

)
K
(√
|Λ|P

)−1 (√
|Λ|P

)W+n
J−1

W−n
0

∥∥∥∥∥∥
2

,

≤−

W+n
J−1

W−n
0

T Λ+P+ 0

0 Λ−P−

W+n
J−1

W−n
0


+

∥∥∥∥(√|Λ|P)K (√|Λ|P)−1
∥∥∥∥2

∥∥∥∥∥∥
(√
|Λ|P

)W+n
J−1

W−n
0

∥∥∥∥∥∥
2

,

where in the last line, pi > 0, i = 1, . . . , k, can be selected such that∥∥∥∥∥∥
(√
|Λ|P

)W+n
J−1

W−n
0

∥∥∥∥∥∥ = 1 and

W+n
J−1

W−n
0

 6= 0, n = 0, . . . , N − 1.

If ∥∥∥∥(√|Λ|P)K (√|Λ|P)−1
∥∥∥∥ < 1,

then

−

W+n
J−1

W−n
0

T Λ+P+ 0

0 Λ−P−

W+n
J−1

W−n
0


+

W+n
J−1

W−n
0

T KT

Λ+P+ 0

0 Λ−P−

K
W+n

J−1

W−n
0

 ,
<−

W+n
J−1

W−n
0

T |Λ|P
W+n

J−1

W−n
0

+

∥∥∥∥∥∥√|Λ|P
W+n

J−1

W−n
0

∥∥∥∥∥∥
2

,

=−

W+n
J−1

W−n
0

T |Λ|P
W+n

J−1

W−n
0

+

W+n
J−1

W−n
0

T |Λ|P
W+n

J−1

W−n
0

 = 0.

Therefore, by assumption (5.22), a sufficiently small µ > 0 can be chosen such that

L̃n − Ln

∆t
< −ηLn, η := µαe−µ∆x,
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and then

Ln+1 − Ln

∆t
< −ηLn, n = 0, . . . , N − 1. (5.26)

Inequality (5.27) can be expressed by

Ln+1 < (1−∆tη)Ln (5.27)

Since 0 < η < 1, recursively applying inequality (5.27) yields

Ln+1 < (1−∆tη)n+1L0 ≤ e−η∆t(n+1)L0 = e−ηt
n+1

L0, n = 0, . . . , N − 1. (5.28)

We use now the inequality (5.28) to conclude the proof. To this end, let

C1 := min
1≤i≤k

0≤j≤J−1

{σi,j : |Φj − σi,jI| = 0} and C2 := max
1≤i≤k

0≤j≤J−1

{σi,j : |Φj − σi,jI| = 0}.

Then,

C1I ≤ Φj ≤ C2I, j = 0, . . . , J − 1. (5.29)

From inequalities (5.28) and (5.29), one obtains

C1∆x
J−1∑
j=0

[
W n
j

]T[
W n
j

]
≤ Ln ≤ C2e

−ηtn∆x
J−1∑
j=0

[
W 0
j

]T[
W 0
j

]
, n = 0, . . . , N.

It follows that

∆x
J−1∑
j=0

[
W n
j

]T[
W n
j

]
≤ Ln ≤ Ce−ηt

n

∆x
J−1∑
j=0

[
W 0
j

]T[
W 0
j

]
, n = 0, . . . , N,

where C := C2/C1. Hence, W n
j is exponentially stable for the L2− norm.

5.2 Numerical Results

In this section, we apply the numerical Lyapunov exponential stability analysis to the examples

of linear hyperbolic systems of balance laws discussed in Chapter 4.
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5.2.1 A Linear Hyperbolic System of Balance Laws with Constant

Coefficients

Consider the following linear hyperbolic system of balance laws in one-space dimension

∂t

w1

w2

+

1 0

0 −1

 ∂x
w1

w2

+

15 1

1 15

w1

w2

 = 0, t ≥ 0, x ∈ [0, 1], (5.30)

with an initial condition w1(x, 0)

w2(x, 0)

 =

−0.5

0.5

 , (5.31)

and boundary conditions w1(0, t)

w2(1, t)

 =

 0 k12

k21 0

w1(1, t)

w2(0, t)

 . (5.32)

The solution of the Cauchy problem (5.30), (5.31), (5.32) isw1(x, t)

w2(x, t)

 =

−0.5e−14t

0.5e−14t

 , x ∈ [0, 1], t ≥ 0. (5.33)

For stability analysis, the Lyapunov function is defined by

L(t) =
1

µ

(
eµ − e−µ

)
e−28t, t ≥ 0, µ > 0. (5.34)

The discretization of the Cauchy problem (5.30), (5.31), (5.32) is expressed asw̃1
n
j

w̃2
n
j

 =

w1
n
j

w2
n
j

− ∆t

∆x

1 0

0 1

w1
n
j − w1

n
j−1

w2
n
j − w2

n
j+1

 , n = 0, . . . , N − 1, (5.35a)

w1
n+1
j

w2
n+1
j

 =

w̃1
n
j

w̃2
n
j

−∆t

15 1

1 15

w̃1
n
j

w̃2
n
j

 , j = 0, . . . , J − 1, (5.35b)

w1
0
j

w2
0
j

 =

−0.5

0.5

 , j = 0, . . . , J − 1, (5.35c)

w1
n+1
−1

w2
n+1
J

 =

 0 k12

k21 0

w1
n+1
J−1

w2
n+1
0

 , n = 0, . . . , N − 1. (5.35d)
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The discrete Lyapunov function (5.1) for the discretized Cauchy problem (5.35) is defined by

Ln = ∆x
J−1∑
j=0

[
p1e
−µxj

(
w1

n
j

)2
+ p2e

µxj
(
w2

n
j

)2
]
, n = 0, . . . , N. (5.36)

With the above definition, the approximation of the time derivative of the Lyapunov function

is given by

Ln+1 − Ln

∆t
=
Ln+1 − L̃n

∆t
+
L̃n − Ln

∆t
, (5.37)

with

L̃n = ∆x
J−1∑
j=0

[
p1e
−µxj

(
w̃1

n
j

)2
+ p2e

µxj
(
w̃2

n
j

)2
]
, n = 0, . . . , N.

If the CFL condition holds with

∆tγ ≤ 1,

where γ is any diagonal entry in a coefficient matrix of the source term and if the choice of

parameters are

µ = 0.575, p1 = p2 = 1 and k12 = k21 = 0.75,

then Corollary 3 is satisfied with the following decay rate

η := α
1− e−µ∆x

∆x
, α := min{| − 1|, |1|} = 1.

Hence, the discrete Lyapunov function (5.36) is bounded above by

Ln < e−ηt
n

L0, n = 1, . . . , N,

and the error of the scheme for the Lyapunov function is shown in Table 5.1 and 5.2 below.

J ‖L− Ln‖∞ ‖L− Ln‖2 µ η

100 0.018922 0.0048535 0.575 0.57335

200 0.011638 0.0030225 0.575 0.57417

400 0.008116 0.002138 0.575 0.57459

800 0.0063934 0.0017033 0.575 0.57479

1600 0.0055439 0.001488 0.575 0.5749

Table 5.1: The behavior of numerical values with number of cells, J , time T = 1 and CFL =

1.
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J ‖L− Ln‖∞ ‖L− Ln‖2 µ η

100 0.018798 0.0047198 0.575 0.57335

200 0.012462 0.0031774 0.575 0.57417

400 0.0091065 0.0023558 0.575 0.57459

800 0.0072704 0.0019062 0.575 0.57479

1600 0.0062423 0.0016541 0.575 0.5749

Table 5.2: The behavior of numerical values with number of cells, J , time T = 1 and CFL =

0.75.

From Table 5.1 and 5.2 above, we observed that the rate of decay, η converges to µ and both

L∞ and L2 norm converge to 0.

In the following figures, we have tested the stability of the system for two different values of

γ under CFL = 1 such that ∆tγ ≤ 1 and ∆tγ > 1.

Figure 5.1: The log-scale of the discrete Lyapunov function for γ = 15 (∆γ < 1), J = 100

and T = 1 under CFL = 1.
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Figure 5.2: The log-scale of the discrete Lyapunov function for γ = 201 (∆γ > 1), J = 100

and T = 1 under CFL = 1.

From Figure 5.1 and Figure 5.2, we observed that for the same number of cells the discrete

Lyapunov function is bounded for γ = 15 and unbounded for γ = 201, respectively.

5.2.2 Application to Telegrapher Equations

The discrete Lyapunov function for the discretized telegrapher equations (4.16) is defined by

(5.36) and the approximation of the time derivative of the Lyapunov function is given by

(5.37).

If the CFL condition ∆t
∆x

max{|λ1|, |λ2|} ≤ 1 holds and if there exists µ > 0, p1 > 0 and

p2 > 0 such that

ΦjΠ + ΠTΦj −∆tΠTΦjΠ, j = 0, . . . , J − 1, is positive semi-definite (5.38)

andp1e
−µxJ |λ1| 0

0 p2e
µx−1|λ2|

−
 0 k12

k21 0

T p1e
−µx0|λ1| 0

0 p2e
µxJ−1|λ2|

 0 k12

k21 0


(5.39)
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is positive definite, then
Ln+1 − L̃n

∆t
< 0,

and
L̃n − Ln

∆t
< −ηLn, 0 < η := µαe−µ∆x < 1, α := min{|λ1|, |λ2|}.

In order to show that both conditions (5.38) and (5.39) hold, it suffices to show that the

determinant of every principal sub-matrix of the matricesM11 M12

M12 M22

 , (5.40)

with

M11 := 2p1e
−µxjγ1 −∆t

(
p1e
−µxjγ2

1 + p2e
µxjγ2

2

)
,

M12 := p2e
µxjγ2 + p1e

−µxjγ2 −∆t
(
p1e
−µxjγ1γ2 + p2e

µxjγ2γ1

)
,

M22 := 2p2e
µxjγ1 −∆t

(
p1e
−µxjγ2

2 + p2e
µxjγ1

2
)
,

and p1e
−µxJ |λ1| − k2

21p2e
µxJ−1|λ2| 0

0 p2e
µx−1|λ2| − k2

12p1e
−µx0|λ1|

 , (5.41)

is non-negative and positive, respectively.

The determinant of the sub-matrices of the matrix (5.40) are

2p1e
−µxjγ1 −∆t

(
p1e
−µxjγ2

1 + p2e
µxjγ2

2

)
, (5.42)

and

∆t2γ1
4p1p2 − 2∆t2γ1

2γ2
2p1p2 + ∆t2γ2

4p1p2 − 4∆tγ1
3p1p2 + 4∆tγ1γ2

2p1p2

− e−2µxjγ2
2p1

2 + 4γ1
2p1p2 − 2γ2

2p1p2 − e2µxjγ2
2p2

2,

= ∆t2
(
γ1

2 − γ2
2
)
p1p2 + 4

(
γ1

2 − γ2
2
)
p1p2 − 4∆tγ1

(
γ1

2 − γ2
2
)
p1p2

−
(
p1γ2e

−µxj − p2γ2e
µxj
)2
,

= ∆t2
(
γ1

2 − γ2
2
)
p1p2 + 4 (1−∆tγ1)

(
γ1

2 − γ2
2
)
p1p2 −

(
p1γ2e

−µxj − p2γ2e
µxj
)2
.

(5.43)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 5. NUMERICAL BOUNDARY STABILIZATION OF LINEAR HSBL 80

If γ1
2 > γ2

2 and if p1 and p2 can be chosen such that p1 = p2, then for γ1 > 0 and sufficiently

small µ > 0,

∆tγ1 < max
0≤x≤l

{
2p1e

−µxjγ2
1

(p1e−µxjγ2
1 + p2eµxjγ2

2)

}
≈ 1, max

0≤x≤l
{γ2p2e

µx − γ2p1e
−µx} ≈ 0,

and the determinants (5.42) and (5.43) are non-negative.

Therefore, with the choice of p1 and p2, the matrix (5.41) is positive definite if k12 and k21

satisfy

|k12| <

√∣∣∣∣λ2

λ1

∣∣∣∣ and |k21| <

√∣∣∣∣λ1

λ2

∣∣∣∣e−µl,
respectively.

Consider the following steady state solution for the telegrapher equations, which is obtained

by solving the system (2.40) I∗(x)

V ∗(x)

 =

0.02 exp(0.15x) + 0.02 exp(−0.15x)

− exp(0.15x) + exp(−0.15x)

 , x ∈ [0, l], (5.44)

with the numerical value taken from [31]. The length of the transmission line is 1m, R =

7.5Ohm/m, L = 10mH/m, G = 0.003S/m and C = 0.4F/m.

We take now an initial condition for the system (2.35) that is a perturbation of the steady

state solution I(x, 0)

V (x, 0)

 =

0.02 exp(0.15x) + 0.02 exp(−0.15x) + ε sin(πx)

− exp(0.15x) + exp(−0.15x) + ε sin(πx)

 , x ∈ [0, l], ε = 0.01.

(5.45)

The decoupled system (2.42) has the following eigenvalues

λ1 = 0.5 and λ2 = −0.5,

the coefficients of source terms are

γ1 = 0.3787 and γ2 = −0.3713,

and the initial condition, which is obtained by substituting (5.44) and (5.45) into (2.43), is

w1(x, 0) = 0.06 sin(πx), w2(x, 0) = −0.04 sin(πx), x ∈ [0, l].
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Since the equilibrium solution for the decoupled system (2.42) is W ∗(x) ≡ 0, it is possible the

numerical solution converges to the initial condition in the sense of L2−norm.

Therefore, the convergence of the discrete Lyapunov function for different values of µ > 0 is

shown in Figure 5.3 below.

Figure 5.3: The decay of the Lyapunov function for telegrapher equations. The choice of

parameters are p1 = p2 = 0.6 and k12 = k21 = 0.9 with l = 1, J = 200 and T = 10 under

CFL = 0.75.

The three curves that are obtained for different values of µ > 0, which are shown in the Figure

5.3, are nearly indistinguishable. Beside this, we observed that the discrete Lyapunov function

converges to 0. This shows, in the sense of L2−norm, the Cauchy problem (4.16), (4.17),

(4.18) is exponentially stable.

5.2.3 Application to Isentropic Euler Equations

The discrete Lyapunov function for the discretized isentropic Euler equations (4.19) is defined

by (5.36) and the approximation of the time derivative of the Lyapunov function is obtained

by (5.37).

If the CFL condition ∆t
∆x

max0≤j≤J−1{|λ1,j|, |λ2,j|} ≤ 1 holds and if there exists µ > 0, p1 > 0
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and p2 > 0 such that

ΦjΠj + Πj
TΦj −∆tΠj

TΦjΠj, j = 0, . . . , J − 1, is positive semi-definite (5.46)

andp1e
−µxJ |λ1,J−1| 0

0 p2e
µx−1|λ2,0|

−
 0 k12

k21 0

T p1e
−µx0|λ1,−1| 0

0 p2e
µxJ−1|λ2,J |

 0 k12

k21 0


(5.47)

is positive definite, then

Ln+1 − L̃n

∆t
≤ 0, and

L̃n − Ln

∆t
< −ηLn,

where 0 < η := µαe−µ∆x − β < 1,

α := min
0≤j≤J−1

{|λ1,j|, |λ2,j|}, and β := max
0≤j≤J−1

{
λ1,j − λ1,j−1

∆x
,
λ2,j+1 − λ2,j

∆x

}
.

In order to show that both conditions (5.46) and (5.47) hold, it suffices to show that the

determinant of every principal sub-matrix of the matricesM11,j M12,j

M12,j M22,j

 , (5.48)

with

M11,j := 2p1e
−µxjγ11,j −∆t

(
p1e
−µxjγ2

11,j + p2e
µxjγ2

21,j

)
,

M12,j := p2e
µxjγ21,j + p1e

−µxjγ12,j −∆t
(
p1e
−µxjγ11,jγ12,j + p2e

µxjγ21,jγ22,j

)
,

M22,j := 2p2e
µxjγ22,j −∆t

(
p1e
−µxjγ2

12,j + p2e
µxjγ2

22,j

)
,

and p1e
−µxJ |λ1,J−1| − k2

21p2e
µxJ−1|λ2,J | 0

0 p2e
µx−1|λ2,0| − k2

12p1e
−µx0|λ1,−1|

 , (5.49)

is non-negative and positive, respectively.

The determinant of the sub-matrices of the matrix (5.48) are

2p1e
−µxjγ11,j −∆t

(
p1e
−µxjγ2

11,j + p2e
µxjγ2

21,j

)
, (5.50)
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and

∆t2γ2
11,jγ

2
22,jp1p2 − 2∆t2γ11,jγ12,jγ21,jγ22,jp1p2 + ∆t2γ2

12,jγ
2
21,jp1p2

− 2∆tγ2
11,jγ22,jp1p2 + 2∆tγ11,jγ12,jγ21,jp1p2 − 2∆tγ11,jγ

2
22,jp1p2

+ 2∆tγ12,jγ21,jγ22,jp1p2 + 4γ11,jγ22,jp1p2

− e−2µxjγ2
12,jp

2
1 − 2γ12,jγ21,jp1p2 − e2µxjγ2

21,jp
2
2

= ∆t2 (γ11,jγ22,j − γ12,jγ21,j)
2 p1p2 − 2∆t (γ11,j + γ22,j) (γ11,jγ22,j − γ12,jγ21,j) p1p2

+ 4 (γ11,jγ22,j − γ12,jγ21,j) p1p2 −
(
p1e
−µxjγ12,j − p2e

µxjγ21,j

)2
,

= ∆t2 (γ11,jγ22,j − γ12,jγ21,j)
2 p1p2 −

(
p1e
−µxjγ12,j − p2e

µxjγ21,j

)2

+ (4− 2∆t (γ11,j + γ22,j)) (γ11,jγ22,j − γ12,jγ21,j) p1p2. (5.51)

If γ11,jγ22,j > γ12,jγ21,j,∀j and if p1 and p2 can be chosen such that

p1

p2

= max
0≤j≤J−1

{
γ21,j

γ12,j

}
,

then for γ11,j > 0, γ22,j > 0,∀j and sufficiently small µ > 0,

∆tγ11,j < max
0≤j≤J−1

{
2p1e

−µxjγ2
11,j(

p1e−µxjγ2
11,j + p2eµxjγ2

21,j

)} ≈ 1,

∆tγ22,j < max
0≤j≤J−1

{
2p2e

µxjγ2
22,j(

p1e−µxjγ2
12,j + p2eµxjγ2

22,j

)} ≈ 1,

max
0≤x≤l

{γ2p2e
µx − γ2p1e

−µx} ≈ 0,

and the determinants (5.50) and (5.51) are non-negative.

Therefore, with the choice of p1 and p2, the matrix (5.49) is positive definite if k12 and k21

satisfy

|k12| <

√∣∣∣∣ λ2,0

λ1,−1

∣∣∣∣ p2

p1

and |k21| <

√∣∣∣∣λ1,J−1

λ2,J

∣∣∣∣ p1

p2

e−µl,

respectively.

For simplicity of the numerical tests for isentropic Euler equations, the steady state equations

(2.49) are solved with gas pressure taken as suggested in [11]

P (ρ) = κρσ, κ = 0.4, σ = 1.4.
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Therefore, for V ∗(x) ≥ 0,∀x ∈ [0, l], we follow the calculation done in [29]. The first equation

in (2.49) gives ρ∗(x)V ∗(x) = a, where a constant a is chosen to satisfy the subsonic condition

and then the second equation in (2.49) becomes

d

dx
ρ∗(x) =

a2Cρ∗(x)

(a2 − γκρ∗γ+1(x))
.

With the following choices of parameters

C = 10−7, a = 0.3

and by setting ρ∗(0) = 0.5, we obtain the following numerical values of the steady state by

using the help of Maple2015 [1]

ρ∗(x) = 0.5, V ∗(x) = 0.6, x ∈ [0, l].

We set now an initial condition for the system (2.45) that is a perturbation of the steady state

solution

ρ∗(x, 0) = 0.5 + ε, V ∗(x, 0) = 0.6 + ε, ε = 0.01.

The decoupled system (2.51) has the following eigenvalues

λ1 = 1.2515 and λ2 = −0.0515,

the coefficients of the source terms are:

γ11 = γ12 = γ21 = γ22 = 6× 10−8,

and the initial condition, which is obtained from (2.52), is

w1(x, 0) = 0.023, w2(x, 0) = −0.003, x ∈ [0, l].

Therefore, the convergence of the discrete Lyapunov function for different values of µ > 0

and ε > 0 is shown in Figure 5.4 below.
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Figure 5.4: The decay of the Lyapunov function for isentropic Euler equations. The choice of

parameters are p1 = p2 = 1, k12 = 0.2 and k21 = 4.0 with l = 1, J = 200 and T = 10 under

CFL = 0.75.

The three curves that are obtained for different values of µ > 0, which are shown in the Figure

5.4, are nearly indistinguishable. We observed the convergence of the discrete Lyapunov

function to 0. This shows that, in the sense of L2−norm, the Cauchy problem (4.19), (4.20),

(4.21) is exponentially stable.

5.2.4 Application to Saint-Venant Equations

A numerical boundary stabilization for the Saint-Venant equations has the same presentation

as presented for isentropic Euler equations. Thus, we will only discuss here a numerical test

on a specific example. To simplify the numerical computations, we take a constant steady

state from [23]

H∗(x) = 2 and V ∗(x) = 3, x ∈ [0, l]

with physical parameters g = 9.81, Cf = 0.1 and Sb = 0.0459 and initial condition for the

system (2.54)

H(x, 0) = 2.5 and V (x, 0) = 4 sin(πx), x ∈ [0, l].
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The decoupled system (2.60) has the following eigenvalues

λ1 = 7.4294 and λ2 = −1.4294,

the coefficients of the source terms are:

γ11 = γ21 = 0.0992 and γ12 = γ22 = 0.2008,

and the initial condition, which is obtained from (2.61), is:w1(x, 0)

w2(x, 0)

 =

−1.8926 + 4 sin(πx)

−4.1074 + 4 sin(πx)

 , x ∈ [0, l].

Therefore, the convergence of the discrete Lyapunov function for different values of µ > 0

and ε > 0 is shown in Figure 5.5 below.

Figure 5.5: The decay of the Lyapunov function for Saint-Venant equations. The choice of

parameters are p1 = 0.0992, p2 = 0.2008, k12 = 0.3 and k21 = 0.8 with l = 1, J = 200 and

T = 10 under CFL = 0.75.

The three curves that are obtained for different values of µ > 0, which are shown in the Figure

5.4, are nearly indistinguishable for time getting longer. We observed the convergence of the

discrete Lyapunov function to 0. This shows, in the sense of L2−norm, the Cauchy problem

(4.22), (4.23), (4.24) is exponentially stable.
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5.2.5 Application to Saint-Venant-Exner Equations

The discrete Lyapunov function for the discretized Saint-Venant-Exner equations (4.25) is

defined by

Ln = ∆x
J−1∑
j=0

(
W n
j

)T
ΦjW

n
j , n = 0, . . . , N, (5.52)

with

W n
j :=


w1

n
j

w2
n
j

w3
n
j

 , and Φj :=


p1e
−µxj 0 0

0 p2e
−µxj 0

0 0 p3e
µxj

 .
The approximation of the time derivative of the Lyapunov function is obtained by

Ln+1 − Ln

∆t
=
Ln+1 − L̃n

∆t
+
L̃n − Ln

∆t
,

where

L̃n = ∆x
J−1∑
j=0

(
W̃ n
j

)T
ΦjW̃

n
j , n = 0, . . . , N, W̃ n

j :=


w̃1

n
j

w̃2
n
j

w̃3
n
j

 .
If the CFL condition ∆t

∆x
max{|λ1|, |λ2|, |λ3|} ≤ 1 holds and if there exists µ > 0, p1 > 0,

p2 > 0 and p3 > 0 such that

ΦjΠ + ΠTΦj −∆tΠTΦjΠ, j = 0, . . . , J − 1, is positive semi-definite (5.53)

and
p1e
−µxJ |λ1| 0 0

0 p2e
−µxJ |λ2| 0

0 0 p3e
µx−1|λ3|



−


0 0 k13

0 0 k23

k31 k32 0


T 

p1e
−µx0|λ1| 0 0

0 p2e
−µx0|λ2| 0

0 0 p3e
µxJ−1|λ3|




0 0 k13

0 0 k23

k31 k32 0

 (5.54)

is positive definite, then
Ln+1 − L̃n

∆t
≤ 0,
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and
L̃n − Ln

∆t
< −ηLn, 0 < η := µαe−µ∆x < 1, α := min{|λ1|, |λ2|, |λ3|}.

In order to show that both conditions (5.53) and (5.54) hold, it suffices to show that the

determinant of every principal sub-matrix of the matrices
M11 M12 M13

M12 M22 M23

M13 M23 M33

 , (5.55)

with

M11 := 2p1e
−µxjγ1 −∆t

(
p1e
−µxjγ2

1 + p2e
−µxjγ2

1 + p3e
µxjγ2

1

)
,

M12 := p2e
−µxjγ1 + p1e

−µxjγ2 −∆t
(
p1e
−µxjγ1γ2 + p2e

−µxjγ1γ2 + p3e
µxjγ1γ2

)
,

M13 := p3e
µxjγ1 + p1e

−µxjγ3 −∆t
(
p1e
−µxjγ1γ3 + p2e

−µxjγ1γ3 + p3e
µxjγ1γ3

)
,

M22 := 2p2e
−µxjγ2 −∆t

(
p1e
−µxjγ2

2 + p2e
−µxjγ2

2 + p3e
µxjγ2

2

)
,

M23 := p3e
µxjγ2 + p2e

−µxjγ3 −∆t
(
p1e
−µxjγ2γ3 + p2e

−µxjγ2γ3 + p3e
µxjγ2γ3

)
,

M33 := 2p3e
µxjγ3 −∆t

(
p1e
−µxjγ2

3 + p2e
−µxjγ2

3 + p3e
µxjγ2

3

)
,

and 
σ11 σ12 0

σ12 σ22 0

0 0 σ33

 , (5.56)

with

σ11 := |λ1|p1e
−µxJ − k2

31|λ3|p3e
µxJ−1 ,

σ12 := −k31k32|λ3|p3e
µxJ−1 ,

σ22 := |λ2|p2e
−µxJ − k2

32|λ3|p3e
µxJ−1 , and

σ33 := |λ3|p3e
µx−1 − k2

13|λ1|p1e
−µx0 − k2

23|λ2|p2e
−µx0 ,

is non-negative and positive, respectively.

The determinant of the sub-matrices of the matrix (5.55) are

2p1e
−µxjγ1 −∆t

(
p1e
−µxjγ2

1 + p2e
−µxjγ2

1 + p3e
µxjγ2

1

)
, (5.57)
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−
(
γ2

1p
2
2 − 2γ1γ2p1p2 + γ2

2p
2
1

)
e−2µxj = − (γ1p2 − γ2p1)2 e−2µxj , (5.58)

and ∣∣∣∣∣∣∣∣∣
M11 M12 M13

M12 M22 M23

M13 M23 M33

∣∣∣∣∣∣∣∣∣ = 0. (5.59)

If p1, p2 and p3 can be chosen such that p1 = γ1, p2 = γ2 and p3 = γ3, then for γ1 > 0 and

sufficiently small µ > 0,

∆tγ1 < max
0≤x≤l

{
2p1e

−µxj

(p1e−µxj + p2e−µxj + p3eµxj)

}
≈ 1,

and the determinants (5.57), (5.58) and (5.59) are non-negative.

Therefore, with the choice of p1 and p2, the matrix (5.56) is positive definite if k13, k23, k31

and k32 satisfy

|k13| <

√∣∣∣∣λ3

λ1

∣∣∣∣ γ3

γ1

, |k23| <

√∣∣∣∣λ3

λ2

∣∣∣∣ γ3

γ2

, |k31| <

√∣∣∣∣λ1

λ3

∣∣∣∣ γ1

γ3

e−µl and |k32| <

√∣∣∣∣λ2

λ3

∣∣∣∣ γ2

γ3

e−µl.

Consider a constant steady state [23]

H∗(x) = 2, V ∗(x) = 3 and B∗(x) = 0.4, x ∈ [0, l]

with physical parameter values g = 9.81, Cf = 0.1, a = 0.0184 and Sb = 0.0459 in the

system (2.63). The initial condition [23] for the system (2.63)

H(x, 0) = 2.5−B(x, 0), V (x, 0) =
10 sin(πx)

H(x, 0)
and

B(x, 0) = 0.4

(
1 + 0.25 exp

(
−(x− 0.5)2

0.003

))
, x ∈ [0, l].

The decoupled system (2.73) has the following eigenvalues

λ1 = 7.5383, λ2 = 0.3430 and λ3 = −1.8813,

the coefficients of the source terms are:

γ1 = 0.1014, γ2 = 0.0267 and γ3 = 0.1719,
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and the initial condition, which is obtained from (2.74), is


w1(x, 0)

w2(x, 0)

w3(x, 0)

 =


−37.1179− 1.147 exp

(
− (x−0.5)2

0.003

)
+ 133.3333 sin(πx)

2.1−0.1 exp
(
− (x−0.5)2

0.003

)
−44.9229 + 43.0533 exp

(
− (x−0.5)2

0.003

)
+ 133.3333 sin(πx)

2.1−0.1 exp
(
− (x−0.5)2

0.003

)
−42.6796− 4.2729 exp

(
− (x−0.5)2

0.003

)
+ 133.3333 sin(πx)

2.1−0.1 exp
(
− (x−0.5)2

0.003

)

 , x ∈ [0, l].

Therefore, the convergence of the discrete Lyapunov function for different values of µ > 0 is

shown in Figure 5.6 below.

Figure 5.6: The decay of the Lyapunov function for Saint-Venant-Exner equations. The choice

of parameters are p1 = 0.1014, p2 = 0.0267, p3 = 0.1719, k13 = 0.6, k23 = 0.5, k31 = 0.15

and k32 = 0.15, with l = 1, J = 200 and T = 10 under CFL = 0.75.

The three curves that are obtained for different values of µ > 0, which are shown in Figure 5.6,

are nearly indistinguishable. We observed the convergence of the discrete Lyapunov function

to 0. This shows, in the sense of L2−norm, the Cauchy problem (4.25), (4.26), (4.27) is

exponentially stable.
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5.3 Summary

In this chapter, we have analyzed the numerical boundary stability of some examples of linear

hyperbolic balance laws. In particular, conditions are given for the stability of these systems.

Furthermore, numerical tests have been undertaken to show the implications of numerical

analysis from analytical analysis.
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Conclusions and Future Work

In this dissertation, a linear hyperbolic system of balance laws has been considered and a

finite volume method is used in the discretization of this linear system. In particular, the

upwind scheme with splitting source term method is applied to obtain a fully discretized linear

hyperbolic system of balance laws. Beside this, an L2−Lyapunov function is discretized and

used to investigate conditions for exponential stability of the discretized system. Furthermore,

the result was applied to some relevant physical problems such as the telegrapher equations,

isentropic Euler equations, Saint-Venant equations and Saint-Venant-Exner equations. Finally,

numerical simulations are computed in order to test the results and compare with analytical

results.

As part of future work plans, the numerical stability analysis of the nonlinear hyperbolic systems

of balance laws will be explored by using the H2−Lyapunov function.
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Appendix A

Quadratic Forms and Definite Matrices

The purpose of this appendix is to give short summary to the basic concepts related to

quadratic forms and definite matrices. Special attention is given on some topics most relevant

to the discussion of this dissertation.

Definition 8 (Linear Form [43]). Let V = (v1, . . . , vk)
T be an arbitrary vector in Rk. For any

vector X = (x1, . . . , xk)
T in Rk, a linear form is a function that is defined by

V TX =
k∑
i=1

vixi = v1x1 + · · ·+ vkxk.

Notation 1. If a vector V = X in the definition above, then we have

XTX =
k∑
i=1

x2
i = ‖X‖2.

Example 1 ([43]). A function f : R3 → R defined by

4x1 + 5x2 − 3x3

is a linear form with X = (x1, x2, x3)T and V = (4, 5,−3)T .

Definition 9 (Bilinear Form [43]). Let B = {bij} denote a k × k arbitrary matrix. For all

vectors X = (x1, . . . , xk)
T and Y = (y1, . . . , ym)T in Rk and Rm, respectively, a bilinear form

is a function that is defined by

XTBY =
k∑
i=1

m∑
j=1

bijxiyj.
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Example 2 ([43]). Given an expression

x1y1 + 2x1y2 + 4x2y1 + 7x2y2 + 2x3y1 − 2x3y2,

its bilinear form is

XTBY =
[
x1 x2 x3

]
1 2

4 7

2 −2


y1

y2

 .
Definition 10 (Quadratic Form [43]). Let Q = {qij} be a k × k symmetric matrix with real

entries. For any vector X = (x1, . . . , xk)
T in Rk, a quadratic form is a function that is defined

by

XTQX =
k∑
i=1

k∑
j=1

qijxixj.

Example 3 ([43]). Consider the following expression

x2
1 + 7x2

2 + 4x2
3 + 4x1x2 + 10x1x3 − 4x2x3,

which can be written as a quadratic form

XTQX =
[
x1 x2 x3

]
1 2 5

2 7 −2

5 −2 4



x1

x2

x3

 .
Definition 11 (Definiteness [2]). A quadratic form XTQX is said to be:

1. positive definite if XTQX > 0 for all x 6= 0.

2. positive semi-definite if XTQX ≥ 0 for all x 6= 0 and XTQX = 0 for some x 6= 0.

3. negative definite if XTQX < 0 for all x 6= 0.

4. negative semi-definite if XTQX ≤ 0 for all x 6= 0 and XTQX = 0 for some x 6= 0.

5. indefinite if XTQX has both positive and negative values.

To determine whether a matrix Q and its associated quadratic form XTQX are positive

definite, negative definite or indefinite by using eigenvalues of a matrix Q, the following theorem

can be refereed.
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Theorem 5 ([2]). If Q is a symmetric matrix, then:

1. XTQX is positive definite if and only if all eigenvalues of Q are positive.

2. XTQX is negative definite if and only if all eigenvalues of Q are negative.

3. XTQX is indefinite if and only if Q has at least one positive eigenvalue and at least

one negative eigenvalue.

Example 4 ([2]). Consider a symmetric matrix

Q =


3 1 1

1 0 2

1 2 0

 .
To tell that matrix Q and its associated quadratic form XTQX are positive definite, negative

definite or indefinite using Theorem 5, it is required to obtain eigenvalues of a matrix Q. Since

eigenvalues of Q are λ = −2, 1, 4, a quadratic form

XTQX =
[
x1 x2 x3

]
3 1 1

1 0 2

1 2 0



x1

x2

x3

 = 3x2
1 + 2x1x2 + 2x1x3 + 4x2x3,

is indefinite.

Definition 12 (Principal Sub-matrix [2]). Let Q = {qij} be a k×k matrix. The mth principal

sub-matrix of Q is a sub-matrix consisting of the first m rows and columns of Q.

Example 5 ([2]). For a k × k matrix Q = {qij}, the following are the principal sub-matrices

of Q,

[
q11

]
,

q11 q12

q21 q22

 ,

q11 q12 q13

q21 q22 q23

q31 q32 q33

 , . . . ,


q11 q12 . . . q1k

q21 q22 . . . q2k

...
...

...

qk1 qk2 . . . qkk

 .

Whether a matrix Q and its associated quadratic form XTQX is positive definite, negative

definite or indefinite can be determined using the determinants of principal sub-matrices as by

the following theorem.
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Theorem 6 ([2]). If Q is a symmetric matrix, then:

1. Q is positive definite if and only if the determinant of every principal sub-matrix is

positive.

2. Q is negative definite if and only if the determinants of the principal sub-matrices alter-

nate between negative and positive values starting with negative value for the determi-

nant of the first principal sub-matrix.

3. Q is indefinite if and only if it is neither positive nor negative definite and at least

one principal sub-matrix has a positive determinant and at least one has a negative

determinant.

Example 6 ([2]). Consider a symmetric matrix

Q =


2 −1 −3

−1 2 4

−3 4 9

 .
Since the determinants

∣∣∣2∣∣∣ = 2,

∣∣∣∣∣∣ 2 −1

−1 2

∣∣∣∣∣∣ = 3,

∣∣∣∣∣∣∣∣∣
2 −1 −3

−1 2 4

−3 4 9

∣∣∣∣∣∣∣∣∣ = 1,

are all positive, a quadratic form

XTQX =
[
x1 x2 x3

]
2 −1 −3

−1 2 4

−3 4 9



x1

x2

x3

 = 2x2
1− 2x1x2− 6x1x3 + 2x2

2 + 8x2x3 + 9x2
3,

is positive definite.
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Appendix B

Determining the Eigenvalues of Cubic

Equations

The purpose of this appendix is discuss how to determine the eigenvalues of the Jacobian

matrix of order 3× 3, which has to do with finding roots of cubic equation [30].

Consider a cubic equation

P (λ) = λ3 + a1λ
2 + a2λ+ a3 = 0,

where a1, a2 and a3 are real coefficients. In order to find roots of the cubic equation, we let

Q =
1

9

(
3a2 − a2

1

)
and R =

1

54

(
9a1a2 − 27a3 − 2a3

1

)
.

Then the discriminant is D = Q3 +R2 and if

1. D > 0 then the cubic equation has one real and two complex roots;

2. D = 0 then the cubic equation has all real and two of them are equal roots;

3. D < 0 then the cubic equation has real and unequal roots.

Thus, if D < 0 then the roots of the cubic equation can be determined by

λ1 = 2
√
−Q cos

(
1

3
θ

)
− 1

3
a1, (B.1a)

97
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λ2 = 2
√
−Q cos

(
1

3
(θ + 2π)

)
− 1

3
a1, (B.1b)

and

λ3 = 2
√
−Q cos

(
1

3
(θ + 4π)

)
− 1

3
a1, (B.1c)

where cos θ = R√
−Q3

.

Note that before using (B.1) to determine the roots of the cubic equation, we need to check

that D < 0.
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